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ABSTRACT

This article describes how there exist various vulnerabilities in computing hardware that adversaries 
can exploit to mount attacks against the users of such hardware. Microarchitectural attacks, the result of 
these vulnerabilities, take advantage of microarchitectural performance of processor implementations, 
revealing hidden computing process. Leveraging microarchitectural resources, adversaries can 
potentially launch timing-based side-channel attacks in order to leak information via timing. In 
view of these security threats against computing hardware, the authors analyse current attacks that 
take advantage of microarchitectural elements in shared computing hardware. This analysis focuses 
only on timing-based side-channel attacks against the components of modern PC platforms - with 
references being made also to other platforms when relevant - as opposed to any other variations of 
side-channel attacks which have a broad application range. To this end, the authors analyse timing 
attacks performed against processor and cache components, again with references to other components 
when appropriate.
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1. INTRODUCTION

Side-Channel Attacks, hereafter referred to as SCAs, pose serious security and privacy threats to 
modern and shared computing hardware (Ge et al., 2016; Liu et al., 2015; Xiao and Xiao, 2013; 
Kong, 2009). They are the result of spatial and temporal sharing of processor components between 
various applications as they run on the processor. A SCA – both theoretical (Hu, 1992, Page, 
2002) and practical (Bernstein, 2005; Osvik et al., 2006) – is carried out through the exploitation 
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of inadvertent information leakage from computing hardware (Gruss, 2017; Spreitzer et al., 2016) 
or via the exploitation of Microarchitectural channels in order to deduce secrete keys such as those 
utilised in symmetric cryptography (Inci et al., 2016; Yarom and Benger, 2014; Zhang et al., 2014). 
For instance, through a SCA, an attacker will be able to exfiltrate secret keys used in cryptographic 
implementations, or gain information about it by probing the runtime. As an example, in 128-bit AES 
implementations that utilises four 1KB precomputed SBox tables such as OpenSSL (OpenSSL, 2016; 
Gullasch et al., 2011; Neve and Seifert, 2006), the probing of the ciphertext can result in the extraction 
of the complete secret key (Zhang et al., 2014; Agrawal and Mishra, 2012; Neve and Seifert, 2006). 
Various systems have inherent side-channel vulnerabilities that can be exploited by the attackers to 
launch devastating SCAs. For instance, an adversary can simplsy carry out a differential power analysis 
(Kocher et al., 2017; Moradi et al., 2011; Kocher et al., 2011; Barenghi et al., 2010; Coppens et al., 
2009; Schramm et al., 2004; Guilley et al., 2004; Kocher et al., 2004) or monitor electromagnetic 
radiation (Longo et al., 2015; Hayashi et al., 2013; Homma et al., 2010), etc., in order to deduce vital 
data from the victims’ systems (Zhang and Lee, 2014).

Furthermore, processor architecture features including simultaneous multithreading (Tromer 
et al., 2010; Aciiçmez et al., 2007; Percival, 2005), control speculation and shared caches (Steffan 
et al., 2000; Tsai and Yew, 1996) can unintentionally accelerate side channels or enable new side 
channels (Yarom and Falkner, 2014; Wang and Lee, 2006). As a result, attackers can detect and 
exploit contention between hardware threads on the multiplier unit (Ge et al., 2016; Guan et al., 2015; 
Chen and Venkataramani, 2014). Such contention can be also exploited to create a side channel (Liu 
et al., 2016; Hunger et al., 2015; Ristenpart et al., 2009), for instance, to enable a malicious thread 
to differentiate multiplications from squaring in OpenSSL’s RSA implementation (Aciiçmez et al., 
2007; Wang and Lee, 2006). These attacks can determine the latency which result from contentious 
threats that are made to wait for access to functional units (Ge et al., 2016; Tromer et al., 2010; 
Ristenpart et al., 2009).

SCAs have increasingly advanced from attacks on computing devices to attacks on general-
purpose computing platforms (Spreitzer et al., 2016) and cloud computing infrastructures (Liu et al., 
2015; Zafirt, 2015; Zhang et al., 2014), and finally to attacks on mobile platforms (Lipp et al., 2016; 
Song et al., 2016; Chen et al., 2014; Sarwar et al., 2013). Such advancement coupled with evolution 
in computational power of modern processors (as a result of the sharing of processor units) have 
provided researchers with new research opportunities in the new field of Microarchitectural analysis 
to continue to devise new and more sophisticated SCAs (such as that of exploiting the sharing features 
of processors) as well as Covert Channel Attacks, hereon abbreviated to CCAs. For instance, studies 
since as far back as 1973 have demonstrated that microprocessors and caches are susceptible to both 
SCAs and CCAs (Gruss et al., 2017; Pessl et al., 2016; Liu et al., 2015; Hund et al., 2013; Kim et 
al., 2012; Neve et al., 2006; Osvik et al., 2006; Bernstein, 2005; Percival, 2005; Tsunoo et al., 2003; 
Kelsey et al., 2000; Kocher, 1996; Hu, 1992; Wray, 1992; Lampson, 1973) by illustrating that cache 
architecture brings about inconsistency in the runtime because of dissimilar memory accesses. Such 
vulnerability poses threats to hardware because cache accesses are reliant, for instance, on the inputs 
of plaintext and the key (Crane et al., 2015; Tromer et al., 2010; Neve and Seifert, 2006).

Furthermore, as well as modern computing processors and caches, SCAs can also be carried out 
against public key cryptography schemes (Zhang et al., 2014; Bellare et al., 2013), AES (Irazoqui et 
al., 2015, a; Irazoqui et al., 2014), ECDSA (Benger et al., 2014), TLS messages (Irazoqui et al., 2015, 
b), items in a shopping cart (Zhang et al., 2014) or even the key strokes typed in a keyboard (Gruss et 
al., 2015). In addition, SCAs can also be mounted against PaaS clouds (Liu et al., 2015; Zafirt, 2015; 
Zhang et al., 2014), across processors (Irazoqui et al., 2016; Crane et al., 2015; Hund et al., 2013) 
and in smartphones (Lipp et al., 2016; Song et al., 2016; Chen et al., 2014). Having examined the 
state-of the-art reveals that on one hand processor manufacturers incorporate new enhanced security 
features, but on the other hand security researchers compromise these features just to demonstrate 
the way in which secret information can be emitted (Grus et al., 2016; Hunger et al., 2015; Wang et 
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al., 2014; Saltaformaggio et al., 2013; Aciicmez and Seifert, 2007; Wang and Lee, 2006). In light 
of such increasing attention to both SCAs and CCAs, researchers have proceeded to suggest various 
hardware and software countermeasures to deal with these attacks (Martin et al., 2012; Kong et al., 
2009; Wang and Lee, 2007; Page, 2005).

1.1. Key Contributions and the Methodology Followed
In light of the above discussion, this study thoroughly reviews and analyses both sides of the 
competition, i.e. attacks and countermeasures, and makes the following contributions that include:

1. 	 A systematic survey of existing literature within the context;
2. 	 Analysing the field of Microarchitectural Analysis;
3. 	 Describing the main characteristics of Microarchitectural elements that enable the exposure of 

side channels;
4. 	 Identifying and examining existing Microarchitectural SCAs;
5. 	 Summarising the main features of hardware that bring about side channels, in order to enable the 

research communities and software developers to gain better insight into the way that applications 
can be pro-actively designed to prevent SCA vulnerabilities.

Therefore, as already stated, this study examines SCAs with the main focus being on Timing-
Based Side-Channel Attacks, hereon referred to as TBSCAs, and identify common features between 
them. The study then proceeds to analyse existing countermeasures and propose new ones. From our 
analysis, we deduce insight in relation to the current state of knowledge observed in the literature, 
establish means of attacks, predict possible future modus operandi of attacks, and propose effective 
future directions for the development of appropriate defence mechanisms. Although we present 
theoretical work of clear relevance, we primarily focus our attention on practical and established 
attacks and defence mechanisms. We believe that the understanding obtained from this study enables 
researchers to establish directions for future research and also to address such attacks on a larger scale.

