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Abstract—The emerging network paradigm of Software De-
fined Networking (SDN) has been increasingly adopted to im-
prove the Quality of Experiences (QoE) across multiple HTTP
adaptive streaming (HAS) instances. However, there is currently
a gap between research and reality in this field. QoE models,
which offer user-level context to network management processes,
are often tested in a simulation environment. Such environments
do not consider the effects that network protocols, client pro-
grams, and other real world factors may have on the outcomes.
Ultimately, this can lead to models not functioning as expected
in real networks. On the other hand, setting up an experiment
that reflects reality is a time consuming process requiring expert
knowledge. This paper shares designs and guidelines of an SDN
experimentation framework (SDQ), which offers rapid evaluation
of QoE models using real network infrastructures.

Index Terms—Software Defined Networking; Quality of Expe-
rience; Experimentation; Adaptive Streaming

I. INTRODUCTION

High quality video streaming accounts for a large portion

of today’s Internet traffic [3], with HTTP adaptive streaming

(HAS) established as the predominant method of streaming

content across networks to heterogeneous devices. On its own,

HAS offers improvements in Quality of Experience (QoE),

as the video delivered is adaptive to the prevailing network

conditions [8]. However, when other devices share the same

network, fluctuations can occur [5], [6], [9]. Software Defined

Networking (SDN) has opened up a wealth of opportunities

for improving QoE [16], [8]. This is achieved through a

greater level of control and awareness of the behaviour of the

underlying network. However, one of the current issues within

the QoE community relates to the popularity of simulation

environments, particularly for the evaluation of QoE models

[21] [17]. Simulations can overlook the effects of network

protocols, client programs, or other real world factors and

ultimately can lead to models not behaving as anticipated in

real networks [7]. On the other hand, setting up an experiment

environment that reflects real network configurations is a time

consuming process requiring expert knowledge. In this paper

we go beyond the use of SDN to simply improve QoE,

but consider how SDN can in fact support the rapid exper-

imentation and testing of QoE models within a real network

environment, thus addressing the aforementioned issue. We

consider OpenFlow as a means to supporting innovation in

QoE research in much the same way that it was originally

conceived as a mechanism to enable researchers to innovate

within networks.

In this paper, we present SDQ, a framework that uses SDN

to provide an experiment automation and network enforcement

eco-system for the design and validation of QoE models with

real network infrastructures and clients. SDQ orchestrates the

components of the experiment, including the networks and the

nodes, and interfaces them with a QoE model. This is achieved

through a framework that controls the OpenFlow protocol

which is used to connect and configure the network environ-

ment. Moreover, it controls the virtualisation infrastructure,

such as OpenStack, which configures the nodes. SDQ passes

information and control from the network and the nodes to

the QoE model so that it can process and enforce changes that

need to be made in the network. This paper highlights some

of the challenges of integrating QoE models using hardware

SDN equipment and shares experiences in realising a SDN

experimentation testbed. We also demonstrate the benefit of

SDQ using an existing QoE model [17].

II. BACKGROUND AND RELATED WORK

HTTP Adaptive Streaming (HAS) is widely adopted for

video distribution. Using MPEG-DASH as an example, media

content is encoded into representations, each of which is a

version of the content prepared in segments using different

encoding specifications. The adaptation logic (between repre-

sentations) is often determined at the player, with decisions

based upon criteria such as estimated throughput [12] and

buffer occupancy [10].

There has been significant effort placed in improving the

QoE of adaptive video streaming. One solution uses cross-

layer interaction between TCP and HTTP to provide better

adaptation metrics [9]. Tian and Liu [22] used throughput-

prediction algorithms to reduce video rate fluctuations. Mansy

et al. [15] studied DASH’s bursty nature and proposed ad-

justing DASH’s buffering behaviour to keep the size of the

client’s receiver window low. Huang et al. introduced a buffer-

based approach to rate adaptation to reduce the re-buffer rate

in HAS streaming [10]. A client-side rate-adaptation algorithm

for HAS is also introduced in [13]. Most of the aforemen-

tioned work focuses on optimising the network efficiency or

the QoE on individual media streams. Without coordination

between HAS clients, TCP-based resource allocation can lead

to unfairness at the user level [17] and severe fluctuations in



multi-stream environments [13]. With the increasing number

of HAS streams, it is essential to orchestrate network resource

consumption through 1) a better understanding of the user-

level requirements of user applications, and 2) a transparent

network resource allocation service in content networks.

