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a b s t r a c t 

This paper presents a study to predict the probabilistic characteristics of lateral dynamic motions of a long heavy 

cable moving at speed within a tall host structure. The cable is subjected to a base-motion (kinematic) excitation 

due to a low frequency sway of the structure. The development of the deterministic equations of motion and of 

the stochastic models describing the lateral dynamic behaviour of the cable is presented. Due to the time-varying 

length of the cable, the system exhibits nonstationary dynamic characteristics and its response is governed by 

nonstationary ordinary differential equations. Two stochastic models of motion of the structure are considered. 

In the first model, the excitation is represented as a narrow-band Gaussian process mean-square equivalent to a 

harmonic process. The second model involves a non-Gaussian process in the form of a random train of pulses, 

idealizing the action of strong wind gusts. The differential equations to determine the mean values and the second- 

order joint statistical moments of the response are formulated and solved numerically. A parametric study is 

conducted to demonstrate the influence of speed of the cable on the deterministic and stochastic characteristics 

of the response. 

© 2017 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Environmental phenomena such as strong wind conditions and

arthquakes cause tall civil structures such as towers and high-rise build-

ngs to vibrate (sway) at low frequencies and large amplitudes [1,2] .

hen the structure is sufficiently flexible, the dynamic response to

orces generated by these phenomena is significant. As a result, the

orresponding kinematic excitation often excites long slender continua

uch as cables and ropes that are part of equipment hosted within the

tructure. For example, large resonance motions of suspension ropes and

ompensating cables in high-speed elevators in high-rise buildings take

lace [3] . In order to predict the dynamic behaviour of moving continua

n such systems, various models have been used. The excitation mech-

nism can be represented by deterministic functions and consequently

he response of the system is treated as a deterministic phenomenon

4–8] . However, the nature of loading caused by environmental phe-

omena such as wind is usually nondeterministic [9,10] . The excitation

hould then be described by a stochastic process so that the methods of
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tochastic dynamics can be employed to predict the dynamic behaviour

f the system. 

In this work, the model and stochastic methodology proposed

y Kaczmarczyk et al. [11] is extended and used to carry out a

omprehensive computer simulation study to predict the dynamic re-

ponse of a long cable moving at speed within a tall slender host struc-

ure. First, a derivation of the deterministic model which describes the

ynamic behaviour of the system is summarized and the dynamic char-

cteristics of the system are explained. Two, stochastic models of motion

f the structure are considered. In the first model, the excitation is repre-

ented as a narrow-band Gaussian process mean-square equivalent to a

armonic process. Alternatively, the dynamic loading due to wind gusts

ay be adequately idealized by a train of randomly occurring pulses

12–14] with the corresponding the dynamic response of a structure be-

ng also a train of pulses. Hence, in the second model, the excitation

s treated as a non-Gaussian process in the form of a random train of

ulses. For both models, the non-stationary differential equations gov-

rning the statistical moments of the state vector are presented. The
tu-harburg.de (R. Iwankiewicz). 
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Fig. 1. Vertical cable moving within a tall structure. 
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quations are then solved numerically and a numerical study based on

 range of model parameters of the system is conducted. 

. Equations of motion 

The model depicted in Fig. 1 is used to study the dynamic behaviour

f a vertical cable of time-varying length L(t) . The cable which has mass

er unit length m is wrapped around a drum at the bottom end and

ttached at B to a support moving at speed v within a tall cantilevered

ost structure. The host structure sways which results in motion w 0 ( t ) of

mplitude A 0 at the level defined by the coordinate z 0 measured from

he structure base level. The deformations of the structure are described

s A 0 Ψ( z ) where Ψ( z ) represents the deformation shape function with z

enoting a coordinate measured from the base level. The base motion

 0 ( t ) excites the cable and its dynamic response is represented by the

ateral displacements denoted as w(x,t) , where x is measured from the

rigin O placed at distance l below the base level. 

The equations of motion of the system presented in what follows are

ased on the model discussed in [11] , with a more accurate represen-

ation of the deformations of the structure used. The mean quasi-static

ension of the cable is expressed as 

 𝑚 ( 𝑥, 𝑡 ) = 𝑇 0 + 𝑚𝑥 [ 𝑔 + 𝑎 ( 𝑡 ) ] (1)

here the spatial coordinate x is defined in a time-variant domain 0 <

 < L ( t ), T 0 represents a constant tension term, 𝑎 ( 𝑡 ) = 𝑣̇ ( 𝑡 ) is the acceler-

tion of the upper support (an overdot denotes the time derivative) and

 is the acceleration of gravity. 

The equation governing the linear undamped dynamic response of

he cable in terms of the lateral displacements w(x,t) is given as 

 

d 2 𝑤 

d 𝑡 2 
− 

[
𝑇 0 + 𝑚 ( 𝑔 + 𝑎 ) 𝑥 

]
𝑤 𝑥𝑥 − 𝑚 ( 𝑔 + 𝑎 ) 𝑤 𝑥 = 0 (2)

here () x denotes partial derivatives with respect to x and 

d 2 𝑤 

d 𝑡 2 
= 𝑤 𝑡𝑡 + 2 𝑣 𝑤 𝑥𝑡 + 𝑣 2 𝑤 𝑥𝑥 + 𝑎 𝑤 𝑥 (3)

here () t denotes partial derivatives with respect to time. 

The displacements at the boundaries x = 0, L ( t ) are defined as 

 ( 0 , 𝑡 ) = 0 , w [ L ( 𝑡 ) , t ] = w ( 𝑡 ) (4)
L 

501 
here w L ( t ) represents lateral displacements of the structure corre-

ponding to the upper end of the cable (see Fig. 1 ). The continuous

ystem described by Eqs. (2) –(4) is discretized using the following ap-

roximation of the solution: 

 ( 𝑥, 𝑡 ) = 𝑤̄ ( 𝑥, 𝑡 ) + 𝑊 0 ( 𝑥, 𝑡 ) , 0 ≤ 𝑥 ≤ 𝐿 ( 𝑡 ) (5)

here 

̄
 ( 𝑥, 𝑡 ) = 

𝑁 ∑
𝑛 =1 

Φ𝑛 [ 𝑥 ; 𝐿 ( 𝑡 ) ] 𝑞 𝑛 ( 𝑡 ) , 0 ≤ 𝑥 ≤ 𝐿 ( 𝑡 ) (6)

s an approximate solution that satisfies homogenous boundary condi-

ions with Φn [ x; L ( t )] representing the n th eigenfunction of a taut string

f instantaneous length L = L(t) with a constant tension. The eigenfunc-

ions are given as 

𝑛 [ 𝑥 ; 𝐿 ( 𝑡 ) ] = sin 𝑛𝜋
𝐿 ( 𝑡 ) 

𝑥, 𝑛 = 1 , 2 , … , 𝑁 (7)

nd q n ( t ) represents the n th modal coordinate. W 0 ( x,t ) is a particular

olution that satisfies the non-homogenous boundary conditions (4) .

