
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Review of Classification Techniques
for Arrhythmia Patterns Using
Convolutional Neural Networks and
Internet of Things (IoT) Devices
MICHAEL OPOKU AGYEMAN, (Senior Member, IEEE), ANDRES FELIPE GUERRERO and
QUOC-TUAN VIEN, (Senior Member, IEEE)
Corresponding author: Michael O. Agyeman (e-mail: Michael.OpokuAgyeman@northampton.ac.uk).

ABSTRACT The rise of Telemedicine has revolutionized how patients are being treated, leading to
several advantages such as enhanced health analysis tools, accessible remote healthcare, basic diagnostic
of health parameters, etc. The advent of the Internet of Things (IoT), Artificial Intelligence (AI) and
their incorporation into Telemedicine extends the potential of health benefits of Telemedicine even
further. Therefore, the synergy between AI, IoT, and Telemedicine creates diverse innovative scenarios
for integrating cyber-physical systems into medical health to provide remote monitoring and interactive
assistance to patients. Data from World Health Organization reports that 7.4 million people died because
of Atrial Fibrillation (AF), recognizing the most common arrhythmia associated with human heart rate.
Causes like unhealthy diet, smoking, poor resources to go to the doctor and based on research studies,
about 12 and 17.9 million of people will be suffering the AF in the USA and Europe, in 2050 and 2060,
respectively. The AF as a cardiovascular disease is becoming an important public health issue to tackle. By
using a systematic approach, this paper reviews recent contributions related to the acquisition of heart beats,
arrhythmia detection, IoT, and visualization. In particular, by analysing the most closely related papers on
Convolutional Neural Network (CNN) and IoT devices in heart disease diagnostics, we present a summary
of the main research gaps with suggested directions for future research.

INDEX TERMS Arrhythmia, Atrial Fibrillation, Artificial Intelligence, Convolutional Neural Network,
Electro-Cardiogram, Heart Rate, Internet of Things, Systematic Review.

I. INTRODUCTION

RECENT advances in technology have enabled a synergy
between wireless technology and healthcare providing

accessibility benefits beyond the limitation of the traditional
healthcare systems, such as enhanced quality support in med-
ical services and agile response for medical intervention [1]–
[3]. Specifically, the Internet of Things (IoT) is simplifying
the way the parameters and variables are captured in real-
time. One of those elements is a wearable health-monitoring
system that allows remote diagnosis of patients during par-
ticular clinical events [4], [5]. By employing the IoT for
healthcare, doctors and nurses could be more productive if
the patients have access to data by phone or using online
platforms [6], [7].

There are various developments in Telemedicine such as
detection of glucose level and oxygen concentration; ECG
interfaces to monitor the heart rates, etc. Leveraging the IoT
in healthcare can have a significant impact on early diagnosis
and intervention in some terminal illnesses, such as heart
diseases, and decrease the mortality rate [8]. Eysenbach et al.
[9] indicated that the telemedicine helped reduce the number
of in-hospital admissions of the patients with diseases related
to lungs, heart and stroke; hence a considerable decrease in
mortality [3]. According to Ebrahimi et al. [10], cardiovas-
cular disease (CVD) is the principal reason for human death,
answerable for 31 % of the deaths in 2016, at least, about
17.9 million people died from heart disease in 2016, a 31 %
of all global deaths. Reinforcing the idea, the authors in [11]

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192390

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Michael Opoku Agyeman et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

showed that 7.4 million people died due to heart attack in
2015, being the leading cause of heart disorder and that is
related to a heart attack [12].

Arrhythmia (which is one type of CVD) can affect the in-
ternal process between different organs and it is also depends
on human genetics, so it is important to have early diag-
nostics. Therefore, in this work, we focus on technological
advances towards the classification of arrhythmia patterns.
Arrhythmia disease can be divided into three categories:
premature heartbeat, tachycardia, and bradycardia. Cai et
al. [13] and Zhu et al. [14] have highlighted that Atrial
Fibrillation (AF) is the most popular arrhythmia condition,
affecting around 4.5 million in the European Union and 2.3
million patients in the US, and approximately a third of
all strokes is associated with the AF. Therefore, in order to
reduce the number of deaths, it is vital for new developments
to focus on an early and accurate ways to detect AF and
prevent stroke events. Consequently, Deep Learning (DL), a
subset of Artificial Intelligence (AI) has emerged to extend
the capabilities of IoT in the medical field with regards to re-
solving the urgent issues around heart diseases (specifically,
arrhythmia) and healthcare.

This paper presents a review of relevant research in lit-
erature related to the advances of DL techniques and their
application to different types of cardiac arrhythmia recogni-
tion, based on the methodology proposed in the Cochrane
Handbook [15]. Existing reviews of arrythmia pattern recog-
nition have focused on the Machine Learning (ML) models
and their architecture using the MIT database [16]. However,
this paper presents an expanded overview of how the heart
diseases are being detected, with considerations of both
hardware, software, and different databases that are available
in literature.