Software Defined Networking [23], through the decoupling

of the control plane from the packet forwarding plane, allows

network services such as load balancing and context aware

resource allocation to be realised and automated as part of

the service delivery chain [16]. This has led to a significant

body of research investigating the use of SDN for QoE

assessment and improvement. Liotou et al. exploit the SDN

global resource view and complementary QoE metrics to

assure the desired performance for OTT applications in LTE

networks [14]. The intelligent use of network data to facilitate

the optimal use of network resources for QoE provisioning

in the context of 5G network architecture is discussed in [4].

Jarschel et al. look at how YouTube streaming can benefit

from SDN-based application-aware networks [11]. Nam et al.

proposed a SDN application to monitor streaming flows in

real time, dynamically changing the routing paths using MPLS

traffic engineering for better user experiences [19]. We first

demonstrated the feasibility of a SDN-assisted video quality

management framework in [8]. Through fairness modelling

using video quality, switching impact and cost efficiency

as the impact metrics [18], a scalable resource allocation

model UFair was introduced. This is designed to improve

delivered video quality and user-level fairness between HAS

media streams [17]. In particular, UFair seeks to reduce the

frequency of adaptations over a group of clients, and moderate

individual clients’ choice of stream bandwidth, to the benefit

of other clients. UFair operates by monitoring network status

and “capping” resources on individual media streams, with the

assumption that media clients can adapt their bandwidth utili-

sation in response to network constraints. Therefore, resource

allocation can be achieved transparently in the network.

QoE models are often proven using programmatic sim-

ulation. Simulations overlook some networking and client

aspects, which result in models not working as expected in real

networking environments [7]. They are used because they can

be created in a short space of time, adapted quickly, and run

rapidly, all on a single device. In contrast, to test a QoE model

in a real-world environment requires multiple switches and

even more clients, all of which consume more resources and

time than a simulation. The network emulator Mininet is often

considered as an appropriate solution to the aforementioned

problems; it is capable of running at large scale, uses a

real networking stack, and can execute client programs [1].

However, at the moment it is limited by the underlying

capabilities that the software switch (Open vSwitch) provides.

In particular, Open vSwitch is missing some of the extended

features of OpenFlow 1.3 that are important for QoE, such as

metering (rate-limiting of flows). This highlights the need for

a system that can balance these requirements: an SDN and

virtualisation environment that provides the realism of real

world experimentation whilst offering the benefits in agility

and low cost associated with simulation environments.

III. SDQ FRAMEWORK

In the following section, we describe the requirements and

architecture of the SDQ Framework; a harness to be used in

aiding rapid deployment and orchestration of experiments. As

such, the architecture and experimentation environment has to

fulfil the following requirements:

• Experiments Close to Practice and at Scale: To provide

both realism and scale, the environment should encom-

pass both physical and virtual elements.

• Software Defined Dynamic Manipulation of Available

Bandwidth Within the Network: To match real-world net-

work topologies, the link speeds must be rate limited. For

QoE enforcement, dynamic configuration of rate limiting

also needs to be applied to specific flows.

• Configurable Clients: The client’s configuration should be

changeable (automated based on test manifests) between

experiments.

• Rapid Repeatability of Experiments in a Clean Environ-

ment: Ensure that no residual effects are left over from

previous experiments. This may not be straightforward

when the experiment involves hardware equipment.

• Generic Framework: The system should offer control

and statistics from physical networks and any virtual

infrastructure.

The SDQ framework orchestrates the virtual and physical

network infrastructure using SDN to assist the execution and

statistical data gathering of network based QoE experiments.

It consists of a three layer architecture: the top layer contains

components provided by the researcher including the test

manifest and application/user-level functions such as a QoE

module. The middle layer contains the SDQ orchestrator which

interfaces with, and includes, the infrastructure managers. The

bottom layer contains the network and virtualisation infrastruc-

ture where the experiments are deployed. The following is a

breakdown of the components shown in Figure 1:

Test Manifest: describes the experiment in a JSON format.