1.2. Scope of the Survey
Based on our survey of the literature, various Microarchitectural SCAs have been identified, which 
organise into a taxonomy of 13 general sub-categories, including: Acoustic Cryptanalysis Attack, 
Branch-Prediction Attack, Cold Boot Attack, Cache Attack, Differential Fault Analysis Attack, 
DMA Attack, Electromagnetic Attack, Fault-Attacks, Lucky-Thirteen Attack, Pass the Hash Attack, 
Power-Analysis Attack, Tempest Attack, and Timing Attack. The emphasis of this study is only 
on Timing-Based Side-Channel Attacks, as opposed to any other 12 variants, with brief reference 
to other variations only when appropriate. Furthermore, the emphasis of our study on TBSCAs is 
only on those Timing Attacks that are capable of compromising ‘the components of a PC platform’ 
(such as a hard drive or a modern processor that can consist of processor cores and any functional 
units inside a multi-core multi-threaded processor) and ‘entities in a network’. Again, references are 
made also to TBSCAs in other platforms such as mobile devices or cloud infrastructure only when 
appropriate. In addition, this study does not explore covert channels even though they are referred 
to when necessary or appropriate. Any other topics related to side channels are beyond the scope of 
this paper. Existing countermeasures against TBSCAs within PC platforms and entities in networks 
are then analysed, and new strategies are proposed.

1.3. Outline of the Paper
The remainder of the paper is structured as follows: Section 2 provides a background for 
Microarchitectural Analysis. In Section 3, Timing-Based Side-Channel Attack are presented and 
examined in detail, while in Section 4, Side-Channel Attacks against RSA implementations are 
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analysed. Finally, Section 5 concludes the study by providing a detailed discussion about trends in 
attacks, challenges to offset them and the future research direction in this research field. Two main 
contributions of this paper are the scope of the discussion, since few works of similar scope currently 
exist, and the provision of an agenda for the direction of future research.

2. BACKGROUND TO MICROARCHITECTURAL SIDE-CHANNEL ATTACKS

In 1996, Kocher (1996) demonstrated that attackers could potentially deduce RSA keys, named after 
RSA’s creators “Rivest-Shamir-Adleman” (Rivest et al., 1978), and also other decipher cryptosystems 
by carefully calculating the amount of time needed to conduct private key operations. Kocher was 
able to define SCAs as a method that enables adversaries to extract secret information utilised in 
a computing process from unintended impacts that the computing process has on its environment 
(Gruss, 2017; Crane et al., 2015; Genkin et al., 2014). His seminal work can be considered as a 
foundation for a whole new domain of research into Side-Channels (Gruss, 2017). Kocher carried 
out an attack which researchers now define as Timing-Based Side-Channel Attacks, attacks that take 
advantage of differences in runtime of a computing process. Kocher illustrated that a Side-Channel 
Attack against a weak system would not be computationally difficult and often necessitate only 
ciphertext. His study revealed that attackers could make relatively precise timing calculations that 
would result in breaking systems such as “cryptographic tokens, network-based cryptosystems”, 
and other applications (Kocher, 1996). Other seminal works in the field of SCAs include those by 
Mangard et al. (2008); Quisquater and Samyde (2001), Chari et al. (1999) as well as another study 
by Kocher himself in Kocher et al. (1999).

In the years that have followed, researchers have been able to illustrate SCAs based on changes 
in different computing settings (Gruss et al., 2017; Spreitzer and Plos, 2013), including: AES (Zhang 
et al., 2016, b; Spreitzer and Plos, 2013; Gullasch et al., 2011; Osvik et al., 2006), differential power 
analysis (Kocher et al., 2017; Kocher et al., 2011; Barenghi et al., 2010; Guilley et al., 2004; Schramm 
et al., 2004; Kocher et al., 2004), monitor electromagnetic radiation (Longo et al., 2015; Hayashi et 
al., 2013; Homma et al., 2010), sound and electromagnetic emission (Faruque et al., 2016; Genkin et 
al., 2014; Callan et al., 2014; Cai and Chen, 2011), photonic side-channel leakage emission (Carmon 
et al., 2017; Krämer et al., 2013; Schlösser et al., 2012) and many more. All such attacks necessitate 
adversaries to be able to have a physical access to the victim device so as to monitor and deduce the 
secret information (Gruss, 2017; Ge et al., 2016; Spreitzer et al., 2016; Liu et al., 2015). However, 
the latest and more advanced SCAs including Cache-Timing Attacks (Ge et al., 2016; Yarom and 
Falkner, 2014; and Tromer et al., 2010) and DRAM row buffer attacks (Gruss, 2017; Schwarz et al., 
2017; Pessl et al., 2016) can be carried out remotely by running malicious software within a cloud 
setting (Spreitzer et al., 2016; Xiao et al., 2016; Irazoqui et al., 2016).

With the emergence of cloud computing phenomenon, the extent of SCAs has also evolved 
considerably since 2000s (Spreitzer et al., 2016; Kim et al., 2012). Likewise, with the rapid 
advancements in mobile technology, researchers have been able to demonstrate even more sophisticated 
SCAs compromising smartphones (Spreitzer et al., 2016; Song et al., 2016; Sarwar et al., 2013; Owusu 
et al., 2012; Lange et al., 2011). For instance, new attacks (Simon et al., 2016; Aviv et al., 2012; 
Xu et al., 2012; Cai and Chen, 2011) enable adversaries to deduce keyboard input on touchscreens 
through “sensor readings from native apps” (Spreitzer et al., 2016; Kambourakis et al., 2016; Aviv 
et al., 2012). Because typing on various places on the screen creates different vibrations, data from 
Motion (Cai and Chen, 2011), a SCA on touch screen smartphones with soft keyboards data, can be 
employed by an attacker to deduce the keys being typed. One of the methods to deduce keystrokes 
via the Motion, is to utilise a mobile application such as TouchLogger, an Android application that 
derives “features from device orientation data” (Cai and Chen, 2011). More advanced and new attacks 
can also enable the attackers to infer a user’s geographical location through the power consumption 
(Spreitzer et al., 2016; Mangard et al., 2008) and a victim’s identity through the procfs (Spreitzer et 
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al., 2016; Zhou et al., 2013) that is available from the proc filesystem (procfs) (Spreitzer et al., 2016; 
Michalevsky et al., 2015).

In the following section, we shall analyse various TBSCAs in relation to components of modern 
and shared PC platforms with references made also to other platforms (such as cloud computing and 
smart mobile phones) when relevant. To this end, a particular focus will be placed on TBSCAs with 
again making references to other variations of SCAs only when appropriate.

3. TIMING-BASED SIDE-CHANNEL ATTACKS

In this section, following giving a brief overview of timing channels and TBSCAs, we analyse 
various TBSCAs and demonstrate that hardware vulnerabilities resulting from various factors such 
as optimisations on a microarchitectural layer can be exploited by the attackers to launch devastating 
TBSCAs and as a result compromise the system security.

3.1. Overview
Over the past few years, information leakage via covert channels and side channels have been a grave 
concern for security researchers (Wu et al., 2015; Luo et al., 2011; Chen et al., 2010). This issue has 
recently been exacerbated by certain features of modern processor architecture (Liu et al., 2015; Yarom 
and Falkner, 2014; Hund et al., 2013; Wang and Lee, 2006) such as simultaneous multithreading 
(Zhang and Reiter, 2013; Domnitser et al., 2012; Tromer et al., 2010), speculative memory accesses 
(Doychev et al., 2015; Guan et al., 2015; Yarom and Falkner, 2014; Harnik et al., 2010) and shared 
caches (Gruss et al., 2016; Crane et al., 2015; Zhang and Lee, 2014; Zhang et al., 2012) that can 
accelerate both covert channels and side channels.