The rest of this paper is organized as follows: Section
II presents an overview of the essential concepts and back-
ground information. Section III presents details of the review
methodology and Section IV discusses existing work on AI
methods used in ECG and healthcare. Section V discusses
the challenges and existing solutions with regards to the
application of AI and arrhythmia pattern classification. In
Section VI, we discuss the key literature and finally conclude
the paper in Section VII.

II. CONCEPTS AND BACKGROUND
In order to understand the application of DL techniques to
different types of cardiac arrhythmia, this section provides
an overview of the essential concepts.

Electrocardiogram (ECG): The ECG is a graph that
represents a diagram of the heart palpitations (Figure 1).
According to [17], the ECG is the basic and reachable method
to diagnose heart rhythm disorders, which is a non-invasive
method for providing a useful method to understand heart
health and pathology. The features of the ECG forms are rep-
resented in the following features [18]: P wave, PQ interval,
QRS complex, ST stretch, T wave.

FIGURE 1: Representation of ECG Signal

Arrhythmias: As Raja et al. [19] emphasise, an arrhyth-
mia is an abnormal heart rhythm, expressed by a slow, rapid,
or irregular heartbeat classified as life-threatening versus
non-life-threatening. Murat et al. [20] mention the five prin-
cipal non-life-threatening classes: non-ectopic (N), supraven-
tricular ectopic (S), ventricular ectopic (V), fusion (F), and
unknown (Q). However, Yildirim et al. [17] explained the
previous classes are a compendium of the following 17
classes: Ventricular flutter, Premature ventricular contraction,
Idioventricular rhythm, Atrial premature beat, Normal sinus
rhythm, Atrial flutter, AF, Supraventricular tachyarrhythmia,
Right bundle branch block beat, Pre-excitation (WPW), Ven-
tricular bigeminy, Ventricular trigeminy, Ventricular tachy-
cardia, Fusion of ventricular and normal beat, Left bundle
branch block beat, Pacemaker rhythm, Second-degree heart
block. Nevertheless, the most common among the aforemen-
tioned are as follows [10]:

• Atrial Fibrillation (AF): This disease occurs when there
is a rapid movement in the atrium, about 400-600
beats/minute.

• Right Bundle Branch Block (RBBB) and Left Bundle
Branch Block (LBBB) are classified as a disruption
in the normal system that produces an abnormal QRS
shape. The right bundle adheres to the Right Ventricle
(RV), and the right bundle does not produce any acti-
vation. This behaviour in the electrical aspect creates
an abnormal QRS morphology. In the LBBB, the left
bundle does not activate.

• Tachycardia: this anomaly occurs when the heart rate
overpasses the normal resting rate. The type of arrhyth-
mia is supraventricular or atrial , sinus tachycardia, and
ventricular tachycardia.

• Atrial Flutter (AFL) is a continuous aberrant heartbeat
that begins in the area of the atrial chambers of the heart.
This is usually correlated with a quick heart variation.
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• Ventricular Flutter (VF), it is an unpredictable arrhyth-
mia that affects the ventricles with a pace of 150-300
pulses per minute. VF could cause sudden cardiac death.

• Ventricular fibrillation (Vfib) is a behaviour in which the
heart quivers instead of pumping due to a non-organized
electrical activity in the ventricles. It could be expressed
in an irregular wave in the QRS Complex.

Deep Learning: Deep Learning is a branch of AI and
represents a learning method of processing raw data, images,
graphs, etc, with the motivation to learn automatically from
diverse patterns acquired from images or data. Xing et al.
[21] mention the DL could be applied to image segmentation,
object detection, target classification, and DL techniques that
can successfully be applied in natural language processing,
computer vision, medical imaging, etc [22]. For instance,
Srivastava et al. [23] establish that in the medical field, DL
has been applied to recognize diseases like diabetes, malaria,
obesity, tuberculosis, brain image recognition, mitosis detec-
tion, as Merone et al. [18] added. One of the most common
architectures of DL is Convolutional Neural Networks. The
articles [24], [25] report, Convolution Neural Network is
a powerful architecture of image recognition and analysis
that has recent developments, attracting extensive attention,
especially for pattern classification.

FIGURE 2: Convolutional Neural Network Architecture

As shown in Figure 2 CNN is divided into convolutional,
Maxpooling, and fully connected layers. The CNN has the
input acquired from the original image, and if the image
includes a large amount of data or noises are involved, it is
necessary to include a pre-processing stage. Then, using con-
volutional layers, the architecture obtains the most important
features. Using Maxpooling layers, the architecture reduces
the information, being more precisely accurate to filter the
information and prepare data before getting the results. In the
fully connected layer, the architecture uses Softmax layers
to produce a respective classification based on the target or
classes.

Body Area Network (BAN): BAN represents a net-
work determined by devices that allow capturing a series
of biomedical parameters like blood pressure, temperature,
oxygen, glucose levels, body temperature, etc. as Wan et al.
[26] defines.

