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Abstract 
 

Trees have been an integral part of our environment for millennia by providing many ecosystem services 

to the surrounding populous. Trees add to their environment through the provision of ecosystem 

services and are a positive contributor to public health which financially equates to £1.8 billion per year. 

The importance of trees is recognised at government level and their health and resilience is considered 

a priority.  

 

Tree and shrub species in the Rosaceae are susceptible to replant disease (RD), which is expressed in the 

form of necrotic roots, stunting and reduced yield, and are thought to be the result of a build up of soil 

borne pathogens that are associated with root rotting, and can be exacerbated by abiotic factors such as 

poor soil condition, the presence of phytotoxins and a lack of available nutrients. Pathogens detected in 

replant soils cover a broad range of microorganisms often in the form of a complex consisting of 

organisms from bacteria, fungi, and stamenopiles to nematodes. As a result of this disease being incited 

by a complex of various pathogens it was treated with a broad spectrum pesticide called methyl 

bromide which is non-selective in its target species. This chemical treatment was revoked under the 

food and environment protection act 1985 and the control of pesticides regulations 1986 due to being a 

stratospheric pollutant. RD was identified as a specific problem on Sorbus aucuparia (rowan) which was 

previously associated with a complex of Cylindrocarpon, Fusarium, and Pythium. This species was found 

to be particularly sensitive to RD and was demonstrated as being a model species for soil susceptibility 

bioassays. S. aucuparia is an ornamental species which is used widely throughout Europe in urban forest 

plantings due to its tolerance to disturbance and poor conditions. Due to these factors this species was 

used to determine the effectiveness of green manure as a treatment for RD.  

 

It was proposed that the use of novel green manures with specific antimicrobial properties as an organic 

soil addition had the potential to alter the condition of the soil to one that is conducive to tree growth. 

Phytolacca americana (American pokeweed) was selected for its potential as a biofumigant, with 

Brassica juncea (mustard) Tagetes patula (French marigold), Triticum aestivum (wheat), and Allium 

sativum (garlic) studied as comparative treatments. The research was split into three streams of work 

involving a three year bioassay running alongside microbial inhibition tests and DNA analysis. In-vitro 

studies (n=9) were conducted to determine the potential of green manure leaf matter to inhibit Pythium 

ultimum and Rhizoctonia solani, which were previously associated with RD. At the same time, bare root 

S. aucuparia saplings were arranged in a randomised block design in the research area of the Moulton 

College estate in Northamptonshire. After three months of establishment trees were categorised into 16 

treatment groups of single tree replicates (n=25). Eight groups were potted in sterile soil, whilst eight 

were potted into diseased soil, obtained from Burbage Common in Leicestershire. P. americana was 

applied in three concentrations (1.67g/l, 8.33g/l and 15.00g/l), whilst comparative green manures were 

applied in one concentration (8.33g/l). During a period of three years trees were monitored initially 

after three months and then yearly, with growth variables including primary and secondary growth, leaf 
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count, active bud count, and chlorophyll content. At the end of the three years the trees underwent 

destructive analysis which consisted of dry weight measurements of stems, roots, fruit and foliage. 

Roots were examined for nematode cysts. Soil samples were analysed by Scientia Terrae for a 

prescribed list of pathogens and beneficial microorganisms using a polymerase chain reaction and DNA 

Multiscan. The in-vitro laboratory study demonstrated that application method, concentration, and 

green manure species used can influence pathogen growth. All P. americana treatments significantly 

inhibited R. solani and P.ultimum. P. americana has properties which induce inhibition of pathogen 

growth, with these properties being liberated from the plant matter directly or as a water based extract. 

Of the two pathogens the former was found to be more sensitive to treatments than the latter. 

Application of comparative green manure species as plant matter in agar inhibited R. solani and 

P.ultimum growth. T. patula was the only plant species that did not inhibit R. solani and only temporarily 

inhibited P. ultimum growth. When the treatment was applied as a cold water extract P. americana 

successfully inhibited more than other treatments. The in-vivo field study determined that the influence 

of the sterile soil sub-set treatments on tree growth was no different to the control. Treatments did not 

have an influence on height, secondary growth, foliage and fruit production throughout the three years. 

There was also no significant difference in root and stem biomass. The use of green manures appears to 

produce variable results, which is especially true in terms of P. americana where improvement in growth 

parameters was not correlated with concentration. T. patula (8.33g/l) and P. americana (15.00g/l) were 

linked to increased height and vigorous roots with greater biomass, whilst B. juncea and A. sativum 

caused stunting in comparison to the diseased control. T. aestivum treated trees were associated with 

variable vigour. Molecular DNA results in relation to tree growth data indicated that the disease in this 

particular instance was exhibited in the presence of soil borne pathogens Rhizoctonia solani, Pythium 

spp., and Pythium sylvaticum. Results demonstrated that, regardless of concentration, P. americana 

does not have a consistent affect on soil microbes. However, P. americana is successful in eliminating R. 

solani when used at a rate of 15.00g/l. 

 

Overall results suggest that P. americana and T. patula soil amendments improve root and shoot growth 

relative to the control. P. americana was consistently fungistatic in vitro whilst displaying variability in its 

activity in field conditions. T. patula demonstrated poor ability to suppress pathogens in the laboratory 

however was much more successful when added as an amendment. Surprisingly, two species known for 

their antimicrobial activity, A. sativum and B. juncea, were not found to be beneficial in this instance. T. 

patula may have potential as a green manure; however the other species are unreliable treatments. It is 

recommended that active ingredients of P. americana and T. patula are investigated further to deduce 

their activity against replant disease on S. aucuparia.  

 

 

 

Keywords: Replant Disease, green manure, Sorbus aucuparia, methyl bromide, Rosaceae, microbial community, Triticum aestivum, 

Allium sativum, Tagetes patula, Phytolacca americana, Brassica juncea, antimicrobial.
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Chapter 1 – Introduction 
 

1.1 Research scope: a move away from chemicals 

 

Trees are an important facet of the political, socio-economic and environmental agenda in the United 

Kingdom. A healthy green infrastructure adds to the social, economic, and ecological fitness of an urban 

setting and the broader landscape. Trees mitigate climate change and provide ecosystem services, 

whilst contributing to public health and natural capital. The ecological and social value of woodlands in 

rural environs equates to £1.8 billion per year (Forestry Commission, 2014). The UK Government works 

with The Forestry Commission, The National Forest the Community Forest Programme, Food and 

Environment Research Agency (FERA) and the Department for Environment, Food and Rural Affairs 

(DEFRA) in order to promote tree health and resilience as a priority, the. On a national scale, various 

funding schemes are available, such as The Rural Development Programme for England (RDPE) and 

English Woodland Grant Scheme (EWGS) which successfully resulted in 12,480 hectares of woodland 

being planted by the end of 2013, whilst The Big Tree Plant campaign of 2010 culminated in 1,050,264 

trees being planted (60% were placed in areas of deprivation or those lacking green space) by 2015 

(Foresty Commission, 2016). Internationally, European Union funding was made available to farmers 

through the Common Agricultural Policy for tree planting (Lawson et al., 2011).  

 

In order to ensure an ecologically resilient treestock it is important to effectively manage the production 

of healthy nursery stock (Forestry Commission, 2014). The provision of healthy rosaceous stock as 

important top fruit and ornamental amenity trees is significantly impacted by disease, such as Replant 

Disease (RD). RD is a chronic global issue caused by a complex of pathogens, which elicit root 

destruction, limited canopy growth and insufficient fruit yields (Mai and Abawi, 1981; Willett et al., 

1994; Utkhede and Smith, 1994; Peruzzi et al., 2017). O’Neill and Wiltshire (2007) reported that RD 

delays growth rates of marketable stock by 50% and that a 1% reduction in the output of UK field grown 

ornamental trees equates to a £264,000 loss per annum. Recently, a review by Mancini et al. (2017) 

concluded that RD causes a 30-40% decline in productivity. Historically, RD was controlled by the broad 

spectrum fumigant methyl bromide (MB), however this chemical was revoked under the Montreal 

Protocol in 1991 (Yates et al., 2003; Appendix I). Global production of MB was due to end in 2005, 

however, growers in the US were still using the fumigant in 2016 under critical-use exemptions, due to 

no efficacious alternative being available (Guthman, 2017).  RD is not easily treated due to the 

persistence of pathogens in the soil, as trees planted in a diseased soil can still exhibit symptoms after 

ten years in the absence of rosaceous species (O’Neill and Wiltshire, 2007). In line with the EU Policy for 

the sustainable use of pesticides and REACH, this research thesis investigated the use of an antimicrobial 

novel green manure, developed from the leaves of a hardy perennial herbaceous plant, Phytolacca 

americana (American Pokeweed) as a treatment for RD.  
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1.2 Rosaceae: an overview of the family and the financial implications of RD 

 

The Rosaceae (rose family) consists of over 100 genera and 2830 to 3100 species (Judd et al., 1999), and 

is distributed globally in most areas, particularly in the Northern Hemisphere (with exception to deserts 

or tropical rainforests). The rosaceae consists of 104 genera and 28,293 species, of which 4,828 are 

accepted names (The Plant List, 2013). Genera Cotoneaster, Crateagus, Potentilla, Prunus, Rosa, and 

Sorbus contain between 244 and 380 species, with Rubus including the majority (1,494).  
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Figure 1.1: Number of accepted species for some major top-fruit and amenity rosaceous trees (data 

from The Plant List, 2013).  

 

The Rosaceae includes herbs, shrubs, or trees that are utilised in various situations ranging from urban 

and ornamental garden landscaping, timber production, and soft fruit and tree fruit cultivation (Table 

1.1). Species such as Malus spp., Prunus spp. (cherry), Sorbus aucuparia (rowan), and Crateagus spp. 

(hawthorn) are often used in hedgerow, woodland settings, and urban forests due to their tolerance to 

disturbance (Hummer and Janick, 2009). 

 

Table 1.1: The uses of some rosaceous species (adapted from Hummer and Janick, 2009) 

Amenity  Fruit 

Amelanchier alnifolia (serviceberry) 

Chaenomeles japonica (Japanese quince) 

Cotoneaster spp. (cotoneaster)  

Crateagus spp. 

Geum spp. (avens) 

Kerria japonica (kerria)  

Malus spp. (crabapple)  

Photinia spp. (photinia) 

Potentilla spp. (cinquefoil) 

Pyracantha spp. (firethorn) 

Rosa spp. (rose) 

S. aria (whitebeam) 

S. aucuparia 

Spirea prunifolia (bridal wreath) 

Cydonia oblonga (quince) 

Eriobotrya mespilus (loquat)  

Fragaria x ananassa (strawberry)  

M. x dometica (apple) 

Mespilus germanica (medlar) 

P. armeniaca (apricot) 

P. avium (wild cherry) 

P. cerasus (sour cherry) 

P. domestica (common plum) 

P. dulcis (almond) 

P. persica (peach or nectarine) 

Pyrus communis (European pear) 

P. serotina (black cherry)  

Rubus spp. (blackberry and raspberry) 
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Data on rosaceous produce indicate that fruits from the Rosaceae contribute to local and global 

economies. In the UK growers produce includes apples, strawberries, cherries, pears, plums and 

raspberries. Indeed in 2013 alone growers supplied 217,240 t of apples and 94,373 t of strawberries 

(FAOSTAT, 2016; Figure 1.2). In 2015 UK Home production marketed orchard fruit totalled £187.7 

million (Anon, 2016). On a global scale, based on 2013 income (US dollars/t) figures, the USA, China, 

Iran, and Spain are some of the top producers of a variety of rosaceous fruit with the majority of income 

resulting from the sale of P. dulcis, F. x ananassa, and P. avium cultivars. Other influential producers 

include Italy, Ukraine, Turkey, and Morocco (FAOSTAT, 2016; Appendix II).  

 

Figure 1.2: Quantity of rosaceous fruit produced (t) in the UK by growers in 2013 (adapted from data 

from FAOSTAT, 2016). 

 

Top-fruit growers need to optimise production by maintaining high quality nursery stock to ensure a 

consistent contribution to the economy. However, plant species in the Rosaceae family are particularly 

prone to RD (Savory, 1967), with examples of susceptible rosaceous species spanning many genera; 

Sorbus spp. (rowan), Rosa spp. (rose), Cydonia oblonga (quince), Mespilus spp. (medlar), Malus spp., 

Pyrus spp. (pear), Prunus spp. (cherry, plum, peach, almond, apricots), Rubus spp. (raspberry) and 

Fragaria spp. (strawberry). RD is typified by a reduction in growth and a loss in yields (Section 1.4). A 

nursery can suffer productivity losses of 40-50% (Otto et al., 1994) and a loss of faith when stock 

requires replacement due to poor growth.  

 

Many studies on RD have been biased towards top-fruit trees, whilst very little research has been 

conducted on amenity species (Section 1.5). O’Neill and Wiltshire (2007) determined that ornamental 

cherry tree stock can take twice as long to grow to a marketable size and lose half of their value. The UK 

horticulture industry found that a 1% loss in rose production equated to £240,000/yr (AHDB, 2008). In 

terms of ornamental rosaceous trees, the loss of 1% of those that are marketable in the UK equates to 

£264,000 in a given year (AHDB, 2008). More recently a study by O’Neill (2011) determined that S. 

aucuparia is susceptible to RD and is suited for use in RD bioassays.  
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1.3 Sorbus aucuparia: autecology and association with RD 

 

RD was identified as a specific problem on S. aucuparia (Sharp, 2010, pers. comm., 1 Nov; O’Neill, 2011). 

As stated (Section 1.5.2) where a complex of pathogens may be responsible for RD on rosaceous stock. 

In one of the few studies on RD on S. aucuparia O’Neill (2011) determined that this species is associated 

with Cylindrocarpon-Fusarium-Pythium. This research used S. aucuparia as a model tree species due to 

its sensitivity to RD (O’Neill, 2011).  

 

S. aucuparia (rowan or mountain ash) are small to medium sized deciduous trees which have a 

comparatively low growing habit (15-20 m), are fast growing, with a life expectancy of 150 years in 

optimum conditions whilst remaining small and shrubby in limiting environments (Raspé et al., 2000). 

The tree bears ripe red fruit in the autumn after a spring and summer bloom of white flowers, and has 

pinnately compound leaves (McAllister, 2005; Kingsbury, 2015) (Figure 1.3).  

 

 a 

 

b 

     c  

Figure 1.3: Phenology of S. aucuparia (a) specimen in a sheltered location at Moulton College, 

Northamptonshire The compound leaf form (b) red berries (c) (Photograph credit: Lock, 2015).  

 

S. aucuparia is an important pioneer species and part of mountain Sorbeto-Piceetum forests (Homolka 

and Heroldová, 2003), recovering well from herbivory laying down compensatory growth. It has been 

demonstrated that the adventitious roots of S. aucuparia act to stabilise erosion by reinforcing the 

structure of the soil, and have been found to enhance forest regeneration and ongoing stability (Raspé 

et al., 2000; Räty et al., 2016); historically, Tandy (1972) recommended that this tree should be used in 

street planting and the landscaping of roof gardens due to its tolerance to these limiting factors. Indeed, 

the main value of S. aucuparia is in its use as an ornamental tree cultivated for garden planting schemes 

and street settings (Räty et al., 2016; BSBIDB, 2016; Kingsbury, 2015). The saplings are a prominent 
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feature of urban forests in Finland and mature specimens are typically used as street trees in 

Scandinavia (Sæbø and Johnsen, 2000; Hamburg et al., 2009). Harvested wood is used for woodworking 

and turnery due to the low economic value of the timber, whilst their fruit are a vital food resource for 

migratory and overwintering birds (Raspé et al., 2000; Homolka and Heroldová, 2003; Hester et al., 

2004). In its natural habitat, S. aucuparia is found in a range of altitudes from sea level to over 900m in 

Scotland and Wales in the British Isles and at altitudes of over 1500m in France and Norway (Raspé et 

al., 2000). S. aucuparia has been found in many UK settings (Appendix III) The distribution of this species 

in Europe stretches from Iceland and Scandanavia to Russia in the East, Sicily in the South, and Spain to 

the West (Raspé et al., 2000). S. aucuparia has also been introduced to North America where it has 

naturalised at higher latitudes (Räty et al., 2016).  

 

According to adjusted Ellenberg’s indicator values S. aucuparia is noted for its stress tolerance and 

ability to compete with other species. This species is well adapted to acidic clay soils with average 

nitrogen availability and no presence of salt (Hill et al., 1999; Hill et al., 2000); and is rarely found on 

naturally alkaline soils with a pH above 7.0 (Räty et al., 2016; Raspé et al., 2000). This species is tolerant 

of a lack of nutrients, temporary water logging, soil erosion, wind exposure, atmospheric pollution, and 

coppicing (Raspé et al, 2000; Räty et al., 2016). S. aucuparia is well suited to a semi-shaded position, 

although S. aucuparia is tolerant of unsuitable conditions its distribution is limited by temperature and 

water availability (Räty et al., 2016). Cold temperatures are required to break seed dormancy 

(stratification) and to stimulate bud burst (McAllister, 2005; Raspé et al., 2000), whilst a lack of water in 

high summer temperatures leads to tree stress. S. aucuparia in a forest situation prefers annual 

precipitation levels of 500mm to 1500mm at a temperature between 5ºC and 10ºC. This species has the 

ability to tolerate cold temperatures and less photosynthetic active radiation (Räty et al., 2016). It is 

adapted to survive continental and oceanic climates in both sunny and partially shaded positions and 

survives short growing seasons by being independent of photoperiod signalling (Sæbø and Johnsen, 

2000; Räty et al., 2016).  

 

The relative value of S. aucuparia was assessed by O’Sullivan et al. (2017) and has been noted for its 

ability to enhance air quality through the reduction of net volatile organic compounds and add to local 

biodiversity (where data includes mycorrhizal interactions, richness and biomass of soil invertebrates, 

leaf litter communities, pollinators, and fruit set). Indeed, Suhonen and Jokimäki (2015) acknowledged 

that S. aucuparia berries are associated with the abundance of some bird species, namely Turdus pilaris 

(Fieldfare), Bombycilla garrulous (Bohemian Waxwing), and Pyrrhula pyrrhula (Bullfinch), from autumn 

through winter in the Northern Hemisphere due to food resource provision. This species is also known 

for it’s a medium degree of winter hardiness and suitable performance in carbon sequestration 

(determined by wood density and growth rate) (O’Sullivan et al., 2017).  
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In order to sustain these key features of S. aucuparia it is important to optimise its survival rates when it 

is transplanted into an urban environment. Most trees have a mortality rate of 30% during their first 

year in-situ (Hirons and Percival, 2012). Transplant stress can be a limiting factor resulting in slow 

growth and tree decline once a tree has been placed into a landscape. It is therefore important that root 

structure and aerial growth is healthy, which is not always feasible in replant conditions (Section 1.4). 

RD poses a problem in terms of establishing an economically viable and resilient stock and is a globally 

distributed problem, and has been reported as occurring throughout the world in the major fruit 

growing regions (Utkhede and Smith, 1993; Mazzola, 1998; Van Schoor et al., 2009; Kandula et al., 2010; 

Zhang et al., 2012) and as stated above, it has been established that this disease affects S. aucuparia 

(O’Neill, 2011).  
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1.4 Symptoms: Replant Disease (RD) and the phenotypic responses of hosts 

 

RD was first recorded in the writings of noted agriculturalist John Worlidge in Systema Agriculturae 1698 

(Suranyi, 1998). The disease affects edible crops and ornamental nursery species, such as Asparagus, 

Citrus, grapevine, and tree, soft fruit and shrub species within the Rosaceae (O’Neill and Wiltshire, 

2007). Replant disease accumulates in the soil and more predominantly the rhizosphere throughout the 

duration of plant growth (Traquair, 1984) and it is when a tree is removed and the infected area 

replaced with the same species, that the symptoms are first displayed. Intensively cultivated land 

(25,000 trees per hectare) is affected in nursery rows rather than in patches (AHDB, 2008). Indeed, 

Hoestra (1994) argued that RD is a product of monospecific stands of crops with minimal rotation, which 

is a common in tree nurseries.  

 

RD has the effect of increasing tree deformity and reducing growth and vigour which in some cases can 

lead to increased mortality rates in Prunus species such as cherry, almond, apricot and peach (Browne et 

al., 2006).  The disease can result in severe stunting of 30-73% (Brown, 2009), shortened internodes, 

reduced productivity, and small rosette leaves with a light appearance. RD may result in the inhibition of 

the enzyme that integrates magnesium into the porphyrin ring of chlorophyll (Wang et al., 2014) and 

thus decreases photosynthetic activity. 

 

The reduction in the growth and general vitality of above-ground physiology is symptomatic of small 

compact root systems, short feeder roots and decay. The premature destruction of epidermal cells and 

cortical tissue results in visually discoloured roots and a reduction in root hairs. This diminished root 

surface limits the uptake and translocation of water and minerals that are used in the molecular 

pathways that support plant growth and development (Caruso et al., 1989; Mazzola, 1998; Messenger 

and Braun, 2000; O’Neill and Wiltshire, 2007; Mazzola and Mancini, 2012). Most of these symptoms are 

seen in the first two years of tree growth, after which the tree partially recovers, although not to its full 

expected vigour. The same recovery or a reversal of symptoms can be seen in RD affected cherry and 

apple trees when planted in new soil (O’Neill and Wiltshire, 2007).  

 

The level of disease has been shown to vary across different sites and is often linked to site age, 

cropping history, soil textural class and nutrient status, and relative degree of damage to mature tree 

roots (Mai and Abawi, 1981; AHDB Horticulture, 2009). In 1961 Oostenbrink and Hoestra defined two 

types of RD in apples: specific and non-specific replant disease, both of which caused the plant to exhibit 

the same symptoms (also acknowledged by Bent et al., 2009). The former only affects fruit tree species 

Malus (apple) and occurs more consistently across an orchard, whilst the latter affects more than one 

genus of fruit tree.  
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1.5 Causes of RD: the general consensus of what causes the disease  

 

The causal agent of RD has been a matter for much debate and still remains unknown for some plant 

species, although the current consensus is that a build up of pathogens (viruses, nematodes, fungi and 

bacteria) in combination with abiotic factors detailed in section 1.5.1 are the main causal agents (Mai 

and Abawi, 1981; Willett, 1994; Utkhede and Smith, 1994; Westphal, 2002; O’Neill and Wiltshire, 2007; 

Tewoldemedhin et al., 2011b). Abiotic factors can be ruled out as the exclusive causal agent due to the 

improvement in growth demonstrated subsequent to fumigation or pasteurisation of ‘sick’ soil. 

However, these soil sterilisation methods treated only 50% of a replanted apple orchard suggesting this 

multifactorial cause involving both abiotic and biotic factors (Yao et al., 2006). The causes differ 

between sites and geographic regions which are explained in section 1.5.2.  

 

1.5.1 Abiotic factors that contribute to RD 

 

Poor tree growth in replant conditions can be ascribed to pathogens exacerbated by abiotic conditions 

such as the compaction of soil which results in a lack of aeration; poor structure and the presence of 

pans; insufficient nutrient supply or an imbalance in those available; stress caused by a lack of water; 

waterlogging and gleying; contamination of soil by inorganic and organic chemicals and phytotoxins; 

cold injury, and the affects of pH on nutrient availability (Traquair, 1984; Mazzola, 1998). 

 

Soil type was correlated to specific nutrient deficiencies in leaves of Malus spp. Rootstocks. CG.401, B.9, 

and B.396 were more sensitive to replant conditions and linked to low leaf phosphate concentrations 

when grown in sandy soil. Clay soils on the other hand were found to be limiting to G.16, CG.6143, and 

CG.6001 and linked to lower leaf zinc concentrations (Fazio et al., 2012). Mai and Parker (1972) 

demonstrated that an application of potassium, magnesium, calcium, and phosphorus fertiliser 

increased yield of P. cerasus by 54%. Conversely, Proebsting and Gilmore (1941) did not demonstrate a 

growth response from P. persica after application of nutrients. More recently Fazio et al. (2012) 

determined that ‘replant’ soil was linked to low levels of leaf iron and molybdenum concentrations in 38 

different Malus spp. rootstocks. Zinc, sodium, potassium, manganese, calcium, magnesium and 

phosphorus levels were not significantly different irrespective of whether the trees were planted in 

diseased or pasteurised soil. Low pH and acidification of the soil (<4.5) was correlated with a decrease in 

the occurrence of the disease (Donoho et al., 1967; Savory, 1967; Hoestra, 1968), whereas Li and 

Utkhede (1991) demonstrated that macronutrients (N, P, K) were positively correlated with plant height 

of Malus spp. at a pH ≥8, whilst phosphorus was exclusively linked to increased growth at a pH <5.4. 

These studies combined would appear to indicate that there is no prescribed set of factors that 

contribute towards the occurrence of RD.  
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1.5.2 Biotic factors: organisms ascribed to RD and host-pathogen interactions 

 

Hoestra (1977) described RD as a site-bound self-induced disease that is the result of the ‘presence or 

activities of a plant species’. This categorisation was associated with Malus spp., Prunus spp., and the 

non-rosaceous Vitis spp. (grape). At this stage there was no solid evidence to rationalise this self-

induced state. However, in 1994, Hoestra stated that the RD phenomena existed in nature as a factor 

that contributes to succession whereby plants alter the environment to a point that it suits other 

species. Sorbus and other rosaceous species are considered as facilitator species, allowing for the 

establishment of other species and the discouragement of monospecific stands which are devoid of 

diversity. In addition to affecting the establishment of same species saplings it was observed that Sorbus 

spp. create conditions that are not conducive to the growth of related fruit trees (Otto et al., 1994), 

possibly due to a change in microbial composition and soil chemistry. Mazzola et al. (2002) found that 

transformations in the soil microbial complex occurred within the first three years of an apple orchard 

being established. These changes included the reduction of Burkholderia cepacia, an increase in 

Rhizoctonia solani AG-5 (root rot), and reduction of Pseudomonas putida with an increase in P. 

fluorenscens and P. syringae.  

 

The presence of phytoxic plant residues such as tannins, hydrocyanic acid and benzaldehyde liberated 

from necrotic roots can have the effect of influencing plant development indirectly through interactions 

with soil biology (Benizri et al., 2005; Nicola et al., 2017). The effect can be strongly associated with the 

replanting of a site with the same species. Gur and Cohen (1989) demonstrated that the deleterious 

effect of the prunasin by-products, hydrocyanic acid (hydrogen cyanide in solution) and benzaldehyde 

on tree growth and survival rates was greatest in P. persica, whilst being less severe in M. domestica and 

P. amygdalus (almond). The authors explained that this was due to the specific heat resistant bacilli in 

the rhizosphere of P. persica roots which effectively hydrolysed the prunasin. Likewise, Sotomayor et al. 

(2006) determined that RD on P. persica x P. davidiana could be due to an “amygdalin-associated 

autoalleopathic factor”, in which amygdalin also degrades to form cyanide. Conversely, Rumberger et al. 

(2007) found that rhizosphere cyanide concentrations could not be associated with apple replant 

disease (ARD) in M. x domestica. In 2012 Hofmann et al. eluded to the involvement of root exudate and 

flavonoid phloridzin in Malus related RD and the chemotaxis of pathogens toward roots. A further 

mechanism of action, that had no biotic step, was determined whereby the tricarboxylic acid cycle was 

disrupted in Malus hupehensis (Chinese crabapple) roots due to inhibition of respiratory rates and 

enzyme activity by phloridzin (Wang et al., 2012). 
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In addition to this indirect effect of toxins it has been demonstrated that numerous microorganisms can 

be associated with RD. Bent et al. (2009) found that a soil dilution of as little as 1% replant soil mixed 

with fumigated replant soil induced poor growth in P. persica seedlings due to the pathogens therein, 

possibly due to the lack of competition from of beneficial organisms post treatment. Soil bacteria, 

pathogenic fungi, actinomycetes, oomycetes and plant parasitic nematodes have been proposed as 

causes of RD, either as individual components or together as a complex of organisms (Merwin et al., 

2001; Eayre et al., 2000; Utkhede and Smith, 1994). The role of micro-organisms can vary according to 

other extant microbial communities which may either aid in pathogenesis or compete with pathogens 

for resources. Yang et al. (2012) found a positive correlation between numbers of actinomycetes in the 

Xanthomonadaceae and P. persica shoot weights. Meanwhile a study by Otto and Winkler (1976) 

confirmed that actinomycetes were ubiquitous in the of feeder roots of Malus spp. seedlings planted in 

‘sick’ soil. This was further substantiated by Szabó et al. (1998) who confirmed actinomycetes could 

colonise epidermal and cortical tissues by entering the root hairs. Yang et al. (2012) and Mulder (1969) 

demonstrated the presence of oomycete Pythium vexans, which was negatively correlated with shoot 

growth, however this result is not consistently found and is dependent on pathogenicity as 

demonstrated in a study by Mazzola et al. (2002) in which three non-pathogenic isolates (including P. 

MM5 (aff. vexans) acted as a biological control of P. sylvaticum and P. ultimum. Yang et al. (2012) 

isolated fungi Fusarium oxysporum, Ceratocystis fimbriata and the beneficial fungi Trichoderma spp. 

Caruso et al. (1989) found through histological studies that trees affected by RD exhibited the 

penetration of arbuscules and hyphae of fungi and oomycetes from species in the genera Rhizoctonia, 

Phytophthora, and Pythium, in the presence of nematodes. This particular set of microorganisms were 

further noted by Mazzola (1998) and Mazzola and Mancini (2012). These three genera have also been 

attributed to ‘damping off’ disease of seedlings which has a similar ability as RD to induce decay causing 

the stem of a seedling to collapse. From a non-pathogenic perspective Jaffee et al. (1982) suggested that 

RD may be the result of competition with rhizosphere organisms that required the same resources 

although, this seems an unlikely primary cause. As stated previously, the addition of nutrients has little 

effect and provides little explanation for root damage that is symptomatic of a diseased tree. Current 

research suggests that transformations within the soil community, particularly nematodes, fungi and 

actinomycete bacteria, result in it being conducive to inciting RD (AHDB, 2009). From this information, it 

can be surmised that the exact organism/s responsible have still not been conclusively determined, and 

differs between species and locations. It can also be concluded that different groups of pathogens may 

act together in inciting the disease. The particular bacteria, fungi, stramenophiles and nematodes 

associated with RD are defined in the immediate sections below (1.5.2.1 to 1.5.2.4). 
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1.5.2.1 Bacteria and their host range 

 

Several bacteria have been associated with RD (Table 1.2). In 2005, Benizri et al. noted the higher 

incidence of bacteria in replant soils when compared to healthy soil and suggested that saprotrophic 

phytotoxic microorganisms may be favourably selected for in the presence of rhizodeposits. The study 

also determined that Bacillus spp. were able to produce hydrogen cyanide in vitro.  