It includes each of the clients’ IP addresses, the networks each

is attached to, the virtual machine image to be used, network

emulation requirements, and timestamps for automated tests.

QoE Model: an interchangeable component which commu-

nicates with the SDQ orchestrator (described below) through

an RPC (Remote Procedure Call) interface providing infor-

mation about resource allocation of one or more media flows.

Additionally, information is sent back in regards to the current

throughput at different points in the network using OpenFlow’s

meter statistics and flow statistics messages.

SDQ Orchestrator: handles communication between all of

the components. It includes two subcomponents, the virtual

infrastructure manager (VIM) and network infrastructure man-

ager (NIM). The VIM controls the virtualisation infrastructure

through a RESTful API, it launches and configures experiment

nodes with information from the test manifest. At the end

of the experiment it resets the test environment, removing

networks and virtual machines it instantiated, so that the
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environment is ready for the next experiment. The NIM con-

trols the network infrastructure and consists of an OpenFlow

controller containing a metering and monitoring application.

It installs meter flow mods on request from the QoE model

and provides information from the network including current

throughput of flows and switches.

The virtualisation infrastructure (through integration with

OpenStack) instantiates experiment nodes and exposes them

to the network. The network infrastructure creates connections

between nodes and switches and provides a platform for QoE-

based flow enforcement. Section IV provides further details

regarding the configuration of each of these elements.

IV. EXPERIMENTATION ENVIRONMENT

This section describes the virtualisation and network infras-

tructure used to create the environment for SDQ.

Our objective is to create network and virtualisation infras-

tructures that are controllable through the SDQ framework1.

Ultimately, these need to resemble real world deployments.

To illustrate the advantages of SDQ, we highlight a potential

deployment scenario for evaluating QoE. This consists of a

number of households connected to the Internet using con-

sumer ADSL connections. They all share a common DSLAM,

which is connected to the wider Internet over a restricted

shared link. The video servers are located at the remote end of

this connection. The home routers and the local DSLAM are

also under SDN control to provide link emulation and QoE

enforcement functionalities.

To realise the topology described above we create the

experimentation environment shown in Figure 2. It consists

of a large cluster of generic servers, three OpenFlow-capable

switches, a user device, and local connectivity between each.

This provides an environment for conducting a wide range of

experiments involving the interactions between network end-

points (e.g., servers, clients, and middle-ware), and network

elements (e.g., routers, switches and physical network links).

1https://github.com/LancasterNetworking/SDQ
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In the following subsections, we outline the process under-

taken to establish our experimental environment so that readers

can replicate our experiments.

A. Virtualisation Infrastructure

At the core of the virtualisation infrastructure is an Open-

Stack installation. This provides the means of building and

connecting virtual machines (VM). The OpenStack installation

is standard, with one main modification: VLAN trunks are

used to break-out network interfaces from virtual machines.

These are then mapped one-to-one to exclusive physical

interfaces on a switch. This is an essential feature for our

experimentation as it allows each client to be directly assigned

to a physical port on an SDN controlled switch.

We refer to this process as port-multiplexing, as it allows

an Ethernet switch to implement remote physical interfaces for

virtualised machines. The mechanism for this is based on the

use of VLANs to carry VM traffic onto the switch responsible

for realising this port-multiplexing. The configuration is such

that each VM is allocated an exclusive OpenStack (Neutron)

network, whose definition uses the segmentation ID parameter

to specify the actual VLAN tag to be used on the trunk

link between hypervisor host and port-multiplexing switch.

Corresponding settings are needed in OpenStack and the

underlying network configuration.

A typical experiment requires 10s to 100s of OpenStack

configuration elements, most of which are replicas of a basic

template. Building topologies by hand, either via the Horizon

GUI, or using command line, is tedious and prone to error;

the ability to both build and destroy test topologies rapidly

and consistently is essential both for replicating, revisiting

or extending experimental results and for sharing the test

environment with other workers. As such, we developed an

orchestration tool titled MiniStack2, which takes topology

description files and builds and boots fully connected experi-

mental topologies. The tool is written in Python and uses the

OpenStack REST API.