The IoT: IoT [27], [28] is considered as a networking
group by intelligent sensor devices with limited storage and a

cheap processing power capability [7], [29]. IoT, co-working
with cloud computing, has considerable storage and enough
processing capability for smart healthcare applications. In-
deed, IoT has made remote monitoring of patients to provide
better healthcare services [30]. Majumdar et al. [16] added,
with the inclusion of ML, the number of developments could
help IoT to create strategies to tackle daily concerns in the
medical field. Therefore, the incentive to create enormous
quality, cheap manufacture, and focused on the patient is
under the responsibility of engineers, doctors, scientists, and
healthcare staff.

III. REVIEW METHODOLOGY
The literature review is a compendium of guidelines or strate-
gies to provide an answer based on the questions formulated
by the researcher. For this systematic review, the method-
ology used is PRISMA [31], and article selection criteria
composed of title, structured summary, objectives, accept-
ability criteria, databases sources, search, data acquisition,
synthesis of results, summary of evidence, limitations, and
conclusions. This methodology (Figure 3) aimed to provide
clear steps in the field of DL, ECG, and IoT to processing,
recognition, and classification of Heart Rhythms.

FIGURE 3: Structure of the methodology used for Research
Literature Review

By using PRISMA, the main question of this research is:
is it possible to use CNN and IoT to develop new devices
that allow patients, nurses, and doctors to have a diagnosis
about the cardiac condition using ECG and QRS diagram?.
From the preliminary search, the motivations are: first of all,
Rizwan et al. [32] commented that the number of patients in
the hospital is increasing and as a result, the hospital is having
a workload, and one of the solutions is to provide caring
solutions while patients are at home; Secondly, ElSaadany et
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al. [33] have identified that one of the obstacles of healthcare
is the poor survival rate out of the hospital-associated to
sudden cardiac arrest. Implementing technology, real-time
detection is one of the solutions, however, not all hospitals
could analyse those emergency circumstances; Thirdly, Lin
et al. [34] reports a problem where few specific treatments
like obstructive sleep apnoea, require people to spend one
or two nights in the hospital. This treatment requires a
sleep technician who will always check the patient during
the treatment; Fourthly, the article [35] mentions a lack
of information from users has become one of the crucial
aspects of the healthcare industry. The target is to implement
a system that provides medical and healthcare information
services to users using interactive models and technology;
finally, a recommendation mentioned by Alam et al. [36] is
a smart health care assistance that tracks one’s activities,
moods and suggest precautions or actions when required,
as a health assistant, using Personal assistance chatbot to
handle the inquiries from users and collectively provide the
appropriate answers to it.

A set of inclusion and criteria were established to find
the articles from IEEE Explore, EBSCO: Applied Com-
puters Database, MEDLINE, Library Information Science
and Technology, PubMed, ScienceDirect databases, and
keywords like Smart Health Monitoring, Wearable Devices,
Healthcare Systems, Wireless Systems, Cardiac Diseases,
Telemetry, Healthcare issues, arrhythmia, IoT, Electronic De-
vices, Heart Rate, ECG, Systems, and Convolutional Neural
Network (CNN) were used. A final amount of 2060 articles
were identified, and applying the criteria, the number reduced
to 1140. The papers were initially screened according to
title and abstract, and although, there is a wide range of
methodology to classify the arrhythmias, including frequency
and statistical analysis, Markov models, and a mixture of
expert algorithms [37], a list of 50 articles were selected
working with CNN models. The others were not highly
correlated to the topic and were excluded, as Kiranyaz et
al. [37] concluded the superiority in the classification per-
formance, comparing to others complex models; Andreotti
et al. [38] mentioned the tuning stage of CNN facilitates
training and accuracy in the networks; and Zhang et al. [39]
concluded, extracting features automatically using CNN,
improves efficiently the classifying process comparing to
arrhythmia conventional detections models. The process used
is displayed in Figure 4.

The following part inspects methodologies used by dif-
ferent authors, including the selected classes, parameters,
comments and discussion session, keeping in mind that the
process is divided by preprocessing, feature extraction, and
classification, mentioned by Zhang et al. [39].

IV. USING THE AI METHODS IN ECG AND HEALTHCARE
PROCESS

FIGURE 4: Selection process for final papers

A. MULTI-CLASSES ANALYSIS

Yildirim et al. [17] worked on a special approach presenting
an advanced DL methodology for cardiac arrhythmia detec-
tion focused on long-duration electrocardiography analysis
(Figure 5). A convolutional network was implemented for
the distribution signals according to classes. In the first layer,
a one-dimension convolution was performed using a vector
of 50 × 128. The activation outputs were normalized with a
normalization function. In the 1D of the max-pooling layer, a
new feature map was created extracting the maximum values
given in the previous layer. The responsibility of the max-
pooling was to reduce the size of feature maps, avoiding
unnecessary information. Then, there was another convolu-
tional layer working on the input feature maps with 32 ×
7-size weights. Because of the implementation of the batch
normalization, the feature maps were reduced using pooling
methods on the next layer. Convolution and Pooling opera-
tions were performed in the next layers. The features from
the flattened layer are passed to a dense layer of 512 units.
Finally, the last layer of the network was the SoftMax layer.
The SoftMax layer was responsible to classify according to
the output classes.