Timing channels that represent both covert and side channels are the focus of this study as stated 
previously. A timing channel is a communication channel that can transfer information to a recipient 
and decoder by controlling the timing performance of an object (Biswas et al., 2017; Rowland, 1997) 
such as inter-packet delays of a packet stream (Wu et al., 2015; Liu et al., 2010; Sultana et al., 2013) 
or the reordering packets in a packet stream (Biswas et al., 2017; Sultana et al., 2013; Lu et al., 
2010; Tsai et al., 2010). Such channels can be considered as a type of computer security attack that 
enables an adversary to develop an ability to transfer information objects between processes that are 
not intended to be allowed to communicate by the computer security policy.

The term “timing channel” was coined in 1973 by Lampson (Lampson, 1973) as channels that 
“are not intended for information transfer at all, such as the service program’s effect on system load” 
to differentiate it from benign channels that are exposed to access controls by computer security. 
Girling (1987) was first to investigate the usage of delays between packets transferred over computer 
networks for covert communication. This seminal study became the foundation for many other 
studies (Wendzel et al., 2015; Mazurczyk et al., 2014; Geddes et al., 2013; Luo et al., 2008; Zander 
et al., 2007; Partan et al., 2007; Elson et al., 2002; Ahsan, 2002) to identify and analyse timing 
channels. There exist three different widely-recognised types of Timing Channels, including: Covert 
Communications (Chen and Venkataramani, 2014; Gianvecchio and Wang, 2011; Liu et al., 2009), 
Timing-Based Side-Channels (Liu et al., 2015; Meyer et al., 2014; Hund et al., 2013; Stefan et al., 
2013), and Network Flow Watermarking (Biswas et al., 2017, Bates et al., 2012; Zander et al., 2007).

In this study, we only focus on providing a detailed analysis of TBSCAs that we classify into two 
general categories. These include: (1) Timing-Based Side-Channel in a network, where an active entity 
within a network system communicates with other objects in the network, and in-system Timing-Based 
Side-Channel in a PC platform, where entities communicate with each other within the PC platform.

A TBSCA represents a type of SCA that exploits differences in the runtime of an algorithm 
(Brumley and Tuveri, 2011; Aciiçmez et al., 2005; Kocher, 1996). This denotes that by taking 
advantage of such differences, an adversary can potentially compromise a cryptosystem through 
the observation of the time required to run cryptographic algorithms (Pornin, 2017; Schneier, 
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2005; Kocher, 1996). Unlike cryptanalysis which is focused on the mathematics (Song et al., 2013; 
Otmani et al., 2010), for instance, in differential and linear cryptanalysis (Bogdanov and Rijmen, 
2014; Mouha et al., 2011), a TBSCA is based on implementation and applies additional information 
collected from attacking such implementations (Snow et al., 2013; Hund et al., 2013; Sarwar et al., 
2013; Kocher et al., 2011). Therefore, a TBSCA can also exploit the data-dependent performance 
features of the execution of an algorithm (Pornin, 2017; Chen et al., 2013; Kocher, 1996) as opposed 
to the mathematical components of the algorithm itself.

Furthermore, contrary to Cache-Based Side-Channel Attacks (CBSCAs), which exploit 
operational aspects of a system (Such as general-purpose systems) (Ge et al., 2016; Crane et al., 
2015; Wang and Lee, 2007), TBSCAs are carried out via timing variation, even when the execution 
performance of the system is entirely known, and even when there is formal proof of the lack of 
Cache Channels (Ge et al., 2016; Murray et al., 2013; Schaefer et al., 1977). The time that each 
logical execution takes in a computer system to run varies according to the input (Patterson and 
Hennessy, 2017; Kirsch and Sokolova, 2012). With the exact analysis of the time for each execution, 
an adversary will be able to work backwards to the input (Vétillard and Ferrari, 2010; Kocher, 1996). 
Calculating the time that a computer system takes to address specific quarries can cause an emission 
of information from the system (Seibert et al., 2014; Weiß et al., 2012; Tromer et al., 2010; Hopper 
et al., 2010). The degree to which this information can assist an adversary will be based on certain 
factors such as crypto system implementation, the algorithms utilised, the CPU running the system, 
various execution details, timing attack remedies, the precision of the timing measurements, etc.

In addition, TBSCAs can exploit the effects of variations in encryption time caused by conditional 
branches that occur during encryption processing (Lee et al., 2016; Lawson, 2009; Aciiçmez et al., 
2007; Zhou and Feng, 2005; Tsunoo et al., 2003; Kocher, 1996). CPU cache (between the CPU and 
main memory) misses are also capable of creating such variations (Braun et al., 2015; Bonneau and 
Mironov, 2006). If the CPU accesses data that does not reside in the cache, a delay will be triggered 
because the target data must be loaded from main memory into the cache (Irazoqui et al., 2016; Gruss 
et al., 2016; Tsunoo et al., 2003). Therefore, the measurement of such delay can allow adversaries to 
establish the occurrence and frequency of cache misses. Last, but not least, Timing Attacks can also be 
facilitated through shared memory controllers (Ge et al., 2016; Pessl et al., 2016; Wang et al., 2014), 
where the computing hardware emits portions of its internal state such as confidential information 
via variations in performance and timing (Shafiee et al., 2015; Wang et al., 2014).

3.2. Prime+Probe Attack
In this attack, the adversary fills a cache set with his own lines, then waits for a specific period and 
proceeds to establish whether the lines are still cached (Gruss et al., 2017; Crane et al., 2015; Irazoqui 
et al., 2015, a; Tromer et al., 2010). The adversary will then be able to determine whether the victim 
accessed the designated cache set in the meantime (Gruss et al., 2017; Inci et al., 2016; Irazoqui et 
al., 2015, c; Apecechea et al., 2014). This requires that the attacker examines certain cache sets to 
establish the presence of a cache miss. To do so, he will need to time the accesses to the cache set 
after the victim executes (Inci et al., 2016; Crane et al., 2015). He assigns a group of cacheline-sized, 
cacheline-aligned memory blocks in order for such memory blocks to fill a collection of targeted cache 
sets (Zhang et al., 2016, a; Yarom and Falkner, 2014; Percival, 2005). Having done this, the attacker 
will then constantly carry out two attack phases including ‘prime phase’ and ‘probe phase’(Gruss et 
al., 2017; Crane et al., 2015; Tromer et al., 2010). Within the ‘prime phase’, the attacker examines 
each memory chunk to eject all the victim’s data in such cache arrays. They will then wait for a delay 
time prior to carrying out the ‘probe phase’, where each memory chunk is examined in the group 
again and the time of memory accesses is determined (Gruss et al., 2017; Crane et al., 2015; Liu et 
al., 2015; Varadarajan et al., 2014). Longer access times represent one or more cache misses. This 
means that this cache array has been accessed by the victim between the prime and probe phases. 
The attacker will repeat these two phases many times in order to acquire traces that might overlap 
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with the victim’s performance of cryptographic operations (Zhang et al., 2016, a; Liu et al., 2015; 
Wei et al., 2012; Zhang et al., 2012, a; Ristenpart et al., 2009). As a result, the adversary will be able 
to establish which cache lines were replaced by the victim and infer more details concerning which 
addresses the victim accessed. To determine the cache lines that were replaced, the attacker will need 
to measure the speed of each cache access.

It should be noted that the Prime+Probe Attacks can target both the L1 through the use of cache 
sets and the Addressing Scheme (Oren et al., 2015; Yarom and Benger, 2014; Apecechea et al., 
2014; Yarom and Falkner, 2014; Zhang et al., 2012; Tromer et al., 2010; Aciiçmez, 2007; Osvik et 
al., 2006; Percival, 2005), as well as the Last Level Cache (LLC) (Irazoqui et al., 2015, a; Liu et al., 
2015; Oren et al., 2015; Benger et al., 2014; Ristenpart et al., 2009). To perform the attack on L1, 
both the attacker and the victim will need to have access to the same physical CPU core concurrently. 
In contrast, to carry out the Prime+Probe Attack against L3, which is a more advanced version, both 
the adversary and the victim must be using the same CPU but not “necessarily” the CPU core (Inci et 
al., 2016; Irazoqui et al., 2014; Yarom and Falkner, 2014; Benger et al., 2014). Many of the advanced 
Prime+Probe Attacks do not require to be dependent upon De-Duplication (Liu et al., 2015, Irazoqui 
et al., 2015, a) or core sharing, resulting in them becoming broadly relevant (Inci et al., 2016).

