

Ronald Buijsen¹, Eleanor Green², Elena Avale³, Jean-Marc Gallo⁴, Karen Anthony²

¹Leiden University Medical Center, Leiden, The Netherlands; ²Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom ³National Council of Scientific and Technological Research of Argentina; ⁴Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London.

Evaluation of RNA *trans***-splicing as a therapeutic strategy for spinocerebellar ataxia type 1**

Introduction

- Spinocerebellar ataxia type 1 (SCA1) is a caused by an expanded polyglutamine (polyQ) tract in the protein ataxin-1 encoded by the *ATXN1* gene
- Phosphorylation at S776 is critical for its neurotoxicity and acts synergistically with the polyQ tract in the pathogenic mechanism¹
- We are evaluating the potential therapeutic value of substituting S776 for alanine using spliceosomemediated RNA *trans*-splicing (SMaRT)
- SMaRT creates a hybrid mRNA through a transsplicing reaction between an endogenous target premRNA and an exogenously delivered pre-transsplicing molecule (PTM)²

Aim

To reprogramme ATXN1 RNA using SMaRT

Results

PTMs successfully induced *trans*-splicing of:

- A human *ATXN1* minigene in SH-SY5Y cells (Figure 1)
- Endogenous human *ATXN1* in SH-SY5Y cells (Figure 2)
- Endogenous mouse *Atxn1* in wild type embryonic mouse cortical neurones transduced with a lentiviral vector coexpressing GFP (Figure 3)

All results in Figures 1 – 3 were verified by Sanger sequencing

Methods

- Wild-type and mutant PTMs (for mouse [S752] and human [S776]) were designed and constructed using traditional cloning into pcDNA3.1 or a lentiviral vector co-expressing GFP
- SH-SY5Y cells were transfected with a human ATXN1 minigene and/or PTM
- Embryonic mouse cortical neurones were transduced with lentiviral vector co-expressing GFP and PTM
- Trans-splicing was assessed by RT-PCR using a target specific forward primer and a PTMspecific reverse primer

- Ongoing work aims to confirm a change in phosphorylation status and test the effect of SMaRT on validated phenotypes of SCA1 patient-derived iPSC cell models³
- SMaRT can theoretically repair any mutation downstream of the PTM binding site and is suited for the dominant gain-of-function mutations of SCAs

