Northampton Electronic Collection of Theses and Research

Geomorphology of desert sand dunes: a review of recent progress

Livingstone, I., Wiggs, G. F. S. and Weaver, C. (2007) Geomorphology of desert sand dunes: a review of recent progress. Earth-Science Reviews. 80(3-4), pp. 239-257. 0012-8252.

Item Type: Article
Abstract: Through the 1980s and 1990s studies of the geomorphology of desert sand dunes were dominated by field studies of wind flow and sand flow over individual dunes. Alongside these there were some attempts numerically to model dune development as well as some wind tunnel studies that investigated wind flow over dunes. As developments with equipment allowed, field measurements became more sophisticated. However, by the mid-1990s it was clear that even these more complex measurements were still unable to explain the mechanisms by which sand is entrained and transported. Most importantly, the attempt to measure the stresses imposed by the wind on the sand surface proved impossible, and the use of shear (or friction) velocity as a surrogate for shear stress also failed to deliver. At the same time it has become apparent that turbulent structures in the flow may be as or more important in explaining sand flux. In a development paralleled in fluvial geomorphology, aeolian geomorphologists have attempted to measure and model turbulent structures over dunes. Progress has recently been made through the use of more complex numerical models based on computational fluid dynamics (CFD). Some of the modelling work has also suggested that notions of dune ‘equilibrium’ form may not be particularly helpful. This range of recent developments has not meant that field studies are now redundant. For linear dunes careful observations of individual dunes have provided important data about how the dunes develop but in this particular field some progress has been made through ground-penetrating radar images of the internal structure of the dunes. The paradigm for studies of desert dune geomorphology for several decades has been that good quality empirical data about wind flow and sand flux will enable us to understand how dunes are created and maintain their form. At least some of the difficulty in the past arose from the plethora of undirected data generated by largely inductive field studies. More recently, attention has shifted–although not completely–to modelling approaches, and very considerable progress has been made in developing models of dune development. It is clear, however, that the models will continue to require accurate field observations in order for us to be able to develop a clear understanding of desert sand dune geomorphology.
Uncontrolled Keywords: aeolian; geomorphology; dune; transverse dune; linear dune; turbulence
Subjects: G Geography. Anthropology. Recreation > GB Physical geography > GB400 Geomorphology. Landforms. Terrain > GB561 Other natural landforms: Floodplains, caves, deserts, dunes
Creators: Livingstone, Ian, Wiggs, Giles F S and Weaver, Corinne
Publisher: Elsevier
Faculties, Divisions and Institutes: University Faculties, Divisions and Research Centres - OLD > School of Applied Sciences (to 2009) > Environmental Science (to 2009)
Date: 2007
Date Type: Publication
Page Range: pp. 239-257
Journal or Publication Title: Earth-Science Reviews
Volume: 80
Number: 3-4
Language: English
DOI: https://doi.org/10.1016/j.earscirev.2006.09.004
ISSN: 0012-8252
Status: Published / Disseminated
Refereed: Yes
URI: http://nectar.northampton.ac.uk/id/eprint/1145

Actions (login required)

Edit Item Edit Item