Adversaries can also attack AES in OpenSSL 0.9.8 with Prime+Probe on the L1 data-cache 
(D-cache) (Liu et al., 2016; Kong et al., 2013; Wei et al., 2012; Brumley, 2011; Tromer et al., 2010; 
Osvik et al., 2006) and L1 instruction-cache (I-cache) contention (Irazoqui et al., 2015, a; Liu et al., 
2015; Aciiçmez, 2007) to establish an end-user’s control row (Ge et al., 2016; Jia et al., 2014). This 
will enable the attacker to differentiate squares and multiples in OpenSSL 0.9.8d RSA (Allan et al., 
2016; Liu et al., 2016).

Moreover, an adversary can launch a Prime+Probe Attack against elliptic-curve cryptography 
(ECC) in OpenSSL 0.9.8k using channel measurements (Garcia and Brumley, 2016; Allan et al., 
2016; Ge et al., 2016; Yarom and Falkner, 2014; Yarom and Benger, 2014; Brumley and Hakala, 
2009). CPU caches are a potent source of information leakage. Therefore, Prime+Probe Attacks can 
be mounted against them through manual identification of susceptibilities such as data accesses or 
instruction execution (Benger et al., 2014; Chen et al., 2013; Gullasch et al., 2011; Brumley and Hakala, 
2009; Bonneau and Mironov, 2006; Osvik et al., 2006). In addition, Prime+Probe Attack can also 
be carried out within cloud computing environments. The cross-VM leakage exists in public clouds 
and is often a practical attack vector for stealing sensitive data (Inci et al., 2016; Green, 2013; Zhang 
et al., 2012, a). In the cross-VM context, the adversary and victim have two distinct VMs running 
as co-tenants on the same server. Thus, the adversary will be able to acquire co-tenancy of a malign 
VM on the same server as a target (Varadarajan et al., 2014; Xiao and Xiao, 2013; Zhang et al., 2012, 
a; Ristenpart et al., 2009). For instance, using a Prime+Probe technique, a cross-VM attack can be 
carried out to obtain ElGamal secret keys from the victim (Irazoqui et al., 2016; Osvik et al., 2006).

3.3. Time Slicing Attack
By performing a Time Slicing Attack (TSA), an adversary will be able to extract kernel and user-
level ASLR offset on the branch target buffer (BTB) (Ge et al., 2016; Evtyushkin et al., 2016; Hund 
et al., 2013; Aciiçmez et al., 2007, Hu, 1992). An Address Space Layout Randomisation (ASLR), 
first designed and coined by Linux PaX project (PaX, 2001), is a security technique used to prevent 
exploitation of memory vulnerability in operating systems that guard against buffer-overflow attacks. 
To provide such security, ASLR functions by randomising the location in which system executables 
are loaded into memory (Symantec, 2017; Davi et al., 2015; Shacham et al., 2004) and the offset of 
key program segments in virtual memory (Crane et al., 2015; Backes and Nürnberger, 2014; Bhatkar 
et al., 2003). In theory, this should render it difficult for the attacker to deduce addresses of certain 
code objects (Gruss et al., 2016; Evtyushkin et al., 2016). However, as stated above, attackers can 
undermine the ASLR by mounting a TSA. For instance, a local attacker with restricted privileges 
can exploit the limitations of kernel space ASLR to launch a TSA against the memory management 
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system in order to infer information about the privileged address space layout (Hund et al., 2013; 
Bhatkar et al., 2003). Furthermore, through a TSA combined with another variant of TBSCA (See 
sub-section 3.7), namely Flush+Reload (Yarom and Falkner, 2014), the adversary will be able to 
exploit the Translation Lookaside Buffer (TLB) (Wang et al., 2017; Ge et al., 2016; Grunwald and 
Ghiasi, 2002) contention to overcome ASLR (Jang et al., 2016; Ge et al., 2016; Liu et al., 2015). This 
can result in the detection of both kernel-level and user-level virtual address space layout on ASLR-
enabled Linux platforms since such platforms employ only portion of the virtual address bit as hash 
tags (Evtyushkin et al., 2016; Wang et al., 2015; Larsen et al., 2014). In addition, invalid mappings 
that are not loaded into the TLB can also be exploited by the attacker, resulting in a void address 
which will activate another table walk (Ge et al., 2016; Evtyushkin et al., 2016; Hund et al., 2013).

3.4. Remote Timing-Based Side-Channel Attacks
A Remote Timing-Based Side Channel Attack (RTBSCA), which is carried out within a network 
setting, enables an attacker to exploit weaknesses of a cryptographic design remotely (Hunger et al., 
2015; Liu et al., 2015; Aciiçmez et al. 2007; Brumley and Boneh, 2005). A RTBSCA often remains 
undetected for a long time before its presence can be detected and the emitted private information 
can be decoded (Biswas et al., 2017; Lawson, 2009). Usually, the observer will not be able to 
enhance such properties since the private information is emitted by a defective operation (Biswas et 
al., 2017; Hunger et al., 2015). Achieving higher Timing-Based Side-Channel capacity is difficult 
since many constant observations are needed to decrease the error probability to enhance efficiency 
(Liu et al., 2015; Wu et al, 2015; Kocher, 1996). Acquiring high bandwidth necessitates optimising 
synchronization (Wu et al., 2015; Liu et al., 2015; Karlof and Wagner, 2003; Katabi, 2003). This 
denotes that matching clocks in the sender and receiver in order for them to correspond on the time 
duration for each bit (Hunger et al., 2015; Rhee et al., 2009). Synchronisation allows the sender and 
receiver to employ basic binary signalling without requiring self-clocking codes and yet obtain low 
bit error rates (Maurice et al., 2017; Hunger et al., 2015; Welzl, 2012; Welzl, 2005).

Often, there are vulnerabilities associated with SSH that an attacker can exploit to exfiltrate 
passwords remotely during an SSH session (Biswas et al., 2017; Balduzzi et al., 2012; Song et al., 
2001) and private keys from an OpenSSL-based web server (Liu et al., 2015; Brumley and Boneh, 
2005). For instance, these include: (1) the exposure of the original data size by the 8-byte limit of 
transferred packets (Seibert et al., 2014; Aciiçmez et al., 2010; Song et al., 2001) and (2) the emission 
of the inter-keystroke timing information since each portion of keystroke information is transmitted 
to the remote machine while in interaction state (Biswas et al., 2017; Seibert et al., 2014; Aciiçmez et 
al., 2010; Foo Kune and Kim, 2010; Raymond, 2001). Furthermore, under this attack, the adversary 
can exfiltrate a considerable amount of information that the victim types by employing sophisticated 
statistical methods (Chen et al., 2010). The attacker will be able to deduce secret information and 
values from the inter-keystroke timings by utilising, for instance, Hidden Markov Analysis Model (a 
technique employed to predict the value of a variable, the future value of which remains independent 
of its past history) and their key forecast algorithm (Biswas et al., 2017; Seibert et al., 2014; Aciiçmez 
et al., 2010; Foo Kune and Kim, 2010; Raymond, 2001).