 

Table 1.2: Bacteria species associated with RD on a range of plants 

Biotic factor  Associated plant(s) Example reference 

Actinomycetes 

 

Malus spp., S. aucuparia,       

P. communis, P. persica,         

P. avium. 

Malus spp.  

Otto et al., 1994 

 

 

Westcott et al., 1987; Čatská et al., 

1989; Szabó et al., 1998 

Bacteria 

Bacillus spp. 

Bacillus subtilis 

Pseudomonas spp. 

 

P. syringae 

P. fluorescens  

P. putida 

Chitinophaga spp. 

Hyphomicrobium spp. 

 

P. persica 

Malus spp.  

Fruit trees 

P. persica 

M. domestica 

M. domestica 

M. domestica 

Malus spp.  

Malus spp.  

 

Benizri et al., 2005 

Jackson, 2003 

Utkhede, 1996 

Yang et al., 2012 

Mazzola et al., 2002 

Mazzola et al., 2002 

Čatská et al., 1989; Jackson, 2003 

Franke-Whittle et al., 2015 

Franke-Whittle et al., 2015 

 

Otto et al. (1994) demonstrated that actinomycetes in ARD soil could infect Malus spp. seedlings, and S. 

aucuparia and P. communis rootstocks, and have also been linked with RD in P. persica and P. avium to a 

lesser degree. It is possible that there is a link between the Rosaceae tribe and actinomycete infection 

severity, where severity is greater for species within Maleae in comparison to Amygdaleae (Hummer 

and Janick, 2009). These filamentous, gram positive and generally anaerobic bacteria damage the root 

cortex and cause the loss of root hairs (Szabó et al., 1998, cited in Jackson, 2003, p466). They have been 

suggested as being the primary causal agent (Otto et al., 1994; O’Neill and Wiltshire, 2007; Utkhede and 

Smith, 1994; Westcott et al., 1987). The role of some bacteria is unclear with some, such as 

Sphingomonas spp. being negatively correlated with plant growth and some aiding pathogen 

suppression (Franke-Whittle, 2015).  
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1.5.2.2 Fungi and their host range 

 

Fungi are resilient pathogens that persist in the soil for over 20 years. This can cause difficulty when 

designing control strategies as some methods such as crop rotation have little success (Easton et al., 

1992). The fungi that have been ascribed to RD fall within two taxonomic classes, namely: Ascomycota 

and Basiodiomycetes. Most cause root rot which leads to a lack of nutrient uptake (Table 1.3). RD has 

been associated with secondary metabolites, mycotoxins, from fungi (Mancini et al, 2017).  

 

Table 1.3: Fungal species associated with RD on a range of plants 

Biotic factor  Associated plant(s) Example reference 

Fusarium spp. 

F. equiseti,  

F. oxysporum 

F. oxysporum 

F. solani 

F. solani 

F. moniliforme 

Rhizoctonia spp. 

R. solani 

R. solani 

R. solani 

Verticillium dahlia 

Rosellinia necatrix 

R. necatrix 

Thielaviopsis basicola 

T. basicola 

Cylindrocladium spp. 

Penicillium claviforme 

P. claviforme 

P. janthinellum 

P. janthinellum 

Cylindrocarpon spp. 

Cylindrocarpon spp. 

C. destructans 

C. destructans 

C. macrodidymum 

C. lucidum  

Peniophore sacrata 

Constantinella terrestris 

Acremonium spp.  

Malus spp. 

P. persica 

P. persica 

Malus spp. 

Malus spp. 

P. persica 

P. persica 

Malus spp. 

P. persica, Malus spp. 

P. persica 

S. aucuparia 

P. persica, Malus spp. 

P. persica, Malus spp. 

Malus spp. 

P. avium 

P. avium, P. domestica 

Fruit trees 

Fruit trees 

Malus spp. 

Fruit trees 

Malus spp. 

Fruit trees 

Malus spp. 

Malus spp. 

S. aucuparia 

P. persica 

Malus spp.  

Malus spp. 

Malus spp. 

Malus spp. 

Franke-Whittle, 2015 

Wensley, 1956; Hine, 1961 

Wensley, 1956; Hine, 1961 

Mancini et al., 2003 

Mancini et al., 2003 

Wensley, 1956; Hine, 1961 

Wensley, 1956; Hine, 1961 

Mancini et al., 2003 

Yasuda and Katoh, 1987 

Browne et al., 2006 

O’Neill, 2011 

Yasuda and Katoh, 1987 

Yasuda and Katoh, 1987 

Mazzola and Mancini, 2012 

Hoestra, 1965 

Sewell and Wilson, 1975 

Utkhede, 1996 

Utkhede, 1996; Čatská et al., 1989 

Jackson, 2003 

Utkhede, 1996 

Jackson, 2003 

Utkhede, 1996; Franke-Whittle, 2015 

Mancini et al., 2003 

Jaffee et al., 1982; Caruso et al., 1989 

O’Neill, 2011 

Schmidt et al., 2014 

Mai and Abawi, 1981; Jaffee et al., 

1982a 

Jackson, 2003 

Jackson, 2003; Franke-Whittle, 2015 

 

In a report of 2007, the AHDB stated that fungicides utilised to treat RD did not have consistent results, 

therefore suggesting that the aetiology of this disease is not based solely on fungi (O’Neill and Wiltshire, 

2007). Furthermore Hoestra (1968) determined that nematicides and fungicides were ineffective.  
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1.5.2.3 Stramenopiles and their host range 

 

Stramenopile is a Kingdom including diatoms, brown algae and oomycetes (Lévesque, 2011; Adhikari et 

al., 2013). Oomycetes include some of the most devastating pathogens, including Phytothphora. The 

class of oomycota has been linked to RD on a range of rosaceous stock (table 1.4).  

 

Table 1.4: Stamenopile species associated with RD on a range of plants 

Biotic factor  Associated plant(s) Example reference 

Water moulds  

Pythium spp.  

Pythium spp. 

Pythium spp. 

P. ultimatum 

P. ultimatum 

P. ultimatum 

P. sylvaticum 

P. irregulare 

P. intermedium 

P. vexans 

Phytophthora spp. 

P. cactorum 

Diatom 

Sellaphora spp. 

 

Fruit trees 

Malus spp. 

P. persica 

Malus spp. 

P. persica 

S. aucuparia 

Malus spp. 

Malus spp. 

Malus spp. 

P. persica 

Fruit trees 

Malus spp.  

 

P. persica 

 

Utkhede, 1996 

Mancini et al., 2003; Yao et al., 2006 

Hine 1961; Schmidt et al., 2014 

Mulder, 1969 

Bent et al., 2009 

O’Neill, 2011 

Mulder, 1969; Sewell, 1980 

Jaffee et al., 1982a; Braun, 1991 

Mulder, 1969 

Yang et al., 2012 

Utkhede, 1996 

Mazzola 1998 

 

Bent et al., 2009 

 

In 2006, Yao et al. noted the presence of Pythium spp. in higher concentrations in Malus replant soil 

than Phytophthora. Rumberger et al. (2004, 2007) found the infestation by the pathogen Pythium spp. 

to be no different irrespective of rootstock. In 2011 ADAS conducted an evaluation of treatments of RD 

in S. aucuparia (O’Neill, 2011), which concluded that Pythium is a worldwide (USA, Tunisia, and UK) 

component of the disease and is often found in a complex with fungi. 
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1.5.2.4 Nematodes and their host range 

 

Nematodes are free living, microscopic, worm like multicellular animals and can be endoparasitic 

(parasitic within), semi-endoparasitic, or ectoparasitic (parasitic on the outside of an organism). 

Nematodes can act exclusively on one host or they can be nonspecific, and are abundant in soil and 

have various modes of action whereby this occurs, namely: direct cell destruction; creating syncytia; 

acting as a vector; or facilitation of fungi and bacteria root invasion as seen in Prunus spp. (Wang et al., 

2007; Hooks et al., 2010). Nematodes have been associated with RD (Table 1.5) however their presence 

is not always consistent or indicative of their involvement with the disease.  

 

Table 1.5: Nematode species commonly associated with RD on a range of plants 

Biotic factor  Associated plant(s) Example reference 

Pratylenchus spp. 

 

 

P. penetrans 

P. projectus  

P. penetrans 

Xiphinema spp. 

Meloidogyne spp. 

Malus spp. 

Fruit trees 

Malus spp. 

Malus spp., P. avium, Pyrus 

spp. 

Malus spp., P. avium, Pyrus 

spp. 

Fruit trees 

Westcott et al., 1986 

Mai et al., 1981; Pokharel et al., 2015 

Jaffee et al., 1982b 

Mai and Abawi, 1978 

Mai and Abawi, 1978 

Utkhede, 1996 

Utkhede, 1996; Pokharel et al., 2015 

Pokharel et al., 2015 

 

Mazzola (1998) found counts of nematodes were comparably higher in healthy soils and lower in replant 

soil. Westcott et al. (1986) determined that steam treatments improved tree growth whilst reducing 

actinomycetes and nematodes; however there was no indication of whether nematode population 

decline was responsible for the positive impact of the treatment. The role for nematodes as facilitators 

of RD is further devalued by the findings that air-drying of soil reduces populations of nematodes but 

this does not positively impact on tree growth (Jaffee et al., 1982). It is also possible that nematodes 

could be opportunists that take advantage of a plant compromised by the causal agents of RD. Pokharel 

et al. (2015) noted that nematode community composition (including both plant parasitic and free 

living) was more diverse and an indicator of a healthy soil in organic P. persica and M. domestica 

systems in comparison to a conventional nursery setting.  
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1.6 Treatment of RD using chemicals and non-chemical alternatives 

1.6.1 Methyl bromide as a historical treatment for RD on rosaceous stock 

 

Broad spectrum soil fumigants were introduced in the 1940s as a reliable method of controlling edaphic 

pest and diseases, resulting in increased quality and yield of crops. Chemical treatments replaced 

cultural techniques that were used previously as an effective method of boosting growth by lowering 

disease (Braun and Supkoff, 1994). Crop treatments are therefore orientated towards synthetic 

chemicals, bringing the inherent risk of environmental contamination and human health problems. 

 

On nurseries RD was previously treated by broad spectrum fumigant MeBr, which allowed for the 

vigorous growth of trees after fumigation, as was exemplified by experimentation in California by 

Browne (2002). The improvement in the above ground canopy of peach trees was a result of the growth 

of extensive healthy roots. Replant roots by comparison appeared fibrous, brittle, discoloured and 

decayed. 

 

In 1993 the Parties of the Montreal Protocol declared MeBr as a Class I stratospheric ozone depleting 

compound and MeBr was proposed to be gradually phased out in developed countries by 2005 and in 

developing countries by 2015 (Appendix I). In the European Community (EC) ozone depleting 

compounds are regulated with manufacturing, importation, exportation, and marketing legislation 

under regulation (EC) No. 2037/2000 of The European Parliament and of the Council of 29 June 2000 

(Centre for Agiculture and Biosciences International, 2008). In the Netherlands MeBr is classified as a 

ground, surface, and drinking water contaminant. In Switzerland concerns also centred on the perceived 

risk of the build-up of bromine in food crops above the recommended daily intake (Braun and Supkoff, 

1994; Messenger and Braun, 2000; Trout, 2002). 
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1.6.2 Alternative chemical treatments to MeBr 

 

Various chemicals were reviewed by Messenger and Braun (2000) to find an alternative to MeBr. 

Alternatives require a similar capacity to eradicate deleterious organisms and comparable properties 

such as a low boiling point (36°C) and high vapour pressure allowing effective penetration of soil and 

minimal residual phytotoxicity. Metam sodium, dazomet, chloropicrin and methyl iodide were all 

notable broad spectrum biocides that act against fungi, insects, weeds and nematodes, whilst telone 

exclusively controls nematodes (Messenger and Braun, 2000) and as with any treatment method, each 

of these have their strengths and limitations (Table 1.6). 

 

Table 1.6: Some of the strengths and limitations of chemical alternatives to methyl bromide  

  Strength Limitation Reference 

Tr
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D
az
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m

et
 

  

Acts against a range of 

pathogens. Reduces RD 

symptoms by modifying 

the microbial 

community. 

No effect against fungi 

Fusarium or Verticillium.  

Soil penetration and 

dispersal potential does 

not compare to MeBr. 

 

Braun and Supkoff, 1994;  

Messenger and Braun, 

2000; Trout, 2002; Nicola 

et al., 2017.  
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Lasts for up to six years. 

Acts specifically against 

nematodes. Effective 

against pathogens when 

combined with dazomet. 

 

Needs to be combined 

this chemical with either 

MITC or chloropicrin for 

broad spectrum control.  

Duniway et al., 1999; 

Messenger and Braun, 

2000; 
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 Works well against RD 

and its action against 

fungi is comparable to 

MeBr  

 

Longer lasting residual 

phytotoxicity than MeBr 

Messenger and Braun, 

2000; Trout, 2002 

M
et

h
yl

 io
d

id
e 

Methyl iodide (MI) was 

found to be as effective 

at controlling RD as 

MeBr. Breaks down 

readily in the presence 

of UV light 

Concerns regarding 

toxicity and human 

health  

Eayre et al., 2000 

Froines et al., 2010 

 

Chloropicrin has specifically been identified as an effective treatment of RD in a P. persica nursery, 

resulting in healthier trees that were not stunted and had a full canopy (Browne, 2002). Efficacy is 

dependent on chemical formulation, as demonstrated by Yao et al (2006) who stated Telone C-17 

(containing chlopicrin) effectively controlled the disease but did not improve tree growth or yield. In 

2011, O’Neill trialled the treatment of replant soil on S. aucuparia with Custofume (98% chloropicrin), 

Basamid (98% dazomet), ‘Biofence’ Caliente mustard meal (Brassica carinata) pellets, Novozymes 
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‘MycorrhizaRoots’, PlantMate granular root zone starter granules/PlantMate WP (Trichoderma 

harzianum), Agralan Revive (Bacillus subtilis), and supplementary nitrogen. Out of these treatments it 

was found that Custo-fume was the most successful at improving root and shoot growth and reducing 

bud failure in S. aucuparia. Top growth increased by 124% and below ground growth by 113% when 

applied at a rate of 280 l/ha under sealed conditions. Custo-fume was not deleterious to beneficial 

Trichoderma spp. Growth of S. aucuparia after the other treatments were applied was found to be no 

different to the control group.  

 

The effectiveness of any chemical alternative is dependent on their correct application and thorough 

mixing with the soil. They also have a residual phytoxicity requiring a period of time called a re-entry 

interval before an area is deemed safe to enter without protective clothing and equipment (Messenger 

and Braun, 2000). They have all been found to be pollutants to either the air or waterways, whilst some 

are considered to be developmental toxins and carcinogens (Braun and Supkoff, 1994; Messenger and 

Braun, 2000; Trout, 2002; Froines et al, 2010). It is possible to use chemicals in limited quantities thus 

reducing their deleterious impact. For example, Browne et al (2013) demonstrated ‘GPS-controlled tree 

spot shank fumigation’ resulted in improved vegetative growth and yields of P. persica and P. 

amygdalus, when treated with chloropicrin and cis-1,3-D, which is an encouraging result. The use of GPS 

reduces the quantity of chemicals required and thus is economically beneficial and biorational 

(Udompetaikul et al, 2013). Cabrera et al (2015) found that reduced rates of Telone C35 under sealed 

conditions controlled P. ultimum and V. dahliae, but had little effect on Fusarium spp. and P. cactorum. 

Likewise, Yao et al (2006) and Merwin et al (2001) found that Telone C-17 and metam sodium were of 

little benefit to orchards with ARD across a range of soil types, the unreliability was attributed to 

formulation, dosage, and soil penetration capacity. Use of chemicals therefore yields inconsistent results 

that may well be dependent on their correct application, and the biotic and abiotic conditions.  
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1.6.3 Legislation for chemical treatments and move towards organic methods 

 

Plant protection products are tailored to offer protection to plants against harmful organisms such as 

pathogens, pests and weeds. They also include substances that stimulate or regulate plant growth. The 

UK has a substantial crop protection industry supplying the agricultural, horticultural, domestic and 

amenity sectors. According to the latest available figures, dating from 2006, the UK was the fourth 

biggest user of pesticide consumers in Europe, with 21,251 t of active ingredient being sold in year. 

Other big users of pesticides include Denmark (31,819 t), France (71,612 t), and Italy (81,450 t). Of the 

pesticide sales in the UK in 2006 the majority were herbicide products (43%), whilst the rest were 

fungicides (25%), insecticides (3%), and other plant protection products (28%) (European Commission, 

2016).  

 

The regulation of plant protection products plays an important role in their development and approval 

for use, ensuring that the risk to humans, animals and the environment is minimised, and the benefits to 

plant production maximised, as stipulated in Regulation (EC) No. 1107/2009, Water Framework 

Directive (WFD) 2000/60/EC, and Approval of Neonicotinoids Regulation 485/2013. The Sustainable Use 

Directive (SUD) 2009/128/EC provides a framework for the sustainable use of chemicals within the 

Agriculture, Horticulture, and Amenity sectors throughout Europe. In 2014, Integrated Pest 

Management (IPM) was adopted as part of the SUD with the statutory development of a National Action 

Plan (NAP) outlining Directive implementation (Stark, 2011).  

 

As legislation drives the withdrawal of active substances and the restriction of new products the above 

mentioned sectors will suffer losses. The only respite from the removal of these products is the AHDB 

Horticulture Extension of Authorisation for Minor Uses (EAMU) programme which allows growers to 

apply for short term approval to use a product which is no longer supported for manufacture or use 

(AHDB Horticulture, 2016). In 2013 the Chemicals Regulation Directorate (CRD) on behalf of the 

Department for Environment, Food & Rural Affairs (DEFRA) stated that the UK had a five-year research 

and development programme investigating the use of economically and environmentally sustainable 

alternatives to chemicals as part of their IPM strategy, including cultural practices, natural active 

substances and plant breeding measures. IPM lowers reliance on synthetic pesticides and produces 

comparable yields (Parliamentary Office of Science and Technology, 2009). The research, in this thesis, 

into the use of green manure as a control of RD on S. aucuparia is relevant to this changing ethos. Green 

manure contains natural constituents that are antimicrobial in nature. The use of a green manure as an 

alternative to chemical control brings numerous benefits. A broad spectrum pesticide does little else 

other than non selectively kill both beneficial and deleterious species of microorganisms. Meanwhile the 

addition of organic matter can condition the soil and improve structure whilst suppressing deleterious 

microorganisms whilst populations of beneficial microbes increase in numbers.  
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1.6.4 Treatments used to control RD that do not include synthetic chemicals 

1.6.4.1 Soil amendments and suppressive soils 

 

A green manure soil provides a range of benefits from improved soil structure and water holding 

capacity, to antimicrobial effects and increased soil microbial activity leading to pathogens being out-

competed for resources, and long term nutrient availability for plant uptake. Green manures can be 

used in biofumigation, where natural plant defences or their antimicrobial properties, can be used to 

benefit a grower in the disinfestation of soil. A well researched plant family used for biofumigation, are 

the Brassicaceae, which yield toxins due to the glucosinolate-myrosinase defence mechanism (Larkin 

and Griffin, 2007). Any damage to the tissue of brassicaceous plants results in the release of nitriles, 

epithionitriles, thiocyanates and isothiocyanates. Oliver et al (1999) demonstrated that allyl 

isothiocyanates and isothiocyanates inhibit Pythium sp., Fusarium sp. and V. dahliae by cessation of 

germination and mycelial growth. Meanwhile, mulches can be used for the purpose of improving vigour, 

reducing tree transplant stress, suppressing weed seed germination, and improving colonisation rates of 

beneficial microbes which out-compete or chemically inhibit pathogenic microbes (Percival et al, 2009).  

 

Increase in soil microbial activity induced by organic amendments was established before the 1990’s 

(Fraser et al, 1988). Merwin et al (2001) demonstrated that a compost treatment (ground leaves/wood 

chips, vegetable culls, and cattle/horse manure, 40:40:20 respectively) effected soil bacteria and fungal 

community composition, and increased soil microbial activity. Even before its use as a soil amendment, 

green manure may be grown as a cover crop that can out-compete weed species and protect the soil 

from adverse weather and erosion. The stimulation of certain microbes can directly change the 

microbial composition of a soil by favouring microorganisms that can suppress pathogenic populations. 

‘Suppressive soils’ work by halting establishment of pathogens and/or hindering the growth of 

deleterious organisms to the point that their presence has no influence upon the host plant. Suppressive 

soil can be promoted through the use of cover crops and green manure amendments, and has been 

shown to control pathogens, such as nematodes (Jaffee et al., 1982), bacteria (Bunt and Mulder, 1973) 

and fungal pathogens (Mazzola, 1998) on a number of woody ornamental species (Merwin et al, 2001). 

Improvements in the soil microbial community can be achieved by simply growing a crop that is later 

excised before replanting with a rosaceous species, as demonstrated by Gu and Mazzola (2001, 2003) 

who improved Malus sp. seedling growth by cultivating T. aestivum. Their results revealed that wheat 

exudates increased the population of the Plant Growth Promoting Rhizobacteria (PGPR) fluorescent 

Pseudomonas putida, and a decrease in P. syringae and P. fluorescens bv. III. This change in the 

microbial composition suppressed R. solani, C. destructans, and P. ultimum. Other organisms that have 

been noted for their positive association with tree growth or antagonistic activity towards fungi are 

Azospirillum, Agrobacterium, Bacillus, Enterobacter, and Trichoderma (Čatská et al., 1982; Čatská et al., 

1987; Čatská and Taube-Baab, 1989; Utkhede et al., 1992; Utkhede and Smith, 1993). These natural 

biostimulant microbes work by producing antimicrobial substances such as antibiotics and chitinases, in 
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addition to siderophores which deprive pathogens of iron (García-Fraile et al., 2015). They also prime 

the plant by induction of systematic resistance and mobilise nutrients for plant uptake. Addition of 

organic matter (OM) can have various effects on the severity of RD. For example rice husk biochar can 

improve plant height and chlorophyll content in the leaves, and was positively correlated with a 

reduction of phenolic compounds produced during the decomposition of Malus spp. roots and leaves 

ascribed to RD (Politycka and Adamska, 2003). Green soil amendments, such as seaweed, can also 

improve plant enzyme activities, leading to a decrease in lipid peroxidisation (Wang et al., 2016), as well 

as increase soil microbe richness and evenness resulting in a healthy soil quality.  

 

Arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae was found to have a similar effect. The 

addition of AMF aids the growth of P. persica seedlings showing RD symptoms which were a result of 

the activity of cyanogenic compounds against extant mycorrhizae. The availability of nutrients through 

the ‘extended root system of hyphae’ resulted in improved growth and chlorophyll concentrations. 

Much like the fermented OM, mycrorrhizae can also activate catalases and peroxidases (Zhang et al., 

2015).  

 
1.6.4.2 Biological controls for RD 

 

The use of biological controls and soil amendments to alter the microbial community can be 

undertaken. The composition of the microflora can be altered either directly through the addition of a 

specific species or indirectly via the introduction of a soil amendment that can influence the extant 

microbial structure. Mazzola (2007) favours the latter, due to the former resulting in inconsistent 

growth and yields of the crop, due to the introduction of a biological agent into an environment in which 

it will be out-competed by the native microorganisms and exposed to conditions (pH and temperature) 

that are not conducive to their population growth. The soil could be considered as suppressive as a 

result of these changes, and in agreement with this it was demonstrated that antagonists 

Agrobacterium radiobacter (used to treat crown gall) and Trichoderma harzianum (used for the control 

of diseases in crops) were not as effective as fumigation (Messenger and Braun, 2000).  

 

1.6.4.3 Cultural practices – crop rotation, containerisation, steaming and solarisation 

 

Cultural practices are frequently used in the control of RD. The use of crop rotation, manure and inter-

cultural planting was suggested by various agriculturalists in the 16th and 17th centuries as a way of 

reducing the occurrence of RD (Suranyi, 1998). This form of treatment for RD is ideal in an agricultural, 

soft fruit or gardens and parks scenario but it cannot be applied to nurseries and orchards due to the 

physical difficulty of rotation and the chronic persistence of RD in the soil. An alternative to rotation is 

the use of containers which are now manufactured so as to prevent root circling. This practice can have 
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its limitations however, where the size of the container and need for frequent irrigation and feeding is 

restrictive to tree growth.  

 

Heat can often be used to control soil disease and can be applied in the form of steam or solar radiation. 

Steam effectively treats soil infected with pathogens, such as Fusarium spp., within half an hour at 50-60 

C (Braun and Supkoff, 1994). Likewise solar heat (soil solarisation) works well in hot climates to control 

V. dahliae, and was found to be more effective against Verticillium wilt on Pistacia vera (pistachio) than 

MeBr. Soil solarisation method also controls bacteria and weed species (Messenger and Braun, 2000), 

and can be used in combination with rice bran compost, after which irrigation to water holding capacity 

induces anaerobic conditions and stimulates anaerobic decomposers leading to the release of by-

products, such as volatile organic compounds that are toxic to pathogens (Strauss et al, 2015). 

Furthermore Browne et al (2014) demonstrated that anaerobic soil disinfestation controlled P. ultimum 

at levels comparable to fumigation. Likewise, Shennan et al (2014) indicated that this treatment resulted 

in a change in rhizosphere micro-organisms associated with Fragaria spp. A full understanding of how 

this control influences microbial compositions is not known (Strauss et al., 2015). More recently the use 

of heat as a means of sterilisation has progressed with recent research by Mao et al. (2015) 

demonstrating that a tractor mounted Flame Soil Disinfestation (FSD) machine can reduce populations 

of nematodes (>95%), F. oxysporum (>44%), Phytophthora spp. (>47%) and Ralstonia solanacearum 

(67%). Soil is passed through flames at a temperature of 1200°C and returns to the ground at 50-70°C. 

This is an expensive method which may not result in the lasting reduction of pathogens. Sterilisation can 

disrupt the balance of beneficial microbes such as mycorrhizae, and has the potential to release 

phytotoxic chemicals (Messenger and Braun, 2000), thus the establishment of a new community that 

may favour re-infestation of pathogens (Jaffee et al., 1982). Conversely Yim et al. (2015) demonstrated 

that heat treatment at 50°C and gamma irradiation improved Malus M26 rootstock plants and increased 

the abundance of bacterial genera antagonistic towards pathogens.  

 

1.6.4.4 Breeding: resistant stock and rootstocks 

 

The breeding of resistant stock and the use of resistant rootstocks are a worthwhile strategy although 

are not protective against a number of pathogens (Messenger and Braun, 2000). Rootstocks need to be 

selected carefully, as demonstrated by Rumberger et al (2007) on ARD effected sites, where three out of 

five rootstocks were susceptible to the disease. Rootstock-specific response to RD was also highlighted 

by Almeida et al (2016) and in research on ARD by Zhu et al (2014). Browne et al (2013) also showed 

inconsistency in rootstock tolerance and specifically demonstrated that those with P. persica parentage 

were more susceptible to peach RD, where a P. persica x P. amygdalus rootstock did not significantly 

improve growth and were susceptible to nematodes. Rumberger et al (2007) recommended that RD 

should be managed by inter-row planting of tolerant rootstocks, a strategy that has been confirmed as 

an effective method of minimising the affects of RD; however it is required in conjunction with 
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promotion of suppressive soils (Kelderer et al, 2012). At present, the development of rootstocks 

requires an improved understanding of the molecular response of root plant defences to pathogens, the 

interaction of a rootstock genotype with scion material, and the soil environment biology and conditions 

(Zhu et al, 2014).  

 

1.6.4.5 Overview of non-chemical treatments for RD 

 

Soil amendments have been shown to be effective on their own and also as a supplement to cultural 

practices. Their benefits are multidimensional with respect to improving tree vigour and yield, survival 

through reduction of stressful conditions, and a media that stimulates the colonisation of the soil with 

beneficial communities of micro-organisms (Section 1.7.4.1).  

 

1.6.5 The use of organic soil amendments and their potential to control RD 

 

This research in this thesis investigated the control of RD on S. aucuparia by applying sub-tropical shrub 

Phytolacca americana (pokeweed) as a novel green manure, alongside application of comparison 

treatments including conventional green manure species used to control soil disease in annual crops 

(Triticum aestivum (wheat); Brassica juncea (Indian mustard)), those not traditionally used as 

biofumigants but known for antimicrobial properties (Allium sativum (garlic); and Tagetes patula 

(French marigold)) (Figure 1.6). 

 

 
   a                                  b                                 c                                 d                                   e 
Figure 1.4: Green manure species: propagated by vegetative means and seed.  

Key: P. americana (a), A. sativum (b); T. aestivum (c); B. juncea (d); and T. patula (e) 

 

These species have previously demonstrated a range of antimicrobial constituents which have been 

demonstrated as being effective against a variety of deleterious organisms (Table 1.7).  
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Table 1.7: Antimicrobial constituents of plants used as green manures 

 Major bioactive constituent(s) Reference(s) 

Novel green manure species   

P
. a

m
er

ic
a

n
a

 

Ribosome Inhibiting Protein PAP 

Ribosome Inhibiting Protein PAP-2 

 

Monzingo et al., 1993; Barbieri et al., 1982; Hudak et 

al., 2011; Poyet et al.; 1998. Ribeiro et al., 2013. 

Phenolic acids Bae et al., 1997. 

Betacyanins Schliemann et al., 1996. 

Triterpene saponins Di Maro et al., 2007. 

Pathogen-related proteins Ohta et al., 1995a. 

Flavonoids Hansel et al., 1993 (In Ravikiran et al., 2011); Ohta et 

al., 1995a. 

Species used as comparative soil amendments  

B
. j

u
n

ce
a

 

Nitriles, epithionitriles, thiocyanates 

and isothiocyanates. allyl 

isothiocyanates 

Olivier et al., 1999; Larkin and Griffin, 2007 

T.
 p

a
tu

la
 

Thiophenes  Wang et al., 2007; Marotti et al., 2010; Gupta and 

Vasudeva, 2012; Margl et al., 2001.   

Flavonoids Al-Musayeib et al., 2014; Gupta and Vasudeva, 2012. 

Others: Phenolic compounds; 

Glycosides; Iodine 

Gupta and Vasudeva, 2012. 

T.
 a

es
ti

vu
m

 

Flavonoids 

 

Harborne et al., 1986; Harder and Christensen, 2000; 

Asenstorfer et al., 2008; Suriyavathana, 2016. 

Glycoside Asenstorfer et al., 2008; Suriyavathana, 2016. 

Thionins De Caleya, 1972; 

Antimicrobial peptides Badea et al., 2009; Odinstova et al., 2013; 

Others: Terpenoids; Steroids; 

Saponins; Phenols; Tannins; Alkaloids 

Suriyavathana, 2016 

 

A
. s

a
ti

vu
m

 

Allicin (diallythiosulphinate) Arzanlou and Bohlooli, 2009. 

Diallyl disulphide and diallyl 

trisulphide 

Avato et al., 2000.  

Saponins Lawson et al., 2007.  