oting that the lateral displacements at x = L ( t ) can be expressed as

 L ( t ) = ΨL [ L ( t )] w 0 ( t ), where ΨL = Ψ[ L ( t ) − l ], the particular solution is

iven as 

 0 ( 𝑥, 𝑡 ) = Y [ 𝑥 ; 𝐿 ( 𝑡 ) ] 𝑤 0 ( 𝑡 ) , 0 ≤ 𝑥 ≤ 𝐿 ( 𝑡 ) (8)

here Y[ 𝑥 ; 𝐿 ( 𝑡 ) ] = Ψ𝐿 [ 𝐿 ( 𝑡 ) ] 𝑥 

𝐿 ( 𝑡 ) . In this model, the deformation shape

unction Ψ( z ) is assumed to be related to the fundamental mode of the

tructure and is approximated by a cubic polynomial as follows: 

( 𝑧 ) = 3 
( 

𝑧 

𝑧 0 

) 2 
− 2 

( 

𝑧 

𝑧 0 

) 3 
(9)

o that the deformation shape at z = L ( t ) − l is expressed as 

𝐿 [ 𝐿 ( 𝑡 ) ] = 3 
( 

𝐿 ( 𝑡 ) − 𝑙 

𝑧 0 

) 2 
− 2 

( 

𝐿 ( 𝑡 ) − 𝑙 

𝑧 0 

) 3 
(10)

espectively. It can be assumed that the length L is a slowly varying pa-

ameter, i.e. that its variation is observed on a slow time scale defined as

= 𝜀 t , where 𝜀 ≪ 1 is a small quantity [15] . Thus, L = L ( 𝜏) and the rate

f change of L with respect to time t is proportional to 𝜀 

𝑑𝐿 

𝑑𝑡 
≡ 𝐿̇ = 

𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝑑𝜏

𝑑𝑡 
= 𝜀 

𝑑𝐿 ( 𝜏) 
𝑑𝜏

; 𝐿̈ = 𝜀 2 
𝑑 2 𝐿 ( 𝜏) 
𝑑 𝜏2 

(11)

Consequently, noting that 𝑣 ≡ 𝐿̇ , 𝑎 = 𝐿̈ the velocity and accelera-

ion can also be considered as being slowly varying. Using Eq. (11) the

xpressions for partial derivatives with respect to time t of the expres-

ion (5) are given as 

 𝑡 = 

𝑁 ∑
𝑛 =1 

{ 

𝜀 
𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕 Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

𝑞 𝑛 ( 𝑡 ) + Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] ̇𝑞 𝑛 ( 𝑡 ) 
} 

+ 𝜀 
𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕Y [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

𝑤 0 ( 𝑡 ) + Y [ 𝑥 ; 𝐿 ( 𝜏) ] 𝑤̇ 0 ( 𝑡 ) ; (12a) 

 𝑡𝑡 = 

𝑁 ∑
𝑛 =1 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝜀 2 
[ (

𝑑𝐿 ( 𝜏) 
𝑑𝜏

)2 
𝜕 2 Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] 

𝜕 𝐿 2 
+ 

𝑑 2 𝐿 ( 𝜏) 
𝑑 𝜏2 

𝜕 Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

] 
𝑞 𝑛 ( 𝑡 ) 

+ 2 𝜀 𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕 Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

𝑞̇ 𝑛 + Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] ̈𝑞 𝑛 

⎫ ⎪ ⎬ ⎪ ⎭ 

+ 𝜀 2 

{ ( 

𝑑𝐿 ( 𝜏) 
𝑑𝜏

) 2 
𝜕 2 Y [ 𝑥 ; 𝐿 ( 𝜏) ] 

𝜕 𝐿 

2 + 

𝑑 2 𝐿 ( 𝜏) 
𝑑 𝜏2 

𝜕Y [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

} 

𝑤 0 ( 𝑡 ) 

+ 2 𝜀 𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕Y [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

𝑤̇ 0 ( 𝑡 ) + Y [ 𝑥 ; 𝐿 ( 𝜏) ] ̈𝑤 0 ( 𝑡 ) ; (12b) 

̄
 𝑥𝑡 = 

𝑁 ∑
𝑛 =1 

{ 

𝜀 
𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕 Φ′
𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

𝑞 𝑛 ( 𝑡 ) + Φ′
𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] ̇𝑞 𝑛 ( 𝑡 ) 

} 

+ 𝜀 
𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕Y 

′[ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

𝑤 0 ( 𝑡 ) + Y 

′[ 𝑥 ; 𝐿 ( 𝜏) ] 𝑤̇ 0 ( 𝑡 ) , (12c) 

here the primes denote partial derivatives with respect to x . By using

6) –( 12 ) in (5) , substituting the result in (2) , multiplying by Φ [ x; L ( 𝜏)],
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o

ntegrating the result and orthogonalising with respect to the natural

odes, when terms O ( 𝜀 ) and O ( 𝜀 2 ) are neglected, the following set of

rdinary differential equations results 

̈ 𝑟 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝐶 𝑟𝑛 ( 𝜏) ̇𝑞 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝐾 𝑟𝑛 ( 𝜏) 𝑞 𝑛 ( 𝑡 ) = 𝑄 𝑟 ( 𝑡 ; 𝜏) , 𝑟 = 1 , 2 , … , 𝑁 (13)

here the slowly varying coefficients K rn ( 𝜏), C rn ( 𝜏) and the modal exci-

ation function Q r ( t ; 𝜏) are given as 

𝐶 𝑟𝑛 ( 𝜏) = 

{ 

2 𝜍 𝑟 ̄𝜔 𝑟 ( 𝜏) , 𝑛 = 𝑟 

4 𝑛𝑟𝑣 ( 𝜏) 
( 𝑛 2 − 𝑟 2 ) 𝐿 ( 𝜏) 

(
( −1 ) 𝑟 + 𝑛 − 1 

)
, 𝑛 ≠ 𝑟 

, 

𝐾 𝑟𝑛 ( 𝜏) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝜔̄ 

2 
𝑟 
( 𝜏) − 

𝑟 2 𝜋2 

𝐿 ( 𝜏) 

[
𝑣 2 ( 𝜏) 
𝐿 ( 𝜏) − 

𝑔+ 𝑎 ( 𝜏) 
2 

]
, 𝑛 = 𝑟 

2 
( 𝑛 2 − 𝑟 2 ) 𝐿 ( 𝜏) 

[
2 𝑟 𝑛 3 ( 𝑔+ 𝑎 ( 𝜏) ) 

𝑛 2 − 𝑟 2 − 𝑔𝑟𝑛 

][
( −1 ) 𝑟 + 𝑛 − 1 

]
, 𝑛 ≠ 𝑟 

 𝑟 ( 𝑡 ; 𝜏) = 

2 Ψ𝐿 

𝑟𝜋𝐿 ( 𝜏) 
{
( −1 ) 𝑟 𝐿 ( 𝜏) ̈𝑤 0 ( 𝑡 ) − 

[
𝑔 𝑤 0 ( 𝑡 ) − 2 𝑣 𝑤̇ 0 ( 𝑡 ) 

][
( −1 ) 𝑟 −1 

]}
(14)

here r, n = 1, 2, …, N , 𝜔̄ 𝑟 ( 𝜏) = 

𝑟𝜋

𝐿 ( 𝜏) 

√ 

𝑇 0 
𝑚 

and 𝜍 r represents the modal

amping ratios of the cable. Eq. (13) with slowly varying coefficients

escribe the nonstationary dynamic behaviour of the system. An ad-

erse situation arises when the structure is excited near its fundamental

atural frequency. This in turn leads to a passage through resonance

n the cable system [4,15] when one of its slowly time-varying natu-

al frequencies approaches that of the inertial load resulting from the

esonance sway. 