Furthermore, adversaries can also launch a remote TBSCA against OpenSSL by exploiting 
the inherent susceptibility that exists in OpenSSL (in the Montgomery ladder in the Elliptic Curve 
Cryptosystem) in order to extract the secret key of a TLS server (Benger et al., 2014; Yarom and 
Benger, 2014; Brumley and Tuveri, 2011). Network Tomography, an essential part of network 
measurement, is responsible for performing traffic analysis by observing the network to ensure that 
all the links in a network are healthy (Mardani and Giannakis, 2016; Chawla et al., 2012; Danezis and 
Clayton, 2007). This is performed through the use of end-to-end queries that are transmitted by agents 
residing at vantage points in the network (Gong et al., 2012; Shmatikov and Wang, 2006). Using this 
same approach, that necessitates direct monitoring of network connections at local vantage points, an 
attacker will be to perform network analysis and as a result to launch a devastating TBSCA against 
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the hardware agents in the network (Ge et al., 2016; Meyer et al., 2014; Brumley and Boneh, 2005). 
In unusual cases in which the attacker is ‘extremely savvy’, he can also employ the same convention 
to launch a remote TBSCA by exploiting a scheduler (which is a side channel) between himself and 
the victim (Varadarajan et al., 2014; Wang et al., 2014; Stefan et al., 2013; Gullasch et al., 2011). 
Our point is substantiated by a study (Gong and Kiyavash, 2013) in which researchers were able 
to demonstrate that the attacker could establish the entire pattern of the victim by using “Shannon 
equivocation as a privacy metric” (Gong and Kiyavash, 2013). This attack is made possible if the 
scheduler is based on the policy of a first-come, first-served basis (Wang et al., 2014; Kadloor et al., 
2010; Gupta, 2007). Again, using the same approach, the savvy attacker can launch a remote TBSCA 
by taking advantage of the Timing Side Channels inside a “home digital subscriber line (DSL) router” 
(Gong and Kiyavash, 2013; Kurose and Ross, 2010). Performing this attack, the adversary will be 
able to acquire the victim’s secret data such as passwords and voice over IP (VoIP) conversations 
(Biswas et al., 2017; Lee et al., 2015; Mohaban et al., 2007).

3.5. Access-Driven Cache-Timing Attack
An Access-Driven Cache-Timing Attack (ADCTA) is another variation of SCAs that takes advantage 
of the emission of the memory locations that the victim process accesses (Kim et al., 2012; Gullasch 
et al., 2011). This attack involves probing the cache’s timings as a source of information emission 
(Zhang et al., 2012; Neve and Seifert, 2006). In the ADCTA, the cache performance is inspected with 
a fine granularity (Crane et al., 2015) as opposed to assessing the overall runtime. Using an ADCTA, 
an adversary will be able to determine whether a cache line has been ejected or not (Crane et al., 2015; 
Irazoqui et al., 2015; Aciiçmez and Koç, 2006). Furthermore, a savvy attacker can also potentially 
perform an ADCTA on the Advanced Encryption Standard (AES) block cipher (Irazoqui et al., 2015; 
Neve and Seifert, 2006; Bonneau and Mironov, 2006) by utilising compressed tables (Zhang et al., 
2012; Gullasch et al., 2011) to extract the complete secrete key in real time (for instance, for AES-
128) (Crane et al., 2015). To do so, he will need only a restricted number of observed encryptions 
(without requiring any information concerning plaintext) to be able to exfiltrate the entire key due 
to, for instance, round analysis from the ciphertext.

ADCTAs are also made possible in cloud computing environments due to the vulnerability 
in certain hardware components such as the scheduler of the Xen hypervisor (Yarom and Falkner, 
2014; Barham et al., 2003). For instance, the attacker can utilise a malicious virtual machine that will 
enable him to extract detailed, precise information from a victim VM that is running in parallel on 
the same computer (Yarom and Falkner, 2014; Zhang et al., 2012; Kim et al., 2012). As an example, 
to perform an ADCTA on a symmetric multiprocessing system (Braun et al., 2015; Winder, 2012), 
the adversary will require to deal with various challenges such as core migration (Winder, 2012; 
Bertozzi et al., 2006), multiple sources of channel noise (Braun et al., 2015; Winder, 2012) and also 
the problems with pre-empting the victim with adequate frequency to acquire detailed information 
from it (Zhang et al., 2012; Winder, 2012; Bertozzi et al., 2006). However, the attacker can bypass 
such challenges by utilising, for instance, libgcrypt cryptographic library to exfiltrate an ElGamal 
(ElGamal, 1985) decryption key of a GnuPG decryption (Yarom and Falkner, 2014), which is running 
in another guest, from the victim. The ADCTA can also be performed against certain OpenSSL (e.g. 
0.9.8n) implementation of AES on Linux systems (Crane et al., 2015; Liu et al., 2015; Brumley and 
Boneh, 2005). In addition, it can also be used to mount a denial of service (DoS) attack on the task 
scheduler of Linux systems that allows the attackers to monitor all memory accesses of a victim 
process (Zhang et al., 2012; Gullasch et al., 2011).

Likewise, adversaries might be able to perform the ADCTA on a time-shared core to take 
advantage of a shared LLC. In such a case, they will need to exploit the cupid instructions or leverage 
fence instructions to be able to synchronise the instruction stream (Yarom and Falkner, 2014; Gullasch 
et al., 2011). Similarly, a successful ADCTA can break the isolation feature of system virtualisation 
(Yarom and Falkner, 2014; Kim et al., 2012; Zhang et al., 2012). In this situation, by employing and 
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adapting Bernstein’s attack’s link (Bernstein, 2005) in CTA (Weiß et al., 2012), the attacker will be 
able to derive secret information from an isolated execution area. An ADCTA can also be performed 
to exploit the hardware-assisted multi-threading (Osvik et al., 2006; Percival, 2005) or single-threading 
(Neve and Seifert, 2006) ability of certain microprocessors so as to execute a spy process quasi in 
parallel to a cryptography process.

3.6. The Flush+Reload Technique
The Flush+Reload Attack (Yarom and Falkner, 2014), a variation of Prime +Probe Attacks (Irazoqui 
et al., 2015; Tromer et al., 2010), is based on the sharing of pages between the malicious and victim 
processes (Gruss et al., 2015; Liu et al., 2015; Yarom and Falkner, 2014; Osvik et al., 2006). By 
performing this attack, an adversary will be able to eject a particular memory line from the entire cache 
hierarchy through shared pages (Irazoqui et al., 2015; Yarom and Falkner, 2014). The Flush+Reload 
Attack has been adapted from Gullasch et al.’s (2011) technique for usage in both virtual and non-
virtual settings (Gruss et al., 2015; Irazoqui et al., 2015; Zhang et al., 2014; Yarom and Falkner, 2014). 
Therefore, it can be performed in both environments, i.e. virtualisation and non-virtualisation. For 
instance, in cloud and virtual environments, by conducting the Flush+Reload Attack, the adversary 
will be able to exfiltrate GnuPG (a popular cryptography package that is utilised as the cryptography 
module of many open-source projects) private keys across several processor cores and virtual machines 
(Yarom and Falkner, 2014). Due to its generic nature, Flush+Reload Attack can be performed for 
other malicious purposes too. For instance, an attacker can launch a Flush+Reload Attack to gather 
statistical data on network traffic by observing network handling code or monitoring keyboard drivers 
to derive keystroke timing information.

Flush+Reload Attack consists of three stages (Zhang et al., 2014; Yarom and Falkner, 2014), 
consisting of Flush, Flush+Reload Interval and Reload. Stage one, Flush, involves flushing the 
observed memory line from the cache hierarchy including the shared last-level cache utilising 
clflush instruction (Gruss et al., 2015; Zhang et al., 2014; Yarom and Falkner, 2014). In stage two, 
Flush+Reload Interval, the attacker waits for a “prespecified interval” to enable the victim to access 
the memory line, while the last-level cache is employed by the victim running on the CPU core. Stage 
three, Reload, the attacker involves the attacker reloading the memory line, calculating the time to 
load it. A faster reload will indicate the existence of certain chunks in the last-level cache and the 
fact that they were run by the victim during the Flush+Reload interval. In contrast, a slower reload 
signifies the contrary (Zhang et al., 2014; Yarom and Falkner, 2014).