Steroidal glycosides, Flavonoid: 

Quercetin 

Edris and Fadel, 2002 
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1.7  Aims and Objectives: 

 
Plants produce natural defence chemicals as a response to injury that can be caused by an array of 

organisms, such as microbes, parasites and herbivores. Plants also produce secondary metabolites as a 

result of growth related metabolic and biological synthesis activities. The creation of mulch by 

macerating vegetation and incorporating it into the soil makes these properties more easily available to 

the rhizosphere of nursery stock. As a result tree growth is healthier and more vigorous.  

 

The aim of this research was to investigate the use of a novel green manure consisting of P. americana 

as a potential control for replant disease on S. aucuparia, in comparison to other plants; B. juncea, A. 

sativum, T. aestivum, and T. patula. The research was split into three streams of work involving a three 

year bioassay running alongside microbial inhibition tests and DNA analysis. Each of these pieces of 

work contained a degree of novelty as defined below (Figure 1.7).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: The link (green) between the three studies (black) and their novelty (blue).  

 

S. aucuparia: is an amenity/parkland/woodland species that was identified as being sensitive to replant 

conditions. Much of the research on RD involves fruit trees. Currently there is one study that ascribes a 

pathogen complex to this species. The question asked here; is this complex always found? 

P. americana: has not been used in the context of a green manure before. Its use here was based on the 

saponin content (antimicrobial) that makes it inedible to humans unless it is processed first.  

The use of comparison green manures: have not been assessed in this context before: aerial parts of A. 

sativum have not been utilised as a green manure despite containing allicin content; T. aestivum was 

used as a negative control; and T. patula has not been used to treat replant disease previously.  

In-vitro inhibition studies: ranged in terms of application of green manure to agar. Some traditional 

extractions were used (ethanol extract and distillation); however use of fresh material embedded in 

agar was designed to reflect its application in the bioassay and a cold pressed extract mirrored current 

practice for some biostimulants (Section 2.4). 

Mode of action 
Efficacy 

 
     Use of green manure: 
     Phytolacca americana 
     Allium sativum 
     Triticum aestivum  
     Tagetes patula 

 

1. Microbial inhibition focussed 
on antimicrobial properties of 
the green manures in-vitro 
confirming dosage rates for (3) 
- Range of in-vitro inhibition 
studies 

3. Tree growth bioassay determined the long-term effects of green 
manures on roots and shoots of S. aucuparia in relation to the potential 
action of the active properties present in the treatments (determined by 1 
and 2). 
- The use of Sorbus aucuparia as a study subject 

2. Microorganisms present at 
the end of the (3) revealed the 
long-term changes in the 
rhizosphere populations. 
- Association of microbes with 
Sorbus aucuparia  
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The main aims and objectives of these work streams were as follows: 

 

Chapter 3: Microbial inhibition test - aim and objectives: To determine whether macerated plant 

material inhibits the in-vitro growth of pathogens, P. ultimum and R. solani. 

- Determine the potential of macerated leaves of P. americana to inhibit pathogens. 

- Demonstrate if volatiles from P. americana alone can influence the growth of pathogens. 

- Examine the affects of a distillate of P. americana on the growth of pathogens. 

- Identify if increasing concentration of P. americana is correlated with pathogen growth rates. 

- Investigate if other proposed green manures are comparable to P. americana in their potential to 

influence the growth rate of pathogens. 

- Determine if there is a difference in the inhibition of plant material between pathogens of different 

biological classifications; fungi and oomycetes. 

 

Chapter 4: Three year bioassay - aim and objectives: To determine the effect of novel green manure 

applied as a treatment to RD on Sorbus aucuparia.   

- To demonstrate the influence of green manure on above ground growth parameters, including 

height, girth, leaf production, leaf chlorophyll content, active buds, and internodal distances, during 

the course of three years.  

- To assess the impact of green manure on the growth of root and shoot biomass, and fruit 

production, at the end of the trial. 

 

Chapter 5: Determination of microorganisms present - aim and objectives: To determine the difference 

in rhizosphere microorganisms present in the soils in the diseased sub-set and sterile sub-set in relation 

to the treatment applied. 

- Define the pathogen complex on S. aucuparia through analysis of DNA sequencing results from 

diseased soil.  

- Determine the potential long-term effect of P. americana and other green manures on the presence 

of pathogens.   

- Examine the presence of pathogens present in the sterile soil sub-set. 

 

Chapter 6: Discussion 

To discuss the key findings of each chapter and draw conclusions together. 
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Chapter 2 – Materials and Methods  
 
2.1 Green manure treatments: used in in-vitro studies and tree growth bioassay 
 

Plants that were used as a source of the green manure (Table 2.1) were procured and cultivated during 

the spring of each research year for use in the tree pot trial or as part of in vitro microbial studies. 

 

Table 2.1: Green manure and source 

Green manure type  Plant species Common name Source 

Trial - novel P. americana Pokeweed Swines Meadow Farm Nursery, UK  
Conventional  B. juncea Indian Mustard Marshalls Seeds Ltd., UK 
 T. patula French Marigold Mr Fothergills Seeds Ltd., UK 
Unconventional A. sativum Solent White Garlic The Garlic Farm, UK 
 T. aestivum Wheat SY30901 Syngenta, UK 

 

P. americana and A. sativum were cultivated in 5l pots, to accommodate perennating structures, whilst 

B. juncea, T. aestivum and T. patula were grown in customised troughs containing 50mm MOT type 1 

hardcore base with drainage holes every 100mm and a membrane lining (Figure 2.1).  

 

 

 

 

 

Loam 
 

Weed membrane 
 

MOT type 1 

Figure 2.1: Customised trough designed for the growth of green manure.  
 

Loam based John Innis No. 1 compost was used. Plants were started off under protected cover in a 

glasshouse and moved outside into a sheltered area after establishment with vegetative yield being 

maximised with appropriate pruning. In the winter P. americana plants were protected with frost 

sheets. Plants were regularly checked for pests and disease and affected plant material was removed, 

up until pre-flowering spring harvest. The only pests encountered were slugs and snails. Slug pellets 

were broadcast around the growing area. The vegetative yield of the plants was maximised with the 

removal of flowering parts with a sharp and clean blade. Once the plants had reached a sufficient bulk 

they were harvested (for wheat and mustard this was done before the plant reached the flowering stage 

and whilst the vegetative matter was still soft stemmed). 
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2.1.1 Tissue analysis: the nutrient content of the green manures 

 

Green manures were cultivated as above and nutrient content/health with nutrient content analysed 

(Table 2.2; as supplied by NRM methods in Appendix IV).  

 

Table 2.2: Nutrient content of green manure after tissue analysis.  

Nutrient T. aestivum P. americana A. sativum B. juncea T. patula 

Nitrogen (%) 3.14 2.01 5.05 2.67 4.42 

Sulphur (%) 0.38 0.36 1.34*1 0.46 0.96*1 

Phosphorus (%) 0.61*1 0.45 0.67*1 0.53*1 0.92*1 

Potassium (%) 5.87*1 3.82 3.93 4.18*1 3.37 

Calcium (%) 0.49*2 1.48 0.53 1.72*1 1.65*1 

Magnesium (%) 0.16 1.89*
1
 0.46 0.29 1.21*

1
 

Manganese (mg/kg) 22.90 422.00*1 53.50 18.30 285.00*1 

Iron (mg/kg) 161.00*1 3431.00*1 77.70*1 857.00*1 184.00*1 

Copper (mg/kg) 8.65*1 18.50*1 8.81*1 5.94 8.10*1 

Zinc (mg/kg) 78.10*1 43.50*1 33.30*1 80.00*1 65.80*1 

Boron (mg/kg) 6.37*2 77.70*1 22.00 38.40*1 34.40*1 

       *
1 

nutrient is excessive *
2 

nutrient is deficient 

 

2.2 Green manure application rates  

 

Quantities of green manure applied were comparable to rates used by Cochran and Rothrock (2015) for 

a Brassica based biofumigant bioassay. Application rates of 1.5 tons acre-1 (after Sullivan, 2003) were 

utilised giving 8.33g/l of green manure. The amount of biomass of green manure propagated and 

applications are detailed in Table 2.3. P. americana was tested at three concentrations equating to a 

low, moderate, and high dosage.  

 

Table 2.3: Yield of green manure  

Green Manure Fresh biomass  

(g) 

Breakdown of application 

(g per 3 litre pot) 

Amount of green manure 

(g per litre) 

P. americana 4500 5.00 

25.00 

45.00 

1.67 

8.33 

15.00 

B. juncea 3000 25.00 8.33 

T. patula 1500 25.00  8.33 

A. sativa  1500 25.00 8.33 

T. aestivum 1500 25.00 8.33 
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2.3 Protocols for in-vitro studies 

2.3.1 Organisms and culture methods   

 

R. solani AG-5 and P. ultimum var ultimum were cultured on the Potato Dextrose Agar (PDA; Sigma 

Aldrich Ltd, UK) from stocks originally acquired from the Warwick Crop Centre in 2013 and stored at 8°C. 

PDA (Sigma Aldrich Ltd, UK) was prepared in 500ml screw top reagent bottles (39g/l) and autoclaved, 

using an Astell autoclave, at 121°C for 15 minutes. The molten agar was left to cool to approximately 

50°C before being poured into petri dishes (c. 10ml per 90mm dish). Once the agar had cooled 

sufficiently enough to set the dishes were inverted to avoid condensation on the agar surface. Petri 

dishes were either used immediately or stored at 3°C. Before commencement of in-vitro studies the 

pathogen cultures were prepared for use by re-plating plugs of the pathogen on PDA and allowing 

growth to take place over a period of seven days at 23°C. These petri dishes, which were made up with 

pathogens prior to each set of in-vitro studies, were used as the source of pathogen plugs. A 200μl 

pipette tip was used to consistently cut 5mm plugs of pathogen from seven day old culture stock. These 

plugs were subsequently placed centrally on agar and incubated, in a Leec incubator, at 23°C in darkness 

after being sealed with parafilm. The mean radial growth of samples was calculated after taking 

measurements at cardinal points every 24 hours for a maximum of 168 hours (Charron and Sams, 1999).  

 

The study ceased when the pathogen had reached the edge of the petri dish in the control. Fungal plugs 

were re-plated following the inhibition studies to determine if effects on growth were fungicidal or 

fungistatic. Percentage inhibition was calculated using the mean values as defined by Reyes Chilpa et al. 

(1997) and Al-Reza et al. (2010): % Inhibition = radial growth in control – radial growth in treatment / 

radial growth in control x 100. In contrast to Mayton et al. (1996), the percentage inhibition of the 

pathogens was calculated at each time point as a percentage differences in mean radial growth: % 

Difference = radial growth in control – radial growth in treatment / (radial growth in control + radial 

growth in treatment)/2 x100. All antimicrobial experiments for each study were undertaken in triplicate, 

at least three times. 

 

2.3.2 Green manure preparation and use 

 

Spring leaves of green manure were prepared as plant discs or finely macerated matter (<2mm; dried at 

24°C for 72 hours; Lazzeri et al., 2004). Various application and extraction methods were used as they 

influence the liberation of active properties and subsequently their efficacy and mode of action. Details 

on green manure preparation and use are below. Blank controls were used for each.  
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Methods for each in-vitro study: 
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10mm discs of P. americana leaf were cut and soaked in 70% ethanol for 30 seconds, 

transferred to 10% sodium hypochlorite (5 mins) and then rinsed (4 times; 2 mins per 

rinse) in sterile water and dried under UV light in a bio-safety cabinet. 10mm disk of plant 

material discs, cut using a cork borer, were placed centrally on the agar with a plug of R. 

solani on top.  
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An organic solvent extract was made by soaking 12g of P. americana leaf matter in 100ml 

95% ethanol (on a stirrer for 24 hrs at 24°C) (Quiroga et al., 2001; Okigbo and Mmeka, 

2008). The contents were filtered (90mm filter paper) and the solvent evaporated off at 

78°C. 0.2g of the remaining extract was diluted in 1ml of 95% ethanol and added to a 

volume of 10ml with a final concentration of 0.02g ml-1. A volume of 10μl was 

impregnated in sterile filter 10mm grade number 1 qualitative filter paper circle disks with 

a micropipette (Bayoub et al., 2010). Disks were dried out in a bio-safety cabinet under UV 

light and refrigerated at 4°C. Ethanol extract disks were placed centrally on PDA with a 

plug of R. solani placed centrally on the disk. Solvent loaded disks were used as controls. 
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 10g of finely chopped leaf matter (<2mm) was distributed into each of the nine 500ml 

beakers (Charron and Sams, 1999). Petri dishes with a 5mm plug of pathogen placed 

centrally on them were inverted and secured, with parafilm, on top of the beakers 

(Scientific Laboratory Supplies Ltd., UK) after lid removal.  

D
is

ti
lla

te
 in

fu
se

d
 a

ga
r 

Se
ct

io
n

 3
.3

.3
 

Distillation apparatus including a round bottom steam generating flask, distilling flask, 

Liebig distillation column, and receiving flask was used to steam plant matter. 50g finely 

chopped leaf matter (<2mm) was placed in a 1l distilling flask above a steam generating 

flask containing 500ml of distilled water. Steam was generated using a heating mantle at 

100°C at atmospheric pressure. 10% and 20% distillates were stored (4°C)  before being 

added to molten agar (50°C).  
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Finely chopped leaf matter (<2mm) was placed into molten agar (50°C) at concentrations 

in line with soil applications (1.67g/l, 8.33g/l, 15.00g/l). The agar was mixed thoroughly by 

inversion (five minutes). The agar was left on a VWR hotplate stirrer at 50°C until the agar 

was poured into plates. These were then left to dry before the addition of the pathogen 

plug. P. americana was also tested in increments of 5.00g/l from 15.00g/l to 30.00g/l.  
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8.33g/l of finely chopped leaf matter (<2mm) was added to 10ml of sterile distilled water 

in polypropylene 30mL universal containers (SLS, Nottingham, UK). This cold water extract 

was then left for 24 hours on a VWR hotplate stirrer at room temperature in line with 

Nana et al. (2015). The solution was then passed directly through a Sartorius Minisart Plus 

Syringe Filter with a pore size of 0.45μm, using a 10ml Terumo disposable syringe, into 

50°C molten agar. The agar-extract mix was inverted (5 mins) and poured into plates 

which were left to dry.  
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2.4 Protocols for tree growth bioassay and destructive analysis 

 

This study focussed on the influence of the application of P. americana and comparison green manures 

on tree growth (Section 2.5.1). After a three month establishment period the bioassay began. ‘Sick soil’ 

(diseased) and sterile soil in single tree replicates of 25 (Adamopoulos et al., 2012; Akinsanmi and 

Drenth 2013; Dong and Xiangdong, 2013; Lucia et al., 2013) were amended with green manure. 

Untreated control groups were used. In total 400 trees were used as study subjects, with 200 in the 

diseased soil sub-set and 200 in the sterile soil sub-set.  

 

In this bioassay the experimental design trialled S. aucuparia in three groups: 

 

1. No treatments applied: to replicate ‘normal’ soil conditions in terms of RD.   

2. Diseased soil: to indicate the influence of green manure on ‘sick’ soil (Section 2.5.2.1). 

3. Sterilised soil: to provide a baseline whereby addition of nutrients to heat sterilised soil could be 

ruled out as the causal factor for any positive changes in growth of trees (Section 2.5.2.2). 

 

The bioassay ran over three years with initial changes measured three months after the amendment of 

soil (end of April, 2012). Thereafter, the trees were subsequently measured for a further two years 

(August 2013, 2014). The AHDB (2007) suggested that RD confers the majority of its deleterious effects 

in the first two years of tree growth. The chosen time period in this study would therefore cover the 

time between growth suppression and partial recovery from RD. Measurements of tree development 

during this time included: 

- Primary growth – increase in height and internodal distance 

- Secondary growth – stem diameter at a designated height 

- Live crown: number of leaves and active buds 

- Chlorophyll content 

 

After the last measurement of growth parameters in 2014 destructive analysis was undertaken to 

quantify:  

- Leaf area and dry weight 

- Root dry weight 

- Shoot dry weight 

- Root to shoot ratio 

- Presence of nematode cysts.  

- Fruit yield and harvest weight 

 

Further detail is provided below in the subsequent sections.  
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2.4.1 Bare root S. aucuparia sapling husbandry and treatment 

 

Bare root S. aucuparia saplings (1000 no.) were sourced from James Coles & Sons (Nurseries) Limited 

(Leicester, UK). The saplings were stored briefly under cover and kept moist to ensure viability until 

being tagged with Polyplas 150 Micron 191 x 25mm self-ties, and pruned to 100mm above the root 

crown and where possible trained to a single shoot. Dead material was pruned out if removal of the 

epidermis did not reveal a green cambium. The potted trees were arranged in four randomised blocks 

with guard trees placed around them to eliminate edge effects. The whips were heeled in prior to use in 

late winter in sterile loam and then 400 uniformly healthy trees were transferred to three litre pots 

containing the test substrates and remaining trees were planted into sterile soil so that they could act as 

guard trees at the end of April 2012. This was done in closely timed staggered blocks. Close association 

of tree rhizosphere with the test substrate was achieved.  

 

Test substrates were composed of:  

- Sterile soil or diseased soil pre-mixed homogeneously with single species green manure 

amendments 24 hours prior to the planting.  

o      P. americana amendments were added to the soil at 1.67g/l, 8.33g/l, 15.00g/l. B. juncea, T. 

aestivum, T. patula and A. sativa, which were added at a concentration of 8.33g/l.  

o      All green manures were macerated (c. <5mm) and added immediately uniformly to the 

rhizosphere (Section 2.1) at rates defined previously (Section 2.2). 

- Sterile soil or diseased soil (control groups) 

 

The growing area was constructed at Moulton College in a rabbit proof compound. This area was 

outdoors and therefore subjected to environmental factors. A weather treated timber frame was 

constructed, into which a base layer of MOT type 1 hard-core was distributed (100mm) and 

consolidated. Mypex was then pegged down into place as a weed barrier. The surface was kept clear of 

weeds and abscised leaves. Trees were monitored throughout the bioassay during fortnightly health 

checks for pests and disease (Appendix V), and any trees suspected of being dead underwent a cambium 

layer vitality tested through the removal of a small section of epidermis to check for the presence of 

living (green) tissue. No regime for fertiliser or pesticide application was planned in to the general 

maintenance of the trees. Ad-hoc treatment of pests and disease was planned however was not 

required. Weather data were recorded by the Northampton Moulton Park weather station (DCNN: 

4364) two miles from the bioassay site. Local weather station data determined that weather patterns 

were variable and seasonal (Appendix VI). A Delta T SM300 dielectric soil moisture probe (Cambridge, 

UK) was used to determine the irrigation schedule, to supplement precipitation, in accordance with the 

manufacturer. Trees were watered to saturation once or twice a day early in the morning and late in the 

afternoon to avoid scorching. 
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2.4.2 Soil 

2.4.2.1 Diseased soil: the source 
 

“Sick soil” was soil collected from a mature S. aucuparia (c. 60 year old) at SSSI Burbage Common, 

Leicestershire (grid reference SP 449 948) in a coppiced hazel coup. A site survey (Figure 2.2) 

demonstrated that the immediate area was dominated by a 25-30% canopy cover of mature Populus. 

The two metre high understory consisted of Rubus (bramble), Corylus (hazel), and Sambucus (elder), 

with a field layer of grass and sorrel (G. Davies, personal communication, June 2014; Lock, 2015). 

 

 

Tree  Genus D.B.H 

(mm) 

Height 

(m) 

Spread (m) 

  N             E              S            W 

Comments 

T1 Sorbus 1600 18     Dead and fallen 

T2 Populus 940 22 5.5 2.0 3.0 3.8 Good health, dead wood  

T3 Populus 830 22 4.0 0.5 0.5 4.0 Good health, dead wood  

T4 Populus 1000 22 4.0 3.5 0.5 4.0 Fair health, basal cavity (N), 

epicormic growth (3m) and bark 

cracking (N) 

T5 Populus 1050 22 0.5 4.0 4.0  Good health, dead wood  

T6 Populus 1080 22  3.5 3.5 4 Good health, dead wood  
 

Figure 2.2: Tree Survey Burbage Common 07.06.14 (Lock, 2015) 

 

The Sorbus had no visible signs of disease (D. Lewis, personal communication, February 2012) and had 

blown over exposing a 2m root plate (J. Simpson, personal communication, January 2012). Fraser and 

Simpson (personal communication, November 2011) stated that S. aucuparia was planted in this 

location and in the nearby Sheepy Woods with little success in establishing, survival rates and limited 

natural regeneration of S. aucuparia.  
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2.4.2.2 Sterile soil: sterilisation of soil as a positive control  
 
Three tonnes of flame sterilised and 3mm screened soil was obtained from manufacturer Boughton 

Loam (Kettering, UK) and was used as a control to determine if positive changes were the result of 

nutrients in the green manures. The method of sterilisation was to industry standard. 

 

2.4.2.3 Soil analysis: the physical and nutrient properties of the two soil types  

 

Soil pH for the sterilised loam and sick soil differed dramatically with the former at pH 7.5 and the latter 

at pH 4.4. Nutrient levels varied between the two soils. The sterilised loam had a soil textural class of 

sandy silt loam, whilst that of the sick soil was clay loam. Both soils had a medium cation exchange 

capacity (meq/110g) of 14.2 for the sterile and 14.7 for the sick soil. Other soil characteristics are 

defined below (Table 2.4; as supplied by NRM methods in Appendix VII). 

 

Table 2.4: Soil characteristics of sterile soil and woodland soil. 

Determinand  Sterile Soil ‘Sick’ Soil 

Dry matter (% w/w) 
Organic matter (LOI) % 

90.6 
6.7 

84.4 
5.3 

Nitrate N (mg/kg) 12.75 63.08 
Ammonium (mg/kg) 0.87 6.88 
Available N 300mm profile (kgN/ha) 51.1 262.3 
Potential N (kgN/ha)  20.0 20.0 

Available P (Olsen extraction; mg/l) 51.4*2 11.2*1 
Available K (Ammonium nitrate extractable; mg/l) 61*1 75*1 

Available Mg (Ammonium nitrate extractable; mg/l) 
Copper (EDTA extractable; mg/l) 
Boron (Hot Water Soluble; mg/l) 
Sodium (Ammonium nitrate extractable; mg/l) 
Zinc (EDTA extractable; mg/l) 
Calcium (Ammonium nitrate extractable; mg/l) 
Iron (DPTA extractable; mg/l) 
Sulphate (Phosphate buffer extractable; mg/l) 
Manganese (DPTA extractable; mg/l) 

40*1 
7.1 
1.5 

9.4*1 
5.0 

2067.9 
54.1 

132.7*2 
8.7 

53 
6.2 
0.8 

6.8*1 
4.0 

433.5*1 
347.1*2 
51.9*2 

8.3 
*1

 Nutrient is deficient and
 *2

 nutrient is in excess (DEFRA, 2010) 

 

Differences in soil characteristics determined that results for tree growth were considered separately in 

treatment sub-sets defined according to diseased and sterile soils and not directly compared.  
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2.4.3 Bioassay: protocols for monitoring growth of trees 

 

During the course of the three years various growth parameters were measured, including; primary 

growth, secondary growth, number of leaves and active buds, and chlorophyll content.  
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Owing to the sparse nature of the canopy in juvenile whips, the numbers of leaves were 

counted as an expression of the live crown. Active buds were counted as further potential 

for leaf production. Active buds were identified in the form of a swollen bud (those buds 

passing from dormancy through to bud burst).  

 

Leaf chlorophyll content was assessed using a portable Minolta chlorophyll meter SPAD-

502 (Spectrum Technologies, Inc., Plainfield, Ilinois, United States of America) with a 

method adapted from Percival (2004). After calibration the SPAD-502 was used to collect 

an average reading from the midpoint of the leaf near to the midrib of seven fully formed 

compound leaves working down from the apical bud for each of the 400 trees. The mean 

from the 175 data points per tree group were then converted to chlorophyll content using 

the Lichtenthaler (1987) regression equation (5.80 + 0.057x; r2 adj = 0.82, p <0.01).   
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Primary growth was measured 10mm from the top of the pot (delineated by a flexible tie 

around the stem) to the apically dominant bud on the leader stem. Further to this, annual 

stem growth was measured using a common diagnostic procedure involving the 

measurement of stem between bud scale scars (internodes). This method was used 

previously to assess tree health where growth is negatively correlated with increasing 

stress (Cloyd et al., 2004). 
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Stem diameter measurement of secondary growth accounted for lateral expansion year 

on year. Mazzola and Mullinix (2005) suggest marking the trunk/stem with white latex 

paint 0.7m above soil line, however, due to the height of the bare-root specimens it was 

decided that girth measurement (as stem diameter in mm) would be completed using 

electronic callipers at 0.1 from the top of the pot, with a flexible tie delineating this point 

on the stem.  The top of the pot had to be used as a point of reference due to soil erosion 

experienced at times of high precipitation.  Each stem from the multi-stemmed trees were 

measured and an average taken.  Measurements were non invasive with the average of 

two perpendicular diameters recorded. 

 

Data from the bioassay was considered in two sub-sets with the influence of three concentrations of P. 

americana manure (PaM) being analysed as a separate grouping to the trees which received 8.33g/l 

amendments of all green manures (AGM). Results from the diseased and sterile groups were also 

analysed separately due to differences in the soil properties. 
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2.4.4 Destructive analysis to quantify above and below ground growth responses 

 

At the end of the bioassay in 2014 trees were destructively harvested with measurements on the 

following being recorded for each tree; leaf dry weight and area (mm2), root and shoot dry weight (not 

inclusive of leaves), root to shoot ratio, presence of nematode cysts, and fruit yield and harvest weight 

(2014 was the first fruiting year). 
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After the last measurement of growth parameters in 2014 leaves were harvested, 

weighed (g), and photographed prior to analysis with Imagej. Leaf area was calculated 

using ImageJ by adjusting the threshold and recording the area of each region of interest 

(roi). Leaf fresh weight was recorded and the leaves were dried in an oven at 70°C for 24 

hours. Once dry the leaves were reweighed.  
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 Each tree was then removed from its pot and submerged in water in a holding bay for 

approximately fifteen minutes. Roots were washed in running water to remove all soil 

over a sieve (2mm), blotted with towelling and the whole tree was photographed next to 

a scale. Roots were removed at the crown just above the soil line and were assessed for 

presence of nematodes for a period of five minutes for each root. Roots and shoot were 

then weighed separately, dried in an oven at 70°C for 24 hours and then reweighed (g). 
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 The root-to-shoot ratios were calculated using the equation: R = Wroot/Waboveground, where 

R = root-to-shoot ratio; Wroot = dry weight (g) of root material from root crown to root 

tips; and Waboveground = Dry weight (g) of transpirable aboveground material (sum of leaf 

and stem matter). 

Fr
u

it
 

Se
ct

io
n

 4
.2

.3
.5

 Fruit production was measured in 2014 (as this was the first occurrence of berries). Upon 

sighting the development of berries they were covered with pea netting until they were 

fully formed. In September 2014 the fruit was harvested and weighed fresh as a measure 

of yield.   
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2.5 Pathogen detection methods (Section 5.2) 

2.5.1 Protocols to detect infestation of rhizosphere soil by fungi and oomycetes 

 

In September 2014, 20ml of rhizosphere soil from each cardinal point of 20 trees per treatment (Balci et 

al., 2013) was sampled using a customised sterile plastic syringe. The samples were sent to Scientia 

Terrae, Belgium, for soil pathogen composition tests using a DNA array that has been likened to reverse 

dot blot technique (Tambong et al., 2006). After arriving at Scientia Terrae the soil sample underwent a 

process of extraction was completed using an UltraClean Soil Plant DNA Isolation Kit (Mo Bio 

Laboratories, Inc, California) to yield DNA from 0.5g of soil (Figure 2.3). The extracted DNA was then 

diluted (10 fold) to further eliminate Polymerase Chain Reaction (PCR) inhibitors and stored at -20ºC 

(Lievens et al., 2007).  

 

  0.5g of soil       550μl buffer (bead solution)  vortex Degrades humic acids and separates soil particles 

   60μl sodium dodecyl sulphate  Aids cell lysis 

   200μl Inhibitor Removal Solution  vortex 10 mins Precipitates off humic acids and PCR inhibitors 

        Centrifuge – 10,000 g – 30 sec. Produces pellet and supernatant (approx 800μl) 

        Transfer supernatent to microcentrifuge tube  

   250μl protein precipitation reagent  

        Centrifuge – 10,000 g – 60 sec. 

Removes of protein contaminants, humic acids 

and cell debris. 

        Transfer supernatent to microcentrifuge tube  

   1.3ml of DNA binding salt solution  vortex 5 sec.  

        Load 700μl into spin filter 

        Centrifuge 1 minute 10,000g (Repeat 3x) 

DNA binds to the spin filter silica membrane. 

   300μl ethanol based wash 

        Centrifuge – 10,000 g – 30 sec.  Discard waste 

Removes salt and contaminents 

        Centrifuge – 10,000 g – 60 sec. Removes Ethanol based wash 

   50 μl sterile elution buffer 10mM Tris pH 8. 

        Centrifuge – 10,000 g – 30 sec. 

Releases DNA from silica membrane 

Figure 2.3: Procedures for DNA extraction adapted from manufacturer specifications.  

 

In accordance with Lievens et al. (2006) amplification and digoxigenin labelling of DNA extracted from 

soil samples was carried out using the Titanium Taq DNA polymerase (Clontech Laboratories, California) 

and hybridised using the protocol below (Figure 2.4).  
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Target ITS regions primer sets ITS1-F and ITS4 (fungi) and OOMUP18Sc and ITS4 (oomycete) were used 

in the reaction (Lievens et al., 2003). A separate PCR reaction control was run using Saccharomyces 

cerevisiae (yeast) labelled with P4501 and P4502. 

 

  Master mix reagent       

   5μl Titanium Taq PCR Buffer  

   1μl 50X dNTP mixture (10mM ea.) 

   2μl 10μM 5’ and 3’ primer mix (1μl ea.) 

 

   1μl 50X Titanium Taq DNA polymerase 

   70μM digoxigenin-11-dUTP 

   40μl Sterilised distilled water 

   1μl DNA 100ng/μl  Centrifuge                                   

 

 

 

 

  Hybridisation        

  10μl labelled amplicons 

  6ml hybridisation buffer 

  Chemiluminescence detection – 30 sec. x90 

  Quanitification of signal strength 

 

 

Denaturation - 94ºC – 2 mins     

Three step cycling – 30 cycles 

 Denaturation - 94ºC – 45 sec.  

 Annealing - 59ºC – 45 sec.  

 Elongation - 72ºC – 45 sec.  

 Elongation - 72ºC – 10 mins  

Figure 2.4: Procedures for DNA amplification adapted from manufacturer specifications. PCR cycle 

information and labelling protocol adapted from Lievens et al. (2003), Tambong et al. (2006) and 

Fessehaie et al. (2002). 