Yildirim et al. [40], remarked a CNN model to recog-
nize multiple classes on 12-lead signals ECG. The trials
were performed on an ECG dataset, collected by Chapman
University and Shaoxing People’s Hospital. The approach
of this paper was focused on a scheme where the training
and testing stages used different patients. The authors de-
cided to work with CNN because the models of DL had an
exceptional ability to learn features from data inputs using
convolution. Along the process, it was important to modify
the correct parameters, such as the number of filters, kernel
size, and strides. The proposed model was composed of six
convolution layers and four max-pooling layers. Between
intermediate steps, there were two batch normalization layers
to normalize the data; two dropout layers to avoid the over-
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FIGURE 5: A DL Model for Cardiac Arrhythmia Detection
[17]

fitting issue, and a Leaky-ReLU layer with a 0.1 alpha value
to avoid the dying ReLU problem (Figure 6).

Singh et al. [41] proposed a model to classify six types
of arrhythmias with high accuracy and in real-time. The
approach of the mode is to use a less computational process to
predict the output. The system includes Arduino and AD8232
sensor to process and develop the structure of the CNN for
data pre-processing, and ECG arrhythmia classification. The
data were taken from the MIT-BIH arrhythmia and the chose
model is a CNN model to train and test the input file. The
2D-CNN requires an input image. Due to this reason, ECG
or EKG signals are adapted to EKG images and feature
extraction and noise are not required in this phase. This is
essential because feature extraction and noise filtration might
delete important data of ECG Beats. The proposed model
included multiple layers to classify the ECG arrhythmias.
First, the input is given to the Convolution layer which
filters only important features. Secondly, the output of the
Convolution layer is given to the ELU, and from this stage
to the B-Norm layer. This combination is repeated twice,
and the final output is given to the Max-pooling layer. From
the Convolution layer to the Max-pooling layer, there are six
repetitions to reduced features and have accurate data. After
the Max-pooling layer, the output goes through the Dense,
ELU, B-Norm, and Dropout layer. Finally, the Softmax layer
is used to get the probabilistic values depending on the input
with degrees of belongingness to other classes. At last, the
classification is ready with numeric values (Figure 7).

FIGURE 6: A Summary of DL Model for Cardiac Arrhyth-
mia Detection Implemented by [40]

FIGURE 7: A CNN Model to Classify Six Types of Arrhyth-
mias [41]

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192390

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Michael Opoku Agyeman et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The innovative paper presented by Ihsanto et al. [42]
mentions the stages for ECG classification are commonly
divided into four: QRS detection, preprocessing, feature
extraction, and classification (Figure 8). Nonetheless, for
this paper, those were reduced to two steps only, i.e.. QRS
detection and classification, called beat segmentation, and
classification, respectively. Additionally, for the configura-
tion of the hyperparameters such as filter size, padding type,
activation type, pooling backpropagation, they were config-
ured following techniques that can reduce the amount of
trial and error attempts to achieve the best results. One of
these is the Depthwise Separable Convolution (DSC), which
reduces arithmetic operations, and redundancy in the number
of parameters. In the first phase called detection, a gradient
analysis is used, where the R-peak of the graphs are extracted,
obtained from the 48 records of the MIT BIH databases,
and the segmentation interval is based on the amounts of R-
peak found. Subsequently, a CNN model is proposed that
contains 21 layers, including DSC, which the training time
was faster for depthwise separable CNN. The input layer size

FIGURE 8: A Convolutional Neural Network implemented
by Depthwise Separable Convolution (DSC) [42]

is 256 and represents the raw ECG beat waveform, while the
output layer size is 16 representing the number of classes

as described in the MIT-BIH database. A group of layers
is repeated several times, where the convolution process is
included. Also, layers 5 to 7 is configured according to the
DSC algorithm, and layer 2, 7, 12, and 17 are used to replace
the pooling layer.

In the following model presented by Savalia et al. [43],
two datasets were used to distinguish normal sinus rhythm
database (NSR-DB), and MIT / BIH arrhythmia database)
were used to distinguish between normal and abnormal ECG
signals. It was downloaded from the site, kaggle.com, and
the models are implemented in the TensorFlow library. The
proposed model based on CNN includes pooling layers, fully
connected layers, normalization layers, and softmax layers.
ReLU activation was used in each of the convolution layers.
For the max-pooling size, it was determined as 2x2, since
it works better than 3x3, and basically, the process begins
reading the datasets and then defines the characteristics and
labels. Next, the data is divided into training and test sets to
build the model. The loss function is calculated with the goal
of reducing the cost function with gradient descent, a type of
correction of weights, and finally, the predictions are used to
determine what type of disease it is. The previous method is
shown in the figure (Figure 9).