3.7. Asynchronous Attack
An Asynchronous Attack (AA) (Tromer et al., 2010) is a very complex attack that is difficult to detect. 
As such, it is likely to be carried out only by very advanced attackers. Despite the fact that an AA is 
similar to a Cache-Based Attack (CBA) in that both are performed against RSA for processors with 
simultaneous multithreading (Percival, 2005; Osvik et al., 2006), their cryptanalysis is very different 
because “algorithms and time scales involved in RSA vs. AES” executions are very different (Tromer 
et al., 2010). Under an AA, the adversary runs its own program on the same process as the encryption 
application (Tromer et al., 2010, Percival, 2005). This is achieved without any “explicit interaction” 
including “inter-process communication” (Crane et al., 2015; Gullasch et al., 2011; Osvik et al., 
2006). The only insight that the attacker is required to have concerns the plaintexts or ciphertexts 
(as opposed to their exact values) (Aciiçmez et al., 2007; Osvik et al., 2006; Percival, 2005). If the 
cipher runs on a simultaneous multi-threading (SMT) machine (Crane et al., 2015, Tromer et al., 
2010), and the attacker is able to execute a dummy process concurrently with the cipher process 
(Gullasch et al., 2011), he will then be able to clear the BTB through the executions of the dummy 
process and causes a BTB miss during the operation of the target branch (Ge et al., 2016; Evtyushkin 
et al., 2016; Hund et al., 2013; Aciiçmez et al., 2007’ Hu, 1992). In this case, “the BPU automatically 
predicts the branch not to be taken if it misses the target address in the BTB”. Thus, there will be a 
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misprediction whenever the result of the target branch is “taken”. The attacker will be able to simulate 
the exponentiations partition of the sample according to the outcome of the branch (Aciiçmez et al., 
2007; Grunwald and Ghiasi, 2002).

3.8. Evict+Time Attack
Evict+Time Attacks can be defined as a generic Cache-Timing Attack technique, by means of which 
the adversary activates multiple victim computations and calculates the victim’s runtime (Gruss, 
2017; Irazoqui et al., 2014; Osvik et al., 2006). In order to do so, he evicts the cache set the victim’s 
runtime in order to calculate the effect of a particular cache set, and then and force the encryption 
programme to fetch key values from the main program (Crane et al., 2015; Tromer et al., 2010). In 
cases in which there is a timing difference when ejecting the cache set, the adversary will be able to 
deduce that the cache set was utilised by the victim computing process (Yarom and Falkner, 2014; 
Weiß et al., 2012; Aciiçmez et al., 2007, Bernstein, 2005). To carry out an Evict+Time attack, the 
adversary will need to be able to calculate the precise starting and end time of a victim computing 
process. Evict+Time Attacks have been extensively covered in the literature. For instance, Osvik 
et al. (2006) examined Evict+Time Attacks in an attack on OpenSSL AES. Lipp et al. (2016) and 
Spreitzer and Plos (2013) illustrated that Evict+Time Attacks on OpenSSL AES are also relevant to 
mobile ARM-based devices. Similarly, Hund et al. (2013) showed that Evict+Time Attacks can be 
applied to compromise Kernel Address Space-Layout Randomisation (KASLR). Therefore, we do 
not aim to delve into this attack any further.

3.9. Timing Attacks Against Floating-Point Instructions
An attacker can also launch a TBSCA against the floating-point instructions of modern x86 processors 
(Andrysco et al., 2015; Coppens et al., 2009). The “running time of floating point addition and 
multiplication instructions can fluctuate by two orders of magnitude” (Andrysco et al., 2015; Hachez 
and Quisquater, 2000; Walter, 1999) depending on their operands (Coppens et al., 2009). Multiplying 
or dividing with subnormal values results in slowdown on, for instance, all tested Intel and AMD 
processors (Ge et al., 2016; Andrysco et al., 2015), irrespective of employing single instruction multiple 
data (SIMD) or x87 instructions (Intel®, 2016). Furthermore, by exploiting the aforementioned effects, 
an attacker will be able to employ the subnormal floating-point numbers to launch a timing attack, for 
instance, on a scalable vector graphics (SVG) filter, that reads arbitrary pixels from any victim web 
page though the Firefox browser as demonstrated by (Andrysco et al., 2015). Similarly, in relation 
to this type of exploit, two other researchers (Stone, 2013; Kotcher et al., 2013) have implemented a 
new method for cross-origin pixel stealing in the browser, which is a timing side-channel within CSS 
Scalable Vector Graphics (SVG) transforms. Such transforms can be employed through CSS to any 
element of a webpage, for instance iframes. Once the content of cross-origin is contained in an iframe, 
the containing page is then able to employ SVG transformation filters to that iframe (Andrysco et al., 
2015). As a result, an attacker will be able to extract any pixel value from a website that he does not 
own by selecting certain SVG filters and determining the page render times.

3.10. Bernstein’s Attack
Bernstein’s Attack (Bernstein, 2005) is another variant of TBSCA that is carried out remotely on an 
AES T-table implementation in which the attacker can recover the AES key from “known-plaintext 
timings of a network server” on a different computer. This attack is the resultant of the fault in 
AES design and not to a specific library used by the server (Bernstein, 2005). Through this attack, 
Bernstein (2005) demonstrated that attacks as such were not restricted just to the Pentium III but 
instead could be performed against an “AMD Athlon, an Intel Pentium III, an Intel Pentium M, an 
IBM PowerPC RS64 IV, and a Sun UltraSPARC III”. By performing the Bernstein’s Attack, the 
adversary can potentially compromise T-table lookups in a system, that represent “pre-processed S-box 
computations” based on AES design (Gruss, 2017; Daemen and Rijmen, 2013). Through this attack, 
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the whole AES algorithm can be utilised as a fast sequence of T-table lookups that will be accessed 
based on an established implementation (Gruss, 2017; Bernstein, 2005). Such accesses can then be 
cached, and the timing difference can be monitored (Bernstein, 2005). The attacker will subsequently 
be able to determine which T-table entry was accessed by monitoring the timing difference. Many 
researchers (Spreitzer and Gérard, 2014; Weiß et al., 2014; Spreitzer and Plos, 2013; Neve et al., 2006; 
Bonneau and Mironov, 2006) have reproduced and assessed Bernstein’s Attack, that is presented in 
Bernstein’s (2005) seminal study.

3.11. Branch Prediction Attack
A Branch Prediction Attack (BPA) combined with cache performance can be a potential source of 
control-dependent and data-dependent timing (Coppens et al., 2009; Chen et al., 2003). As already 
stated, in modern processors, many resources are shared between different threads being run in the 
system (Ge et al., 2016; Coppens et al., 2009; Aciiçmez et al., 2007). As a result, there will be conflict 
between those resources (Braun et al., 2015; Fedorova et al., 2010; Bonneau and Mironov, 2006). 
This leads to “inter-thread timing dependencies” (Ge et al., 2016), where the operation of one thread 
affects the timing performance of other threads (Martin et al., 2012). Therefore, an attacker will be 
able to monitor other threads competing for other resources to deduce information on condition that 
he does not have direct access to the timing of a thread which has come under attack (Coppens et al., 
2009; Osvik et al., 2006; Bonneau and Mironov, 2006). To be able to launch a direct timing attack, the 
adversary needs to know the Branch Prediction Unit (BPU) architecture and also the implementation 
details of the encryption, as these two elements establish the prediction of the target branch (Aciiçmez 
et al., 2007). Although this information is not easily available to the attacker, he can still carry out the 
examination stage speculating each possible state one at a time. The DTA can be used on any system 
on condition that branch prediction algorithm is applied on it. To compromise a cipher carrying 
out a BPA, the adversary requires having a result which must rely on the secret/private key of the 
cipher (Aciiçmez et al., 2007). Furthermore, BPAs that are based on hardware performance can also 
be performed to elicit RSA keys from “exponentiations” executed in other processes (Gruss, 2017, 
Bhattacharya and Mukhopadhyay, 2015; Rebeiro et al., 2015).