. Stochastic models 

.1. Narrow-band Gaussian stochastic model 

It can be assumed that w 0 ( t ) is an oscillatory motion with frequen-

ies within a narrow range of the centre frequency Ω0 . Thus, w 0 ( t ) is

onsidered as a narrow band, an almost harmonic process, mean-square

quivalent to the (harmonic) process with the amplitude A 0 and the fre-

uency Ω0 . It should be noted that the process w 0 ( t ) which represents

he structural displacement response, must be twice differentiable, i.e.

ts first- and second-order derivatives 𝑤̇ 0 ( 𝑡 ) and 𝑤̈ 0 ( 𝑡 ) , respectively, must

xist [9] . This scenario is adequately idealized by assuming that the

otion w 0 ( t ) is the response of the second order auxiliary filter to the

rocess X(t) , which in turn is the response of the first-order filter to the

aussian white noise excitation 𝜉( t ) [11] . The governing equations are 

̈
 0 ( 𝑡 ) + 2 𝜁𝑓 Ω0 𝑤̇ 0 ( 𝑡 ) + Ω2 

0 𝑤 0 ( 𝑡 ) = 𝑋 ( 𝑡 ) 

𝑋̇ ( 𝑡 ) + 𝛼𝑋 ( 𝑡 ) = 𝛼
√
2 𝜋𝑆 0 𝜉( 𝑡 ) (15)

here 𝜁 f denotes the damping ratio of the filter which defines its band

idth, 𝛼 is the filter variable, S 0 is the constant level of the power spec-

rum of white noise 𝜉( t ). To be more exact, the response X(t) to the

aussian white noise excitation 𝜉( t ) is a process which is not differen-

iable in the usual sense; hence, the notation 𝑋̇ ( 𝑡 ) is not mathematically

eaningful. The second equation in (15) has a clear mathematical sense

hen it is written in the differential form. Accordingly, the governing

quations for both filters are written down in a state space form as 

 

⎡ ⎢ ⎢ ⎣ 
𝑋 

𝑤 0 
𝑤̇ 0 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
− 𝛼 0 0 
0 0 1 
1 −Ω2 

0 −2 𝜁𝑓 Ω0 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝑋 

𝑤 0 
𝑤̇ 0 

⎤ ⎥ ⎥ ⎦ d 𝑡 + 

⎡ ⎢ ⎢ ⎣ 
𝛼
√
2 𝜋𝑆 0 
0 
0 

⎤ ⎥ ⎥ ⎦ d 𝑊 ( 𝑡 ) (16)

here d W(t) is the increment of the Wiener process W(t) and the Gaus-

ian white noise excitation 𝜉( t ) is the generalized (not in usual sense)

erivative of the Wiener process. In this representation the stochastic

rocess, w 0 ( t ) is mean-square equivalent to the harmonic process if its

tandard deviation and variance are given as 

𝑤 0 
= 

√
2 
A 0 , var 

(
𝑤 0 

)
= 𝜎2 

𝑤 0 
= 

𝐴 

2 
0 

(17)

2 2 
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espectively. It can be shown that this equivalence is achieved if the

lter variable 𝛼 is given as [9] 

= Ω0 

⎛ ⎜ ⎜ ⎝ − 𝜁𝑓 + 

√ √ √ √ 𝜁2 
𝑓 
+ 

𝜁𝑓 Ω3 
0 𝐴 

2 
0 

𝜋𝑆 0 − 𝜁𝑓 Ω3 
0 𝐴 

2 
0 

⎞ ⎟ ⎟ ⎠ (18)

It is important to note that the choice of parameters in

q. (18) should guarantee that the filter variable 𝛼 is real. It is evident

rom the last equation in Eq. (14) that the excitation function Q r ( t ; 𝜏)

an be expressed in terms of the motion w 0 ( t ) and its time derivatives

s 

 𝑟 ( 𝑡 ; 𝜏) = 𝛽(1) 
𝑟 

( 𝜏) 𝑤 0 ( 𝑡 ) + 𝛽(2) 
𝑟 

( 𝜏) 𝑤̇ 0 ( 𝑡 ) + 𝛽(3) 
𝑟 

( 𝜏) ̈𝑤 0 ( 𝑡 ) (19)

here 

(1) 
𝑟 

( 𝜏) = −2 𝑔 
Ψ𝐿 [ 𝐿 ( 𝜏) ] 
𝑟𝜋𝐿 ( 𝜏) 

[
( −1 ) 𝑟 − 1 

]
(2) 
𝑟 

( 𝜏) = 4 𝑣 
Ψ𝐿 [ 𝐿 ( 𝜏) ] 
𝑟𝜋𝐿 ( 𝜏) 

[
( −1 ) 𝑟 − 1 

]
(3) 
𝑟 

( 𝜏) = 2 
Ψ𝐿 [ 𝐿 ( 𝜏) ] 

𝑟𝜋
( −1 ) 𝑟 (20) 

Using the first equation (15) the second derivative of w 0 ( t ) can be

xpressed as 

̈
 0 ( 𝑡 ) = 𝑋 ( 𝑡 ) − Ω2 

0 𝑤 0 ( 𝑡 ) − 2 𝜁𝑓 Ω0 𝑤̇ 0 ( 𝑡 ) (21)

o that Eq. (19) can be rewritten as 

 𝑟 ( 𝑡 ; 𝜏) = 𝛾 (1) 
𝑟 

( 𝜏) 𝑤 0 ( 𝑡 ) + 𝛾 (2) 
𝑟 

( 𝜏) 𝑤̇ 0 ( 𝑡 ) + 𝛽(3) 
𝑟 

( 𝜏) 𝑋 ( 𝑡 ) (22)

here 

(1) 
𝑟 

= 𝛽(1) 
𝑟 

− Ω2 
0 𝛽

(3) 
𝑟 

(2) 
𝑟 

= 𝛽(2) 
𝑟 

− 2 𝜁𝑓 Ω0 𝛽
(3) 
𝑟 

(23) 

The state vector defined as 

 ( 𝑡 ) = 

[
𝐪 ( 𝑡 ) 𝐪̇ ( 𝑡 ) 𝑋 ( 𝑡 ) 𝑤 0 ( 𝑡 ) 𝑤̇ 0 ( 𝑡 ) 

]𝑇 
(24)

here q = [ q 1 , q 2 ,…, q N ] 
T , is then governed by the following set of

tochastic equations: 