 

Labelled PCR products were quantified in a two step process of chemiluminescence detection using a 

digital CCD BioChemi video imaging system and comparison of results using Labworks Image Aquisition 

and Analysis Software (UVP Inc., California). DNA Multiscan oligonucleotide detector probes were based 

on primer regions, that are widely known sequence within the rDNA of fungi and oomycetes (White et 

al., 1990; Lievens et al., 2003). PCR products were sequenced and compared to GenBank to design 

species-specific probes. Oligonucleotides and a digioxigenin-labeled control were bound to an 

Immunodyne ABC membrane (PALL Europe Limited, Portsmouth) via a 5’-C6-amino linker (Lievens et al., 

2003).  The membrane was tailored for the detection of multiple microbial species associated with 

rosaceous species (Section 1.5.2; Appendix VIII). Levels of infestation were detected and quantified on a 

numeric scale ranging from 0-3 where 0 = no DNA fragments detected, 1 = low infestation, 2 = moderate 

infestation, and 3 = high infestation. These ratings were based on bioassays conducted with sets 

infected with the target pathogen inoculum at known rates (Lievens et al., 2007).  
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2.6 Protocols for data analysis 

 

All data were assessed for outliers by visual inspection of boxplots and the IQR multiplier approach 

(Hoaglin and Iglewicz, 1987). Normality was determined by a Shapiro-Wilk’s test and Levene’s test for 

equality of variances demonstrated homogeneity of variances. Data complying with assumptions were 

further tested with parametric methods, including T-test (or Games-Howell) and Analysis of Variance. 

Those violating the assumption which could not be normalised by logarithmic or square root 

transformations underwent analysis by non-parametric means, including Mann-Whitney U and Kruskal 

Wallis H test. Data violating homogeneity of variance, as assessed by Levene’s test of equal variance, 

were treated on a case by case basis. Any significant p-values obtained from ANOVA and Kruskal Wallis 

tests were further interrogated with post-hoc tests, Tukey and Benjamini-Hochberg respectively. 

Spearmans Rank was used to test correlation of non-parametric data and a chi square tested for 

association between variables. The effect of treatments and pathogen presence on growth factors was 

determined by Principal Component Analysis. Minitab, SPSS and R packages were used.  
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Chapter 3 - Microbial Inhibition Studies 
 

3.1 Introduction   

 

The aim of this study was to evaluate the in vitro effects of green manure on the saprophytic and 

parasitic basidomycete fungus Rhizoctonia solani (Menzies, 1970) and oomycete Pythium ultimum 

(Trow, 1901). Very few in vitro studies using Phytolacca leaf material as an antimicrobial for soil borne 

pathogens have been completed thus far (Bae et al., 1997; Hernandez et al., 2013). The experiments 

were designed to reflect the procedures used in the bioassay (Chapter 5 and 6), with the effect of 

volatiles, plant matter, and water extracts being investigated alongside more conventional tests.  

 

R. solani AG-5 and P. ultimum var ultimum were specifically selected due to their association with root 

degradation generally, and specifically because they have been linked with a range of rosaceous species 

suffering from RD (section 1.5.2) and were associated with S. aucuparia by DNA analysis (O’Neill, 2011; 

Lock et al., 2015). The use of these species as model organisms was also chosen in order to determine if 

fungi respond differently or similarly to oomycete in the presence of plant material, thus indicating the 

mode of action the plant properties may have. 

 

R. solani (anamorph, telomorph Thanatephorus cucumeris (Frank) Donk) was first described in 1858 by 

Julius Kühn when it was observed on potatoes (Kühn, 1858). This fungus reproduces asexually through 

vegetative mycelium and sclerotia, rather than through conidia, although still can proliferate through 

the production of basidiospores in infected tissue. In 2006 Farr and Rossman reported 2589 R. solani-

host combinations. The globally distributed R. solani is sub divided into 13 anastomosis groups (AG) 

based on the ability for hyphae to fuse and exhibits non-obligate generalist behaviour on a wide host 

range (Agrios, 2005). In terms of rosaceous stock, the anastomosis groups associated with pathogenicity 

were AG-5 and AG-6. These R. solani groups were isolated from M. domestica ‘Gala’ on west coast of 

the USA (Mazzola, 1997; Mazzola, 1999). AG-5 was found on M. domestica in Austria by Manici et al. 

(2003), and S. aucuparia by O’Neill (2011). Unfortunately, there is a dearth of information on other 

species in the Rosaceae which specifically refer to AGs. From a broader perspective the majority of the 

anastomosis groups (AG1-5) infect economically important crops (Table 3.1). AG-2 infect these and 

additionally member of the Amaranthaceae (Herr, 1996). Meanwhile AG-3 is specific to the Solanaceae 

and Poaceae families (Kodama et al. 1982; Bandy et al. 1988; Date et al. 1984; Ogoshi 1987; Zhang and 

Dernoeden, 1995). AG-4 hosts include Malvaceae (Rothrock 1996). 

 

P. ultimum is a facultative saprophytic oomycete belonging to the Pythiaceae which was first described 

by Wager (1931) when it was isolated from Striga spp. (witchweed). P. ultimum also reproduces 

asexually when mycelium produces sporangia, the germ tube of which penetrates the host. Sporangia 
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can give rise to zoospores which are mobile in the presence of water sources (such as irrigation lines or 

ground water). Sexual reproduction results in the production of thick walled oospores which are 

resilient in harsh conditions. The oomycete has been reported to be an opportunistic pathogen of 

seedlings and roots and is associated with root rot and damping off and thus is a problem in production 

horticulture (Agrios, 2005). In 2006 Farr and Rossman reported 337 P. ultimum-host combinations that 

range from ornamental to crop species found in the families identified for R. solani (Table 3.1). P. 

ultimum has been associated with RD in rosaceous stock (Section 1.5.2.3). It is responsible for other 

diseases such as collar rot in Malus spp. (Bielenin, 1976) and has been associated with the oomycete 

Phytophora (Lestari and Arumingtyas, 2013).   

 

Table 3.1: R. solani and P. ultimum isolated from economically important plant species. 

Host AG P. ultimum Reference 

Fabaceae 
Phaseolus vulgaris (common bean) 
 
Glycine max (soybean) 
 
 
 
Vicia faba (broad bean) 

 
1; 2; 4 
5 
1 
2; 5 
3 
4 
5 

 
 
 
 

 
Muyolo et al., 1993; Nzungize et al., 2012* 
Strahnov et al., 1985 
Yang et al., 1990; Marchand et al., 2014* 
Nelson et al., 1996  
Kuninga et al., 2000 
Liu & Sinclair, 1991 
Valkonen et al., 1993 

Poaceae 
Oryza sativa (rice) 
 
 
Zea mays (corn)  
T. aestivum  
 
Pisum sativum (pea) 
Hordeum vulgare (barley) 

 
1 
2 
3 
3 
3 
5 
4; 5 
5 

 
 
 
 
 
 
 
 
 

 
Sayler & Yang, 2007; Hashiba & Kobayashi, 1996 
Hashiba & Kobayashi, 1996  
Kuninga et al., 2000  
McCormack et al., 2013. Zhang & Yang, 2000* 
Kuninga et al., 2000; Chamswarng & Cook, 1985* 
Rush et al., 1994 
Mathew et al., 2012; Lin et al., 2001* 
Rush et al., 1994; Ingram & Cook, 1990* 

Brassicaceae  
Brassica oleracea (cabbage) 
Raphanus sativus (radish) 
Brassica napus (canola)  

 
3 
2 
4 

 
 
 
 

 
Kuninaga et al., 2000; Kubota et al.. 2006* 
Grisham & Anderson, 1983 
Verma, 1996; Gugel et al., 1987* 

Solanaceae  
Solanum tuberosum (potato) 
 
 
 
 
Solanum lycopersicum (tomato)  
 
Capsicum annuum (pepper) 

 
2 
3 
7; 3 
4 
5 
2 
4 
3; 4; 6 

 
 
 
 
 
 
 
 
 

 
Chand & Logan 1983; Taylor et al., 2008* 
Lahlali & Hijri, 2010; Woodhall et al., 2013 
Abd-Elsalam et al., 2009; Carling & Brainard, 1998 
Anguiz & Martin, 1989  
Bandy et al., 1984; 1988 
Kuninga et al., 2000. Rafin & Tirilly, 1995* 
Strahnov et al., 1985 
Tuncer & Eken, 2013; Sutton et al., 2006* 

Note: P. ultimum also shares this host range (reference denoted by *). 

 

The importance of R. solani and P. ultimum as pathogens associated with the root rot of a range of hosts 

including those in the Roseaceae made them crucial to this study.  



41 

 

3.1.1 Aim and objectives 

 

Aim:  

To determine whether macerated plant material influences the in-vitro growth of pathogens, P. ultimum 

and R. solani. 

 

Objectives: 

- Determine the potential of macerated leaves of P. americana to inhibit pathogens. 

- Demonstrate if volatiles from P. americana alone can influence the growth of pathogens. 

- Examine the affects of a distillate of P. americana on the growth of pathogens. 

- Identify if increasing concentration of P. americana is correlated with pathogen growth rates. 

- Investigate if other proposed green manures are comparable to P. americana in their potential to 

influence the growth rate of pathogens. 

- Determine if there is a difference in the inhibition of plant material between pathogens of different 

biological classifications; fungi and oomycetes. 
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3.2 Results of the microbial study (Section 2.3; Appendix VII) 

3.2.1  P. americana: Effect of plant discs and ethanol extracts on pathogens 

 

After 96 hours the radial growth of both R. solani and P. ultimum was statistically different between the 

plant disc treatment and the respective control. Conversely, growth was not different for pathogens 

that were amended with the ethanolic extract in comparison to an ethanol based control (Figure 3.1, A 

and B, respectively).  

 

R. solani was more sensitive to plant matter than P. ultimum as the fungus was responded to the 

presence of green manure quicker than the oomycete. The former exhibited a greater magnitude of 

inhibition (p≤0.001) ranging from 38% inhibition after 48 hours (H(3) = 15.688, p=0.002), to 64% after 96 

hours (H(3) = 20.611, p<0.001). P. ultimum displayed a significant inhibition between 72 and 96 hours, 

ranging from 69% (H(3) = 8.726, p=0.023) to 66% (H(3) = 8.634, p=0.024).  

 

Variability in growth increased for both pathogens in the presence of the plant disc indicating that some 

samples are slower growing than others, resulting in no statistically significant differences between the 

time points (p>0.05).  
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Figure 3.1: Mean radial growth of R. solani (A) and P. ultimum (B) on agar plates amended with a plant 

disc and an ethanolic extract disc of P. americana. Key and notes: Treatments: Control (no plant 

matter), ethanolic control (solvent loaded disc), P. americana plant disc,  P. americana 

ethanolic extract. Error bars are displayed as SEM, n=9. 
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3.2.2 P. americana: Response of pathogens to plant material volatiles 

 

Both R. solani and P. ultimum were inhibited in the presence of P. americana leaf matter with a 

significant difference, between treated and non treated, noted after 24 hours (W(1) = 378.000, p<0.001 

and W(1) = 616.500,  p<0.05, respectively). Thereafter there was a significant difference between the 

radial growth on the control in comparison to the presence of plant matter (Figure 3.2, A and B 

respectively). R. solani was more sensitive to the presence of P. americana than P. ultimum. Percentage 

inhibition of R. solani ranged from 62% to 90% and P. ultimum was inhibited by 8% and 46% over the 

course of 144 hours.  

 

In relation to the growth of the control R. solani and P. ultimum it was found that there were significant 

differences over the course of the assay. R. solani growth measurements at each time point between 

hour 24 and hour 96 were significantly different (F(5) = 4853.413, p<0.001), after which growth slowed. 

P. ultimum followed a similar pattern, but instead of levelling off towards the end, there was a steady 

and significant increase in the radius of the pathogen (F(6) = 3639.259, p<0.001).  

 

Volatiles emitted by leaf matter were found to be temporarily suppressive to the pathogens. After re-

plating onto fresh PDA R. solani and P. ultimum recommenced growth at a rate which was similar to that 

of the control (P>0.05).  
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Figure 3.2: Mean radial growth of R. solani (A) and P. ultimum (B) on agar plates in the presence of P. 

americana volitiles. Key and notes: Treatments: Control (no plant matter) and P. americana plant 

matter. Error bars are displayed as SEM. Significant differences between radial growth (mm) of pathogen on control 

in comparison to in the presence of P. americana: * p≤0.05, *** p≤0.001, n=9.
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3.2.3 P. americana: Response of pathogens to a distillate 

 

The 20% distillate exhibited the greatest magnitude of pathogen inhibition throughout the duration of 

the assays for R. solani (F(2) = 29.798, p<0.001), and P. ultimum (F(2) = 33.149, p<0.001), (Figure 3.3, A 

and B). The distillate had a similar magnitude of inhibition for both pathogens, which is conversely 

different to studies 3.3.1 and 3.3.2 where R. solani was more sensitive to the treatment. The moderate 

inhibitory action ranged from 36% to 57% for the former and from 38% to 69% for the latter.  

 

Inhibitory activity of the 10% distillate was significantly less than that of the 20% distillate but was no 

different to the control for both pathogens (apart from an anomaly at hour 24 for P. ultimum where 

growth did not commence until hour 48). 

 

The radial growth between time points of the control and the treated groups were significantly different 

for each treatment during the course of the assay. The rate of pathogen growth slowed for both the 

fungus and oomycete (p<0.001). The fungal growth did not become biostatic as demonstrated under the 

influence of volatiles (Section 3.3.2).    
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Figure 3.3: Mean radial growth of R. solani (A) and P. ultimum (B) on agar plates amended with P. 

americana distillate. Key and notes: Treatments: Control,  10% distillate, and  20% distillate. 

Error bars are displayed as SEM. Significant differences between radial growth (mm) of pathogen on control in 

comparison to in the presence of 20% P. americana distillate: * p≤0.05, *** p≤0.001, n=9. 
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3.2.4 Inhibition of pathogens by agar infused with macerated green manure 

3.2.4.1 P. americana: application of concentrations relative to field bioassay 

 

The agar infused with the three concentrations of macerated green manure leaves of P. americana 

exhibited very slight (at the lowest concentration) to moderate inhibitory activity (at the two highest 

concentrations) against the fungus R. solani and the oomycete P. ultimum (Figure 3.4, A and B). During 

the course of 168 hours the difference between radial growth of these pathogens on treated agar and 

the control agar was found to be significant. All p-values are in Appendix VI. 

 

The scale of inhibitory activity against R. solani ranged from 26% to 39% for 8.33g/l P. americana and 

from 40% to 49% for 15.00g/l P. americana. Inhibitory activity generally increased up until hour 120, 

after which it tapered off. The lowest concentration (1.67g/l) exhibited low inhibition activity ranging 

from 1% to 17%, increasing by 16% from hour 48 to hour 120 and decreasing by 7% by hour 168.   

 

In the case of P. ultimum the two highest concentrations of P. americana exhibited a moderate 

inhibition of 35% or more, ranging from 35% to 45% at 8.33g/l of P. americana, and ranging from 40% to 

52% at 15.00g/l of P. americana. Meanwhile the lowest concentration (1.67g/l) exhibited low inhibition 

activity against P. ultimum between hour 72 and 120 with a percentage inhibition of 13% to 16%.  

 

Although percentage inhibition induced by each concentration was similar for both pathogens, R. solani 

was affected by the low concentration for a longer period of time (144 hours) than P. ultimum (72 

hours).  
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Figure 3.4: Percentage inhibition displayed at each time point where a significant difference found 

between the radial growth of R. solani (A) and P. ultimum (B) on agar infused with macerated green 

manure leaves of P. americana in comparison to the control agar. Key and notes: Treatments: P. 

americana 1.67g/l, P. americana 8.33g/l, and P. americana 15.00g/l. Significant differences in radial growth: * 

p≤0.05, ** p≤0.01, *** p≤0.001, n=9. 
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The most consistent and sustained suppression of pathogen growth was induced by the two highest 

concentrations of P. americana. Figure 3.5 demonstrates the diffences in radial growth. The influence of 

these concentrations were not significant. 

 

The growth of R. solani on 8.33g/l P. americana amended agar was significantly lower than that of the 

control at hour 24 (p=0.003) by 30% with the reduced growth continuing until the end of the assay 

(p<0.001), at which point growth was 36% less than the control. Likewise, growth of the pathogen on 

15.00g/l P. americana amended agar was significantly lower than that of the control throughout the 

assay (p<0.001), with a minimum difference of 50% and a maximum of 64%. 

 

In relation to the growth of P. ultimum, there was a significant difference between the influence of 

these two concentrations in comparison to the lowest concentration and the control (p<0.001). During 

the course of the assay the growth of the pathogen is reduced by 55% to 58% by P. americana 8.33g/l 

and by 55% to 71% by P. americana 15.00g/l 

 

The lowest concentration of P. americana had a delayed influence on R. solani. The growth of the fungus 

was slightly reduced by this treatment from hour 120 (p=0.023) onwards (hour 144, p=0.017; hour 168, 

p=0.032). In comparison the growth of P. ultimum was slightly and temporarily reduced at hours 72, 96 

and 120 (p=0.025, p=0.014 and p=0.016, respectively).  
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Figure 3.5: Mean radial growth of R. solani (A) and P. ultimum (B) on agar plates amended with three 

concentrations of P. americana. Key and notes: Treatments: Control, P. americana 1.67g/l, 

P. americana 8.33g/l, and P. americana 15.00g/l. Error bars are displayed as SEM, n=9.  
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Further investigations into the effect of higher concentrations (20.00g/l, 25.00g/l, and 30.00g/l) of P. 

americana on pathogen growth were completed. Significant differences in the mean radial growth of R. 

solani and P. ultimum were exhibited between each concentration of P. americana and the control 

throughout the assay (p<0.001; Figure 3.6, A and B). The inhibitory activity (>46%) of these three 

concentrations of P. americana against R. solani was not significant and was no different to 

concentrations of 8.33g/l and 15.00g/l P. americana. 

 

P. ultimum exhibited suppressed growth at varying degrees. For the first 120 hours 20.00g/l P. 

americana inhibited the pathogen by 44% to 47%. Inhibition was greater with an increase in the amount 

of P. americana, where 25.00g/l inhibited P. ultimum by 51% to 54% and 30.00g/l by 58% to 65%. From 

hour 72 the influence of 25.00g/l was significantly more than that of 20.00g/l (p<0.023), however 

significantly less than that of 30.00g/l (p<0.002).  
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Figure 3.6: Mean radial growth of R. solani (A) and P. ultimum (B) on agar plates amended with 8.33g/l 

of macerated green manure leaf matter. Key and notes: Treatments: Control, 20.00g/l P. americana, 

25.00g/l P. americana, and 30.00g/l P. americana. Error bars are displayed as SEM, n=9. 
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3.2.4.2 All green manures: application of 8.33g/l relative to field bioassay 

 

The agar infused with the 8.33g/l of macerated green manure leaves of P. americana, B. juncea, T. 

patula, A. sativum, and T. aestivum exhibited inhibitory activity against R. solani and P. ultimum (Figure 

3.7, A and B). The p-values representative of a significant difference are in Appendix VII.  

 

From the beginning of the assay R. solani was suppressed by P. americana with inhibition increasing 

from 26% by 10%, whilst it fluctuated between 28% and 39% in the presence of A. sativum. B. juncea 

and T. aestivum but did not display a significant inhibitory effect until hour 48 (26% and 22%) and hour 

72 (42% and 32%), which were comparable to  P. americana. T. patula exhibited an insignificant 

influence on pathogen suppression.  

 

Inhibition of P. ultimum was similar to that of R. solani in that the effects of P. americana increased from 

43% by 2%. During the assay the influence of B. juncea and T. aestivum mirrored one another showing a 

maximum difference in inhibitory effect of only 3%. Once again these treatments did not display a 

significant effect until hour 48. Both treatments were as efficient as P. americana at suppressing 

pathogen growth with inhibition increasing from 33% by c. 12%. In contrast A. sativum induced lower 

but consistently significant suppression of pathogen growth with the percentage of inhibition fluctuating 

between 27% and 34%. The inhibitory effect of T. patula was comparatively weaker and did not display 

a significant suppressive influence until hour 72 exhibiting 24% inhibition (p=0.013).   
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Figure 3.7: Percentage of inhibition of R. solani (A) and P. ultimum (B) exhibited by the agar infused with 

macerated green manure leaves in comparison to a control. Key and notes: Treatments: P. americana ( ), B. 

Juncea ( ), T. patula ( ), A. sativum ( ), and T. aestivum ( ). Percentage inhibition has been displayed at each time 

point where a significant difference in the means was found between the radial growth of P. ultimum on treated 

agar in comparison to the control agar. Significant differences in radial growth: * p≤0.05, *** p≤0.001, n=9. 
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The measurement of mean radial growth of R. solani and P. ultimum at each time point in relation to 

each agar amendment is displayed in Figure 3.8 (A and B). Throughout the assay the mean radial growth 

displayed significant differences between the treatment groups (p<0.001).  

 

The mean radial growth of R. solani on agar infused with the 8.33g/l of macerated green manure leaves 

of P. americana, B. juncea, A. sativum, and T. aestivum was statistically similar over the 72 hours. The 

exception to this is at hour 24 when growth on B. juncea and T. aestivum amended agar was significantly 

more than growth on A. sativum amended agar by 37% (p=0.002) and 42% (p<0.001), respectively). 

Pathogen growth on T. patula amended agar was statistically the same as the control (p>0.05).  

 

Throughout the assay the affect of T. aestivum and B. juncea on P. ultimum growth was statistically 

similar to that of P. americana amended agar (p>0.05). Meanwhile, growth of P. ultimum on P. 

americana amended agar was significantly lower that of A. sativum by over 15% (p<0.001). At hour 24 

the A. sativum treatment suppressed growth by 26% in comparison to the T. aestivum amendment 

(p=0.018), whilst the affect of B. juncea was similar. By hour 72 however both B. juncea and T. aestivum 

inhibited radial pathogen growth more than A. sativum by 22% ±1% (p=0.001). As previously stated T. 

patula does not display any inhibitory activity until hour 72 at which point radial growth of the pathogen 

aligns with that of A. sativum whilst remaining distinctly lower than the other treatments (p<0.001). In 

comparison to P. americana pathogen growth on T. patula amended agar is over 32% more during the 

course of the assay. 
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Figure 3.8: Mean radial growth of R. solani (A) and P. ultimum (B) on agar plates amended with 8.33g/l 

of macerated green manure leaf matter. Key and notes: Treatments: Control, P. americana, B. 

juncea (follows the line of T. aestivum), T. patula, A. sativum, and T. aestivum. Error bars are 

displayed as SEM, n=9. 
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3.2.5 Inhibition of pathogens with a cold water extract from green manure  

3.2.5.1 Inhibition of pathogens by green manure cold water extracts (8.33g/l) 

 

The agar infused with the aqueous extract of P. americana exhibited significant inhibitory activity 

against R. solani and P. ultimum which increased over the 168 hours by 15% to 34% (p<0.001) for the 

former and by 25% to 35% (p<0.001) for the latter (Figure 3.9, A and B).  

 

The inhibitory effect of A. sativum and T. aestivum was minimal and B. juncea and T. patula was zero. 

The inhibition of R. solani induced by A. sativum (5% to 10%) and T. aestivum (1% to 2%) was not 

significant. In comparison the inhibition of P. ultimum elicited by A. sativum of 12% to 13% (from hour 

48) and by T. aestivum of 9% to 11% (from hour 96) was significant in comparison to the control 

(p<0.035 and p<0.011, respectively). 

 

The suppression of R. solani and P. ultimum by P. americana was significantly more than that induced by 

A. sativum, B. juncea, T. patula, and T. aestivum throughout the assay (p<0.001; Figure 3.10, A and B). R. 

solani growth on T. patula, A. sativum and T. aestivum amended agar was not statistically different to 

that of the control throughout the assay (p>0.05), except during the R. solani study at hour 24 when the 

inhibitory effect of A. sativum was not statistically different to that of P. americana (p>0.05). The radial 

growth of the pathogen on B. juncea amended agar was in excess of that of the control by 15% (hour 48, 

p<0.001) and 9% (hour 72, p=0.029), respectively. Radial growth of P. ultimum was suppressed by A. 

sativum and T. aestivum throughout the assay (p<0.05). Growth of the pathogen on the T. patula 

amended agar was temporarily in excess of that of the control from 12% to 6% between hour 24 to 96 

(p<0.035).  
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Figure 3.9: Percentage of inhibition of R. solani (A) and P. ultimum (B) exhibited by the agar infused with 

cold water extracts. Key and notes: Treatments: P. americana ( ), B. Juncea ( ), A. sativum ( ), and T. aestivum 

( ) in comparison to a control. Significant differences in radial growth: * p≤0.05, *** p≤0.001, n=9. 
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Figure 3.10: Mean radial growth of R. solani (A) and P. ultimum (B) on agar plates amended with 8.33g/l 

of cold water extracts. Key and notes: Treatments: Control, P. americana, B. juncea (follows the 

line of T. aestivum), T. patula, A. sativum, and T. aestivum. Error bars are displayed as SEM, n=9.  
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3.2.6 A comparison of green manure and cold liquid water extract (8.33g/l)  

 

In comparing the difference in effectiveness of the treatment methods on the radial growth of R. solani 

and P. ultimum it was found that the agar infused with macerated green manure leaves and cold liquid 

water extracts of P. americana, A. sativum, and T. patula had a similar influence on pathogen growth 

throughout 72 hours. Differences were apparent for pathogens treated with B. juncea and T. aestivum.  

 

For R. solani both B. juncea and T. aestivum were more effective in the solid form in comparison to the 

liquid form by 42% and 21% respectively after 48 hours (H(11) = 229.693, p<0.001) and by 57% and 26% 

respectively after 72 hours (H(11) = 265.066, p<0.001) (Figure 3.11).  

 

For P. ultimum the macerated green manure of B. juncea was 15% more effective than the liquid extract 

after 48 hours (H(11) = 293.835, p<0.001). At 72 hours B. juncea and T. aestivum were both more 

effective in a solid state than in a liquid state by 28% and 21% respectively (H(11) = 337.833, p<0.001) 

(Figure 3.12). 
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Figure 3.11: Mean radial growth of R. solani on agar plates amended with 8.33g/l of (A) B. juncea and (B) 

T. aestivum in the form of green manure and cold water extracts. Key and notes: Treatments: Control,    

 B. juncea liquid extract,  B. juncea green manure,  T. aestivum liquid extract and     T. 

aestivum green manure. Error bars are displayed as SEM, n=9. 
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Figure 3.12: Mean radial growth of P. ultimum on agar plates amended with 8.33g/l of (A) T. aestivum 

and (B) B. juncea in the form of green manure and cold water extracts. Key and notes: Treatments: 

Control,     T. aestivum liquid extract,  T. aestivum green manure,  B. juncea liquid extract 

and     B. juncea green manure. Error bars are displayed as SEM and are on all data points even if not visible, 

n=9. 
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3.3 An overview of all in-vitro studies  

 

This study demonstrated that the nature of the application method of green manure can influence 

pathogen growth. The effect on growth was dependent on method of application, concentration, and 

green manure species used. In terms of P. americana all treatment methods significantly inhibited R. 

solani and P.ultimum. The variation in percentage inhibition of R. solani was lowest when the fungus 

was treated with plant matter in agar (26-36%). P. ultimum was consistently responsive to plant matter 

when mixed in agar, and additionally when it was applied as a disc (43-45% and 66-69% respectively). 

The oomycete reduced in growth when treated with the cold water extract (25-35%). Variation in 

inhibition puts into question the efficacy of the treatments in-vitro, however, this study demonstrated 

that P. americana has properties which induce inhibition of pathogen growth, with these properties 

being liberated from the plant matter directly or as a water based extract, and not as an alcohol based 

extract (Table 3.2). 

 

Table 3.2: Inhibition of R. solani and P. ultimum in relation to P. americana application. 

Treatment type Inhibition of R. solani (% mean) Inhibition of P. ultimum (% mean) 

Plant disc 

Ethanol 

Volatiles 

Distillate  

Plant matter in agar 

Cold water extract 

38-64 

- 

62-90 

36-57 

26-36 

15-34 

66-69 

- 

8-46 

38-69 

43-45 

25-35 

 

This study also determined that P. americana induced significant inhibition of R. solani and P.ultimum 

when applied at three different concentrations. Inhibition was positively correlated with dose. Of the 

two pathogens the former was found to be more sensitive to treatments than the latter. Indeed even 

the lowest concentration inhibited the fungi whilst only transiently limiting to the growth of the 

oomycete.  

 

In terms of the other green manure species it was clear that the application of most of the green 

manure as plant matter in agar inhibited R. solani and P.ultimum growth. T. patula was the only plant 

species that did not inhibit R. solani and only temporarily inhibited P. ultimum growth (after 72 hours). 

When the treatment was applied as a cold water extract P. americana successfully inhibited both 

pathogens whilst A. sativum and T. aestivium only inhibited P. ultimum at a significantly lower amount. 

This is potentially due to the solubility or insolubility of some active ingredients.  
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Chapter 4 - Bioassay and Destructive Analysis 
 

4.1 Introduction   

 

The addition of organic matter can improve soil structure, increase microbial diversity, provide nutrients 

and induce a suppressive soil (Bonhilla et al., 2012). The creation of a healthy soil promotes a balanced 

ecosystem that encourages the growth and improves the health of plant species. Any plant species has a 

range of metabolites that have evolved to be produced to support plant germination, growth, 

reproduction, stress tolerance and survival (Calvo et al., 2014). These properties can take the form of 

amino acids, proteins, vitamins, trace elements, macro nutrients, polysaccharides, phytohormones and 

defensins or secondary metabolites produced as a response to attack by pests and disease (Chojnacka et 

al., 2012; Calvo et al., 2014; du Jardin, 2015). As stated in Section 1.7.4.1, plant matter that is 

incorporated into the soil can directly inhibit pathogens through the release of phytochemicals 

(biopesticides), and indirectly suppress pathogens through the stimulation of beneficial organisms 

(biocontrols). They may also contain properties that can promote plant growth by being nutritional 

(biofertilisers) or through other stimulatory means (biostimulants). There can be a four-fold effect 

caused by organic matter amendments (Figure 4.1).  

 

 

 

 

 

 

 

 

Figure 4.1: The benefits that the addition of organic matter has in relation to soil health and plant 

growth.  