2https://github.com/hdb3/ministack

https://github.com/LancasterNetworking/SDQ


B. Network Infrastructure

The network infrastructure used in this example consists

of two OpenFlow v1.3 capable switches (Switch 2 and 3

shown in Figure 2) with metering support. In our facility, we

use Hewlett Packard Enterprise’s HP3800 switches, as they

fulfil both of these requirements. However, other compliant

switches could be used instead. The HP3800 also hosts other

important capabilities, such as the ability to flexibly partition

a single physical switch into a number of virtual switches.

Each of these is a complete, distinct OpenFlow instance. This

too is outside of the scope of OpenFlow, but is a feature

present on a number of devices available on the market. This

partitioning feature is vital in achieving the scale required in

experimentation without incurring the associated cost.

It is important to note that the metering feature required in

our experimentation is not available in any production ready

software-based switches (at time of writing), such as Open

vSwitch. Similarly, the OpenFlow specification is not specific

on how this metering functionality should be implemented.

For example, the support in the switches used in our ex-

perimentation use a rapid discard policy. This simply drops

packets once a threshold is exceeded. The alternative technique

would involve queuing packets. Enabling these behaviours to

be configured allows for the greatest flexibility. However, it

would require additional functionality to be implemented on

the devices and subsequently described within the protocol

specification. The lack of specification could result in different

metering behaviour between OpenFlow devices.

The network infrastructure is controlled by the NIM: a

Ryu [2] controller application OpenFlow Bandwidth3 that

provides a REST/JSON API to issue requests for bandwidth

management and monitoring using simple intuitive JSON

defined messages. Ryu was selected because of its support

for extended OpenFlow 1.3 features and support for various

hardware switches. For the application, a typical request would

be to report the current network traffic level for a port or

previously defined flow. An example command would be to

define a flow (using a source/destination IP pair), and request

that the flow be limited to certain level (defined in Mbps). The

response to this command includes a unique identifier which

can be used in subsequent requests for traffic data.

Overall, the combination of features, programmability, and

openness provided by OpenFlow greatly assist us to fully

realise QoE applications in real-world networks. Furthermore,

creating a solution around vendor-specific interfaces has lim-

ited applicability; with OpenFlow, we can create a generic

solution that should work across a multitude of vendors and

within a variety of scenarios. This is particularly important

when scalability and interoperability are core requirements, as

is the case with this work.

V. QOE MODEL EXPERIMENTATION

This section describes how the SDQ experimental environ-

ment (described in Section IV) was used to evaluate the UFair

3https://github.com/biirdy/openflow-bandwidth
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QoE model [17], which has previously been evaluated via

means of a simulator. When transforming this QoE model into

a real networked implementation, we came across a number

of issues. During early testing HAS clients were not receiving

sufficient bandwidth to reach the stream quality that the model

was aiming to achieve. Following analysis, the cause was

determined to be an assumption made in the simulator that

if meters were set to a specific bandwidth then clients would

receive exactly that. In addition, the simulator did not consider

packet header sizes, the meter dropping policy, and that HAS

chunks can vary in size. These were factors that were easy to

overlook when creating a simulation. In order for the model

to work as originality intended, bandwidth headroom was

introduced when applying metering to ensure that the clients

could achieve the desired stream. In the remainder of this

section, we describe in more detail the experimental setup,

the experiments performed and the results of doing so.

A. Experiment topology

The topology used for the evaluation of UFair is shown in

Figure 3, consistent with the original simulated environment.

It represents a tiered multi-household network, in which each

household contains 4-6 hosts, all of which are connected to

a gateway. This gateway is then connected, along with other

gateways in the topology, to an aggregation switch (switch B).

Over another hop (towards switch A), a foreground (serving

DASH content) and a background server act as endpoints for

their respective traffic types.

To simulate a potential home network environment where a

household has limited bandwidth, and the link shared between

houses is also limited, the emulation of network link charac-

teristics is used. Through SDQ, the links between switch B

and the gateway switches are limited to 20Mbps. Similarly

the link between B and A is restricted to 50Mbps. The sum

of the connectivity available to household links is 100Mbps,

and is greater than the link between B and A. This results in

a situation whereby there is more demand than there is supply
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in the case of multiple households. In these circumstances, the

adaptive streams in each house are affected by hosts within

the same house, as well as the behaviour of hosts in other

houses.