 𝐘 ( 𝑡 ) = 𝐀𝐘 ( 𝑡 ) d 𝑡 + 𝐛 d 𝑊 ( 𝑡 ) (25)

here 

 = 

⎡ ⎢ ⎢ ⎣ 
𝟎 𝐈 𝟎 
− 𝐊 − 𝐂 𝐁 

𝟎 𝟎 𝐀 𝑓 

⎤ ⎥ ⎥ ⎦ , 𝐛 = 

⎡ ⎢ ⎢ ⎣ 
𝟎 
𝟎 
𝐛 𝑓 

⎤ ⎥ ⎥ ⎦ (26)

ith I denoting the identity matrix and K and C representing the ma-

rices of coefficients K rn ( 𝜏) and C rn ( 𝜏) appearing in Eq. (13) , respec-

ively. Furthermore, B is a matrix with rows comprising coefficients
(3) 
𝑟 , 𝛾

(1) 
𝑟 , 𝛾

(2) 
𝑟 and the matrix A f and vector b f in (26) are defined as fol-

ows: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝛽
(3) 
1 𝛾

(1) 
1 𝛾

(2) 
1 

𝛽
(3) 
2 𝛾

(1) 
2 𝛾

(2) 
2 

… … …

𝛽
(3) 
𝑁 

𝛾
(1) 
𝑁 

𝛾
(2) 
𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(27)

 𝑓 = 

⎡ ⎢ ⎢ ⎣ 
− 𝛼 0 0 
0 0 1 
1 −Ω2 

0 −2 𝜁𝑓 Ω2 
0 

⎤ ⎥ ⎥ ⎦ , 𝐛 𝑓 = 

⎡ ⎢ ⎢ ⎣ 
𝛼
√
2 𝜋𝑆 0 
0 
0 

⎤ ⎥ ⎥ ⎦ (28)

As the increments of the Wiener process are zero-mean, i.e.

 [d W ( t )] = 0, and the system is governed by the linear stochastic Eq.

25) , it follows that the mean values of the state variables are zero-mean

s well, E [ Y ( t )] = 0. The differential equations governing the second-

rder statistical moments of the state vector, i.e. the covariance matrix

 YY = E [ YY 

T ], with its elements expressed as 𝜇ij = E [ Y i ( t ) Y j ( t )], are then

btained from Eq. (25) and are written in the following form: 

d 
d 𝑡 
𝐑 𝐘𝐘 = 𝐀 𝐑 𝐘𝐘 + 𝐑 𝐘𝐘 𝐀 

𝑇 + 𝐛 𝐛 𝑇 (29)



S. Kaczmarczyk, R. Iwankiewicz International Journal of Mechanical Sciences 134 (2017) 500–510 

 

𝜎  

 

t

3

 

d  

t

𝑤  

w  

p  

p  

e

 

s  

t

𝑤  

w  

d  

a  

t  

a  

t

𝑋  

w  

p  

i  

N  

o  

i

𝑋  

w  

i

ℎ

 

P

 

t  

t  

o  

o  

t  

T  

s  

t  

a  

w  

t

Fig. 2. Impulse response function plotted vs. time, (a) Ωf = Ω0 = 0.7854 rad/s (0.125 Hz) 
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The variance of the lateral displacement can then be determined as

2 
𝑤 
( 𝑥, 𝑡 ) = 𝐸 

[
𝑤̄ 

2 ( 𝑥, 𝑡 ) 
]
= 𝐸 

{ 

𝑁 ∑
𝑖 =1 

𝑁 ∑
𝑗=1 

Φ𝑖 [ 𝑥 ; 𝐿 ( 𝜏) ] Φ𝑗 [ 𝑥 ; 𝐿 ( 𝜏) ] 𝑞 𝑖 ( 𝑡 ) 𝑞 𝑗 ( 𝑡 ) 

} 

(30)

Furthermore, higher-order joint statistical moments of the state vec-

or Y ( t ) can be determined with the aid of Itô’s differential rule [16] . 

.2. Motion of a structure as a random pulse train 

Alternatively, it can be assumed that the motion w 0 ( t ) is due to ran-

omly occurring strong wind gusts. An adequate idealization of this mo-

ion is the random train of pulses 

 0 ( 𝑡 ) = 

𝑁( 𝑡 ) ∑
𝑖 =1 

𝑠 ( 𝑡 − 𝑡 𝑖 ) (31)

here s ( t − t i ) is the motion (response) of the structure due to a single

ulse (gust) of a strong wind and N ( t ) is a homogenous Poisson counting

rocess, giving the random number of occurrence times t i ∈ [0, t ), i.e.

xcluding the possible occurrence at t . 

The structure can be idealized by considering its fundamental mode

o that it is represented as a single-degree-of-freedom system. The mo-

ion w 0 ( t ) is then governed by the following equation: 

̈
 0 ( 𝑡 ) + 2 𝜁0 Ω0 𝑤̇ 0 ( 𝑡 ) + Ω2 

0 𝑤 0 ( 𝑡 ) = 𝑋 ( 𝑡 ) (32)

here Ω0 is the fundamental natural frequency and 𝜁0 is the modal

amping ratio of the structure. In this model, the function X ( t ) represents

 stochastic excitation process in the form of train of pulses representing

he wind gusts. This process is conveniently modelled as the response of

n auxiliary 2nd order filter to a Poisson train of impulses, governed by

he equation 

̈
 ( 𝑡 ) + 2 𝜁𝑓 Ω𝑓 𝑋̇ ( 𝑡 ) + Ω2 

𝑓 
𝑋( 𝑡 ) = 

𝑁( 𝑡 ) ∑
𝑖 =1 

𝑃 𝑖 𝛿( 𝑡 − 𝑡 𝑖 ) (33)

here P i are the magnitudes of impulses assumed to be mutually inde-

endent random variables, identically distributed and also statistically

ndependent of the random occurrence time t i , or of the counting process

 ( t ). Here, Ωf and 𝜁 f are the natural frequency and the damping ratio

f the auxiliary filter, respectively. Hence, the process X ( t ) is a train of

mpulse response functions h ( t − t i ) of the filter given as 

 ( 𝑡 ) = 

𝑁( 𝑡 ) ∑
𝑖 =1 

𝑃 𝑖 ℎ ( 𝑡 − 𝑡 𝑖 ) (34)

here h ( t − t i ) represents the response of a filter to a single Dirac delta

mpulse 𝛿( t − t i ), defined by the following equation: 

 ( 𝑡 − 𝑡 𝑖 ) = 

1 

Ω𝑓 

√ 

1 − 𝜁2 
𝑓 

exp 
[
− 𝜁𝑓 Ω𝑓 ( 𝑡 − 𝑡 𝑖 ) 

]
sin 

[ 
Ω𝑓 

√ 

1 − 𝜁2 
𝑓 
( 𝑡 − 𝑡 𝑖 ) 

] 
, 𝑡 > 𝑡 𝑖 

(35) 

Thus, the motion s ( t − t i ) is the response of the structure to the pulse

 i h ( t − t i ). 