FIGURE 9: CNN Architecture to classify heart diseases
using MIT-BIH and NSR Databases [43]

B. FIVE-CLASSES ANALYSIS
Murat et al. [20] presented a method based on an analysis
of five different heart disease classes. Using the database of
MIT-BIH arrhythmia, they used 100,022 beats and N, S, V,
F, and Q main classes. The architecture of the CNN was
by convolution layers, pooling layers, flatten layers, a dense
layer which included the five types of heart diseases. Evalu-
ating the performance of the CNN, there were variations of
the size layers. For instance, the numbers were set from 32
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to 256, and kernel sizes from 5 to 3. Besides, to decrease
the computational processing, and improve the model, the
authors added an LSTM stage. These techniques have been
developed, and the training of the NN-1 network could be
completed using 2000 epochs. The main objective of CNN-
LSTM networks was to design capable models of input data,
combining representative and sequence learning.

The paper [44] showed a model of CNN and LSTM net-
works. The database used came from the MIT-BIH arrhyth-
mia dataset that heartbeats are grouped into five classes: Non-
ectopic (N), supraventricular ectopic (S), ventricular ectopic
(V), fusion (F), and unclassified beats (Q). The architecture
of the model was composed of convolution layer, pooling
layer, concatenated layer, LSTM layer, and fully-connected
layer. In layer 0, there were three inputs, and in layer 1
those inputs were convolved with 32 kernels of size 13 ×
1, and then a leaky rectified linear unit (Relu) is taken as an
activation function. Subsequently, in layer 2, max-pooling of
size 2 was employed to form output shapes of 19 × 32, 48 ×
32, and 28 × 32. Then, a concatenation layer was applied and
as a result, the output for layer 3 was 95 × 32. On the other
hand, the LSTM network had 32 hidden units. In layer 5, the
output corresponds to the result of the LSTM network when
was flattened to 3040 × 1. Then, there were fully-connected
layers where the last fully-connected layer (layer 9) had 15
units. During the process, dropout was used in layers 4, 6,
and 7, and this parameter was equal to 0.5.

Wang et al. [45] proposed a methodology based on the
MITDB database where is focused on analyse are normal
beats (N), supraventricular ectopic beats (S), ventricular ec-
topic beats (V), fusion beats (F), and unknown beats (Q)
(Figure 10). In the first step, a preprocessing stage imple-
mented by wavelet transform, notch filter, derivative filters,
and median corrected filters is used to reduce the base-
line wandering, muscle noise, 60 Hz powerline interference.
Then, the structure includes different kind of classification
for each type of signals saved in training sets as the below
image shows:

FIGURE 10: A new connected structure to classify Arrhyth-
mia diseases using CNN [45]

Zhang et al. [24] present a 1-D CNN as a method to
classify ECG signals. The CNN model is composed of five

layers, including input and output layers. Those layers are
distributed by convolution layers, downsampling layers, and
one full connection layer. The method gets the initial data and
classifies the features automatically in normal, left bundle
branch block, right bundle branch block, atrial premature
contraction, and ventricular premature contraction. First, the
data should be filtered using the wavelet and wavelet decom-
position algorithm to reduce noises. CNN is mainly com-
posed of two parts: feature extraction and classification. The
convolutional structure is composed of convolution layers,
sampling layer for pooling feature vectors from the previous
convolutional layer. As a result, its output is 324 feature
vectors with 56 sampling points.

Takalo-Martila et al. [46] present an automatic method
implementing deep convolutional neural networks (CNN).
The model focused on inter-patient arrhythmia classifica-
tion, where the data used is different between the train-
ing and test phase. The dataset used was the MIT-BIH
arrhythmia Database and the classes to identify are nor-
mal (N), Supraventricular Ectopic beat (SVEB), Ventricular
Ectopic beat (VEB), Fusion beat (F), and Unknown beat
(Q). This work (Figure 11) has been implemented using a
one-dimensional convolutional neural network to learn the
meaningful features of the ECG signal. The model consists of
three convolutional and two fully connected layers, including
a preprocessing stage, in the first phase. The pre-processing
is performed by adding filters and then normalization of
the signal with the purpose to eliminate powerline, elec-
tromyogram noise. Then, these heartbeats are divided into
two different datasets: Patient dataset DS1 for validation and
patient dataset DS2 for testing. The model of CNN uses
16 neurons in the first layer, 32 neurons in the second, and
64 in the third layer, respectively. To prevent overfitting,
the max-pooling layer and dropout-layers should be used.
The activation function in this feature extraction process is
a rectified linear unit (ReLU), and the last layer has five
neurons.