3.12. Brief Overview of Timing-Based Attacks in Other Platforms
Although the focus of this study has been only on TBSCAs against PC platforms, nevertheless, we 
consider it worthwhile to provide a generic description of the way in which such attacks can be also 
carried out against other platforms such as mobile device. TBSCAs against mobile devices take 
advantage of both physical and software properties. For instance, a malign application can leverage 
the “accelerometer sensor” so as to launch an attack against the victim input. This is feasible because 
of the integral input technique that depends on touchscreens (Spreitzer et al., 2016; Aviv et al., 2012; 
Cai and Chen, 2011). Therefore, to perform a successful TBSCA against a mobile device, the adversary 
needs either to have a physical access to the device or remotely spread an application that appears 
to be benign (such as a game app) through an existing App store (Spreitzer et al., 2017; Spreitzer et 
al., 2016;). For example, through their study, O’Flynn (2016) illustrated that by shorting the “power 
supply of an off-the-shelf Android smartphone”, the attacker would be able to present a fault that can 
result in an invalid a fault loop count (Spreitzer et al., 2017). Attackers can also exploit the logical 
property of software provided by the API of the mobile device OS or even the OS itself (Spreitzer et 
al., 2016; Michalevsky et al., 2015; Zhou et al., 2013) to be able to carry out TBSCAs against such 
devices. This suggests that smartphones expand the extent of TBSCAs (Acar et al., 2016; O’Flynn, 
2016; Spreitzer et al., 2016).

On the contrary, TBSCAs mounted against cloud computing hardware does not require the 
adversary to be in possession of the physical hardware (This, however, does not apply in cases where 
the cloud service provider, himself, is the adversary) since the attacker can potentially run a malicious 
application remotely (Spreitzer et al., 2016). For instance, to do so, he will require to be able to exploit 



International Journal of Organizational and Collective Intelligence
Volume 8 • Issue 2 • April-June 2018

44

the Microarchitectural performance or software characteristics in order to be able to deduce private 
information from co-located processes (Ge et al., 2016; Spreitzer et al., 2016; Gruss et al., 2015; 
Yarom and Falkner, 2014; Tromer et al., 2010). Furthermore, in certain circumstances, TBSCAs can 
also be mounted through websites without the adversary relying on the victim to install an application. 
Furthermore, adversaries can also launch Side-Channel Attacks against mobile devices by taking 
advantage of the logical property of software that is offered by the API of the mobile device OS or 
even the OS itself (Spreitzer et al., 2016; Michalevsky et al., 2015; Zhou et al., 2013).

There exist other ways of launching TBSCAs in various platforms, the analysis of which is 
beyond the scope of this paper due to the page constraints.

4. SIDE-CHANNEL ATTACKS AGAINST RSA

Although many studies have been conducted on the topic of RSA, there are very few works that 
explore its vulnerabilities to TBSCAs. As a result, RSA’s vulnerabilities to TBSCAs are not still 
fully known by the research community. Therefore, we have assigned this section exclusively to the 
topic of RSA’s vulnerabilities to TBSCAs in an attempt to provide a more in-depth analysis of the 
principles underlying its susceptibilities to TBSCAs.

4.1. Overview of RSA Algorithm
RSA algorithm named after its creators, Rivest-Shamir-Adleman, (Rivest, 1978) is a public key 
encryption algorithm that is widely utilised to secure sensitive data transmission, especially when 
transmitted over an insecure network. RSA can be embedded in SSL (Secure Sockets Layer) to provide 
security and privacy over the Internet. In cryptography field, an asymmetric key algorithm employs 
a pair of different cryptographic keys to perform encryption and decryption. Both keys are 
mathematically connected, denoting that a message encrypted by the algorithm using one key can 
be decrypted by the same algorithm such as RSA. The RSA algorithm includes four parts: key 
generation, key distribution, encryption and decryption. The underlying fundamental behind RSA is 
the notion that it is applied to discover three big positive integers ‘e’, ‘d’ and ‘n’ in such a way that 
with modular exponentiation for all integer m (with 0 ≤ m < n and that even knowing e and n or even 
m), it can be very difficult to identify d :

m m modne
d( ) ( )≡   	

Furthermore, the RSA consists of both a public key and the private key. The public key allows 
the sender to carry out the encryption whereas the private key remains secret by the receiver and 
allows him to conduct the decryption. In more technical details, the public key, which contains the 
“modulus” n and the public “exponent” e, can be known by all parties and is applied to encrypt 
sensitive data. The idea behind the public key is that any data encoded with the public key can only 
be decoded in a sensible amount of time by employing the private key. Integer e and integer n, that are 
created by two main numbers p and q, represent the public key, and integer d represents the private 
key. However, integer d can also be utilised while decoding the data. This denotes that integer d can 
be regarded as a constituent of the private key too. In contrast, integer m represents the message. In 
contrast with the public key, the private key comprises the “modulus” n and the private “exponent” 
d, that must be reserved secret. The p, q, and n must also remain secret since they can be employed 
by the attacker to deduce d. There are two types of asymmetric encryption algorithms, both of which 
are built upon the Diffie-Hellman key agreement algorithm. Similarly, there are two unique types of 
symmetric key ciphers including block ciphers (fixed size) and stream ciphers (continuous stream). 
Although asymmetric encryption is much stronger and more secure than symmetric encryption, as 
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of yet, there does not exist an asymmetric key algorithm confirmed to be secure enough against a 
sophisticated mathematical attack. This is due to certain weaknesses in the asymmetric key algorithms 
that make them vulnerable to Timing Attacks. For instance, a savvy attacker can carefully measure 
the precise amount of time that it takes hardware to encrypt plaintext in order to facilitate the search 
for possible decrypting keys. Therefore, the usage of asymmetric key algorithms does not always 
guarantee security.

The potency of the RSA lies with the fact that it will be hard to factor large numbers. Almost, the 
most recognised factoring techniques are still considered to be slow as factoring large numbers can 
take many months and in some cases years. Since so many researchers have been attempting to factor 
large numbers in an efficient manner without any success, we can assume that at this point in time 
RSA is secure against factoring attacks for a standard n of 1024 bit in length (Wong, 2005). Securing 
the RSA against factoring attacks even more is possible by doubling the key length to 2048 bits or 
even more. Notwithstanding its potency against factoring technique attacks, RSA can be vulnerable 
to Timing Attacks. An adversary with an advanced knowledge of algorithms and programming skills 
could potentially exfiltrate RSA secret keys in a stealthy manner without directly breaching the RSA. 
Such an attack has come to be known as Timing Attack, which we have already covered in detail, 
that enables an adversary to monitor the execution time of a cryptographic algorithm and as a result 
infer the secret keys and values in the execution.

4.2. Timing Attacks Against RSA Algorithm
There are various types of covert and overt SCAs that can be mounted against RSA (Inci et al., 2016; 
Yarom and Falkner, 2014; Wang and Lee, 2006; Percival 2005), including Timing Attacks (the focus 
of this study) (Brumley and Boneh, 2005; Kocher, 1996), Trace-Driven Instruction Cache (Cai-Sen 
et al., 2011; Aciiçmez, 2007) Differential Power Analysis (Bauer et al., 2013; Kocher et al., 1999), 
Electro Magnetic Emanations (Gandolfi et al., 2001; Genkin et al., 2015) and acoustic channels 
(Genkin et al., 2014; Hutter and Schmidt, 2013). Through a TBSCA against RSA, an attacker will be 
able to extract RSA private keys by utilising the Instruction Cache and the Branch Prediction Unit as 
covert channels (Inci et al., 2016; Aciiçmez, 2007; Aciiçmez et al., 2007). For instance, EL-Gamal 
(Zhang et al., 2012) private keys can be extracted from co-located VMs by taking advantage of 
emission in upper level caches. To launch a SCA against EL-Gamal, the attacker will require to use 
the Prime+Probe Attack in the LLC (Zhang et al., 2012; Liu et al., 2015). Likewise, the adversary 
can also employ the Branch Prediction Performance Counters to extract RSA keys (Inci et al., 2016; 
Bhattacharya and Mukhopadhyay, 2015). Furthermore, advanced attackers will also be able to extract 
RSA private keys from co-located VMs (Yarom and Falkner, 2014; Wang and Lee, 2006) by mounting 
the Flush+Reload Attack while memory De-Duplication is active (Yarom and Falkner, 2014).