If the damping ratio 𝜁 f of the filter is assumed to be close to the unity,

he function h ( t ) becomes practically a single pulse, with an insignificant

ail. Duration of such a single pulse is 𝑇 𝑓 = 𝜋∕ ( Ω𝑓 

√ 

1 − 𝜁2 
𝑓 
) and depends

n the frequency of the filter and may be related to the natural period

f the structure. Fig. 2 (a) illustrates the impulse response function plot-

ed vs. time with t i = 0, Ωf = Ω0 = 0.7854 rad/s (0.125 Hz) and 𝜁 f = 0.5.

he impulse response function maximum value h max = 0.6956 corre-

ponds to the time t max = 1.5396 s and T f = 4.6188 s. Fig. 2 (b) shows

he impulse response function when Ωf = 2.4 Ω0 = 1.8850 rad/s (0.3 Hz)

nd 𝜁 f = 0.95. The maximum value of the impulse is then h max = 0.2019

hich corresponds to the time instant t max = 0.5395 s and the duration

ime is T f = 5.3376 s. 
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The displacements w 0 ( t ) and the process X ( t ) are described by

qs. (32) and (33) , respectively, are then governed by the following

tochastic equations: 

𝑑 𝑋 ( 𝑡 ) = 𝑋̇ ( 𝑡 ) 𝑑𝑡 

𝑑 𝑋̇ ( 𝑡 ) = −2 𝜁𝑓 Ω𝑓 𝑋̇ ( 𝑡 ) 𝑑𝑡 − Ω2 
𝑓 
𝑋( 𝑡 ) 𝑑𝑡 + 𝑃 ( 𝑡 ) 𝑑𝑁( 𝑡 ) 

 𝑤 0 ( 𝑡 ) = 𝑤̇ 0 ( 𝑡 ) 𝑑𝑡, 

 𝑤̇ 0 ( 𝑡 ) = −2 𝜁0 Ω0 𝑤̇ 0 ( 𝑡 ) 𝑑𝑡 − Ω2 
0 𝑤 0 ( 𝑡 ) 𝑑𝑡 + 𝑋( 𝑡 ) 𝑑𝑡 (36) 

In the matrix form, the stochastic equations are written as 

 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑋 

𝑋̇ 

𝑤 0 
𝑤̇ 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 1 0 0 

−Ω2 
𝑓 

−2 𝜁𝑓 Ω𝑓 0 0 
0 0 0 1 
1 0 −Ω2 

0 −2 𝜁0 Ω0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑋 

𝑋̇ 

𝑤 0 
𝑤̇ 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
𝑑𝑡 + 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 
1 
0 
0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
𝑃 ( 𝑡 ) 𝑑𝑁( 𝑡 ) . 

(37) 

The state vector defined as 𝐘 ( 𝑡 ) = [ 𝐪 ( 𝑡 ) , 𝐪̇ ( 𝑡 ) , 𝑋( 𝑡 ) , 𝑋̇ , 𝑤 0 ( 𝑡 ) , 𝑤̇ 0 ] 𝑇 is

hen governed by the following stochastic matrix equation: 

𝐘 ( 𝑡 ) = 𝐀𝐘 ( 𝑡 ) 𝑑𝑡 + 𝐛 𝑃 ( 𝑡 ) 𝑑𝑁( 𝑡 ) (38)

here A and b have the same structure as defined by (26) with the

atrices B and A f and vector b f defined as 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝛽
(3) 
1 0 𝛾

(1) 
1 𝛾

(2) 
1 

𝛽
(3) 
2 0 𝛾

(1) 
2 𝛾

(2) 
2 

... ... ... ... 

𝛽
(3) 
𝑁 

0 𝛾
(1) 
𝑁 

𝛾
(2) 
𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(39) 

 𝑓 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 1 0 0 

−Ω2 
𝑓 

−2 𝜁𝑓 Ω𝑓 0 0 
0 0 0 1 
1 0 −Ω2 

0 −2 𝜁0 Ω0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 𝐛 𝑓 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 
1 
0 
0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(40)

Using a more simple approach, the motion w 0 ( t ) is assumed to be

irectly the response of the structure (idealized as a single-degree-of-

reedom system) to a Poisson train of impulses, governed by the follow-

ng equation: 

̈
 0 ( 𝑡 ) + 2 𝜁𝑓 Ω𝑓 𝑤̇ 0 ( 𝑡 ) + Ω2 

𝑓 
𝑤 0 ( 𝑡 ) = 

𝑁( 𝑡 ) ∑
𝑖 =1 

𝑃 0 𝑖 𝛿( 𝑡 − 𝑡 𝑖 ) (41)
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Hence, the response w 0 ( t ) is a train of impulse response functions

 0 ( t − t i ) of the structure given as 

 0 ( 𝑡 ) = 

𝑁( 𝑡 ) ∑
𝑖 =1 

𝑃 0 𝑖 ℎ 0 ( 𝑡 − 𝑡 𝑖 ) (42)

here impulse response functions h 0 ( t − t i ) are expressed as 

 0 ( 𝑡 − 𝑡 𝑖 ) = 

1 

Ω0 

√ 

1 − 𝜁2 0 

exp 
[
− 𝜁0 Ω0 ( 𝑡 − 𝑡 𝑖 ) 

]
sin 

[ 
Ω0 

√ 

1 − 𝜁2 0 ( 𝑡 − 𝑡 𝑖 ) 
] 
, 𝑡 > 𝑡 𝑖

(43)

The stochastic counterpart of Eq. (41) is expressed as 

 𝑤 0 ( 𝑡 ) = 𝑤̇ 0 ( 𝑡 ) 𝑑𝑡, 

 𝑤̇ 0 ( 𝑡 ) = −2 𝜁0 Ω0 𝑤̇ 0 ( 𝑡 ) 𝑑𝑡 − Ω2 
0 𝑤 0 ( 𝑡 ) 𝑑𝑡 + 𝑃 0 ( 𝑡 ) 𝑑𝑁( 𝑡 ) , (44)

here dN ( t ) = N ( t + dt ) − N ( t ) and P 0 ( t ) is the magnitude of the impulse

hich occurs in the time interval [ t , t + dt ). The matrix form of the

tochastic equations of motion (44) is 

 

[ 
𝑤 0 
𝑤̇ 0 

] 
= 

[ 
0 1 

−Ω2 
0 −2 𝜁0 Ω0 

] [ 
𝑤 0 
𝑤̇ 0 

] 
𝑑𝑡 + 

[ 
0 
1 

] 
𝑃 0 ( 𝑡 ) 𝑑𝑁( 𝑡 ) . (45)

In that case, the state vector is defined as 

 ( 𝑡 ) = 

[
𝐪 ( 𝑡 ) 𝐪̇ ( 𝑡 ) 𝑤 0 ( 𝑡 ) 𝑤̇ 0 ( 𝑡 ) 

]𝑇 
(46)

nd is governed by the stochastic Eqs. (38) where 

 𝑓 = 

[ 
0 1 

−Ω2 
0 −2 𝜁0 Ω0 

] 
, 𝐁 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝛾
(1) 
1 𝛾

(2) 
1 

𝛾
(1) 
2 𝛾

(2) 
2 

… …

𝛾
(1) 
𝑁 

𝛾
(2) 
𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 

𝐛 = 

⎡ ⎢ ⎢ ⎣ 
𝟎 
𝛃(3) 
𝐛 𝑓 

⎤ ⎥ ⎥ ⎦ , 𝛃(3) = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝛽
(3) 
1 
…

𝛽
(3) 
𝑁 

⎤ ⎥ ⎥ ⎥ ⎦ , 𝐛 𝑓 = 

[ 
0 
1 

] 
(47)