 

Currently, more emphasis is being put on the use of organic biostimulants, biofertilisers and 

biopesticides. It would thus seem logical to take advantage of the natural properties of organic material 

to induce suppression of soil pathogens rather than use a broad spectrum pesticide that will be 

detrimental to beneficial microbiota even though the intended target is a pathogen. Addition of organic 

matter can induce a suppressive soil, directly limit the numbers of a pathogen population and/or 

increase the immune response of a plant (Bonilla et al., 2012). This is possible due to the wide range of 

bioactive compounds that are created by plants as an evolved part of their defence system. As a result 

properties of many medicinal plants have been studied for their application in pesticides and also for 

medical purposes (Dang and Van Damme, 2015).  
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This study, which ran alongside the microbial study (Chapter 3), investigated the addition of a novel 

green manure and comparative green manures, chosen on the merit of their antimicrobial properties, as 

a potential treatment for RD on S. aucuparia. The study was designed so that it would establish if the 

green manure amendments merely stimulated growth generally or if they promoted growth in the 

presence of disease causing agents.  
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4.1.2 Aim and objectives 

 

Aim: 

To determine the effect of novel green manure applied as a treatment to RD on Sorbus aucuparia.   

 

Objectives: 

- To demonstrate the influence of green manure on above ground growth parameters, such as 

height, girth, leaf production, leaf chlorophyll content, active buds, and internodal distances, during 

the course of three years.  

- To assess the impact of green manure on the growth of root and shoot biomass, and fruit 

production, at the end of the trial.   
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4.2 Results: three year bioassay and destructive analysis  

4.2.1 Results demonstrating limited or no effect 

 

Some growth parameters that were measured demonstrated a limited and insignificant response to 

treatment and therefore for reasons of clarity this data has not been shown here. Fluctuations in the 

number of leaves between treatment groups were not statistically noteworthy although overall 

numbers increased between 2012 and 2013, then decreased to levels comparable to 2012 in 2014 

(p<0.001). There was a consistent increase in active buds from 2013 to 2014 for all trees regardless of 

whether they were grown in the presence of disease or not (p<0.001), with exception to B. juncea and 

A. sativum in which active bud number were not statistically different between years. There were no 

significant differences in the chlorophyll content of leaves in relation to treatment application 

throughout the bioassay; there was a consistent decrease in chlorophyll content over the course of the 

three years for both the diseased soil sub-set and the sterile soil sub-set. In addition shoot to root ratio 

did not reveal any differences between means (p>0.05) 

 

4.2.2 Three year bioassay (Section 2.4.3) 

4.2.2.1 Primary growth of S. aucuparia  

 

When primary growth was considered in its entirety over the course of the whole three year period 

(2012 – 2014) mean tree height for all treatment groups increased by 30% to 43% regardless of 

treatment (in-treatment group growth was significant >0.001 with no mortality; Table 4.1).  

 

Table 4.1: In treatment group difference in height between 2012 and 2014  

Treatment group Percentage increase in in-group mean height 
2012-2014 

 Diseased soil sub-set Sterile soil sub-set 

No treatment 
P. americana 1.67g/l 
P. americana 8.33g/l 
P. americana 15.00g/l 
B. juncea 8.33g/l 
A. sativum 8.33g/l 
T. aestivum 8.33g/l 
T. patula 8.33g/l 

32% 
30% 
35% 
35% 
30% 
33% 
37% 
43% 

42% 
35% 
31% 
33% 
33% 
30% 
31% 
40% 

 

The final height of all trees in 2014 was statistically similar. Analysis of internode data demonstrated a 

comparable result where distances between nodes of all trees in 2012 and 2014 were similar. The only 

tree group to show stunting was those treated with P. americana 8.33g/l. Primary growth did differ 

between different time points as discussed in Section 4.2.1.1. Throughout the whole bioassay the 

primary growth of trees in the sterile sub-set was statistically similar regardless of treatment 

application.  
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Between 2012 and 2014 trees in P. americana 8.33g/l amended soil (AS) did not grow as tall as those in 

the 1.67g/l and 15.00g/l amendments which were 13% and 11% taller, respectively (H(3) = 8.765, 

p=0.033). Likewise, between 2012 and 2013 trees in P. americana 1.67g/l AS were 14% taller and those 

in P. americana 15.00g/l AS were 16% taller than those grown in soil amended with P. americana 8.33g/l 

(H(3) = 11.413, p=0.01).  

 

The initial primary growth of trees treated with P. americana 15.00g/l AS was 161% more than that of 

the diseased group control and different to growth of P. americana 1.67g/l AS and 8.33g/l AS treated 

trees (H(3) = 9.517, p=0.023; Figure 4.2). Internode data for 2013 also demonstrated an association of 

stunting with P. americana 8.33g/l AS and the positive growth of those treated with P. americana 

15.00g/l AS. Internodes of P. americana 15.00g/l treated trees were 62% and 47% longer than those in 

the control group and those treated with P. americana 8.33g/l AS (F(4) = 3.680, p=0.009).  

 

 

Figure 4.2: Difference in height between spring 2012 and autumn 2012 (increase in growth) for the PaM 

group in the diseased soil sub-set. Error bars are displayed as SEM, n=25. 
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In diseased soil there was an initial difference in the rate of growth for all tree groups within the first 

five months H(5) = 13.238, p=0.021. The growth of trees within the AGM treatment groups was 130% to 

157% more than that of the disease control group (Figure 4.3).  

 

Figure 4.3: Difference in height in the AGM group (diseased soil sub-set) for the first five months 

(increase in growth). Error bars are displayed as SEM, n=25. 

 

Between 2012 and 2013 primary growth of trees treated with T. aestivum AS and T. patula AS were 

found to be 40% to 43% greater than P. americana 8.33g/l AS treated trees (H(5) = 13.512, p=0.019) and 

31% to 34% more than those treated with B. juncea 8.33g/l AS treated trees (trend; Figure 4.4). 

 

Figure 4.4: Difference in height 2012-2013 for the AGM group in the diseased soil sub-set (increase in 

growth). Error bars are displayed as SEM, n=25. 
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4.2.2.2 Secondary growth of S. aucuparia  

 

As expected, there was no significant change in mean girth in the initial 2012 growth period. However 

there was significant in-treatment group growth between year 2012 and 2014 for all tree groups ranging 

from 12% to 24% (p<0.05, Table 4.2). 

 

Table 4.2: In treatment group difference in girth (secondary growth) between 2012 and 2014  

Treatment Percentage increase in in-group mean stem diameter 

 Diseased soil sub-set Sterile soil sub-set 

No treatment 
P. americana 1.67g/l 
P. americana 8.33g/l 
P. americana 15.00g/l 
B. juncea 8.33g/l 
A. sativum 8.33g/l 
T. aestivum 8.33g/l 
T. patula 8.33g/l 

15% 
11% 
21% 
17% 
12% 
12% 
18% 
24% 

19% 
16% 
17% 
16% 
19% 
15% 
17% 
21% 

 

Between group differences in the sterile soil sub-set were not significant. Differences in the diseased soil 

sub-group were noted. Analysis of the PaM group demonstrated a significant difference (H(3) = 7.867, 

p=0.049) in stem diameter growth between 2012 and 2013. P. americana 8.33g/l AS treated trees had 

girths 53% greater than those amended with P. americana 1.67g/l AS. This pattern was also observed for 

growth between 2012 and 2014 (H(3) = 12.579, p=0.006; Figure 4.5). The lowest concentration of P. 

americana was associated with girths smaller in comparison to concentrations of 8.33g/l and 15.00g/l 

(56% and 41%, respectively). The P. americana 8.33g/l AS group had a mean girth that was 33% larger 

than the no treatment control.  

 

Figure 4.5: Stem diameter difference 2012-2014 for the PaM group in the diseased soil sub-set. Error 

bars are displayed as SEM, n=25. 
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The AGM group, in diseased soil, demonstrated a number of statistically significant increases in 

secondary growth between 2012 and 2013, which are more pronounced when comparing 2012 to 2014. 

During this timeframe, the significant differences were exhibited by trees treated with T. patula AS, T. 

aestivum AS, and P. americana AS (H(3) = 27.581, p<0.001). T. patula AS treated tree stem diameters 

increased by 68%, 57%, and 42% more than those treated with B. juncea AS, A. sativum AS, and the 

disease control. T. aestivum AS treated trees displayed a 47% and 13% increase in comparison to those 

treated with B. juncea AS and A. sativum AS, however was no different to the control. P. americana AS 

treated tree stem diameter increased by 59%, 47%, and 33% more than those treated with B. juncea AS, 

A. sativum AS and the disease control respectively (Figure 4.6). Increases in tree girths for those in 

sterile groups did not differ for the duration of the bioassay. 

 

 

Figure 4.6: Stem diameter difference 2012-2014 for the AGM group in the diseased soil sub-set. Error 

bars are displayed as SEM, n=25. 
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4.2.3 Destructive analysis – end of the bioassay (2014) (Section 2.4.4) 

4.2.3.1 Leaf dry weight (g) and leaf area (mm2) 

 

For the AGM group, leaf dry weight was no different for trees in the sterile soil sub-set and the diseased 

soil sub-set. When comparing PaM treatments, P. americana 1.67g/l AS treated trees demonstrated 

lower leaf dry weight than those amended with diseased control (54%), P. americana 8.33g/l (67%), and 

P. americana 15.00g/l AS (60%) (H(3) = 11.366, p=0.01; Figure 4.7). 

 

4.7: Mean leaf dry weight per tree of the PaM group in in the diseased soil sub-set. Error bars are 

displayed as SEM, n=25. 

 

In terms of the different concentrations of P. americana, it was determined that 1.67g/l and 15.00g/l 

had no positive influence on leaf areas in comparison to the disease control. However, 15.00g/l 

treatments induced larger leaves than the 1.67g/l treatment (by 16%) and the 8.33g/l treatment (by 

43%). 8.33g/l was linked to 41% smaller leaves than the control (H(5) = 39.648, p<0.001; Figure 4.8). 

 

Figure 4.8: Mean leaf areas of the PaM group in in the diseased soil sub-set. Error bars are displayed as 

SEM, n=25. 
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Leaf areas differed in the diseased soil AGM group (H(5) = 22.699, p<0.001). T. patula application 

induced greater leaf areas in comparison to those treated with P. americana (by 19%) AS and A. sativum 

AS (by 30%). Untreated trees had bigger leaves than those treated with P. americana AS (16%) and A. 

sativum AS (28%; Figure 4.9).  

 

4.9: Mean leaf area the AGM group in the diseased soil sub-set. Error bars are displayed as SEM, n=25. 

 

Leaf areas differed in the sterile soil sub-set (H(5) = 31.428, p<0.001). T. aestivum AS induced the 

production of leaves that were smaller than those treated with T. patula AS (35%), P. americana AS 

(38%), and the sterile control (25%). B. juncea AS treated trees were also associated with smaller leaves 

than those treated with T. patula AS, P. americana AS, and the sterile control (35%, 38% and 26%, 

respectively; Figure 4.10).  

 

Figure 4.10: Mean leaf area in relation to the AGM group in the sterile soil sub-set. Error bars are displayed 

as SEM, n=25. 
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4.2.3.2  Mean dry shoot weight (g)  

 

Mean dry stem weight of the diseased control trees was 22% lighter than trees treated with P. 

americana 8.33g/l AS and 15.00g/l AS (F(3,96) = 3.188, p=0.027; Figure 4.11) . In the AGM group stem 

weights were similar with exception to trees treated with T. patula AS which was associated with 29% 

heavier stems than those of the diseased control (F(5,144) = 3.667, p=0.004; Games Howells p=0.033). 

 

Figure 4.11: Mean weight of stems of the PaM group in the diseased soil sub-set. Error bars are displayed 

as SEM, n=25. 

 

4.2.3.3  Mean dry root weight (g)  

 

In relation to the PaM group the diseased control demonstrated a trend of having 21% lighter roots than 

those treated with P. americana 1.67g/l and significantly lighter roots than those associated with P. 

americana 8.33g/l (26%),  P. americana 15.00g/l (36%) (H(3) = 16.748, p=0.001; Figure 4.12). 

 

Figure 4.12: Mean dry root weight of the PaM group in the diseased soil sub-set. Error bars are displayed 

as SEM, n=25. 
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In the AGM group the diseased control demonstrated lighter roots than T. aestivum (by 34%), T. patula 

(by 31%), and A. sativum (by 25%). B. juncea was associated with lighter roots than T. patula (by 17%) 

and T. aestivum (by 20%) (H(3) = 18.131, p=0.003; Figure 4.13). 

 

 

Figure 4.13: Mean dry root weight of the AGM group in the diseased soil sub-set. Error bars are displayed 

as SEM, n=25. 

 

4.2.3.4  Evidence of nematodes on tree roots 

 

A chi square test for association was conducted between treatment and the count of nematode cysts. 

All expected cell frequencies were greater than five. There was a statistically significant association 

within the data set, χ2(15, N=400), 31.481, p = 0.008. All treatments demonstrated a higher nematode 

cyst count than the control trees in diseased soil. Trees in sterile soil showed no evidence of nematode 

cysts. In relation to the bioassay nematode cyst presence was not correlated with trees growth 

variables; root dry weight (rs = 0.013, p = 0.793), stem dry weight (rs = 0.014 (n = 400), p = 0.408) and 

leaf dry weight (rs = -0.091 (n = 400), p = 0.07). As a result nematode cyst presence was deemed to be of 

little importance to tree growth and was not linked to complex formation.  
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4.2.3.5  Fruit yield (g) 

 

The first harvest of fruit was available in 2014. The PaM group yields were similar. However, in the AGM 

group the mean number of fruit per tree harvest from T. patula treated trees was less than those 

treated with A. sativum AS (by 73%) and B. juncea AS (by 49%). P. americana application were 

associated with 66% and 41% less fruit than those treated with A. sativum AS and B. juncea AS, 

respectively. There was a trend of A. sativum AS treated trees producing 42% more fruit than the 

disease control (H(5) = 18.543, p=0.002; Figure 4.12). 

 

 

Figure 4.12: Mean number of fruit in relation to the treatment in the AGM group. Error bars are displayed 

as SEM, n=25. 

 

Mean fresh harvest weight (g) was similar across the treatments in the diseased soil sub-set, with the 

exception of A. sativum AS treated trees which produced a 67% and 66% heavier harvest as compared 

to those treated with T. patula AS and P. americana AS, respectively (H(5) = 18.871, p=0.002).   

 

Irrespective of treatment (diseased soil sub-set), the mean numbers of fruit that failed to develop and 

the mean fruit weight (per berry) were not statistically different from each other. Fruit variables were 

no different across the treatment groups in the sterile soil sub-set. 
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4.3 Overview of findings from the bioassay and destructive analysis 

 

In this study trees were grown in sterile soil to mirror the affects of sterilisation as a treatment for RD 

soils (Section 1.7.4.4) and to provide an indication of whether growth of trees after green manure 

application is a result of additional nutrients. It was found that treatments applied to trees did not have 

an influence on tree growth (such as height, secondary growth, foliage, and fruit production) throughout 

the three years. There was also no significant difference in root and stem biomass in the sterile sub-set. 

 

All trees used in this study displayed an increase in growth over the three year period although this rate 

of growth and production decreased in the final year. This may have been due to unseasonal weather 

and containerisation. The majority of root systems had not undergone girdling and so a deficiency in 

nutrients is the likely cause (table 2.4).  

 

The use of green manures appears to produce variable results, which is especially true in terms of P. 

americana where improvement in growth parameters was not correlated with an increase in the 

concentration of the green manure application. This was evidenced by the fact that the primary growth 

and internodal distances of trees receiving a P. americana 8.33g/l AS treatment were stunted in 

comparison to those receiving the lowest and highest concentrations of the novel green manure, and 

had a smaller leaf area than those of the control group. Trees treated with P. americana 8.33g/l AS did 

however have a greater girth than those treated with P. americana 1.67g/l AS and the control group and 

destructive analysis indicated that stem biomass was heavier than the control group. In terms of roots, 

destructive analysis demonstrated that all three concentrations P. americana were associated with 

comparably greater biomass. 

 

The green manures T. patula and P. americana 15.00g/l were linked to improved growth of trees 

expected of nursery trees whilst B. juncea and A. sativum caused stunting. Overall those treated with T. 

patula AS and P. americana 15.00g/l AS increased in height significantly. In addition the roots of these 

trees were more vigorous and biomass was heavier in relation to the control. Growth of trees in T. 

aestivum AS treated soil was significantly more vigorous than trees treated with the other green 

manures but no different to the disease control due to variability.  

 

Some treatments inhibited growth of trees. Although A. sativum AS treatments were linked to the 

highest initial (first three months) primary growth (157%) in the AGM diseased soil sub-set, which was 

on par with that of the P. americana 15.00g/l AS treatment (161%), it was found that this green manure 

was associated with stunted growth during the rest of the bioassay. Both A. sativum AS and B. juncea AS 

treated trees had small girths and experienced slower secondary growth in comparison to trees 

receiving other treatments, and also had a significantly lower count of active buds and smaller leaves. 

The roots of the A. sativum AS treated trees were heavier than those of the control on average however 
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were variable in their vigour. Roots of the B. juncea AS treated trees were not vigorous and their weight 

was statistically similar to the control. A. sativum AS treated trees produced the highest quantity and 

harvest weight of fruit in comparison to the control and T. patula AS and P. americana 8.33g/ AS treated 

trees. B. juncea AS treated trees also produced a heavier crop of fruit which was in line with that of the 

diseased trees. 

 

With regards to nematodes, this study did not look at the influence of green manures on the presence 

of nematodes, but rather their ability to infest the tree roots in the presence of the plant matter. Sterile 

soils did not demonstrate evidence of nematode presence due to the sterilisation process. There was 

also no point of ingress due to the trees being grown in a closed pot system. Diseased soils however, 

would have had a naturally occurring population of nematodes to begin with and it was found that 

green manure amendment was associated with elevated nematode cyst counts. 
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Chapter 5 – Infestation by pathogenic organisms 

5.1 Introduction  

 

The aim of this study was to determine the pathogen complex in association with the rhizosphere of S. 

aucuparia whips after the addition of green manure. There is very little known about the effects of RD 

on S. aucuparia but one of the few studies by O’Neill (2011) determined that this species is particularly 

sensitive to soil collected from the vicinity of a S. aucuparia stand (three years old) and could be used as 

an indicator of susceptibility. A complex of pathogens Cylindrocarpon-Fusarium-Pythium was detected 

by a DNA Multiscan and associated with the stand (O’Neill, 2011). C. destructans and F. oxysporum were 

specifically identified and have been found previously on P. persica and Malus spp. (Section 1.4.2.2). The 

species of Pythium was not identified although had accounted for the principle oomycete species found 

to be associated with RD (Section 1.4.2.3).  

 

Previous studies determined that an entire complex is required to incite the effects of the disease 

(Section 1.6.2). O’Neill (2011) demonstrated that a treatment of 280 ml/m3 98% Chloropicrin injected to 

a depth of 200mm effectively increased the root and shoot growth and bud graft success of S. aucuparia 

under replant conditions. Pythium species were eliminated from the soil, whilst infestation levels of C. 

destructans, F. oxysporum and beneficial fungi Trichoderma populations remained stable. The removal 

of Pythium spp. from the complex alleviated the symptoms of the disease. The consequences of changes 

in microbial communities are complex with the ecological interactions between micro-organisms 

requiring further attention. Trichoderma spp. are classified as plant growth promoting fungi (PGPF) and 

are known to control replant associated F. oxysporum and R. solani in crops (El Komy et al., 2015; Ali and 

Taha, 2016); their role in RD is not clear.  

 

The association of this fungal species with RD is inconsistent. Utkhede et al. (1992) demonstrated that 

Trichoderma spp. and B. subtilis were linked to lower dry root weights of Malus spp. seedlings when 

inoculated seperately. However when these microorganisms were added to the soil together they 

increased tree heights. The link between Trichoderma spp. and reduction in root weight whilst tree 

heights increase is not logical. Trichoderma spp. are known to suppress pathogens by excreting lytic 

enzymes and antibiotics and therefore it is expected that this genus may reduce root rot, which would in 

turn lead to healthier and more vigorous roots. Due to these properties, Trichoderma spp are now 

included in commercial formulations for biopesticides and biofertilisers. T. asperellum suppress 

Phytophthora megakarya, F. oxysporum, F. lycopersici, R. solani, and nematode M. javanica (Yang et al., 

2012). Nematodes are known to cause significant crop losses and often facilitate fungal and bacterial 

root penetration as seen in cherries and peaches (Wang et al., 2007; Hooks et al., 2010). Nematodes 

were associated with apple RD by Mai and Abawi (1981), with P. penetrans (root lesion) being 

considered as an important factor affecting the growth and yield of apples trees. 
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5.1.1 Aim and objectives 

Aim: 

To determine the difference in rhizosphere microorganisms present in the soils in the diseased soil sub-

set and sterile soil sub-set in relation to the treatment applied. 

 

Objectives: 

- Define the pathogen complex on S. aucuparia through analysis of DNA sequencing results from 

diseased soil.  

- Determine the potential long-term effect of P. americana and other green manures on the presence 

of pathogens.   

- Examine the presence of pathogens present in the sterile soil sub-set. 
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5.2 DNA Multiscan pathogen infestation results (Section 2.5) 

5.2.1 Infestation of rhizosphere soil by fungi and oomycetes  

 

Of the 65 microorganisms included in the DNA Multiscan array, four genera and five species that are 

usually considered plant pathogens were detected, along with one beneficial species (Appendix VI).  

Pathogenic species included F. solani, P. sylvaticum, R. solani, R. fragariae, and Alternaria spp. Beneficial 

micro-organisms included an undefined species of Trichoderma and specifically T. asperellum.  

 

Sterile soil was colonised by Fusarium spp. which could not be defined at species level. Diseased soil 

displayed the presence of a Fusarium-Pythium-Rhizoctonia pathogen complex including defined species 

P. sylvaticum and R. solani, and an undefined Fusarium species. Further analysis determined an 

association between Pythium and Rhizoctonia as follows. Principle Component Analysis of all samples 

demonstrated that 29% of the data is explained by the presence of Pythium spp., P. sylvaticum, 

Trichoderma spp., T. asperellum, and R. solani (Figure 5.1). 19% of the data is explained by Alternaria 

spp., Fusarium spp., F. solani, and R. solani. The first group is associated with the species usually 

ascribed to a replant pathogen complex; whilst the latter is closer to a situation where RD associated 

pathogens are not present. Fusarium spp. occurs both in the absence and the presence of the complex. 

Nematode cyst counts have no association with the fungi and oomycetes. 

 

Figure 5.1: PCA-ordination biplot indicating the relationship of DNA signal strength of pathogens and 

counts of nematode cysts on plant roots in relation to the presence and absence of fungi and oomycete 

pathogens ascribed to the RD complex.  

 

Note: Eigenvectors are represented by lines and demonstrate the strength of association and the correlation 

between the different variables (black: diseased samples; grey: sterile samples). The PCA arrows show the 

weightings of the variables in the first two principal components. 

 

PC1 

PC2 
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5.2.2 Centroid hierarchical cluster of microbes detected by DNA Multiscan 

 

Hierarchical centroid linkage and agglomeration schedules using squared Euclidean distance identified 

discrete clusters of infestation in relation to the treatment of soil with amendments (as compared to 

controls). A dendrogram of the results defined four groups of treatments in relation to the presence of 

microbes in the soil (Figure 5.2). Group one was composed of diseased soil and soil previously treated 

with T. aestivum, A. sativum and T. patula and P. americana at 8.33g/l. Infestation of microbes in soil 

treated with P. americana at 1.67g/l, P. americana at 15.00g/l and B. juncea 8.33g/l were grouped as 

distinct units. 

 

Figure 5.2: Pattern of microbial infestation levels in amended and control soils. 

 

In relation to the sterile soil sub-set analysis identified five clusters. Treated soil that were most similar 

in infestation rates to the sterile control were P. americana at 1.67g/l and B. juncea at 8.33g/l. T. 

aestivum and A. sativum at 8.33g/l shared similarities, whilst infestation of microbes in soil treated with 

P. americana at 8.33g/l, P. americana at 15.00g/l and T. patula 8.33g/l were distinctly different to each 

other and the two other described clusters. Specific differences are defined below in the following 

sections. 
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5.2.3 Infestation in relation to the PaM treatment group 

 

PaM treatment groups in the diseased soil sub-set all demonstrated the presence of the pathogens 

detected in the diseased soil control, with the exception of P. americana 15.00g/l, which lacked the 

presence of R. solani (Table 5.1). 

 

Table 5.1: The presence of various microbes and their relative infestation rates of the PaM group 

(diseased soil).  

  Usually considered a plant pathogen Beneficial  

Treatment: Diseased soil sub-set Fu
sa
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No treatment (control) 2 0 1 1 3 0 0 2 0 

Autoclaved (control) 0 0 0 0 0 0 0 0 0 

1.67g/l    P. americana  2 2 2 2 2 0 0 3 3 

8.33g/l    P. americana  2 2 2 2 3 2 0 1 0 

15.00g/l  P. americana  3 1 3 3 0 0 0 1 0 

Key and notes:  Elimination of ‘pathogen’  Reduction of ‘pathogen’/ increase in Trichoderma  Increase or 

colonisation of ‘pathogen’ or reduction in Trichoderma  No change. Numbers represent scale of infestation (an 

increase in number represents going from a state of no microbes detected (0) to an increase in population (1-3). 

Weak signal (rIOD ≤ 2) l Moderate signal (rIOD > 2 to ≤ 15)). 

 

P. americana 1.67g/l treated soil DNA: Infestation by F. solani and T. asperellum, with undefined 

Fusarium and Trichoderma species being eliminated. Infestation rates of R. solani were reduced and P. 

sylvaticum rates increased.  

 

P. americana 8.33g/l treated soil DNA: reduced infestation rates of P. sylvaticum and a persistence of R. 

solani at the same rate as the disease control. Infestation by R. fragariae and F. solani. Reduced 

Trichoderma spp signal and the Fusarium spp. eliminated.  

 

P. americana 15.00g/l treated soil DNA: Increased rates of Fusarium spp. and infestation by F. solani. P. 

sylvaticum displayed a slight increase in infestation rate. Trichoderma spp. maintained a presence. R. 

solani was eliminated from the soil.  
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PaM treatment groups in the sterile soil sub-set demonstrated infestation by microorganisms 

subsequent to flame sterilisation. The presence of green manure resulted in the colonisation of more 

microorganisms in comparison to the no treatment control (Table 5.2).  

 

Table 5.2: The presence of various microbes and their relative infestation rates of the PaM group (sterile 

soil).  

  Usually considered a plant pathogen Beneficial  

Treatment: Sterile soil sub-set Fu
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No treatment (control) 1 0 0 0 0 0 0 0 0 

Autoclaved (control) 0 0 0 0 0 0 0 0 0 

1.67g/l    P. americana  1 0 2 2 0 0 0 0 0 

8.33g/l    P. americana  2 0 2 1 0 0 0 2 2 

15.00g/l  P. americana  6 6 1 1 1 0 0 2 0 

Key and notes:  Elimination of ‘pathogen’  Reduction of ‘pathogen’/ increase in Trichoderma  Increase or 

colonisation of ‘pathogen’ or reduction in Trichoderma  No change. Numbers represent scale of infestation (an 

increase in number represents going from a state of no microbes detected (0) to an increase in population (1-6). 

Weak signal (rIOD ≤ 2) l Moderate signal (rIOD > 2 to ≤ 15)). 

 

Sterile soil amended with P. americana 1.67g/l was associated with colonisation by Fusarium spp. at the 

same rate as the sterile control. Colonisation by P. sylvaticum were at the same rates as found in 

diseased soil treated with 1.67g/l P. americana. Amendments of 8.33g/l of P. americana demonstrated 

increased rates of Fusarium spp. in comparison to the control, and colonisation by Pythium spp., P. 

sylvaticum and T. asperellum. The highest concentration of P. americana displayed an increased rate of 

Fusarium spp. from low to high. F. solani infested the soil at high rates. P. sylvaticum and R. solani, and 

beneficial Trichoderma spp. colonised the soil at low rates. 
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5.2.4  Infestation in relation to the AGM treatment group 

 

AGM treatment groups in the diseased soil sub-set all demonstrated the presence of pathogens 

detected in the diseased soil control, with exception to B. juncea which lacked the presence of Fusarium 

spp., Pythium spp., P. sylvaticum, and R. solani (Table 5.3). 

 

Table 5.3: The presence of various microbes and their relative infestation rates of the AGM group 

(diseased soil).  

  Usually considered a plant pathogen Beneficial  

Treatment: Diseased soil sub-set Fu
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No treatment (control) 2 0 1 1 3 0 0 2 0 

Autoclaved (control) 0 0 0 0 0 0 0 0 0 

8.33g/l    P. americana  2 2 2 2 3 2 0 1 0 

8.33g/l    B. juncea  2 2 0 0 0 0 0 0 0 

8.33g/l    A. sativum  2 1 2 1 1 0 1 2 1 

8.33g/l    T. aestivum  3 0 1 1 3 2 0 2 0 

8.33g/l    T. patula  2 2 1 1 2 0 0 3 0 

Key and notes:  Elimination of ‘pathogen’  Reduction of ‘pathogen’/ increase in Trichoderma  Increase or 

colonisation of ‘pathogen’ or reduction in Trichoderma  No change. Numbers represent scale of infestation (an 

increase in number represents going from a state of no microbes detected (0) to an increase in population (1-3). 

Weak signal (rIOD ≤ 2) l Moderate signal (rIOD > 2 to ≤ 15)). 

 

B. juncea treated soil DNA: In addition to the elimination of pathogens described above (Table 5.3), B. 

juncea was associated with colonisation by low levels of F. solani. 

 

A. sativum treated soil DNA: Lower rates of infestation by R. solani. Colonisation by low levels of F. 

solani, an undefined Pythium spp., and Alternaria spp. Persistence of beneficial species Trichoderma and 

colonisation by T. asperellum.  

 

T. aestivum treated soil DNA: Presence of the same pathogens and beneficial microbes and at the same 

infestation rates as the diseased control, with exception to slightly elevated levels of Fusarium spp. 

Colonisation of the soil by R. fragariae as seen in P. americana 8.33g/l treated soil.   

 

T. patula treated soil DNA: F. solani colonised soil at a low rate. P. sylvaticum, R. solani, and Trichoderma 

spp. were persistent in the soil. 
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AGM treatment groups in the sterile soil sub-set demonstrated infestation by microorganisms 

subsequent to flame sterilisation. The presence of green manure resulted in the colonisation of more 

microorganisms in comparison to the no treatment control (Table 5.4).   

 

Table 5.4: The presence of various microbes and their relative infestation rates of the AGM group 

(sterile soil).  

  Usually considered a plant pathogen Beneficial  

Treatment: Sterile soil sub-set Fu
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No treatment (control) 1 0 0 0 0 0 0 0 0 

Autoclaved (control) 0 0 0 0 0 0 0 0 0 

8.33g/l    P. americana  2 0 2 1 0 0 0 2 2 

8.33g/l    B. juncea  1 1 1 0 0 0 0 0 0 

8.33g/l    A. sativum  3 0 2 0 0 0 1 0 0 

8.33g/l    T. aestivum  4 0 0 0 0 0 0 0 0 

8.33g/l    T. patula  7 7 0 0 0 0 0 0 0 

Key and notes:  Elimination of ‘pathogen’  Reduction of ‘pathogen’/ increase in Trichoderma  Increase or 

colonisation of ‘pathogen’ or reduction in Trichoderma  No change. Numbers represent scale of infestation (an 

increase in number represents going from a state of no microbes detected (0) to an increase in population (1-7). 