A TBSCA against RSA can be carried out if the adversary knows the victim’s hardware in 
adequate detail and if he is mathematically advanced enough to calculate the decryption time for 
multiple known ciphertexts. In such a case, the attacker will then be able to infer the decryption key, 
i.e. d, immediately (Kocher, 1999). Such an attack can also be performed against the RSA scheme 
(Brumley and Boneh, 2005) to extract RSA factorisation over a network connection from a web 
server enabled with Secure Sockets Layer (SSL). Another way of launching a TBSCA against RSA 
is through the exploitation of information that has been leaked by the Chinese Remainder Theorems 
Optimisation (a technique that is often utilised by many RSA implementations).

As already discussed, the Evict+Time Attack (Aciiçmez et al., 2007) against RSA is performed 
to evict entries from the BTB in a selective manner by running branches at relevant addresses, and 
then monitor the impact on the runtime of an RSA encryption in OpenSSL. To do so, the attacker will 
need to calculate the time that is needed to carry out the initial ejection to be able to deduce whether 
OpenSSL had beforehand run the branch or not. Although the Simple Branch Prediction Analysis 
(SBPA) (Aciiçmez et al., 2007) uses the same approach as that of the aforementioned approach, it 
is more powerful as it can exfiltrate most key bits in a single RSA execution. The SBPA is based 
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on the “fine- grained sharing” that is involved in SMT (Ge et al., 2016). Furthermore, attackers can 
identify and take advantage of the contention between hardware threads on the multiplier unit (Ge 
et al., 2016; Aciicmez and Seifert’s, 2007; Wang and Lee, 2006). Simultaneous Multi-Threaded 
(SMT) processors (Tullsen et al., 1995), a method for optimising the overall efficiency of CPUs with 
hardware multithreading, execute multiple independent processes in parallel in order to make a more 
effective use of the resources offered by processor designs. The parallel threads share a cache of 
functional units (FUs) dynamically assigned to each process (Wang and Lee, 2006). Such a sharing 
creates interference between two difference processes as they will need to compete for FUs. This 
results in a ‘covert channel’, the extent of which surpasses those of other covert channels. Similarly, 
the conflicts between hardware threads on the multiplier unit can create a ‘side channel’ that enables 
a malign thread to differentiate multiplications from “squaring in OpenSSL’s RSA architecture” 
(Ge et al., 2016; Aciicmez and Seifert’s, 2007; Wang and Lee, 2006). These aforementioned attacks 
can enable an adversary to calculate the latency created by contending threats that are compelled to 
remain until they can access the multiplier unit.

The scatter-gather implementation employed in the modular exponentiation routine in OpenSSL 
is also prone to the CacheBleed attack, in which cache-bank conflicts on the Sandy Bridge 
microarchitecture can be exploited by the attackers (Fog, 2017; Intel®, 2016; Yarom et al., 2017). 
CacheBleed Attack, which has successfully been tested on an Intel Xeon E5-2430 processor (Yarom 
et al., 2017), allows the attacker to detect the cache pool that maintains each given multiplier utilised 
through the “exponentiation in the OpenSSL constant time RSA design” (Acıiçmez et al., 2007; 
Brickell et al., 2006;). As a result, it enables the attacker to exfiltrate the entire private key after he 
has monitored 16,000 decryptions for 4096-bit RSA (Yarom et al., 2017, Ge et al., 2016).

Furthermore, a thread that is running on a design of a SMT processor is also vulnerable to denial 
of service through a malign thread. This results in a significant reduction in the speed of the original 
thread. Therefore, an adversary can utilise Performance Counter Hardware to create this type of 
slowdown by intentionally abusing the shared resources and design decisions that are essential for 
high speed implementation (Grunwald and Ghiasi, 2002). Consequently, since a given thread can 
deny other threads (in resource sharing) of their resources through the usage of a multithreading 
processor, one thread can have an impact on the performance of another thread. Applying exceptional 
conditions on behalf of one thread can also create a significant performance degradation for another 
SMT thread (Ge et al., 2016; Grunwald and Ghiasi, 2002). Moreover, in certain processors (such 
as the Intel Pentium 4), self-adaptive code flushes the trace cache causing a significant reduction in 
performance (e.g. in a DoS attack). Although control techniques facilitated by resource sharing are 
capable of enhancing essential processor speed-paths, they can be taken advantage of by a single 
action by a malicious thread that can create many sets of delays.

Another type of Timing Attack against RSA is “Square vs. Multiplication” that is relevant to 
parallel multi-threading CPU designs. This attack cannot be carried out on CPU implementations 
without the aid of SMT hardware. Unlike other aforementioned attacks against RSA that often focus 
on the notion of a shared resource, Square vs. Multiplication attack is based on the concept that 
Intel’s hyper-threading technology shares the ALU’s large floating-point multiplier among its two 
hardware threads (Aciicmez and Seifert, 2007). An attacker can also exploit the timing performance 
of the Montgomery multiplications during the initialisation of the table enabling himself to extract 
one of the main factors of timing RSA moduli by adding to the number of multiplications (Biswas et 
al., 2017; Aciiçmez et al., 2005; Brumley and Tuveri, 2011; Brumley and Boneh, 2005). In addition, 
by performing a TBSCA, the entire RSA key in cloud settings can be recovered (Inci et al., 2016; 
Irazoqui et al., 2014; Yarom and Falkner, 2014) by the attackers, outside the closed-box VM, who can 
potentially exploit a vulnerable Virtual Machine Monitor (VMM) system that is running on top of a 
SMT processor (Inci et al., 2016; Irazoqui et al., 2014). A TBSCA on a hyper-threading processor 
also allows an attacker through a user processor to deduce the RSA key of another processor which 
is carrying out RSA encryption (Wang and Lee, 2006; Percival, 2005). There will be no need for 
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any type of special tools to facilitate this attack, and the attack also does not even need to rely on 
software defects to extract RSA. Only a series of memory accesses are required to be executed by 
the spy process, followed by its observation of the timing while the victim process is being executed 
on the same processor (Osvik et al., 2006; Wang and Lee, 2006; Bernstein, 2005; Percival, 2005).

5. CONCLUSION

In this study, we identified and analysed some of the existing known Timing-Based Side-Channel 
Attacks (TBSCAs), and demonstrated their devastating impacts on shared, modern computing 
hardware. We thoroughly reviewed relevant literature within the context and we discussed various 
attack vectors that attackers can adopt to mount such attacks against components of modern 
PC platforms. Through this systematic literature review and analysis, one can deduce that all 
Microarchitectural Timing Attacks, irrespective of their type, can exploit security systems, regardless 
of advanced partitioning methods (e.g. memory protection), sandboxing or even virtualisation. Hence, 
it is vital to identify every conceivable Microarchitectural susceptibility in order to comprehend the 
potential of Microarchitectural analysis and design to implement more secure systems. Although 
this study mainly focused on the review and analysis of Timing Attack vectors, in a follow-up paper 
as a future work, we are providing the existing countermeasures against such attacks and propose 
new strategies to deal with these attacks. There are already comprehensive research works (Yang et 
al., 2018; Sohal et al., 2018; Kuo et al., 2018) covering the response to such attacks; we will discuss 
these as a future work of this piece of research.
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