The authors of [47] have taken the information from the
MIT-BIH arrhythmia database to develop a method to detect
the five types of heartbeats: Non-ectopic, Supra Ventricu-
lar Ectopic, Ventricular Ectopic, Fusion, and Unknown for
the others. The ECG heartbeat classifier consisted of two
main steps: pre-processing and classification (Figure 12). For
the pre-processing stage, the signal from MIT-BIH includes
noise from myoelectric interference, power line interference,
and baseline drift. For this reason, the wavelet filter should be
implemented to denoise the signal. The next step is the clas-
sification stage and is composed of nine layers: four convo-
lutional layers, two subsampling layers, two fully connected
layers, and one Softmax layer. In the convolutional layer, the
principal features were captured. Then, subsampling layers
were essential to reduce the size of layers, and compress
the dimension of the ECG data, reduce the time, and extract
vital features. In the output layer, the softmax activation
function was used to obtain five categories of heartbeats. The
overfitting was avoided using Linear Unit as an activation
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FIGURE 11: An automatic method to detect cardiac diseases
using DL [46]

function and dropout between layers.

FIGURE 12: A general scheme of CNN to classify Arrhyth-
mias [47]

Kiranyaz et al. [48]show an innovative method called
degradation. The degradation models are simulated get by

the median normal beat of the patient and were used to
train the CNN. As a result, the degradation signals were
called abnormal beat synthesis (ABS). The design of those
filters consisted of modelling the most principal causes of
arrhythmias such as high blood pressure, clotting, smoking,
diabetes, drugs, etc. For this paper, the beats selected were:
N (normal), S (supraventricular ectopic), V (ventricular ec-
topic), F (fusion), and Q (unclassifiable). The structure of
the 1D CNN had only four convolutional layers and two
fully connected layers. The output layer size was 5 which
corresponds to the number of beat classes.

C. ANALYSING LESS THAN FIVE CLASSES
As shown by Lin et al. [12], a new scheme for ECG anal-
ysis and cardiac disease detection is outlined, using AI of
things (IoT), hardware, user interface, a cloud system, and
an AI platform. The architecture, presented in (Figure 13),
was implemented with analogue circuits and commercial
Bluetooth modules. The DL architecture was used to detect
the user’s ECG signal into different cardiac arrhythmias.
The pre-processing structure included three steps: noise re-
moval, baseline removal, and image generation, and after
this process, these images trained the CNN model. The CNN
model was built with four convolutional layers and three fully
connected layers, and each convolutional layer was followed
by a leaky rectified linear unit (leaky ReLU) as an active
function. The model used a max-pooling to extract more
features, and then, the three fully connected layers made the
number of output neurons from 100 to 10 and then shrink
these 10 neurons to 4 categories as output (Figure 13).

Similarly, Isin et al. [49] developed a diagnostic system for
cardiologists. The proposed system distinguishes and classi-
fies the following cardiac arrhythmias: Right Bundle Branch
Blocks (RBBB) from Paced Beats and Normal (Healthy)
Beats. The data is taken from the MIT-BIH Arrhythmia
Database. The method started with signal Pre-processing,
removing noises from ECG recordings, and remove the DC
noise from the ECG signals implemented high and low pass
filters. Then, the following step is QRS detection. The foun-
dation of the detection of R-peaks is the Pan-Tompkins algo-
rithm. The algorithm used derivation, squaring, integration
procedures for the detection of R-peaks of the ECG signal.
After that, the extraction architecture was based on AlexNet
CNN that contains a total of eight layers, five convolutional
and three fully connected layers, which are trained on the
generic images of the ImageNet.

Mahajan et al. [50] proposed a 1-D, a 12-layer CNN for
recognizing the raw ECG rhythms. The target of the method
consists of detecting four features in the output layer and
128 features in the fully connected layer of CNN. As a
requirement, there is a wide range of parameters, such as fea-
ture maps, number of hidden layers, kernel size, stride, and
regularization coefficient to play around with. The proposed
CNN architecture consists of using 12 convolution layers
with a filter size of 1 x 5 and each layer followed by the batch
normalization layer, activation layer, and dropout layers. The
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FIGURE 13: A new scheme of CNN using AIoT, Cloud
System, and Hardware/Software [12]

activation function used is the ReLU activation function and
to increase the generalizability of the model, the dropout
layers and L2 regularization is used. In the convolution layer,
the max-pooling layers were applied to control overfitting.
Finally, there are three fully connected layers to detect four
classes of cardiac rhythms: Normal, AF, Other, Noise (Figure
14).

FIGURE 14: CNN architecture to detect four classes of
cardiac rhythms [50]

Borde et al. [51] developed a QRS detection system based
on CNN methods (Figure 15). For this research, although
three assumptions were mentioned, only the CNN hypotheses
were analysed. This method consisted of classifying the

input signals into four classes: P-wave, QRS-wave, T-wave,
or neutral. The signal segmentation process started with a
preprocessing stage consisted in get the differential of the sig-
nals. After this process, the features extraction was extracted
by two convolutional branches, and then, in the middle of the
process, the signals from the two branches were concatenated
and passed to fully connected classification layers. The last
layer has only two neurons because the goal of this method is
to annotate signal in 1 for QRS and 0 for non QRS segment.