Weak signal (rIOD ≤ 2) l Moderate signal (rIOD > 2 to ≤ 15)). 

 

B. juncea treated soil was colonised by Fusarium spp., F. solani, and Pythium spp. A. sativum 

amendments displayed the persistence of Fusarium spp. and the appearance of an undefined Pythium 

spp. and Alternaria spp. These DNA results were much like those for diseased soil treated with A. 

sativum. T. aestivum was associated with the colonisation of Fusarium spp. and much like the sterile 

control no other pathogens. T. patula amended soil was infested by Fusarium spp. and F. solani at high 

rates. 

 

5.3 Key findings from detection of microbes in association with untreated and treated soil 

 

This study determined that the common denominators across all treatments in the diseased soil sub-set 

point towards the presence of a Fusarium-Pythium-Rhizoctonia pathogen complex in the presence of 

beneficial Trichoderma species. The presence of P. sylvaticum was confirmed, as previously found in 

Apple RD soils (Tewoldemedhin et al., 2011a), and which O’Neill (2011) expected to find but did not 

detect. Examination of infestation tables and centroid cluster analysis grouped the treatments in the 
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diseased soil sub-set according to their similarity. One group that had similar colonisation patterns 

contained [diseased soil - T. aestivum treated soil - A. sativum treated soil - T. patula treated soil - P. 

americana treated soil 8.33g/l]. These soils all had the same pathogens and Trichoderma species. T. 

aestivum and P. americana treated soils were both infested with R. fragariae, and T. aestivum treated 

soil lacked F. solani. This may demonstrate that neither R. fragariae nor F. solani play a significant role in 

the presentation of the disease. Further analysis demonstrated that Fusarium did not demonstrate a 

strong association with Pythium and Rhizoctonia species, which were closely linked in a PCA. It was also 

clear that the presence of Trichoderma species in this instance did not have a bearing on the health of 

the disease. A. sativum treated soils were infested with all pathogens found in the diseased soil in 

addition to F. solani and Alternaria species, the latter was also found in sterile soils. T. asperellum was 

also present and R. solani numbers were reduced in this particular soil. Soils treated with P. americana 

1.67g/l, P. americana 15.00g/l and B. juncea were distinctly different to the group, and to each other 

[diseased soil - T. aestivum treated soil - A. sativum treated soil - T. patula treated soil - P. americana 

treated soil 8.33g/l] group and to each other. There was an absence of R. solani in both P. americana 

15.00g/l and B. juncea treated soils . B. juncea treated soils were similar to sterile soil, in that the 

diversity of microbes detected was minimal and the former only contained a low abundance of 

unidentified Fusarium species and F. solani (out of the 65 microorganisms included in the DNA array). 

 

In terms of application of green manure at different concentrations, the results demonstrated that 

regardless of concentration, P. americana did not have a consistent effect on soil microbes. The green 

manure increases microbial activity, although it is difficult to deduce how the addition of different 

concentrations of green manure influenced soil interactions and the subsequently altered the microbial 

community. It appears that soils treated with 8.33g/l stimulated the microbial activity of deleterious 

species whilst the 15.00g/l stimulated some pathogens whilst supressing R. solani. In a sterile 

environment soil treated with the two lowest concentrations of P. americana were infested with 

undefined Fusarium and Pythium, and specifically P. sylvaticum. Trichoderma species were absent from 

the 1.67g/l treated soil however they were present in the 8.33g/l and 15.00g/l treated soil. The 

concentration of P. sylvaticum may have played a role in this where infestation rates were higher in the 

1.67g/l treated soil. The presence or absence of Trichoderma species did not influence tree growth 

rates. R. solani was present in 15.00g/l treated soil but did not effect tree growth which may be due to 

the suppression of this pathogen, which was potentially due to the high infestation rates of Fusarium 

species and F. solani specifically (Section 1.7.4.3). Likewise soils treated with other green manures were 

composed of varying levels of Fusarium and Pythium species but lacked R. solani.  
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Chapter 6 – Discussion 

 

The primary aim of this study was to evaluate the effectiveness of green manures as control measure for 

RD through conducting in vitro, in vivo and DNA sampling. 

 

6.1 In-vitro studies  

 

In vitro studies demonstrated that the novel green manure, P. americana, was effective in significantly 

inhibiting growth of R. solani and P. ultimum at three concentrations (1.67g/l, 8.33g/l, 15.00g/l) when 

applied either as plant matter or as a cold water extract, whilst an ethanol extract was found to be 

ineffective. The application of other conventional green manures as leaf matter all proved effective at 

slowing the growth of the pathogens with the exception of T. patula. The cold water extract of A. 

sativum and T. aestivium inhibited P. ultimum only. R. solani was more sensitive to treatments than P. 

ultimum, which was effected by a wider range of treatment methods.  

 

6.1.1 Activity of P. americana against R. solani and P. ultimum 

 

The difference in response to the P. americana treatment may relate to phylogenetic differences 

between R. solani and P. ultimum. Hernández et al. (2013) demonstrated that in vitro applications of 

aqueous and alcohol extracts of the closely related species Phytolacca tetramera inhibited the radial 

growth of fungi Colletotrichium gloesporiodes. They proposed that the effect was due to the presence of 

saponins; indeed P. americana contains phytolaccasaponins (triterpenoid saponins) which are 

antimicrobial (Section 1.7.5). P. americana saponins are isolated from the roots, berries and leaves 

(Wang et al., 2008; Takahashi et al., 2001; Di Maro et al., 2007), and are known to protect the plant 

from fungi (Osbourn, 1996a, 1996b), nematodes (Argentieri et al., 2008) and bacteria (Fons et al., 2004; 

Edwards, 2006). Saponin hydrolysis product phytolaccagenin (sapogenin) demonstrated strong 

antifungal activity (Di Liberto et al., 2010). Structurally, saponins are diverse, with an aglycone moiety 

for the phospholipids that sit within the membrane of cells as an insoluble complex.  Saponins therefore 

form pores in the cell membrane, compromising its integrity. The response of pathogens differs 

according to their ability to degrade or detoxify this glycoside. Oomycetes produce saponinases, glycosyl 

hydrolases and saponin hydrolases, which mediate the hydrolysis of saponins (Larroque et al., 2012; 

Gang, 2010; Osbourn et al., 1996b). Unlike fungi, oomycetes are also known to lack sterol groups in the 

hyphal membrane (Osbourn et al., 1996a; Olsen, 1971; Arneson and Durbin, 1968). This is a problem for 

plants producing saponins as a preformed defence, as the mechanism of these metabolites rely on the 

ability to disrupt the membrane structure by binding to a sterol group (Morrissey and Osbourn, 1999). 

The lack of sterol groups in combination with the ability to degrade metabolites could therefore 

potentially explain the lessened effect of P. americana on P. ultimum growth. In addition to saponins P. 
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americana contains other phytochemicals. Flavanol diglycoside, kaempferol-3-O-ß-D-apiofuranosyl-

(1,2)-ß-D-glucopyranoside, was extracted from the leaves by Bae et al. (1997) and was shown to inhibit 

fungi Botrytis cinerea, Botryosphaeria dothidea and Colletotrichum gloeosporiodes. P. americana also 

contains chitinases which are known for their antifungal activity (Taira, 2010). In 1995a, Ohta et al. 

purified chitinases PLC-A and PLC-B from leaves of P. americana. Chitinases, which are up-regulated in 

plants in times of stress, are responsible for the breakdown of chitin, a constituent of fungal cell walls 

(Collinge et al., 1993). There are a range of properties contained within the tissue of P. americana that 

have the ability to suppress fungi and oomycetes. They may act independently or in unison to create the 

effect seen here in this study. 

 

6.1.2 Activity of P. americana in relation to extraction and application methods 

6.1.2.1 P. americana: the effect of an ethanol extract on pathogen growth 

 

The ethanol based extract demonstrated no antimicrobial activity against P. ultimum and R. solani. This 

finding is contrary to research which states that alcoholic solvents effectively extract phytochemicals 

from plants which are successfully used to inhibit pathogen growth (Farias Magalhaes et al., 2003; Sung 

Og et al., 2007; Pineda et al., 2010; Hernández et al., 2013; Gberikon et al., 2015; Onaran and Sağlam, 

2016). Phytochemicals may have been lost during the preparation process or the provision of the extract 

on a filter disc may not have been sufficient to halt the growth rate of the pathogens. Extraction 

method, concentration of extract and application method may need to be altered to demonstrate a 

beneficial effect. Quiroga et al. (2001) and Okigbo and Mmeka (2008) recommended an extract made 

from 120mg/ml resulting in the use of an ethanolic extract with a final concentration of 20mg/ml in this 

study. However, Onaran and Sağlam (2016) used higher concentrations ranging 50mg/ml to 400mg/ml 

and demonstrated that all extracts had the ability to inhibit fungi. Bajpai et al. (2012) and Onaran and 

Sağlam (2016) raised the possibility that active ingredients in P. americana could be incorporated into 

agrochemicals when they demonstrated activity against rice blast, tomato gray mould, tomato late 

blight, and pepper anthracnose, of which the lowest concentration of methanol extract (750mg/l) was 

most effective against tomato late blight. Furthermore a methanol extract (3000mg/l) of P. americana 

suppressed radial growth of Botrytis cinerea (85%), Magnaporthe oryzae (63%), R. solani (27%), Puccinia 

recondita (27%), Phytophthora infestans (82.1%) and Colletotrichum capsici (20%) (Bajpai et al., 2012). 

This study (Chapter 3) demonstrated that the P. americana at 20,000mg/l was ineffective against the 

oomycete and fungus which is contrary to findings demonstrated by Bajpai et al. (2012). Ngo et al. 

(2017) demonstrated that solvents varied in their ability to extract bioactive compounds and 

antioxidants, methanol was more effective at extracting saponins whilst ethanol (50%) was more 

effective at extracting phenolics and flavonoids, thus pointing to the involvement of saponins in the 

inhibition of pathogens.  
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6.1.2.2 P. americana: fresh leaf matter in comparison to the distillate 

 

When comparing the fresh leaf matter to the distillate it was found that the leaf discs were more 

effective than the distillate in inhibiting both R. solani (38-64% and 36-57%, respectively) and P. ultimum 

(66-69% and 43-45%, respectively). Plant matter in agar however had a lower inhibitory ability than leaf 

discs and distillate for R. solani (26-36%) and P. ultimum (43-45%). The inhibition of the pathogens 

indicates that the distillate still contained an antimicrobial component despite the process of heating, 

however the lower magnitude of pathogen inhibition may be a result of this component being limited in 

its activity or due to the elimination of a secondary component of the raw plant material by thermal 

degradation. Ohta et al. (1995a) determined that P. americana contains two chitinases; PLC-A and PLC-

B, which have the ability to remain active at 40°C, but gradually become inactive at higher 

temperatures, and are completely denatured by temperatures over 70°C. It is possible to suggest that a 

secondary component lost in this manner is chitinase; however, this would need to be investigated. The 

lower inhibitory activity demonstrated by the plant matter in the agar may be indicative that the 

pathogen needs to be in direct contact with the plant matter.  

 

6.1.2.3 P. americana: the effect of a liquid extract on pathogen growth 

 

The agar infused with the aqueous extract of P. americana exhibited comparable inhibitory activity 

against R. solani (15-34%) and P. ultimum (25-25%). Usually cold water liquid extracts are less effective 

than solvent extracts. Indeed, the activity of water extracts against pathogens is due to the water 

solubility of the majority of classes of phytochemicals (Doughari, 2012). Cold water extracts of P. 

americana were more effective than other treatments at controlling the pathogens. Cold water extracts 

were no different in inhibitory power to fresh leaf material which indicates that phytochemicals with the 

ability to suppress pathogen growth are water soluble and are released at quantities sufficient enough 

to have an effect. The antimicrobial activity never completely halted the growth of the pathogens; 

instead they continued growing regardless of the presence of the aqueous extract. This is likely to be 

down to the concentration of available phytochemicals in solution and potentially a result of their 

degradation. For example, Karunamoorthi et al. (2008) determined that saponins extracted from P. 

dodecandra were stable for two days and decreased rapidly after day three (t1/2 = 15.8 h). By day 10 

the constituent was completely biodegraded. 

 

6.1.2.4 P. americana: an indirect effect on pathogen growth 

 

In addition to plant material having a direct effect it was also demonstrated that suppression can be 

induced indirectly with pathogens being exposed to volatiles in a closed environment. R. solani was 

found to be most sensitive to this method with percentage inhibition reaching 90% and remaining at this 

level for the duration of the assay. This halting effect on growth was evidently temporary as growth 
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resumed after replating. Meanwhile P. ultimum continued to grow despite inhibition of 46%. Charron 

and Sams (1998) demonstrated that the growth of these pathogens were 27.4% of the control when 

treated with B. juncea Indian mustard. Out of the six Brassica species they tested, it was B. campestris 

(Chinese cabbage) that had the highest inhibitory effect (79.6%) against R. solani. This study (Chapter 3) 

demonstrates that P. americana (90%) has a higher magnitude of inhibitory activity towards the fungus 

than the species used by Charron and Sams (1998). In terms of activity against the oomycete B. 

campestris outperformed P. americana by inhibiting P. ultimum growth (96.3%), whilst B. juncea had no 

effect on the oomycete (0%).  

 

6.1.2.5 Activity of P. americana at different concentrations 

 

Application of P. americana in concentrations comparable to that of the field study demonstrated that 

the two highest concentrations (8.33g/l and 15.00g/l) had the same inhibitory affect on the two 

pathogens R solani and P. ultimum (26-39% and 40-49%). The lowest concentration of P. americana 

inhibited R. solani and P. ultimum slightly (1-17% and 13-16%). The inhibitory activity of P. americana 

against R. solani did not increase when the plant material was applied at concentrations higher than 

those used in the field (20.00g/l, 25.00g/l, and 30.00g/l), which was also observed by Hernández et al. 

(2013) who conducted an in-vitro investigation into the effect of aqueous and alcohol extracts of 

Phytolacca tetramera. It was concluded that three extracts (15%, 20% and 30%) had the same level of 

inhibitory activity against fungi Colletotrichium gloesporiodes. In comparison, an increase in the 

concentration of P. americana resulted in a 14% increase in the inhibitory activity against P. ultimum. 

This indicates again that P. ultimum metabolises phytochemicals in a different manner to the fungi. It 

could also indicate, as proposed by Hernández et al. (2013), that there is more that one antimicrobial 

compound involved. 

 

6.1.2.6 Activity of P. americana in relation to comparative green manure species  

 

8.33g/l of macerated P. americana, B. juncea, A. sativum, and T. aestivum plant matter exhibited 

inhibitory activity against both R. solani and P. ultimum. The activity of green manure against pathogen 

growth is a result of their phytochemical constituents (Section 1.7.5). P. americana and A. sativum were 

effective immediately; however, some were delayed in their influence. B. juncea and T. aestivum activity 

was delayed by 48 hours, which had been noted previously by Charron and Sams (1998) in their study of 

B. juncea volatiles. There is no explaination of why the activity of T. aestivum may be delayed other than 

it relates to the degradation time taken to release antimicrobial properties. The degradation of crop 

residues is difficult in a field setting in the presence of soil microbes as extra nutrients have to be added 

to help initiate the breakdown (Rezig et al., 2014). T. patula activity was also delayed, however inhibited 

the oomycete nonetheless by hour 72. 
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In terms of the cold water liquid extract the suppression of R. solani and P. ultimum by P. americana was 

significantly greater than that induced by A. sativum, B. juncea, T. patula, and T. aestivum throughout 

the assay. In this study P. americana was effective as both a solid and a liquid extract. It is known that P. 

americana has toxic phytochemicals that are readily soluble in water and it often requires many rounds 

of boiling to make it edible. In their study, Ashafa et al. (2010), identified that leaf material of P. dioca 

contains water-soluble tannins, alkaloids, glycosides, phenolics, flavonoids, saponins and lectins, all of 

which have antimicrobial properties (Dang and Van Damme, 2015).  

 

6.1.2.7 Activity of comparative green manure species against pathogens  

 

Macerated B. juncea was effective against both pathogens used in the study; however the liquid extract 

of the plant matter was ineffective. Brassicaceous species have been studied widely for their 

biofumigant nature (Larkin and Griffin, 2007). Brassicaceae produce glucosinolates (β-D-thioglucosides) 

which can be classified as aliphatic, aromatic, or indole forms that occur in all parts of the plant and 

degrade via enzymatic hydrolysis. Tissue damage results in the reaction of glucosinolates with 

myrosinase to yield nitriles, epithionitriles, thiocyanates and isothiocyanates. Brassicaceous plant matter 

is normally incorporated directly into the soil whilst both soil moisture and temperature is high to 

maximise the amount of isothiocyanates that come into contact with the rhizosphere (Gimsing and 

Kirkegaard, 2009). Macerated B. juncea tissue was found to be an effective allelopathic soil amendment, 

inhibiting 73% of growth in F. oxysporum and 100% of growth in R. solani, Phytophthora erythroseptica 

and P. ultimum (Larkin and Griffin, 2007). It is therefore unsurprising that the macerated B. juncea was 

effective in inhibiting the two pathogens (R. solani was inhibited by 42%). In terms of the liquid extract 

the environmental fate of glucosinolates and their by-products tend to be relatively unstable. Hydrolysis 

plays a big part in the breakdown of these phytochemicals and so their effects are lost (Kawakishi at 

Namiki, 1969; Ohta et al., 1995b). The liquid extract of this green manure stimulated pathogen growth 

(in comparison to the control); this is discussed in Section 6.1.2.8. 

 

Macerated green manure of A. sativum was comparable to P. americana in its ability to suppress R. 

solani, however the effects on P. ultimum were reduced. The green manure was more effective than the 

cold press liquid which only inhibited P. ultimum after 96 hours. It is unknown why there was this delay 

in inhibition, although it is possible that the mode of action of the active properties is not instantaneous 

due to their chemical structures. In 1944 Cavallito and Bailey identified a sulphur compound, allicin 

(diallythiosulphinate), as one of the constituents responsible for giving A. sativum its antimicrobial 

properties. Cavallito and Bailey (1944) defined that allicin is formed within seconds when a clove is 

damaged or crushed and alliin (S-allyl-l-cysteine sulfoxide) comes into contact with alliinase. Allicin is not 

only found in the bulb but also found at high concentrations in shoot and leaf extracts at 0.44 ± 0.00 and 

0.26 ± 0.1 mg/ml, respectively. Allicin itself reacts with all proteins in the vicinity that have thiol groups, 

undergoing thiol-disulphide exchange. This action of allicin on thiol groups is widespread and multi-
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modal, with many proteins, including enzymes in micro-organisms, being targeted. Allicin (10µg/ml) is 

also known to inhibit cysteine proteinases, alcohol dehydrogenases and thioredoxin reductases, 

involved in maintaining the correct redox state within an amoeba parasite of humans (Ankri and 

Mirelman, 1999). Allicin is potently fungistatic (growth inhibiting) and fungicidal (Gruhlke et al., 2010; 

Harris et al., 2006; Ankri and Mirelman, 1999). Most activity listed is through the action of allicin, 

however some of it is attributed to, the allicin condensation product, ajoene. Although A. sativum has 

not specifically been used to treat RD, it has been successfully utilised to overcome Phytophthora 

infestans and downy mildew of (Cucumis sativus) cucumber caused by Pseudoperonospora cubensis. In 

terms of P. infestans and P. cubensis it was found that allicin reduced the germination and growth of 

sporangia and cysts in Solanum lycopersicum (tomato) leaves and C. sativus seedlings respectively, with 

the treatment effectiveness being comparable to commercial copper fungicide (Portz, 2008). When 

allicin does form its composition is so volatile with a short halflife that it soon degrades to form 

vinyldithiins and ajoene (Schulz et al., 1998; Ankri and Mirelman, 1999; Gruhlke et al., 2010). In aqueous 

environments allicin reacts via a monomolecular self elimination reaction or a bimolecular reaction 

(Block 1986) to produce diallyl trisulphide or diallyl disulphide and allyl alcohol. Lawson and Wang 

(1994) reported that pure allicin dissolved in water at 23ºC has a half life of between 30 and 40 days. 

Timonin and Thexton (1950) reported that extremely dilute aqueous extracts of garlic inhibited growth 

of various soil fungi, whilst Shen (1996) determined that diallyl disulphide and diallyl trisulphide were 

effective against Cryptoneoformis. Likewise Abad et al. (2007) prepared aqueous extracts of A. sativum 

which inhibited fungal growth and deemed a potential source of antifungal drugs. It was found that a 

garlic juice preparation can either be applied as a spray to leaves or as a soil drench (the former gaining 

better results than the latter). These allicin preparations have also been efficacious against other plant 

diseases (Portz, 2008). The lack of activity against pathogens in this study may be down to the use of leaf 

matter rather than the cloves which is the norm in most studies. It would have been beneficial if A. 

sativum leaves could have been used as a potential green manure as these are a by-product of field 

produced garlic bulbs.  

 

Macerated plant matter from T. aestivum was more effective than the cold liquid extract. This is 

contrary to wheatgrass juice which were found to contain saponins, tannins, flavanoids and alkaloids 

(Ashok, 2011; Sharma, 2016) and extracts made with water, hexane and acetone had varying inhibitory 

power against Gram positive and Gram negative bacteria, and fungi (Sundarensan et al., 2015). In this 

study the aqueous extract inhibited pathogen growth after 96 hours. Suriyavathana (2016) characterised 

the phytochemicals of this plant species and found that an aqueous extract can yield a similar range of 

compounds as methanol extraction, whilst extraction by ethylacetate and chloroform were less 

effective. Aqueous extraction appeared to liberate alkaloids, tannins, phenols, saponins, and glycosides 

which are all known to have antimicrobial activity (Dang and Van Damme, 2015). Likewise acetone and 

ethanol extracts yielding flavonoids were found to be antimicrobial (Michael et al., 1998). Very little 

research has considered the use of T. aestivum as a green manure. Mazzola et al. (2002) discovered T. 
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aestivum to be a useful in terms of Apple RD, however the mode of action was found to be through the 

promotion of Pseudomonas putida populations (strain 2C8) which suppressed anatagonistically by the 

populations of Pseudomonas flourescens bv. III and R. solani AG-5 in the soil, whilst reducing root 

infestation of R. solani, P. ultimum and P. penetrans in Malus trees. It is possible that phytochemicals 

from T. aestivum root exudates and tissue have two modes of action where they stimulate beneficial 

microbes (in accordance with Mazzola et al., 2002) and also directly inhibit pathogen growth as per this 

study. Commercially it is possible that this particular that this green manure could be cultivated in-situ 

and the residues of plant matter rotovated into the soil. Before this is considered seriously results for 

soil applications would need to be analysed. The use of wheat as a biofumigant has limited data as thus 

influence on pathogen growth was unknown. As such it is interesting that the macerated form of T. 

aestivum had an effect.  

 

T. patula was ineffective against the fungus R. solani, however displayed an inhibitory effect against P. 

ultimum after 72 hours. Rodino et al. (2015) determined that 1% ethanol extracts of T. patula flowers 

inhibited P. ultimum growth by 56%. It suggested that chemical constituents; alkaloids, phenolics, 

flavonoids, benzofurans, carotenoids, saponins and thiophenes were responsible for the antimicrobial 

activity (Al-Musayeib et al., 2014; Gupta and Vasudeva, 2012; Wang et al., 2007; Marotti et al., 2010; 

Margl et al., 2001; Lawson et al., 2007; Rodino et al., 2015). Their effectiveness against P. ultimum after 

24 hours is most likely a result of the extraction method used, the plant parts used, and the slow release 

of properties during degradation. Picking up on the point that T. patula was found to be ineffective 

against the R. solani, this is contrary to other findings (potentially because plant material was used 

rather than an extract). T. patula stimulated pathogen growth (in relation to the control); this is 

discussed in Section 6.1.2.8. 

 

6.1.2.8 Stimulation of pathogen growth by B. juncea and T. patula  

 

During the cold water liquid extract assay, lasting 168 hours, it was determined that B. juncea stimulated 

R. solani growth temporarily between 48 hours and 72 hours. Meanwhile, T. patula stimulated P. 

ultimum growth between 24 hours and 96 hours. This method is relevant however may not be indicative 

of what may happen in a soil where a petri dish with one pathogen colony does not reflect an 

environment with millions of microbes which interact with one another. Additionally, cold press liquid 

extracts contain properties other than antimicrobials, including free amino acids, macronutrients, trace 

elements and hormones for example. Kirkegaard et al. (1996) found that the suppression of R. solani, P. 

irregulare and other soilborne pathogens by Brassica tissues directly relate to isothiocyanate type and 

concentration. They stated that R. solani was particularly susceptible to antimicrobials whilst P. 

irregulare was less affected. This is in direct contradiction to the results here where B. juncea stimulated 

fungal growth, and may indicate that the process of creating a liquid water extract was ineffective at 

maintaining isothiocyanates; indeed their precursor glucosinolate is hydrophilic but isothiocyanates are 



96 

 

only slightly soluble in water and often require the presence of myrosinase to form (Tianxin et al., 2012; 

Brown et al., 2014; National Center for Biotechnology Information, 2017). Meanwhile there may have 

been a component preserved during extraction that promoted fungal growth temporarily (after 48 

hours after plating stimulating growth for 24 hours). In addition to this it is known that B. juncea 

residues have the ability to support R. solani and thus explains the growth of the pathogen in vitro 

(Yulianti et al., 2006). T. patula also stimulated pathogen growth which may have been influenced by the 

properties of the aqueous solution. The solubility of phenolics such as flavonoids in water is poor where 

organic solvents, such as ethanol, methanol and acetone are more effective in the extraction process 

(Kim and Lee, 2001; Kumar and Pandey, 2013). Likewise this was found for quercetin (Malwade et al., 

2013). This may explain why T. patula was ineffective in controlling pathogen growth, whilst plant 

residues acted as a nutrient source.  

 

6.1.3 Limitation of in-vitro studies 

 

Inhibition studies were chosen as a standard technique in quantifying effects on growth. There were 

difficulties in undertaking sporulation studies and a risk of contaminating RNA studies external to this 

study. The aim of this study was to ascertain the ability of the green manures to suppress growth and 

given the circumstances growth inhibition studies were justified. Further investigations in the future 

should quantify the influence of active ingredients on sporulation and thus reproductive viability, in 

addition to growth.  

 

6.2 Three year bioassay  

 

The three year bioassay demonstrated that trees grown in sterile soil all put on growth at statistically 

similar rates regardless of treatment. The application of P. americana to the diseased soil subset 

produced variable results in terms of primary and secondary growth, however all three concentrations 

were linked to a heavier biomass. This study demonstrated that T. patula and P. americana 15.00g/l 

improved primary and secondary growth of trees when compared with nursery trees whilst B. juncea 

and A. sativum caused stunting. T. aestivium treated trees were variable in growth.  

 

6.2.1 Growth of trees in sterile soil 

 

In this study, trees were grown in sterile soil to mirror the effects of sterilisation as a treatment for RD 

soils (Section 1.7.4.4). It was found that treatments applied to trees did not have an influence on tree 

growth throughout the three years. It could be argued that this is indicative that the addition of green 

manure does not have a nutrient effect; however it could also reflect the state of the soil and its inability 

to provide the resources that a plant needs. This primarily relates to a change in soil chemistry and a 

decrease in soil microbes responsible for making nutrients available. According to Williams-Linera and 
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Ewel (1984), steam sterilisation can reduce growth of certain species whilst being correlated to higher 

rates of growth in others. They alluded to the idea that the plants that grew well in these conditions did 

not require mycorrhizae, thus supporting the notion that it is loss in the balance of microbes that were 

responsible for reduced growth. 

 

6.2.2 Vigorous growth of S. aucuparia  

 

All trees used in this study displayed an increase in growth over the three year period, although this rate 

of growth and production slowed down in the final year. This may have been due to unseasonal weather 

and/or containerisation. The majority of root systems had not undergone girdling, and so a deficiency in 

nutrients is the likely cause (Table 2.4).  

 

The results in this study suggest that the green manures T. patula and P. americana 15.00g/l improved 

growth of trees expected of nursery trees. Overall those treated with T. patula and P. americana 

15.00g/l increased in height significantly. In addition the roots of these trees were more vigorous and 

biomass was heavier in relation to the control. There was no significant difference in root and stem 

biomass in the sterile sub-set. Stimulation of tree growth can be attributed to a fertiliser, biostimulant 

or pesticidal effect. Poor tree growth can be due to an increase in pathogens, a lack of beneficial 

microbes and an increase in abiotic factors. All trees slowed in growth, and chlorophyll content was 

reduced, most likely due to the limitations of the pots that they were grown in (Mathers, 2007). In 

general, all trees increased in height initially that was potentially a result of transplantation and the 

addition of organic matter (Table 2.2). All green manures contained the nutrients required for plant 

growth (macro and micro nutrients). T. aestivum contained the only tissue that was found to be lacking 

in terms of calcium and boron. The release and solubilisation of these nutrients and their movement 

into the plant would only be something of importance had the results demonstrated a nutrient related 

impact on growth. There is no evidence from the sterile sub-set to suggest a nutrient affect and 

although this has been ruled out, it is worth considering that green manures can also provide other 

useful resources that aid plant growth. For example T. aestivum contains vitamins (A, C, E, B12) which 

are metabolically important to a plant (Ashok et al., 2011; Suriyavathana, 2016). Improved growth may 

have been a result of the stimulation of microbes that are beneficial. Yulianti et al. (2006) discovered 

that the addition of organic matter did not cause a decrease in the inoculum of pathogens although 

overall microbial activity increased. It is possible that some green manure has a positive effect on the 

control of RD rather than a nutrient affect.  

 

When a tree is able to grow above ground and below ground structures it is more likely to be resilient. A 

vigorous root structure gives a tree stable anchorage in the soil and the ability to absorb the required 

nutrients to maintain metabolic processes and develop structurally. A strong root system gives trees 

resilience to biomechanical forces and stresses that are imposed on it in the nursery and also where 



98 

 

ever it is translocated to in its new environment. Transplant survival will be dependent on roots which 

are often lost during the process of moving a tree to another area (Mathers et al., 2007). Economically 

speaking the loss of trees is a cost that should be minimised. The trees here that were treated with T. 

patula and P. americana 15.00g/l had consistently vigorous roots and a vigorous above ground growth. 

Primary and secondary growth is just important as root growth. A tree that lays down secondary wood 

and grows in a manner that will ensure it can respond to environmental and biological pressures will 

have a better survival rate. Meanwhile upward growth combined with substantial roots will reduce time 

until it is saleable, ensure that the tree can compete for light and provide more opportunity for a larger 

canopy which will increase photosynthetic activity and the production of sugars.  