Each house contains multiple hosts requesting MPEG-

DASH video content, and one or two hosts generating back-

ground traffic. The video clients utilise Scootplayer4; a highly

configurable MPEG-DASH compliant player with support for

accurate logging. These clients connect to the foreground

server and stream the multi-bitrate MPEG-DASH version

of Big Buck Bunny.

B. Experiments

In order to evaluate the effectiveness of the UFair QoE

model, and to assess the capability of SDQ to achieve the

required functionality, we conducted two representative ex-

periments: one where the QoE model was used for network

resource allocation and the other with no QoE model applied.

They both used the network topology (including the link

speed) shown in Figure 3. The experiment containing the

QoE model monitored the network statistics of each client,

as well as each household. This data is then analysed by

the QoE model to determine the most optimal resource al-

location strategy. Recommendations given by the QoE model

are then applied through SDQ’s traffic enforcement functions,

including restrictions per flow and per household. For the

baseline experiment, network statistics are still monitored but

no additional traffic management is applied.

C. Results

This section compares the results of the two experiments

(one with QoE model active and the other without) ran with

the assistance of the SDQ framework.

Figures 4 and 5 depict the allocation of network resources

on the aggregation link between all households. Without a

global network view, TCP-based resource allocation causes

fluctuations in the network (Figure 4), which ultimately dete-

riorates the user experience through an increased switching of

streams.

4http://github.com/broadbent/scootplayer
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The QoE model uses switching impact (impact in QoE

when switching to a different quality stream) as one of

the QoE indicators when recommending resource allocation

decisions between user clients of a household [17]. The QoE

model, utilising the full functionality of SDQ, incorporates this

metric, along with context information such as link capacity at

each household, and user/application level requirements (e.g.

playback resolution). This leads to an allocation of network

resources that is more intelligent and stable. Importantly, it

allows UFair, together with SDQ, to reduce the unnecessary

switching events across all relevant media flows.

To emphasise this stability, Figure 6 shows the resultant

switching impact of a single client in the experiments. To-

gether, these results demonstrate the effectiveness of QoE

enforcement function delivered using OpenFlow’s metering

feature.

Through this experimentation, SDQ has shown to be an

effective framework to support QoE experiments relating to

adaptive video content. The whole toolset, including stream-

lining the orchestration of the QoE model, virtualisation

infrastructure, and physical OpenFlow equipment, allows re-

searchers to focus on human factor modelling and helps to

verify the feasibility of any QoE model.



VI. CONCLUSIONS AND FUTURE WORK

Often, researchers use simulations to test QoE models

due to the ease, agility and low cost that they offer when

compared to real world testing. However, simulations often

fail to recognise some of the additional effects that are present

in actual networks and the technologies that use them. This

leads to models behaving differently in reality, lessening the

contribution of experimental findings. This paper introduces

SDQ, a framework that uses SDN to facilitate rapid exper-

imentation of QoE models in such a realistic environment.

SDQ aids QoE researchers by reducing the barrier to entry for

SDN-assisted QoE experiments. An example use case, using

the UFair model, demonstrates how a QoE model previously

tested solely in simulation can be evaluated in the real world.

There are a number of opportunities to further this work.

This includes making the specification and realisation of

experimental environments even simpler. For example, this

could be done through the implementation of a drag &

drop interface so that non-expert users can create topologies

quickly and easily. From a technical perspective, there is still

effort necessary to implement a full feature-set of OpenFlow

capabilities on a broader range of both software and hardware-

based forwarding devices. Driven specifically by the need for

metering, this work also includes further supplementing the

OpenFlow specification by enabling the defining of queueing

and drop parameters and methods.

A large body of work in the QoE domain focuses on the

use of wireless technology. This in itself may have untold

side-effects on the results, furthering the disparity between

simulation and reality [20]. To further the work presented

in this paper, future efforts could explore supplementing the

existing hardware provision by including a wide range of

devices. This includes those that support different transmission

technologies, such as WiFi, LiFi and cellular technologies.
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