FIGURE 15: Concatenated CNN Architecture to classify
four classes of Diseases [51]

A 6-layer deep CNN is presented by Fujita et al. [52]
for automatic ECG pattern classification in classes such as
Normal, AF, Atrial Flutter, and Ventricular Fibrillation. The
database used was the MIT-BIH AF database (afdb). Before
the classification of the CNN, there was a pre-processing
stage based on continuous wavelet transformation, and the
signal was divided into wavelets. The next step was convo-
lutions layers, two max-pooling layers, and two fully con-
nected layers. The target of the convolutional layer is to get
meaningful features from the input. Then, the dimensionality
was reduced by implementing max-pooling layers, whereas
the significant features kept the same for the next operations.
Finally, the fully connected layer is used to join neurons
from the last max-pooling layer and converting the previous
layers into a four-class (Nr, Af ib, Af l or Vf ib) probabil-
ity distribution. Leaky rectifier linear unit (LeakyRelu) was
implemented as an activation function for the convolution
layers, and the dropout layer optimized the output from the
fully connected layer.

Zhou et al. [53] used the MIT-BIH database labelled N,
SVEB, VEB, F, Q following the ANSI / AAMI catego-
rization. Due to the inclusion of noises from the ECG, it
is necessary to include a preprocessing stage consisted of
three parts: denoising the ECG signal, QRS detection, and
segmentation of the signal. Broadly speaking, normaliza-
tion is performed to eliminate the DC level and variations
in amplitude, filtering the QRS complex using the Pan-
Tompkins algorithm, taking 100 points to the right and 150
to the left. In this model, a concept called Extreme Learning
Machine is implemented, generating random numbers of the
weight between the input layer and the hidden layer, and
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setting there is a reduction in the number of hidden layer
neurons, decreasing the number of iterations. Following the
conventional CNN structure, convolutional layers are used
to build the feature map, including the activation function
ReLu. After the convolutional layer, a pooling layer is used to
reduce dimensions, reducing data, and overfitting, which has
four feature maps in the first pooling layer, 8 feature maps in
the second. Finally, two ELM layers are used, to randomly
generate input weights and hidden layer biases, and the last
layer stores the probabilities of four classes (Figure 16).

FIGURE 16: Implemented model by Zhou et al. [53]

V. EXISTING APPROACHES: CHALLENGES &
POSSIBLE FUTURE SCOPE
A. CHALLENGES FOR THE WEARABLE
PHYSIOLOGICAL SENSOR-DRIVEN IOT AND
INTELLIGENT HEALTHCARE SYSTEMS
The development of technology tools faces challenges in
aspects such as design, implementation, social and economic.
This section consists of an overview of the most common
problems in wearable physiological sensor-driven IOT and
intelligent healthcare systems. Wan et al. [26] presented a
framework that includes several wearable sensors to analyse
the health conditions of patients. The healthcare signals are
blood pressure, heartbeat, and body temperature. Wan, em-
phasizes, although the device is functional, it is not comfort-
able for people to attach sensors to some parts of the body.
In addition, battery life is one of the problems with smart
phones, Bluetooth, and WiFi [54]–[57]. As Raja et al. [19]
mentions, most wearable devices could be affected by having
battery and noise limitations.

Baig et al. [58], explained the number of sensors used
in wearable devices is representative and requires a specific
place on the body or body postures to provide accurate mea-
surements. One of the technical barriers is the interference
of feature extraction due to the motion of the sensors. The

authors recommended using linear filtering, detecting the R-
wave peak timings from the ECG. However, most of these
noises are complex to filter over hardware because of pro-
cessing limitations, and as a solution, these noises could be
filtered using software resources. On the other hand, although
the study achieved a good outcome in a small setting, yet
inconsistency is apparent related to the impedance value. The
measures of the sensor can change according to factors such
as skin conductivity variation, creating a challenge in the
analysis of the signals. Other common issues with wearable
systems are the delay associated with data loss, buffering,
network communication, monitoring, or processing, and the
low battery life because of the continuous connection with
the Bluetooth, WiFi, or 3G/4G networks.

Possible future solutions issues with battery life and con-
nectivity will be to implement wearable devices with high-
performance and low-power embedded processors and low
power-long range connectivitiy such as Long Range Wide
Area Networks (LoRaWAN) [59]–[63].