 

6.2.3 Variability in growth of trees after amendment with green manure  

 

The use of green manures is linked to variable results, which is especially true in terms of P. americana 

where improvement in growth parameters was not correlated with an increase in the concentration of 

the green manure application. This was evidenced by the fact that the primary growth and internodal 

distances of trees receiving a P. americana 8.33g/l treatment were stunted in comparison to those 

receiving the lowest and highest concentrations of the novel green manure, and had a smaller leaf area 

than those of the control group. Trees treated with P. americana 8.33g/l did however have a greater 

girth than those treated with P. americana 1.67g/l and the control group and destructive analysis 

indicated that stem biomass was heavier than the control group. In terms of roots destructive analysis 

demonstrated that all three concentrations of P. americana were associated with comparatively greater 

biomass than the control group. This variability in growth may be directly related to the addition of plant 

matter (organic matter, phytochemicals, nutrients, amino acids, hormones) and the changes in the 

microbial community. The complexity of soil interations are not yet fully understood. With this study 

alone it appears that there is no logical explanation as to why P. americana 8.33g/l treated trees put 

resources into secondary growth whilst the trees treated with P. americana 15.00g/l allocated resources 

to primary growth, especially since both had a healthy root system and biomass. It is possible that the 

addition of P. americana 8.33g/l encouraged stressful conditions in the soil and this caused a 

physiological difference. Indeed Davies and Zhang (1991) suggested that roots are able to send chemical 

messages that alter the metabolism and physiology of the tree systematically in stressful conditions. The 

stunting of tree growth by P. americana 8.33g/l is a key finding that warrants further investigation due 

to grower interest in growth inhibitors.  

 

Growth of trees in T. aestivum treated soil was highly variable to the point that they were statistically 

different to other treated trees but no different to the disease control, for which there is no 

explanation. It is known however, that allelochemicals present in T. aestivum has previously reduced the 

growth of other crops and some grass species (Ma, 2005). The impact on trees is unknown and 

potentially not transferable due to the physiological differences between monocotyledons and 
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dicotyledons. Other crops have been incorporated into soil and been beneficial by controlling disease, 

for example, corn residues can lower the severity of Verticillium wilt symptoms (Wiggins and Kinkel, 

2005). Although T. aestivum demonstrated inhibitory action against R. solani and P. ultimum it may be 

that the incorporation of below and above ground residues is required to have an effect in the field. 

The inability of a green manure to make an impact on tree growth is not new, in fact composts and 

organic amendments have not previously been found to control RD (Granatstein and Mazzola, 2001). In 

terms of RD the trees that were treated with A. sativum and B. juncea matched with these physiological 

symptoms, and to a lesser extent so did P. americana 8.33g/l. It was noted that A. sativum treated trees 

were linked with stunted growth, as were those treated with B. juncea. Both sets of trees had small 

girths, a lower count of active buds and smaller leaves, and a lack of root vigour. Alongside these results 

it was noted that both produced a heavier crop of fruit than any other treatment group of trees. The 

production of a large quantity and a heavy crop of fruit and thus the creation of progeny to continue the 

species is an evolved mechanism which occurs in response to stress. Stress can be anything that 

threatens the survival of an organism such as drought or the attack of pests and disease. According to 

Shelford’s law of tolerance biotic and abiotic factors can directly impact on survival rates when 

individuals in a population move out of the optimal zone and reach the zones of stress and of 

intolerance. Berman and DeJong (1996) documented an increase in crop load of P. persica in water 

stressed conditions. It was found that a heavier crop load with a low crop weight denoted stress due to 

limited resources being available for the synthesis of fruit. It can be concluded that B. juncea trees were 

more stressed than those treated with A. sativum as the latter demonstrated a heavier fruit weight. It is 

fair to assume that the production of a heavy crop of fruit is not indicative of stress but rather an 

indication that other tree groups expended energy on growth (secondary, primary, and leaf production) 

rather than the production of flowers and therefore fruit. Cross pollination may have been a factor also 

however this is difficult to substantiate.  

 

6.2.4 Variability in the growth of trees treated with green manure 

 

It was found that the growth of trees in response to the addition of green manure was variable. This 

variability may have been caused by numerous factors that could not have been controlled. The green 

manure may not have been consistent throughout in terms of the concentration of components. There 

is also the fact that the trees were containerised. The use of containers can expose trees to extremes in 

temperatures and moisture (even though the latter was regulated as much as possible). Changes in 

temperature and moisture content between pots may have influenced the rate at which the green 

manure decomposed. The use of containers would have altered the root function and morphology 

(Mathers et al., 2007). Containerisation was a necessary limitation due to the need to create single tree 

replicates and provide intact root systems for destructive analysis. 

 

 



100 

 

6.2.5 Limitations of the three year bioassay 

 

The three year bioassay was based on a one time application of green manures at the start of the study. 

Given the constraints on resources it was impossible to trial multiple application alongside single time 

application; however may be a consideration for future study. Further investigation of root architecture 

may also be a consideration. Lengths of primary, secondary and teritiary roots, and number of root tips 

could be quantified to further demonstrate the influence of green manure amendments on growth.  

 

6.3 Microbial study  

 

The microbial study determined the presence of a Fusarium-Pythium-Rhizoctonia pathogen complex in 

the presence of beneficial Trichoderma species. Pathogen colonisation was similar for diseased soils and 

those treated with T. aestivum, A. sativum, T. patula and P. americana 8.33g/l. Detection of nematodes, 

R. fragariae and Alternaria spp. was noted and disregarded as being pivotal in the incitement of RD and 

likewise Trichoderma spp. could not be correlated with a treatment. P. americana 15.00g/l and B. juncea 

treated soils lacked R. solani and the latter was similar in composition to the sterile soil. P. americana 

8.33g/l stimulated the microbial activity of deleterious species whilst the 15.00g/l stimulated some 

pathogens whilst suppressing R. solani.  

 

6.3.1 Pathogens associated with S. aucuparia 

 

The association of pathogens with S. aucuparia has not been widely researched. Otto et al. (1994) found 

evidence of actinomycetes with the level of infection and damage to the root epidermis and cortex 

being comparable with that of Malus species and higher than that of Pyrus species. The only other study 

to define the pathogens affecting S. aucuparia was completed by O’Neill (2011) where the complex of 

pathogens in untreated soil consisted of Fusarium spp., Fusarium oxysporum, Pythium spp., and 

Cylindrocarpon destructans. This study in contrast determined that the common denominators across all 

treatments in the diseased soil sub-set point towards the presence of a Fusarium-Pythium-Rhizoctonia 

pathogen complex in the presence of beneficial Trichoderma species. This study even indicated the 

presence of P. sylvaticum, previously found in Apple RD soils (Tewoldemedhin et al., 2011a), which 

O’Neill (2011) anticipated to find but did not detect in their DNA Multiscan results. The difference 

between the pathogens found in this study and that of O’Neill (2011) indicates that RD is not specific 

and that there can be overlap of causal agents between rosaceous species in addition to variation within 

species. This has not been found before for this particular rosaceous species due to limited research, 

however this has been demonstrated in other species (section 1.5.2).  

 

The interaction within the pathogen complex found in this study is unknown at present and warrants 

further attention. RD may be the result of just one pathogen, or all three acting in unison where they are 
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virulent only when acting in synergy (Lamichhane and Venturi, 2015). All three pathogens are causal 

agents of damping off and are ubiquitous in forest nursery soils (Sneh, 1996) and therefore would not 

be out of place in a woodland setting. It is likely that these pathogens are linked to RD due to their 

mechanism of attack on the roots and the persistence of the disease in the soil for over fifteen years. 

These pathogens can act in unison or independently as demonstrated in a study of bean root rot, by 

Pieczarka and Abawi (1978), in which F. solani elicited severe hypocotyl decay with slight stunting and 

no root rot, whilst P. ultimum species caused root necrosis, limited hypocotyl decay and a loss in dry 

weight. In combination these two pathogens caused a 74% reduction in dry weight and a greater degree 

of root rot and stunting than what was observed in plants infected by the individual pathogens. R. solani 

alone restricted hypocotyl and caused root lesions. Pieczarka and Abawi (1978) found that there was no 

interaction between R. solani and F. solani, however R. solani demonstrated an antagonistic relationship 

towards, and thus reduced the effects of, P. ultimum. Although Fusarium has been shown to interact 

with Pythium with deleterious results there is uncertainty regarding the involvement of Fusarium 

species with RD (O’Neill, 2011). In this study Fusarium did not demonstrate a strong association with 

Pythium and Rhizoctonia species which were closely linked in a PCA. Many studies have implicated 

Pythium and Rhizoctonia in the development of the disease and so it is likely that they are acting in 

unison or with another undetected causal agent (Caruso et al., 1989; Mazzola, 1998; Mazzola et al., 

2002; Mazzola and Mancini, 2012).  

 

6.3.2 Long term effect of P. americana on the presence of pathogens 

 

Long term suppression of pathogens by green manure is possible through the reduction of deleterious 

microbes and the promotion of beneficial organisms that can naturally control pathogens. This is 

something that requires further investigation; however the results demonstrated that P. americana can 

be linked to different populations of microorganism. All three concentrations of P. americana were 

different with regards to the microbes that were present, however all had elevated levels of pathogens 

where present and reduced rates of the undefined Trichoderma species. Soils treated with the lowest 

concentration of P. americana contained all pathogens, with R. solani at a reduced rate and also the 

introduction of the beneficial microbe T. asperellum. Soils treated with 8.33g/l were associated with all 

pathogens and an undefined Trichoderma. Meanwhile soils receiving the highest concentration of the 

green manure had a similar composition of microbes except there was no Rhizoctonia species present. 

These results demonstrate that, regardless of concentration, the addition of P. americana does not have 

a consistent affect on soil microbes. The green manure increases microbial activity although it is difficult 

to deduce the interactions that have taken place in order to result in the communities present after 

treatment with different concentrations. It appears that soils treated with 8.33g/l have stimulated the 

microbial activity of deleterious species whilst the highest concentration has stimulated some 

pathogens whilst suppressing R. solani. It has been found previously that green manures with 
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antimicrobial properties have the ability to increase the population of pathogens; however this is 

normally temporary until other microbes increase in numbers (Lazzeri and Mancini, 2001).  

 

6.3.3 Long term effect of comparison green manures on the presence of pathogens 

 

Examination of infestation tables and centroid cluster analysis grouped the treatments in the diseased 

soil sub-set according to their similarity. One group that had similar colonisation patterns contained 

[diseased soil - T. aestivum treated soil - A. sativum treated soil - T. patula treated soil - P. americana 

treated soil 8.33g/l]. These soils all had the same pathogens and Trichoderma species. T. aestivum and P. 

americana treated soils were both infested with R. fragariae and T. aestivum treated soil lacked in F. 

solani. This may demonstrate that neither R. fragariae nor F. solani play a significant role in the 

presentation of the disease. Considering this information with the PCA it is also clear that the presence 

of Trichoderma species in this instance does not have a bearing on the health of the disease. A. sativum 

treated soils were infested with all pathogens found in the diseased soil in addition to F. solani and 

Alternaria species. The latter was also found in sterile soils. T. asperellum is also present and R. solani 

numbers were reduced in this particular soil.  

 

Soils treated with P. americana 1.67g/l, P. americana 15.00g/l, and B. juncea were distinctly different to 

this group and the each other. Both P. americana 15.00g/l and B. juncea treated soils shared the 

commonality of the absence of R. solani. In fact, B. juncea treated soils were similar to sterile soil in that 

diversity of microbes detected was minimal and the former only contained a low abundance 

unidentified Fusarium species and F. solani (out of the 65 micro-organisms included in the DNA array). 

This finding is in line with Oliver et al. (1999) who demonstrated that brassicaceous plants can inhibit 

Pythium spp., Fusarium spp. and V. dahliae. Out of all the green manure treated soils it was the one 

associated with B. juncea that demonstrated the lowest infestation and lowest diversity whilst all other 

green manure treated soils were variable in their microbial constituents. Brassicaceous species contain 

glucosinolates which have previously been shown to amend pathogenic and saprophytic micro-organism 

communities (Cohen et al., 2005; Ascencion et al., 2015; Mazzola et al., 2015; Zou et al., 2015). Yulianti 

et al. (2006) demonstrated that brassicaceous plant matter can inhibit the growth of soil borne fungi. It 

could be hypothesised that the activity of this green manure amendment has been indiscriminatory and 

removed beneficial organisms other than Trichoderma.  

 

In a sterile environment soil treated with the two lowest concentrations of P. americana were infested 

with undefined Fusarium and Pythium, and specifically P. sylvaticum. Trichoderma species were missing 

from the 1.67g/l treated soil however they were present in the 8.33g/l and 15.00g/l treated soil. The 

concentration of P. sylvaticum may have played a role in this where infestation rates were higher in the 

1.67g/l treated soil. The presence or absence of Trichoderma species did not influence tree growth 

rates. Interestingly R. solani was present in 15.00g/l treated soil but did not affect tree growth which 
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may be due to the suppression of this pathogen, which was potentially due to the high infestation rates 

of Fusarium species and F. solani specifically (Section 1.7.4.3). Likewise soils treated with other green 

manures were composed of varying levels of Fusarium and Pythium species but essentially in all there 

was a lack of R. solani. The infestation of sterile soil with microbes that are normally associated with 

being pathogenic may be due to the fact that in isolation these microorganisms are acting as 

faculatative saprotrophs in the presence of organic matter (green manure amendment).  

 

6.3.4 Green manure amendments and nematode presence 

 

This study did not look at the influence of green manures on the presence of nematodes but rather their 

ability to infest the tree roots in the presence of the plant matter. Sterile soils did not demonstrate 

evidence of nematode presence due to the sterilisation process and the difficulty of entering a closed 

pot system when there is no point of access into the water of the soil pores. Diseased soils however 

would have had a population of nematodes to begin with and it was found that green manure 

amendment was associated with elevated nematode cyst counts. Regardless of this there was no 

association between tree growth and the presence of these organisms. Jaffee et al. (1982) determined 

that nematode removal has no link to reduced disease expression. This may be due to the stimulation of 

plant resistance to nematodes. This has been observed before on Solanum tuberosum where data 

analysis of potato cyst nematodes population increases showed that there was no loss of the vigour, 

growth and yield as a result of the infestation (A. Barker, personal communication, February 2017).  

Barker (personal communication, March 2017) suggested that the crop may have up-regulated its 

defences against the parasite. Indeed Kim et al. (2005) noted that phenolic compounds increased 

seedling biomass of Cassia mimosoides (artillery plant) and potentially change root tip physiology 

allowing the vacuoles to store protective compounds.     

 

6.3.5 Limitations of molecular methods  

 

The use of molecular methods allows the detection of these pathogens to either a genus or species 

level, whilst eliminating the problem of contamination by fast growing saprophytic fungi and bacteria 

and the expense of antibiotics encountered with in vitro isolation studies. Sampling DNA using molecular 

techniques does not come without its pitfalls and care must be taken in evaluating the results. There is 

the potential of misclassifying pathogens due to similar DNA sequences in their genomes. It is also 

possible to find species that could be pathogenic or non-pathogenic (Lievens and Thomma, 2005). This is 

exemplified by the many AG groups of R. solani which can have specific hosts (Section 3.1). In line with 

O’Neill (2011) samples were collected using methods that accounted for variability and the occurrence 

of ‘hot-spots’ within the soil Balci et al. (2013) and were a robust method of detection for samples that 

have multiple population targets (Lievens et al., 2007; Lievens et al., 2010). The microarray method has 

been used previously to quantify legume yield depression syndrome (Fuchs et al., 2014); evaluate 
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chlorine disinfestation (Cayanan et al., 2009); detect Pythium spp. (Tambong et al., 2006); and detect 

fungi and oomycetes in Solanaceae species (Zhang et al., 2008). 
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6.4 Links between the three studies and conclusion 

 

The overall outcome of the studies is displayed (Table 6.1); in relation to the diseased soil sub set and 

grouped in accordance with the dendrogram (Figure 4.2). As anticipated there is no clear connection 

between treatment and the effects on growth and composition of microbes; however some links can be 

inferred. DNA Multiscan results indicated that the long term changes in the soil microbial composition 

could be ascribed to four groupings of green manure (Section 5.2.2). Trees that displayed variable 

growth were associated with a varied inoculum of pathogens. As previously stated the trees that 

demonstrated significant growth were those that were treated with P. americana 15.00g/l and T. patula, 

whilst those receiving applications of B. juncea and A. sativum were stunted. Those receiving all other 

treatments were variable in growth.  

 

Table 6.1: Overall results demonstrated by each study.  

Treatment (Grouped in 

accordance with DNA Multiscan)  

Inhibition study 

Chapter 3 

Bioassay study 

Chapter 4 

Microbial study 

Chapter 5 

Diseased 

T. aestivum 

A. sativum 

T. patula 

P. americana 8.33g/l 

 

Moderate inhibition solid 

Moderate inhibition solid 

Slight inhibition/stimulant 

Good inhibition liquid/solid 

 

Variable  

Stunted, stressed 

Vigorous 

Variable 

F, P, PS, RS, T 

F, P, PS, RS, T,  

F, P, PS, RS, T,  

F, P, PS, RS, T,  

F, P, PS, RS, T,  

 

+ RF 

+ FS, A, TA 

+ FS 

+ FS, RF, 

P. americana 1.67g/l  Slight inhibition Variable F, P, PS, RS, T,   + FS, TA 

P. americana 15.00g/l  Good inhibition liquid/solid Vigorous  F, P, PS, T         + FS 

B. juncea Moderate inhibition/stimulant Stunted, stressed F + FS 

Inhibition study key: moderate: where inhibition is significantly different to the control but not to other treatments; 

slight: inhibition is temporary; stimulant: growth of pathogen is more than the control; good: inhibition of 

pathogens is significantly more than other treatments. Bioassay study key: variable: variability around the mean is 

high enough that range of growth is not significantly different to the control or other treatments; stunted, stressed: 

tree growth is significantly less than other tree groups; vigorous: tree growth is statistically more than the majority 

of other tree growth. Microbial study key: Green: decrease in pathogen inocula and an increase in beneficial 

microbes. Red: increase in or the introduction of pathogen inocula and a decrease in beneficial microbes. F = 

Fusarium, P = Pythium, PS = P. sylvaticum, RS = R. solani, T = Trichoderma. Introductions: RF = R. fragariae, TA = T. 

asperellum, FS = F. solani, A = Alternaria species. 

 

Table 6.1 demonstrates that 1. In-vitro results do not necessarily relate to what may happen in ‘real 

world’ circumstances; 2. Plant growth can vary in different situations and do not necessarily correlate 

with a prescribed complex of pathogens; 3. Addition of green manure, specifically P. americana, at 

different concentrations may not share consistent results in terms of short term inhibition of pathogens 

and long term microbial composition; 4. Improved tree growth may be related to green manure soil 

amendments but the mode by which they act requires further investigation.  
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The amendment of soil with organic plant matter is known to improve the overall health of a soil, both 

biologically and physically. Organic matter stimulates population growth of microbes which can in turn 

create an environment which is suppressive to disease through the stimulation of plant defence 

mechanisms, in soil competition for space and resources, and antagonistic behaviour towards 

pathogens (Garbeva et al., 2004; Mazzola, 2007; Larkin et al., 2011; and Bernard et al., 2012). Organic 

matter is also beneficial due to its by-product humic acid which chelates nutrient ions and improves the 

structure of the soil binding soil particles, improving water retention and stabilising pH.  

 

It was found that two treatments were associated with improved growth; however it is unclear how this 

has been achieved. This lack of clarity is down to the converse difference in their activity. T. patula was 

unsuccessful in vitro where it induced a slight inhibition of microbes, whilst in terms of soil microbes it 

was associated with a reduction in R. solani and an increase in F. solani and Trichoderma species. It was 

determined earlier that R. solani plays a key role in the expression of the disease whilst Trichoderma 

presence does not make a vast difference. Meanwhile P. americana induced to a totally different 

response in the soil. In vitro this treatment successfully inhibited the two pathogens, however in vivo the 

incidence of pathogens was elevated. P. americana treatment was previously correlated with increased 

microbial activity which may explain this (Lock, 2010; unpub). The key difference between T. patula and 

P. americana 15.00g/l and the other treatments is that the former reduced the inoculum of R. solani and 

latter removed R. solani from detection, whilst soils treated with other green manures still contained 

this pathogen often in the presence of additional pathogens (with exception to B. juncea treated soils). 

This goes back to the principle as discussed in previous chapters that R. solani is required for this disease 

to be expressed (Section 5.4.2.1). These green manures may act differently to each other due to their 

properties (Table 1.7).  

 

The lack of R. solani is not always related to an improvement in tree growth. B. juncea was associated 

with a loss of diversity in both pathogens and beneficial species (Sections: 4.6.4; 5.4.5). In vitro the plant 

matter either provided moderate inhibition or stimulation of pathogen growth in certain circumstances. 

Here the addition of this green manure was associated with colonisation by F. solani and the loss of 

other pathogens associated with diseased soil. As stated previously this loss in pathogens and beneficial 

microbes may be also linked to the loss of other organisms that were not measured in the DNA 

multiscan (such as mycorrhizae). Indeed the inoculum in the B. juncea treated soil was much like that of 

a sterilised environment that had been recolonised. The removal of diversity in the soil in this case has 

been detrimental to the growth of trees. Lacey (2000) found that Streptomyces scabies was negatively 

correlated with microbial diversity. B. juncea soils may have favoured a pathogen that was not detected 

by the DNA Multiscan and caused a stunting in tree growth. It is possible that the in-vitro activity of 

these green manures could not translate from the laboratory to the field. This is potentially due to the 

loss of active properties due to biodegradation, sorption, and leaching (Kim et al., 2005). In fact Kim et 
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al. (2005) suggested that concentrations of phytochemicals would be higher in vitro than in the soil. It is 

also possible that the properties within plant tissues can have an allelopathic affect whereby plant 

growth is inhibited. For example Kim et al. (2000) demonstrated that phenolic acids from P. americana 

could inhibit 35 plant species and also nine fungal species. This is due to this particular substances ability 

to reduce nutrient fixation and mineral uptake, and inhibit metabolic pathways in photosynthesis and 

respiration. Limited tree growth was not only connected to a loss of microbial diversity but also the 

presence of diversity. Although A. sativum demonstrated an ability to suppress pathogens in vitro the 

growth of trees was stunted. Soils were associated with higher amounts of Pythium and the addition of 

F. solani and Alternaria species. The benefit of this green manure relating to the reduction of R. solani 

and the stimulation of colonisation of T. asperellum did not mean that tree growth was improved as a 

result. It is possible that the role of R. solani in the complex was replaced by another unknown causal 

agent. It appears that RD is not specific as demonstrated here and the complex detected can vary 

between diseased tree stands.  

 

In addition to demonstrating that plant matter from one green manure can stimulate growth whilst 

another can stunt growth it was found that the concentration of green manure can have unexpected 

results. This was displayed by the trees that had received a treatment of P. americana 8.33g/l which had 

a smaller primary growth and larger secondary growth in relation to the lower and higher 

concentrations of the green manure. It is clear from the overview in Table 5.1 that each green manure 

concentration was in its own group as defined by centroid hierarchical clustering. Although P. americana 

8.33g/l demonstrated inhibitory power against pathogens in vitro it was found that the soil associated 

with this treatment had the same composition of pathogens as the diseased soil in addition to the 

occurrence of F. solani and R. fragariae. Trichoderma species were reduced and the inoculum of most 

pathogens was elevated. P. americana 15.00g/l as stated above was not associated with the presence of 

R. solani. Trees treated with P. americana 8.33g/l may well have reacted to the presence and infestation 

rates of the pathogens. It is possible for a tree to undergo a response producing secondary growth as 

part of a defensive reaction. When a tree is under tangential stress it can result in an increase in the 

diameter of the stem due to cell division, cell elongation, formation of dilatation tissue and frequent 

creation of cambium (Romberger and Mikola, 1970). In the event of a vascular attack a tree can 

compartmentalise any decay (CODIT) and initiate a reaction in RAP cells (ray and axial parenchyma). The 

physiological activity and spatial arrangement of these cell types in response to pests and disease is not 

fully known and the differentiation of their function in defence and tree mechanics has not been 

defined. It is known that trees that are poor at compartmentalisation respond to wounding by laying 

down thicker bark and wide dilating rays (Morris et al., 2016). Indeed ray and axial parenchyma actively 

divide producing reaction wood to overcome wounding as part of CODIT so it is not farfetched to 

suggest some involvement of these cells here in response to any detrimental conditions caused by the 

addition of P. americana 8.33g/l. In addition to this response, it is possible for growth inhibitors to be 

present in the green manure being used. Allelopathic chemicals, such as flavonoids, phenolics, 
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cyanogenic glycosides, and terpenoids are used in forestry to inhibit growth of some unwanted species 

(Fisher, 1980; Chick and Kielbaso, 1998; Li et al. 2010). However; this would need to be investigated 

further for confirmation.  

 

6.5 Conclusion 

 

Vigourous and structurally sound trees are more likely to survive disease events and transplantation to a 

new environment. Indeed, stress from transplanting trees alone results in mortality rates of 30-50% in 

the first growing season due to a loss of root mass of up to 98% from bare root stock, due to the sub-

optimal conditions in which the tree is placed (Hirons and Percival, 2012; Schaffert and Percival, 2016). 

RD is well known to cause stunting and necrosis of roots and thus, suppression of the causal agents for 

RD is an important factor in securing the survival of trees, which are placed in an orchard, previously 

occupied by the same species. In adding a substance to the soil a certain amount of care needs to be 

taken to ensure that any changes that occur are going to be positive and consistent for the growth of 

amenity trees such as S. aucuparia. It is important to provide a solution to disease that suppresses 

pathogens in the long term, by providing a situation where these deleterious organisms are in balance 

with and controlled by beneficial organisms. Disease control is facing difficulties, with active ingredient 

(AI) availability fluctuating, due to new registrations approved for market use and withdrawal of key 

products which contain chemicals that are no longer approved. Two recent examples of this are: the 

withdrawal of ipriodione, which was used extensively by the sports amenity turf sector, and; and the 

review of gyphosate by a European board to determine if its registration should be renewed. With 

chemicals and biocontrol agents (currently), and biostimulants (as of 2019) being party to regulatory 

registration, it is important that there are other options available to the horticulture sector. An IPM 

approach takes into account the methods of biological control, alongside land use management, use of 

resistant stock, and cultural practices. It is a preferred strategy for disease control, and should be 

considered over and above the exclusive use of a chemical control (or even an organic control) that 

results in a sterilised soil environment, in which both pathogen and beneficial organism has been 

removed. This approach would need to be consistent in action, so as to yield healthy stock that is fit for 

purpose.  

 

The use of organic amendments on a soil ecosystem is not that clear cut. Indeed, this study has 

highlighted that different concentrations of the same green manure can have a varied response. In-vitro 

effects on pathogens do not always relate to what is expected. P. americana applied at 15.00g/l had a 

positive impact on root and shoot growth as well as having encouraging results in-vitro and in relation to 

the long term microbial composition. However, the variability between the two lower concentrations of 

the green manure put into question the efficacy of this as a solution to RD. T. patula yielded positive 

root and shoot growth, although performed poorly in in-vitro due to stimulating pathogen growth. It is 

unknown whether T. patula would demonstrate, as seen with P. americana, a variable affect on tree 
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growth at different concentrations. Likewise, B. juncea action was inconsistent, as evidenced by this 

green manure stimulating pathogen growth in-vitro, despite reducing the diversity of pathogen 

infestation in-vivo. The potential stimulation of deleterious rhizobacteria and fungi and 

related/unrelated stunting of tree growth by green manures is someting that needs to be avoided. In a 

seasonal disease this stimulation of deleterious pathogens could be avoided, however in a system in 

which the pathogen is present throughout the year this may not be possible. Green manure is often 

applied when it has the most concentrated AIs (before flower set), however it is unknown if this is the 

optimum time of application in terms of disease progression. The concentration of properties available 

in the plant matter can change during the life cycle of the green manure and are not always retained 

subsequent to harvest, and can also vary between species of a medicinal plant. It may also be that the 

green manure needs to be applied in yearly applications rather than a single application due to the long 

term persistence of RD causal agents in the soil which build up as a result of tree root exudates (Section 

1.5.2). To add complication to the matter, abiotic soil properties can play their own role; with pH, OM, 

texture, water availability and temperature all becoming a factor affecting the release and action of 

properties in the green manure. Indeed, even a tree can have an impact on microbial communities 

within the soil due to the release of metabolites in the form of exudates. Yulianti et al. (2006) 

demonstrated that the use of green manures as a disease break can be fairly inconsistent in practice; 

and is unlikely to be a practicable approach in an orchard setting. Likewise, Granatstein and Mazzola 

(2001) and Neilsen et al. (2004) found that composts or green manures are ineffective at controlling RD 

in Malus. This variability is down to the microbial communities that are extant in the soil. Populations of 

microbes can occur in hot spots and move towards root exudates via chemotaxis. As stated earlier 

plants and micro-organisms are continuously interacting with each other and the environment that they 

occupy. For example, this complexity even extends to the use of beneficial microbes, where 

Trichoderma spp. and B. subtilis were linked to lower dry root weights of Malus spp. seedlings when 

inoculated separately. However when these micro-organisms were added to the soil together they were 

positively associated with increased tree heights (O’Neill, 2011). In terms of abiotic factors, the 

production system can also have an influence on the ability of a green manure to perform. For example 

Mazzola (2007) found that compost was much more effective in treating containerised plants than those 

planted directly into the soil. But then as stated previously containerisation can present its own 

problems by exposing the trees to extremes in moisture and temperatures. 

 

These interactions need to be understood more fully to tailor a specific treatment to a situation. The 

variability in the results obtained from using green manure as a single time application demonstrates 

that this is not a viable option for treating RD. The problem with using green manure, as demonstrated 

here, is that there is no specificity in its activity and the suppression of disease is inconsistent (Hoitink 

and Boehm, 1999), as too is tree growth (Section 4.6.3).  

The results demonstrated here have determined that P. americana and T. patula can both impact 

positively upon tree growth in a replant situation and also, in relation to, P. americana can stunt growth. 
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It is therefore possible to conclude that there are AIs available that may have potential as biocontrol 

agents and also plant growth regulators, both of which are important in amenity horticulture and 

forestry. In order to positively utilise these AIs they need to be applied in a more consistent manner. 

