Northampton Electronic Collection of Theses and Research

Transient vibration phenomena in deep mine hoisting cables. Part 2: Numerical simulation of the dynamic response

Kaczmarczyk, S. and Ostachowicz, W. (2003) Transient vibration phenomena in deep mine hoisting cables. Part 2: Numerical simulation of the dynamic response. Journal of Sound and Vibration. 262(2), pp. 245-289. 1095-8568.

Item Type: Article
Abstract: A simulation model is presented which investigates the dynamic response of a deep mine hoisting cable system during a winding cycle. The response, namely the lateral motions of the catenary cable and the longitudinal motion of the vertical rope with conveyance is observed on the fast time scale, and the slow time scale is introduced to monitor the variation of slowly varying parameters of the system. The cable equivalent proportional damping parameters, and periodic excitation functions resulting from the cross-over cable motion on the winder drum are identified. Subsequently, the model is solved numerically using parameters of a double-drum multi-rope system. Since the system eigenvalues are widely spread and the problem is of stiff nature, the numerical simulation is conducted using a stiff solver. The results of the simulation demonstrate various transient non-linear resonance phenomena arising in the system during the wind. The nominal ascending cycle simulation results reveal adverse dynamic behaviour of the catenary largely due to the autoparametric interactions between the in- and out-of-plane modes. Principal parametric resonances of the lateral modes also occur, and conditions for autoparametric interactions between the lateral and longitudinal modes arise. Additionally, a transition through a number of primary longitudinal resonances takes place during the wind. The adverse dynamic motions in the system promote large oscillations in the cable tension which must be considered significant with respect to fatigue of the cable. It is noted that a small change in the winding velocity may cause large changes in the dynamic response due to the resonance region shifts. Consequently, the resonance modal interactions can be avoided, to a large extent, if the winding velocity is increased to an appropriate level.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ1350 Hoisting and conveying machinery
T Technology > TN Mining engineering. Metallurgy
T Technology > TA Engineering (General). Civil engineering (General) > TA349 Mechanics of engineering. Applied mechanics > TA355 Vibration
Creators: Kaczmarczyk, Stefan and Ostachowicz, W
Publisher: Elsevier
Faculties, Divisions and Institutes: University Faculties, Divisions and Research Centres - OLD > School of Applied Sciences (to 2009) > Engineering (to 2009)
Faculties > Faculty of Arts, Science & Technology > Engineering
Date: 1 January 2003
Date Type: Publication
Page Range: pp. 245-289
Journal or Publication Title: Journal of Sound and Vibration
Volume: 262
Number: 2
Language: English
DOI: https://doi.org/10.1016/S0022-460X(02)01148-3
ISSN: 1095-8568
Status: Published / Disseminated
Refereed: Yes
Related URLs:
URI: http://nectar.northampton.ac.uk/id/eprint/63

Actions (login required)

Edit Item Edit Item