The equations for the mean values m ( t ) = E [ Y ( t )] of the response

tate variables are 

𝑑 

𝑑𝑡 
𝐦 ( 𝑡 ) = 𝐀𝐦 ( 𝑡 ) + 𝜈𝐛 𝐸 

[
𝑃 0 

]
(48)

here 𝜈 = const is the Poisson process parameter. The equations for

econd-order joint statistical moments 𝜇ij ( t ) = E [ Y i ( t ) Y j ( t )] of the re-

ponse variables are formulated with the aid of generalized Itô’s dif-

erential rule as 

̇ 𝑖𝑗 ( 𝑡 ) = 2 
{
𝐸 

[
𝑌 𝑖 ( 𝑡 ) 𝑎 𝑗 ( 𝐘 ( 𝑡 )) 

]}
𝑠 
+ 𝜈𝑏 𝑖 𝑏 𝑗 𝐸[ 𝑃 2 0 ] , (49)

here 

 𝑗 ( 𝐘 ( 𝑡 )) = 

∑
𝑘 

𝐴 𝑗𝑘 𝑌 𝑘 ( 𝑡 ) (50)

s the scalar product of the j th row of the matrix A and Y ( t ), and {...} s
enotes the Stratonovich symmetrizing operation, e.g. 

 𝑌 𝑖 𝑎 𝑗 } 𝑠 = 

1 
2 
( 𝑌 𝑖 𝑎 𝑗 + 𝑌 𝑗 𝑎 𝑖 ) (51)

Eq. (49) can be re-written in the matrix form as 

d 
d 𝑡 
𝐑 𝐘𝐘 = 𝐀 𝐑 𝐘𝐘 + 𝐑 𝐘𝐘 𝐀 

𝑇 + 𝜈𝐛 𝐛 𝑇 𝐸 

[
𝑃 2 0 

]
(52)

here elements of the covariance matrix R YY = E [ YY 

T ] represent the

econd-order joint statistical moments 𝜇ij ( t ) = E [ Y i ( t ) Y j ( t )]. 

The model can be simplified further by using a single mode approx-

mation in (6) so that the state vector (46) is expressed in terms of the

odal coordinate q r . In that case the matrix A and vector b are defined

s 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 1 0 0 

− 𝜔 

2 
𝑟 

−2 𝜁𝑟 𝜔 𝑟 𝛾
(1) 
𝑟 𝛾

( 2 ) 
𝑟 

0 0 0 1 
0 0 −Ω2 

0 −2 𝜁0 Ω0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
; 𝐛 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 

𝛽
( 3 ) 
𝑟 

0 
1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(53)
c  
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The equations for second-order joint statistical moments are then

xpressed as follows: 

̇ 11 ( 𝑡 ) = 2 𝜇12 , 

̇ 12 ( 𝑡 ) = − 𝜔 

2 
𝑟 
𝜇11 − 2 𝜁𝑟 𝜔 𝑟 𝜇12 + 𝛾 (1) 

𝑟 
𝜇13 + 𝛾 (2) 

𝑟 
𝜇14 + 𝜇22 , 

̇ 13 ( 𝑡 ) = 𝜇14 + 𝜇23 , 

̇ 14 ( 𝑡 ) = −Ω2 
0 𝜇13 − 2 𝜁0 Ω0 𝜇14 + 𝜇24 , 

̇ 22 ( 𝑡 ) = −2 𝜔 

2 
𝑟 
𝜇12 − 4 𝜁𝑟 𝜔 𝑟 𝜇22 + 2 𝛾 (1) 

𝑟 
𝜇23 + 2 𝛾 (2) 

𝑟 
𝜇24 + 𝜈

(
𝛽(3) 
𝑟 

)2 
𝐸[ 𝑃 2 0 ] , 

̇ 23 ( 𝑡 ) = − 𝜔 

2 
𝑟 
𝜇13 − 2 𝜁𝑟 𝜔 𝑟 𝜇23 + 𝛾 (1) 

𝑟 
𝜇33 + 𝛾 (2) 

𝑟 
𝜇34 + 𝜇24 , 

̇ 24 ( 𝑡 ) = − 𝜔 

2 
𝑟 
𝜇14 − Ω2 

0 𝜇23 − 2 
(
𝜁𝑟 𝜔 𝑟 + 𝜁0 Ω0 

)
𝜇24 + 𝛾 (1) 

𝑟 
𝜇34 

+ 𝛾 (2) 
𝑟 

𝜇44 + 𝜈𝛽(3) 
𝑟 

𝐸[ 𝑃 2 0 ] , 

̇ 33 ( 𝑡 ) = 2 𝜇34 , 

̇ 34 ( 𝑡 ) = −Ω2 
0 𝜇33 − 2 𝜁0 Ω0 𝜇34 + 𝜇44 , 

̇ 44 ( 𝑡 ) = −2Ω2 
0 𝜇34 − 4 𝜁0 Ω0 𝜇44 + 𝜈𝐸[ 𝑃 2 0 ] . (54) 

In the analysis to follow the impulse magnitudes P 0 ( t ) are assumed

o be non-zero mean Rayleigh-distributed random variables [17] with

he probability density function given as 

 𝑃 0 

(
𝑃 0 

)
= 

𝑃 0 

𝜎2 
𝑃 0 

exp 
⎛ ⎜ ⎜ ⎝ − 

𝑃 0 

2 𝜎2 
𝑃 0 

⎞ ⎟ ⎟ ⎠ (55)

here 𝜎𝑃 0 
is the Rayleigh distribution parameter. The expected (mean)

alue is expressed in terms of 𝜎𝑃 0 
as 

 

[
𝑃 0 

]
= 𝜎𝑃 0 

√ 

𝜋

2 
(56)

The corresponding mean square value of P 0 is determined as 

 

[
𝑃 2 0 

]
= 2 𝜎2 

𝑃 0 
, (57)

Fig. 3 shows the Rayleigh probability density function plot for

he Rayleigh distribution parameter 𝜎𝑃 0 
= 0 . 1954m∕s . The Rayleigh

istribution parameters in Fig. 3 correspond to the mean values

 [ P 0 ] = 0.2449m/s determined as 

 

[
𝑃 0 

]
= 

𝐸 

[
𝐴 max 

]
ℎ 0 max 

, (57a)

here A max denotes the maximum amplitudes of the host structure

way for a wind with a given statistical Return Period [2] . In the cal-

ulations E [ A max ] = A 0 = 0.3 m and h 0max = 1.2250, respectively, are
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Fig. 4. Speed variation and cable length variation. 

Fig. 5. Variation of the first two natural frequencies of the cable 𝜔 i , i = 1, 2, for the 

maximum speed of 5 m/s, together with the frequency of the structure sway Ω0 = 0.125 Hz 

(dashed vertical line). 
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Fig. 6. Deterministic model displacements 𝑤̄ ( 𝑥, 𝑡 ) of the cable , 0 ≤ x ≤ L ( 𝜏), for the fre- 

quency of the sway Ω0 = 0.125 Hz; (a) moving upwards, (b) moving downwards; at the 

maximum speed of 2 m/s. 
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sed as determined from Eq. (43) for the time t max = 1.9688 s using

0 = 0.7854 rad/s and 𝜁0 = 0.025, respectively. 