This research determined that green manure does influence tree growth in a replant situation, but 

further investigation should be undertaken to specify which actives (one or several) suppress 

deleterious organisms, and even which actives act as plant growth regulators (as an interesting side 

line). As an alternative of using green manure it may be that soluble phytochemicals with inhibitory 

effects, as found in P. americana, are better applied as a cold press liquid (which would be organically 

certifiable) or as another liquid extract. It may also be possible to apply properties as pure extracts 

however it is likely that it will be economically active as a synthetically made product. As previously 

stated it has been suggested before that P. americana constituents could be incorporated into 

agrochemical formulations (Bajpai et al., 2012; Onaran and Sağlam, 2016). The extraction of 

antimicrobial constituents from plant matter would need to be refined to produce consistent results and 

avoid delayed action as noted previously (Sections: 3.4.2.2; 3.4.2.6). Degradation of these compounds 

would also need to be investigated to define if they can be stable for long periods of time as formulated 

biopesticides especially when place into a soil situation where factors such as temperature, leaching, 

and biodegradation can affect concentration of actives (Section 3.4.2.3). The solubility of some of the 

active properties (Section 3.4.1) is a useful attribute when it comes to mixing them with other chemicals 

(Sharp, 2017; pers comms). It is recommended that the efficacy of extracts of phytochemicals as 

possible treatments for RD is tested thoroughly due to potential for pathogens to be stimulated (Section 

6.1.2.8; Table 6.1). Likewise further investigation of a cold water extract may prove fruitful in the 

development of an effective biopesticide for use against RD or as a growth inhibitor where above 

ground growth can be limited. 

 

If an organic route is pursued and if a product has potential but cannot be used alone it may be worth 

considering that it would have to be applied alongside a biopesticide, biofertiliser and biostimulant in 

order to give the plant the resources to grow at the same time providing the necessary constituents to 

either tolerate disease or up-regulate disease resistance. In addition application of a cold press liquid or 

green manure could be followed by inoculation of the soil with a healthy balance of micro-organisms 

that would act much like a probiotic for the soil.  

 

Any solution that is found for RD will have to pass the rigours of legislation to allow it to be released to 

the market. In addition to this products that claim to be pesticidal in nature need to be registered under 

government regulations. Sometimes the movement of a product from factory to shelf can take up to ten 

years (R. Sharp, pers communication, April 2017) and also will require a CE mark backed by trial results 

by 2024 (R. Cannings - EBIC, pers communication, November 2017). This makes the creation of solution 

for tree diseases very labour intensive and therefore a confidence in the consistency of a product needs 

is required before investment even at the early stages. For these reasons, and based on current results 
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this study does not advocate the use of green manures made of P. americana, T. patula, B. Juncea, A. 

sativum, and T. aestivum as one time soil amendments to treat RD.   

 

6.6 Recommendations for future research  

 

 There should be more time dedicated to exploring the interations between the pathogen complex, 

Fusarium-Pythium-Rhizoctonia, identified by the DNA results.  

 A long term study on the effects of green manure, T. patula, when applied at different 

concentrations, to demonstrate if this species demonstrates consistency. In addition, an 

exploration of the effect of changing application timing for green manures, T. patula and P. 

americana. 

 The investigation of active ingredients in P. americana which regulates plant growth, and those 

that suppress pathogens in-vivo. Likewise, a study to identify useful biocontrol actives in T. patula.  

 Once useful active ingredients have been determined, a study should be conducted to: define an 

extraction or synthesis method; identify their environmental fate; conclude if they act 

independently or synergistically; and find the optimum application method and timings. Bioassays 

should investigate root growth in addition to interactions with the rhizosphere and a consideration 

of changes in the soil phenolic profile, the impact on the soil community, and as a result of the 

rootstock being present and also any influence that an amendment may have, conducted as a 

metabolomic study.   

 In addition, an exploration of the influence of potentially useful AIs on pathogen sporulation and 

growth should be conducted to define if they are fungistatic or fungicidal.  

 As replant disease is not species specific, in terms of the composition of the complex of pathogens, 

then trials with any proposed treatments should be conducted across a number of orchards 

globally, to account for variation. 

 Other Phytolacca species should be considered for their ability to positively impact on tree growth 

in replant conditions. Active ingredients can vary according to species.  

 An appraisal of the use of active ingredients as part of an IPM approach. 

 The economic consequences of any replant disease treatment should be considered to quantify the 

costs versus the benefits. Economic losses in the amenity sector are not considered in as much 

detail as the top-fruit horticulture sector. This disparity in information should be removed.  

 Studies have demonstrated that the defence reactions are inadequate to mitigate biotic stresses 

(Weiß et al, 2017). Molecular and physiological studies into the use of active ingredients to elicit 

and up-regulate a defence response should be undertaken.  
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I Commission Decision 2008/753/EC 

 

FOOD AND ENVIRONMENT PROTECTION ACT 1985 

CONTROL OF PESTICIDES REGULATIONS 1986 

 

Commission Decision 2008/753/EC – Methyl Bromide – professional products 

 

Notice is hereby given that in exercise of the powers conferred by Regulation 5 of the 

Control of Pesticides Regulations 1986 (SI 1986/1510) (as amended) and of all other 

powers enabling them in that behalf, the Secretary of State, and the Scottish Ministers 

(as regards Scotland) and the Welsh Ministers and the Secretary of State (acting jointly 

as regards Wales) have: 

 

(a) revoked approval for the advertisement, sale, supply, storage and use of 

the pesticide products listed in the Schedule. 

 

(b) Given approval until 18 March 2009 for the advertisement, sale and 

supply by any persons for the pesticide products listed in the Schedule. 

 

(c) Given approval until 18 March 2010 for the storage and use by any 

persons for the pesticide products listed in the Schedule. 

 

Date of issue: (a) 17 October 2008 

 

Dates of revocation: (b) 18 March 2009 

 

 (c) 18 March 2010 

 

ALL OTHER CONDITIONS OF APPROVAL REMAIN UNCHANGED 

 

SCHEDULE 

 

Product Name MAFF/ 

MAPP 

Number 

Approval Holder Notice of  

Revocation Number 

 

Mebrom 100 M04869 Mebrom NV 2360 of 2008 

Methyl Bromide 100% M01336 Bromine & Chemicals 

Limited 

2361 of 2008 

Methyl Bromide 98% M01335 Bromine & Chemicals 

Limited 

2362 of 2008 

 

 

 
PSD Digital Signature 
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II Income in 2013 in relation to the top three producing 

countries in the world 

 

Table 1.2: Income (US dollars/tonne) in 2013 in relation to the top three producing countries in the 

world (data sourced from FAOSTAT, 2016).  

Produce Producing country Income (US dollars/tonne) 

Almond Spain 1984.53 

 Iran (Islamic Republic of) 5111.19 

 United States of America 7077.00 

Apple China, mainland 621.45 

 United States of America 668.00 

 Italy 753.86 

Cherry Spain 2037.26 

 Iran (Islamic Republic of) 2141.33 

 United States of America 2877.00 

   Sour cherry Ukraine 742.15 

 United States of America 791.00 

 Turkey 1064.12 

Peach and nectarine United States of America 680.00 

 Spain 955.61 

 China, mainland 1155.73 

Pear United States of America 541.00 

 Spain 819.74 

 China, mainland 863.57 

Quince Morocco 580.70 

 China, mainland 849.04 

 Iran (Islamic Republic of) 1591.25 

Strawberry Spain 1293.89 

 China, mainland 1565.72 

 United States of America 1887.00 
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III Records of S. aucuparia in the UK  

 Ancient Veteran Notable  

Arable  1  
Highland 

0 0 

Bridle path/ footpath 4 
Monmouthshire 
Northumberland 
Lancashire 
North Yorkshire 

15 
Highland 
Northumberland 
North Yorkshire 
Lancashire 
Conwy 
Powys 
Denbighshire 
Shropshire 
Monmouthshire 
Gloucestershire  
Dorset 

15 
South Lanarkshire 
Northumberland 
Gwynedd 
Conwy 
Denbighshire 
Nottinghamshire 
Shropshire 
Herefordshire 
Hampshire 

Common/health 2 
Shropshire 
Herefordshire 

0 0 

Deer park 0 8 
Highland 
Northumberland 
Cumbria 
Shropshire 
Herefordshire 
Hampshire 
Berkshire 
East Sussex 

5 
Durham 
Conwy 
Herefordshire 
Hampshire 
East Sussex 

Domestic garden 0 0 1 
East Ayrshire 

Field 14 
Dumfries and Galloway 
Cumbria 
Durham 
Lancashire 
North Yorkshire 
Denbighshire 
Powys 
Herefordshire 

16 
Cumbria 
North Yorkshire 
Conwy 
Gwynedd 
Powys 
Denbighshire 
Shropshire 

16 
Cumbria 
Durham 
Conwy 
Powys 
Denbighshire 
Shropshire 

Hedgerow 5 
North Yorkshire 
Shropshire 
Monmouthshire 

5 
Powys 
Monmouthshire 

7 
Powys 
Shropshire 
 

Landscape garden 0 3 
Herfordshire 
West Sussex 
Surrey 

0 

Moorland 24 
Highland 
Scottish Borders 
Northumberland 
Cumbria 
North Yorkshire 
Durham 
Conwy 
Gwynedd 
Powys 
Flintshire 

27 
Highland 
South Lanarkshire 
Northumberland 
Cumbria 
North Yorkshire 
Durham 
Conwy 
Gwynedd 
Powys 
Derbyshire 

8 
Gwynedd 
Powys 
Conwy 
 

Parish boundary 1 
Northumberland 

1 
Northumberland 

0 

POS 0 6 
Perth and Kinross 
North Yorkshire 
Lancashire 
Dorset 
Surrey 

1 
Lancashire 
 

River/ canal bank 16 
Northumberland 
North Yorkshire 

12 
Northumberland 
North Yorkshire 

5 
Gwynedd 
Durham 
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Cumbria 
Durham 

Cumbria 
Durham 

Conwy  
 

Roadside 1 
Derbyshire 

2 
Gwynedd 
West Sussex 

0 

Upland 63 
Highland 
Northumberland 
Cumbria 
North Yorkshire 
Durham 
Shropshire 
Herefordshire 

41 
Highland 
Northumberland 
Cumbria 
Durham 
North Yorkshire 
Conwy  
Gwynedd 
Powys 
Shropshire 
Denbighshire 
Derbyshire 
Herefordshire 

13 
Northumberland 
Durham 
Conwy 
Powys 
Shropshire Herefordshire 
 

Wood Pasture 1 
Gwynedd 

14 
Stirling 
West Dunbartonshire 
Dumfries and Galloway 
Scottish Borders 
Durham  
Gwynedd 
Conwy  
Powys 
Shropshire 
Monmouthshire 

3 
Stirling 
Hampshire 
Greater London 

Woodland 23 
North Yorkshire 
Durham 
Tyne and Wear 
Norfolk 
Suffolk 

42 
Highland 
Perth and Kinross 
West Dunbartonshire 
Stirling 
Dumfries and Galloway 
Cumbria 
Durham 
North Yorkshire 
Lancashire 
Conwy  
Powys 
Shropshire 
Monmouthshire 
Gloucestershire 
West Midlands 
Surrey 
West Sussex 
East Sussex 
Kent 

29 
Angus  
South Lanarkshire 
Cumbria 
Durham 
Northumberland 
Tyne and Wear 
Lancashire 
Shropshire 
Nottinghamshire 
Powys 
Herefordshire 
East Sussex 
Surrey 
 

Other 13 
Cumbria 
North Yorkshire 
Durham 
Argyll and Bute 

11 
Highland  
Durham 
North Yorkshire 
Conwy 
Herefordshire 

5 
Durham 
Tyne and Wear 
Gwynedd 
Herefordshire 
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IV  NRM methods for nutrient content study of leaf tissue 

 

Determination of nitrogen and carbon  

Matrix: Samples dried and ground to pass 0.5mm screen 

Samples are totally combusted in an oxygen enriched atmosphere in a reaction tube. Nitrogen and 

carbon products are carried by a constant flow of carrier gas (helium) through an oxidation catalyst, and 

then through reduced copper wires, where excess oxygen is removed and nitrogen oxides are reduced 

to elemental nitrogen. The nitrogen and carbon products are separated through a chromatographic 

column. As the products are eluted from this column they pass through a T.C.D detector, which 

generates an electrical signal proportional to the amount of nitrogen and carbon present. Various 

products can be eliminated if required using various traps, such as a magnesium perchlorate trap to 

eliminate hydrogen. Peak elimination reduces the risk of overlapping peaks and shortens run times. The 

procedure is known as the Dumas Technique. 

 

Determination of elemental content of an aqua regia digest 

Matrix: Samples are oven dried and ground to pass 1mm screen 

A representative portion of the prepared sample is digested in an open vessel with concentrated nitric 

and hydrochloric acid (reverse aqua-regia) using a temperature controlled digestion block. The 

formation of strong oxidising agents will destroy organic matter and break down the mineral matrix of 

the sample. The elements dissolved in the acid are analysed by ICP-OES / ICP-MS which gives an 

estimation of the ‘total’ content. Silicates present in the sample are not solubilised and are left as an 

insoluble residue in the digest. The elements in solution are then determined either by Inductively 

Coupled Plasma Mass Spectrometery (ICPMS), Inductively Coupled Plasma Optical Emission 

Spectroscopy (ICP-OES) or Atomic Fluorescence Spectroscopy (AFS). Elements determined by OES are 

Phosphorus, Potassium, Magnesium, Calcium, Sulphur, Sodium, Manganese, Zinc, Boron and Copper 

with Chromium, Lead, Arsenic, Cadmium, Molybdenum, Nickel and Cobalt by MS and Mercury and 

Selenium by AFS. 
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V  Agents that can affect Sorbus 

 

 Main agents of concern 

Agent Problems caused Solution/treatment 

Pests   

Mammals: deer, 

hares, rabbits, field 

mice, voles 

Reduced establishment of the young tree.  

Damage to seedling or bark.  

Research area located in a compound 

with a rabbit proof fence, and away from 

the natural habitat of these pests. 

Insects: 

Ottiorynchus 

sulcatus 

(Vine weevil grub) 

 

Occurring mostly in autumn and winter, these 

pests eat the bark of roots to 5mm above 

ground level. The affected plant comes into 

leaf slowly in Spring, is easily removed from 

the soil and has woody roots.  O. sulcatus 

prefer humus rich peaty soils.  

It is recommended that whips are 

planted into garden soil, as natural 

predators would control O. sulcatus 

larvae. This however is not a possibility 

in this instance as the soil needs to 

remain consistent for research purposes. 

Area quarantined from other plants not 

used for the study. Closest source: 

garden centre.    

Diseases   

Fireblight Erwinia 

amylovora 

Sorbus (especially those stressed) are 

particularly prone to this disease. Causes wilt 

and acute die back.    

Removal of infected area. 

Honey fungus 

caused by 

Armillaria spp.  

Causes mortality to Sorbus that are not being 

grown in optimum conditions where stress to 

the tree is likely.  

Excavate and burn infected material 

Coral spot fungus 

caused by Nectria 

galligena 

Can result in die-back where trees are stressed 

by an overload of nutrients.  A symptom of this 

disease is the wilting of flower clusters and in 

the worst cases the spread of the disease to 

the previous year’s growth.  Coral red 

fructifications can develop.   

Avoid drought stress and high nutrient 

levels.  

Other Other pests and diseases to be identified during the course of the study. 

McAllister, 2005 
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VI Weather data 

 

Weather in terms of temperature (ºC) and rainfall (mm) was variable throughout the duration of the 

bioassay (Figure 5.3).  

 

Figure 5.3: Mean rainfall and air temperature (including maximum and minimum) for the duration of the 

bioassay from 2012-2014. 

 

Rainfall was consistent across the year. October, December and January had more rainfall on average 

than September and July (H(11) = 927.402, p<0.001). Mean air temperatures were cooler from 

November to March in comparison to April to October. The temperature rose to a peak of 18ºC in July 

(H(11) = 764.743, p<0.001). Mean ground and soil temperatures had similar patterns (Figure 5.4).  

 

Figure 5.4: Mean temperature (including maximum and minimum at ground level (A) and in the soil at a 

depth of 1000mm (B) for the duration of the bioassay from 2012-2014.  

 

Ground level temperatures reached extreme lows in the minus from November to March with a peak of 

10ºC in July (H(11) = 477.663, p<0.001). Soil temperatures showed a lag with colder temperatures from 

January to March and a high of 17ºC in August. Temperatures did not drop below zero.  
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On comparing between year differences it was demonstrated that weather variables were found to be 

statistically different (Table 5.1). 

 

Table 5.1: Between year comparison of weather conditions (mean temperature and rainfall) 

 Mean temperature (ºC)  

Month Air (bulb) Soil (1000mm) Mean rainfall (mm) 

Jan 13-14  

- 
12%  

(H(5) = 32.509, p<0.001) 
147% 

(H(5) = 15.682, p<0.001) 
Feb 13-14 173% 

(H(5) = 17.939, p<0.001) 
20% 

(H(5) = 55.221, p<0.001) 
 

- 
Mar 13-14 327% 

(H(5) = 46.116, p<0.001) 
35% 

(H(5) = 63.297, p<0.001) 

 

- 

Application in 2012 and entry into weekly monitoring and measurement phase 
Apr 12-13 - 27% 

(H(5) = 62.685, p<0.001) 
75% 

(H(5) = 14.893, p=0.001) 
Apr 13-14 34% 

(H(5) = 21.498, p<0.001) 
46% 

(H(5) = 62.685, p<0.001) 
8% 

(H(5) = 14.893, p=0.001) 
May 12-13  

- 
 

- 
 

- 
May 13-14 19% 

(H(5) = 6.492, p=0.039) 
15% 

(H(5) = 37.524, p<0.001) 

 

- 
Jun 12-13 - 6% 

(H(5) = 21.632, p<0.001) 
82% 

(H(5) = 8.466, p=0.015) 
Jun 13-14 16% 

(H(5) = 13.899, p=0.001) 
6% 

(H(5) = 21.632, p<0.001) 
- 

Jul 12-13 17% 
(H(5) = 22.581, p<0.001) 

 
- 

 
- 

Jul 13-14  

- 
 

- 
 

- 
Aug 12-13  

- 
 

- 
 

- 
Aug 13-14 8% 

(H(5) = 7.477, p<0.024) 
 

- 
 

- 
Sep 12-13  

- 
 

- 
 

- 
Sep 13-14 9% 

(H(5) = 8.866, p=0.012) 
 

- 
 

- 
End of weekly monitoring and measuring phase – End of study 2014 

Oct 12-13 31% 
(U = 739.500, p<0.001) 

7% 
(U = 806.500, p<0.001) 

 

- 
Nov 12-13  

- 
12% 

(U = 755.000, p<0.001) 
 

- 
Dec 12-13  

- 
21% 

(U = 926.000, p<0.001) 
 

- 

 

During the first year, from 2012 and 2013, soil temperature and rainfall decreased significantly in April 

and June. Temperatures between October and December 2013 were higher than those experienced at 

the same time of the year in 2012. 2013-2014 data demonstrated that rainfall and soil temperatures in 

January 2014 were higher than January 2013. Temperatures were milder from February to the end of 

March 2014 and these higher temperatures continued until July at which point they were statistically 

similar to 2013. Rainfall was lower than previous years in June 2014. 
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VII NRM methods to characterise soil properties 

 

Matrix: Sample air-dried at a temperature not greater than 30°C and sieved to pass a 2mm screen, 

excluding stones and any fibrous material from roots, etc. 

 

Determination of the pH and Lime Requirement of Soil 

The pH of soil is defined as the pH, measured potentiometrically, of the suspension obtained by stirring 

soil with water. The ratio of soil to water is 1:2.5. Temperature is one of the factors that affect the 

measurement of pH so the measurement is carried out in a temperature controlled environment. 

 

Determination of Olsen’s Extractable Phosphorus in Soil 

A variety of chemical extractants have been developed to mimic the soil situation, thereby obtaining an 

assessment of the potentially plant-available phosphorus. One of the most commonly used extractants 

is 0.5M sodium bicarbonate known as Olsen’s Reagent. The available phosphorus is extracted from the 

soil at 20°C by shaking with 0.5M sodium bicarbonate solution at pH 8.5. Inorganic phosphorus then 

reacts with acid ammonium molybdate to form the phosphomolybdate ion, which, when reduced with 

ascorbic acid, forms a blue coloured complex. The blue colour is measured spectrophotometrically at 

880nm. 

 

Soil Tests for Potassium, Magnesium and Phosphorus 

A variety of chemical extractants have been developed to mimic the soil situation, thereby obtaining an 

assessment of the potentially plant-available potassium. One of the most commonly used extractants is 

Molar Ammonium Nitrate. The available potassium is extracted from the soil by shaking with M 

ammonium nitrate at 20°C for 30 minutes. After filtration, the concentration of potassium in the extract 

is determined by flame photometry. There are no significant interferences from other elements in the 

determination of potassium. 

 

Determination of Ammonium Nitrate Extractable Magnesium in Soil 

A variety of chemical extractants have been developed to mimic the soil situation, thereby obtaining an 

assessment of the potentially plant-available magnesium. One of the most commonly used extractants is 

Molar Ammonium Nitrate. The available magnesium is extracted from the soil by shaking with M 

ammonium nitrate at 20°C for 30 minutes. After filtration, the concentration of magnesium in the 

extract is determined by atomic absorption spectroscopy. The addition of a releasing agent to the 

sample before analysis eliminates interference by phosphate. 
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Particle size distribution 

Determined using a laser diffraction particle sizer. The soil sample is suspended in water and passed 

through a flow cell. The flow cell is positioned in the path of a laser beam and the particales of soil 

passing through the cell cause the laser light to be defracted. The amount the light is defracted is 

dependant upon the size of the particle in its path. Small particles cause greater defraction than large 

particles. The soil is then given a textural class using UK classification.  

 

Determination of elements zinc, manganese, iron and copper 

The available elements zinc, manganese, iron and copper are extracted from the soil at 20oC with DTPA 

solution, ratio 1:2. In theory the DTPA extraction is the basis for equilibrium of the metal in the soil with 

the chelating agent. A pH level of 7.3 enables DTPA to extract iron and other metals. 

 

Determination of available sulphate 

The available sulphate is extracted from the soil under controlled conditions, using a phosphate buffer 

extracting solution ratio 1:2. The filtered extract of the sample is analysed by Inductively Coupled 

Plasma Emission Spectroscopy. 

 

Determination of elements zinc, copper, nickel, chromium, lead and cadmium 

The available elements zinc, copper, nickel, chromium, lead and cadmium are extracted from the soil at 

20oC with 0.05M EDTA solution at pH 7.0 , ratio 1:5. The concentration of the elements in the extract are 

determined using ICP-OES (Inductivley Coupled Plasma Optical Emission Spectroscopy). 

 

Determination of calcium and sodium 

A variety of chemical extractants have been developed to mimic the soil situation, thereby obtaining an 

assessment of the potentially plant-available calcium and sodium. One of the most commonly used 

extractants is Molar Ammonium Nitrate. The available calcium and sodium is extracted from the soil by 

shaking with M ammonium nitrate at 20°C for 30 minutes. After filtration, the concentration of calcium 

in the extract is determined by Atomic Absorption Spectrophotometry. 

 

Determination of boron 

The available boron is extracted by hot water extraction. The concentration of boron in the extract is 

determined using ICP-OES (Inductively Coupled Plasma Optical Spectroscopy). 

 

Determination of organic matter content 

The organic matter is destroyed by dry combustion at 430oC and the loss in weight of the sample is 

reported as % of the original sample as the organic matter content. 
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VIII DNA Multiscan results  
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Plant Pathogens 
Alternaria 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 
Athelia (Sclerotium) 
rolfsii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bipolaris spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Botryosphaeria spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Botrytis spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Botrytis cinerea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Colletotrichum spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C.gloeosporioides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C. lindemuthianum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Coniothyrium fuckelii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Cylindrocarpon 
destructans 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cylindrocladium spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fusarium spp. 2 2 3 2 2 3 2 2 1 2 6 1 3 4 7 1 

Fusarium oxysporum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fusarium sacchari 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fusarium solani 2 2 1 2 1 0 2 0 0 0 6 1 0 0 7 0 
Gaeumannomyces 
graminis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Geotrichum candidum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Gnomonia comari  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptosphaerulina spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Myrothecium roridum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Olpidium bornovanus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Olpidium brassicae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Olpidium virulentus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Penicillium spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Penicillium expansum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phoma destructiva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phomopsis obscurans 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Phomopsis 
sclerotioides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phytophthora spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. cactorum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. citricola 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. cryptogea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. drechsleri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. infestans 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. ramorum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Plectosphaerella 
cucumerina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Podospora leucotricha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pythium spp. 2 2 3 0 2 1 1 1 2 2 1 1 2 0 0 0 

P. aphanidermatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. dissotocum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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P. graminicola 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. irregulare 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. polymastum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. sylvaticum 2 2 3 0 1 1 1 1 2 1 1 0 0 0 0 0 

P. ultimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rhizoctonia fragariae 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

R. solani 2 3 0 0 1 3 2 3 0 0 1 0 0 0 0 0 

Sclerotinia spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S. minor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S. sclerotiorum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stemphylium spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thielaviopsis basicola 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Venturia inaequalis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Verticillium spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

V. albo-atrum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

V. dahliae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pseudomonas 
marginalis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P.s syringae pv. porri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. viridiflava 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. fluorescens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Rhizobium 
radiobacter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Erwinia amylovora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
E. carotovora 
atroseptica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
E. carotovora 
carotovora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E. chrysantemi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E. pyrifoliae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Ralstonia 
solanacearum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Beneficials 
                Trichoderma spp. 3 1 1 0 2 2 3 2 0 2 2 0 0 0 0 0 

T. asperellum 3 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 

T. hamatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

T. harzianum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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VIIII P-values for Chapter 3 

 
Radial growth (mm) of R. solani on a plant matter disc and ethanolic disc in comparision to that of the 

control. Mean ± SEM are listed against the percentage inhibition of the treatment calculated using the 

control as a baseline. 

Hour Control Plant matter Inhibition Ethanolic extract Inhibition 

24 8.22 ± 0.62 3.44 ± 0.85 36% 2.00 ± 1.26 47% 

48 22.78 ± 0.47 13.93 ± 1.17 32% 15.07 ± 1.48 28% 

72 51.37 ± 0.48 22.33 ± 3.42 52% 38.11 ± 4.70 24% 

96 71.33 ± 0.98 25.67 ± 6.16 64% 52.26 ± 8.70 27% 

 

Radial growth (mm) of R. solani on P. americana amended agar in concentrations of 1.67g/l, 8.33g/l 
and 15.00g/l over 168 hours Independent-samples Kruskal Wallis test 

Hour Total N Test statistic DF Adjusted P-value 

24 144 68.524 3 0.000 
48 144 82.768 3 0.000 
72 144 92.210 3 0.000 
96 144 106.767 3 0.000 
120 144 109.230 3 0.000 
144 144 111.920 3 0.000 
168 144 111.937 3 0.000 
Radial growth (mm) of R. solani on agar amended with 8.33g/l of P. americana, B. juncea, T. patula, A. 
sativum, and T. aestivum amended agar over 72 hours. Independent-samples Krukal Wallis test  

Hour Total N Test statistic DF Adjusted P-value 

24 216 92.255 5 0.000 
48 216 102.060 5 0.000 
72 216 118.910 5 0.000 

Radial growth (mm) of R. solani on P. americana amended agar in concentrations of 20.00g/l, 25.00g/l 
and 30.00g/l over 168 hours Independent-samples Kruskal Wallis test 
Hour Total N Test statistic DF Adjusted P-value 
24 144 104.339 3 0.000 
48 144 104.499 3 0.000 
72 144 105.958 3 0.000 
96 144 107.356 3 0.000 
120 144 105.777 3 0.000 
144 144 108.479 3 0.000 
168 144 103.253 3 0.000 

Radial growth (mm) of R. solani on agar amended with a liquid percolation of P. americana, B. juncea, 
T. patula, A. sativum, and T. aestivum amended agar over 72 hours. Independent-samples Kruskal 
Wallis test 

Hour Total N Test statistic DF Adjusted P-value 

24 216 50.759 5 0.000 
48 216 97.306 5 0.000 
72 216 108.276 5 0.000 
96 216 114.242 5 0.000 
120 216 111.325 5 0.000 
144 216 107.569 5 0.000 
168 216 131.100 5 0.000 



163 

 

Radial growth (mm) of P. ultimum on P. americana amended agar 1.67g/l, 8.33g/l and 15.00g/l over 
168 hours. Independent-samples Kruskal Wallis test 

Hour Total N Test statistic DF Adjusted P-value 

24 144 98.847 3 0.000 
48 144 108.429 3 0.000 
72 144 118.602 3 0.000 
96 144 123.489 3 0.000 
120 144 123.616 3 0.000 
144 144 113.355 3 0.000 
168 144 119.730 3 0.000 

Radial growth (mm) of P. ultimum on agar amended with 8.33g/l of P. americana, B. juncea, T. patula, 
A. sativum, and T. aestivum amended agar over 72 hours. Independent-samples Kruskal Wallis test  

Hour Total N Test statistic DF Adjusted P-value 

24 216 136.049 5 0.000 
48 216 153.122 5 0.000 
72 216 164.535 5 0.000 
Radial growth (mm) of P. ultimum on P. americana amended agar in concentrations of 20.00g/l, 
25.00g/l and 30.00g/l over 168 hours Independent-samples Kruskal Wallis test 
Hour Total N Test statistic DF Adjusted P-value 

24 144 189.999 3 0.000 
48 144 203.880 3 0.000 
72 144 200.596 3 0.000 
96 144 198.329 3 0.000 
120 144 199.766 3 0.000 
144 144 194.586 3 0.000 
168 144 193.651 3 0.000 

Radial growth (mm) of P. ultimum on agar amended with a liquid percolation of P. americana, B. 
juncea, T. patula, A. sativum, and T. aestivum amended agar over 72 hours. Independent-samples 
Kruskal Wallis test 

Hour Total N Test statistic DF Adjusted P-value 

24 216 76.762 5 0.000 
48 216 125.722 5 0.000 
72 216 147.230 5 0.000 
96 216 158.985 5 0.000 
120 216 164.775 5 0.000 
144 216 160.735 5 0.000 
168 216 177.275 5 0.000 
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X Conference proceedings and papers 

 

Major achievements:  

o Shortlisted (1 of 59 in UK): Presented at SET for Britain, Parliament, Postcullis House, Westminster - 

March 2016  

o Speaker: audience of 70 experts: Australasian Plant Pathology Conference, Perth, Australia - Sept 

2015  

o Shortlisted (1 of 3 in UK): Prince of Wales Trophy – Sustainable Horticulture - May 2015  

o Poster presentation: European Conference of Arboriculture, Turin - May 2014  

o Poster presentation: Presented at International Congress of Plant Pathology, Beijing, China - Aug 

2013 

o Poster presentations: BSPP: University of Birmingham and University of Reading. TPBE II: University 

of Aston 
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controlling replant disease on mountain ash (Sorbus aucuparia). In: Liu, P., Yang, J. Wang, H., Zhang, 

G., Jian, H., Fan, Z., Wu., Yang, A., Li, H., Zou, J., Yu, J., and Han, C. (2013) 10th International 
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