. Parametric case study: numerical solution and results 

The mathematical models developed in this study are formulated in

erms of ordinary differential equations with slowly varying coefficients.

ue to their nonstationary nature, it is difficult to solve these models by

nalytical means. However, approximate solutions can be obtained by

he application of numerical techniques. In order to assess the useful-

ess of the models and their ability to predict both the deterministic

nd stochastic behaviour of the system, a parametric study has been

onducted for a cable of mass per unit length m = 1.3 kg/m moving at

peed upwards and downwards, respectively. 
505 
The numerical simulation tests have been conducted for various

umbers N of terms in the expansion (6) . It has been established that

o obtain sufficient convergence relatively small numbers of terms are

eeded and three modes ( N = 3) have been used in the simulations.

n the scenarios considered in this study first the system is ascending

rom the lower level upwards to the higher level with the travel height

f H = 200 m. The length of the cable changes from L( 0 ) = 150 m to

 max = L(0) + H = 350 m during the up travel. The upper support B has

he maximum speed ranging from 2 m/s to 5 m/s. Fig. 4 shows the

ariation of velocity v ( t ) and of the cable length L(t) with time for the

aximum speeds of 2 m/s and 5 m/s, respectively. Then, the simula-

ions are carried out for the system descending from the higher level

ownwards, with the length of the cable changing from L max = 350 m

o 150 m. The host structure is subjected to the fundamental resonance

way of frequency Ω0 = 0.7854 rad/s(0.125 Hz) and the amplitude of

he sway is A 0 = 0.75 m, measured at z 0 = 402.75 m above the ground.

he cable has a constant mean tension of T 0 = 2452.5N and the damping

atios are assumed as 𝜁 r = 3% across all modes. 

The natural frequencies of the system are determined by freezing the

lowly varying parameters in the matrix of linear coefficients defined



S. Kaczmarczyk, R. Iwankiewicz International Journal of Mechanical Sciences 134 (2017) 500–510 

Fig. 7. Deterministic model displacements 𝑤̄ ( 𝑥, 𝑡 ) of the cable , 0 ≤ x ≤ L ( 𝜏), for the fre- 

quency of the sway Ω0 = 0.125 Hz; (a) moving upwards, (b) moving downwards; at the 

maximum speed of 5 m/s. 
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Fig. 8. Gaussian model variance 𝜎2 
𝑤 
( 𝑥, 𝑡 ) of the cable response for the maximum speed 

of 2 m/s, Ω0 = 0.125 Hz (a) moving upwards; (b) moving downwards; the black curve 

represents the highest values over time. 
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y (14) and by solving the eigenvalue problem defined as 

𝐳 = 𝜆𝐳 (58)

here 𝐳 = [ 𝐪 𝑇 , 𝐪̇ 𝑇 ] 𝑇 represents the 2 N - dimensional state vector and 

 ≡ 𝐀 ( 𝜏) = 

[ 
𝟎 𝐈 

− 𝐊 ( 𝜏) − 𝐂 ( 𝜏) 

] 
(59)

here K ( 𝜏) is a symmetric matrix of coefficients K rn ( 𝜏) and C ( 𝜏) is a

kew-symmetric matrix of coefficients C rn ( 𝜏) defined in (14) , respec-

ively. The natural frequencies of the system 𝜔 r ( 𝜏), r = 1, 2, …, N , are

hen given by imaginary parts of the complex eigenvalues 𝜆r ( 𝜏). 

The plot presented in Fig. 5 shows the variation of the first two nat-

ral frequencies vs. length of the cable in the scenario when the up-

er support moves upwards with the velocity profile corresponding to

he maximum speed of 5 m/s. The frequency of the structure is repre-

ented in this plot by the vertical dashed line. The plots demonstrate

hat the frequency of the structure ( Ω0 = 0.125 Hz) matches the funda-

ental frequency of the cable when its length is about 210.3 m, and a
506 
assage through the fundamental resonance takes place in this region

the encircled area). 

.1. Deterministic model simulation results 

The deterministic dynamic behaviour of the system is described by

he discretized equations of motion Eq. (13) . In order to determine the

esponse of the cable to the excitation due to the structure sway during

he downwards and upwards travel equations (13) are solved numeri-

ally by the application of an explicit Runge–Kutta (4,5) formula. 

The corresponding dynamic responses of the cable are then calcu-

ated from Eq. (6) and are illustrated in Figs. 6 and 7 for the speeds of

 m/s and 5 m/s, respectively. The dynamic displacements 𝑤̄ ( 𝑥, 𝑡 ) are

llustrated in subplots (a) and (b) in the space–time domain, for the up/

own travel, respectively. 

It is evident that when the cable is travelling upwards, with its length

ncreasing (and with the natural frequencies getting decreased), the dis-

lacements increase when the resonance region is being approached and

fter the maximum level is attained they decrease slowly. 

In the scenario when the direction of travel is down, the length

ecreases. After the initial large transient displacements, the response
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Fig. 9. Gaussian model variance 𝜎2 
𝑤 
( 𝑥, 𝑡 ) of the cable response for the maximum speed of 

5 m/s, Ω0 = 0.125 Hz: (a) moving upwards; (b) moving downwards. 
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Fig. 10. Gaussian model maximum values of variance 𝜎2 
𝑤 
( 𝑥, 𝑡 ) of the cable response vs. 

time , 0 ≤ x ≤ L ( 𝜏) for the frequency of the sway Ω0 = 0.125 Hz (a) moving upwards (b) 

moving downwards, at the maximum speeds of 2 m/s, 3 m/s, 4 m/s and 5 m/s. 
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t

uring the passage through resonance demonstrates similar character-

stics during the passage through resonance region but the amplitudes

re smaller. 

It is interesting to observe that the displacement amplitude maxima

re delayed and occur later, when the natural frequencies are lower

r higher, during travel upwards or downwards, respectively. Similar

ffects are evident in the results obtained from the stochastic models as

iscussed in what follows. 

.2. Narrow-band Gaussian stochastic model simulation results 

In order to investigate the behaviour of the system acted on by base

xcitation represented by the narrow-band Gaussian stochastic model

he explicit Runge–Kutta (4,5) formula is used to integrate the differ-

ntial Eq. (29) . The filter variable 𝛼 is determined by Eq. (18) where

he constant level of the power spectrum of white noise is assumed as

 0 = 1W/Hz. The damping ratio of the second order auxiliary filter is

aken as 𝜁 f = 0.025 in the numerical simulations. In this formulation the

econd order filter equation in (15) represents the structure subjected

o the excitation process X(t) (a so called Ornstein–Uhlenbeck process

9] ) . 
507 
Figs. 8 and 9 show the variance functions 𝜎2 
𝑤 
( 𝑥, 𝑡 ) determined from

q. (30) representing the measure of the statistical scatter of the lat-

ral displacements 𝑤̄ ( 𝑥, 𝑡 ) for velocity profiles of the maximum speeds

f 2 m/s and 5 m/s, respectively. The subplots (a) illustrate the variance

or the upwards motion and the subplots (a) show the variance for the

ownwards motion, respectively. The variance of response changes with

ime along the cable span when its length is varying Thus, the spatial co-

rdinate x is defined in a slowly time-variant domain 0 < x < L ( 𝜏) with

he red lines representing the slowly varying length L ( 𝜏). The curves in

lack line show how the highest values of variance change with time. 

It is evident that the variance depends on the direction of travel and

he maximum values are higher during the up travel. This is more evi-

ent from Fig. 10 where the maximum values are plotted against time

or the maximum speeds of 2 m/s, 3 m/s, 4 m/s and 5 m/s, for the up

ravel in subplot (a) and for the down travel in subplot (b), respectively.

t is interesting to note that during the travel, the maximum variance

urves rise first reaching their peak values and then the curves fall until

he end time. 
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Fig. 11. Non-Gaussian model mean value displacements 𝐸[ ̄𝑤 ( 𝑥, 𝑡 ) ] of the cable , 0 ≤ x ≤ 

L ( 𝜏), for the frequency of the sway Ω0 = 0.125 Hz (a) moving upwards (b) moving down- 

wards, at the maximum speed of 2 m/s (the black line shows the peak values). 
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Fig. 12. Non-Gaussian model mean value displacements 𝐸[ ̄𝑤 ( 𝑥, 𝑡 ) ] of the cable , 0 ≤ x 

≤ L ( 𝜏), for the frequency of the sway Ω0 = 0.125 Hz; (a) moving upwards (b) moving 

downwards, at the maximum speed of 5 m/s. 
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There is analogy with the deterministic results. The variance maxima

ccur during the passage through resonance, when the frequency of the

tructure is near the fundamental frequency of the cable. The effects are

owever delayed and occur when the natural frequencies are lower or

igher, during travel upwards or downwards, respectively. 

It is evident that for both directions the higher the speed the lower

he scatter levels of the response. This behaviour pattern is consistent

ith the fact that the faster the passage through the resonance region

here the central frequency Ω0 coincides with the fundamental natural

requency of the cable, the lower the resonance responses. 

.3. Non-Gaussian random pulse train stochastic model simulation results 

The mean values 𝐸[ ̄𝑤 ( 𝑥, 𝑡 ) ] and the variance 𝜎2 
𝑤 
( 𝑥, 𝑡 ) of the cable dis-

lacements 𝑤̄ ( 𝑥, 𝑡 ) corresponding to the non-Gaussian model, when the

tructure motion is treated as a random train of pulses, are shown in

igs. 11–15 . Those results are obtained by the numerical integration of

qs. (48) and (52) , with the variance functions determined then from

q. (30) , respectively. The damping ratio of the structure is assumed as

f = 0.025 and 𝜎𝑃 0 
= 0 . 1954m∕s is used in the numerical simulation tests.
508 
q. (54) where the single mode approximation of the cable dynamics is

sed can be applied for a more rapid estimation of the response variance.

Figs. 11 and 12 demonstrate the mean values in the space–time do-

ain, where the space variable is within the slowly varying domain 0

 x ≤ L ( 𝜏), for the maximum speeds of 2 m/s and 5 m/s, up travel

nd down travel, respectively. The plots in Figs. 11 and 12 show also

he envelopes of maximum mean values and it is evident that the max-

mum values depend on the direction of travel and speed. During the

ravel upwards the mean response initially increase and then it is get-

ing decreased with time. At the higher speed the mean response tends to

each higher values. During downwards travel, when the length of the

able decreases slowly, the mean response values are getting smaller

ith time. 

Figs. 13 and 14 show the variance functions for velocity profiles of

he maximum speeds of 2 m/s and 5 m/s, respectively. The subplots

a) illustrate the variance for the upwards motion and the subplots (a)

how the variance for the downwards motion, respectively. The curves

n black line show how the highest values of variance change with time.

here are some strong similarities to the behaviour observed for the



S. Kaczmarczyk, R. Iwankiewicz International Journal of Mechanical Sciences 134 (2017) 500–510 

Fig. 13. Non-Gaussian model variance 𝜎2 
𝑤 
( 𝑥, 𝑡 ) of the cable response for the maximum 

speed of 2 m/s, Ω0 = 0.125 Hz: (a) moving upwards; (b) moving downwards. 
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Fig. 14. Non-Gaussian model variance 𝜎2 
𝑤 
( 𝑥, 𝑡 ) of the cable response for the maximum 

speed of 5 m/s, Ω0 = 0.125 Hz: (a) moving upwards; (b) moving downwards. 
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t  
aussian model as illustrated in Figs. 8 and 9 . It is evident that the

ariance depends on the direction of travel and the maximum values are

igher during the up travel. This is more evident from what is shown

n Fig. 15 where the maximum values are plotted against time for the

aximum speeds of 2 m/s, 3 m/s, 4 m/s and 5 m/s, for the up travel

n subplot (a) and for the down travel in subplot (b), respectively. As in

he case of Gaussian model it is evident that in both cases the higher the

peed the lower the scatter levels of the response. During the travel, the

aximum variance curves rise first reaching their peak values and then

he curves fall until the end time. 

As in the case of the Gaussian model the maxima occur during the

assage through resonance, with the effects being delayed during the

assage. It is evident that the non-Gaussian model predicts higher values

f variance of the response of the cable. 

. Conclusions 

Two stochastic models of motion of the structure have been consid-

red. In the first model, the excitation mechanism is represented as a
509 
arrow-band process mean-square equivalent to the harmonic process.

ue to the demand that the function defining motion of the structure

ust be continuous its stochastic variation is modeled by filtering of

aussian white noise through a first order filter followed by a filtration

hrough a second order filter. 

In the second model, the random train of pulses representing the

xcitation due the structure motion is idealized as non-Gaussian process

n form of a train of randomly occurring pulses. Then, the equations

overning the second-order joint statistical moments of the response are

erived. 

The models have been used to predict the probabilistic character-

stics of the lateral dynamic motions of a long cable moving at speed

ithin a tall host structure. The resulting systems of linear ordinary

quations are nonstationary and can be solved by numerical integration.

his leads to the determination of covariance matrix with its elements

howing the statistical scatter of the response of the system. 

The solution procedure is demonstrated through a parametric case

tudy involving the cable moving at speed upwards and downwards

ithin the tall structure. It is shown that the models can be used to inves-

igate the influence of speed on the stochastic response characteristics
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Fig. 15. Non-Gaussian model maximum values of variance 𝜎2 
𝑤 
( 𝑥, 𝑡 ) of the cable response 

vs. time , 0 ≤ x ≤ L ( 𝜏) for the frequency of the sway Ω0 = 0.125 Hz (a) moving upwards (b) 

moving downwards, at the maximum speeds of 2 m/s, 3 m/s, 4 m/s and 5 m/s. 
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f the system. The numerical results for both models show similarities

nd demonstrate that the higher the speed the lower the variance of

he cable response. However, the non-Gaussian model predictions show

igher values of the cable response variance. 
510 
Moving slender continua such as suspension ropes and compensating

ables are pivotal components of high-rise high-speed modular systems,

uch as elevators, deployed in tall building structures. The phenomena

redicted by the application of the models and the results presented

n this paper are consistent with the behaviour of cables observed in

ractical installations [3] . The proposed methodology and models allow

he designer to determine the variance of lateral displacements of these

ontinua in order to establish bounds for their dynamic responses. 
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