B. CHOOSING SIGNALS
The extensive variation of the heart disease classes is di-
verse, and sometimes the studies include five classes, and
others include seventeen. According to the MIT database of
arrhythmias, there are fifteen classes of heart disease, but,
this classification also can be grouped into five groups as the
Association for the Advancement of Medical Instrumentation
(AAMI) dictated and described in ANSI / AAMI EC57: 1998
/ (R) 2008 (ANSI / AAMI, 2008). For instance, in [24], [46]–
[48], [64], the authors used models following the five classes
recommended by the AAMI. These five classes are Normal
(N), Supraventricular ectopic beat (S, SVEB), Ventricular ec-
topic beat (V, VEB), Fusion beat (F), and Unknown beat (Q).
This model is also used by Acharya et al. [65] and Pang et al.
[64]. The study [20], also implemented the detection system
of arrhythmias calling the non-life-threatening parameters
the five classes previously mentioned and can be grouped as
life-threatening versus non-life-threatening.

Nonetheless, the studies [14], [17], [42], [44] also expose
that the fifteen classes of detection were used to implement
the models. In addition, there is a slight preference to choose
a different value of classes and is not a standard process to
follow a specific class to analyse. This is clearly presented in
[12], [24], [40], [49], [50] where it is explained that the use of
complex recognition structures imply a high computational
performance whereas reduced models in DL contribute to
the efficiency of the model and hardware. This last study,
used different quantities of classes, starting at 11 classes and
ending with 4.

C. LOCALIZATION
The acquisition and classification of different signals from
the heart are essential for doctors and nurses in the dis-
ease recognition process. For instance, studies [26], [33]
the authors proposed architecture to sense parameters such
as heartbeat, temperature, and blood pressure. They got the
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heartbeat signal using a cardiac sensor based on the technique
plethysmography. In contrast, the technique used by Yang
et al. [66], consisted to implement three dry electrodes and
obtain the signals coming from the area nearby the heart
whereas in [18], the technique involved additional locations
such as chest, heart, fingers, and extremities like legs and
arms. Singh et al. [41] presented a technique using three elec-
trodes along with the heart areas, forming a triangle between
the extremities and the stomach, following Einthoven’s Tri-
angle; and Chuang et al. [12], implemented a two-electrodes
technique taken the signals from the heart.

However, there is also an important number of research
that the signals came from databases. The recent studies [24],
[46], [47], [51], [67]–[69] authors used only databases as an
input to capture ECG signals. Murat et al. [20], used about
100.200 ECG beats to evaluate the different target classes,
whereas the articles [17], [40], adopted 10000 and 100, re-
spectively, from ECG fragments to perform the analysis and
classification. Most of the previous articles used the database
from MIT which has contributed to the analysis, training, and
visualization of heart signals. For instance, Shi et al. [44],
[49] proposed a CNN model supported on the MIT database
of 48 ECG recordings of 30 minutes. The previous beats
were obtained by expert cardiologists, by Holter machines
a few years ago. In the article [45], the database is also
used, mentioning the type of machines taken corresponds to
12 channels of standard ECG. In the article, [65], a private
database of 8,258 ECG recordings was adopted, through a
single-channel ECG Device called Alive Cor. Baloglu et al.
[67], used an open-access ECG database that includes fifty-
two records of normal patients and 148 records of patients
with heart problems.

D. FILTERING, TRAINING TIME AND PERCENTAGE
The studies evidenced, the filtering process is another essen-
tial step once there are unstable signals in the process associ-
ated with electromyographic noise, baseline drift, and power
line interference. As the highlighted methodology from the
papers justified, this filtering process could be divided into
two groups. The first consists of using hardware such as in-
tegrated circuits, operational amplifiers, etc. The second one,
the filtering process can be achieved using software through
image processing and mathematical expressions. Both can be
applied depending on the environment.

In the software group, the tendency dictates to use spe-
cific methodologies to filter the signals using a mathemat-
ical expression. For instance, see [18], [58], the authors
implemented a pre-processing stage using low-pass filters,
Butterworth bandpass, adaptive filter, bandpass finite impulse
response filter to eliminate noises around ECG signals. Isin
et al. [49], eliminated the DC noise by subtracting the mean
from the ECG recording, putting the signal at zero, in the
x-axis, and he argued that frequencies related to breathing
and movements are classified as high frequency, and it can
be eliminated by implementing high-pass filters should be
applied.

Ghiasi et al. [68] explained in the research that baseline
noise and low frequencies were eliminated using high and
low pass filters. Then, to recognize the P, QRS, and T of the
ECG waves, the authors followed the Tompkins algorithm to
detect the R-peaks. In the same line, in the study [33], the
authors developed an IoT platform and the processing stage
is based on a digital filtering stage. They performed an elim-
ination of the Baseline Wander and High-Frequency noises
by applying a high-pass filter and then apply a low-pass filter
represented by mathematical equations. Similarly, in [12], the
development of an IoT application was implemented using
the filtering part on a platform. This stage was composed of
an 8-point moving average filter for noise and polynomial
fitting for baseline removal. In the articles [17], [24], [45], the
pre-processing stage for the reduction of noise is mainly com-
posed of the discrete wavelet transform, wavelet transforms,
notch filter, derivate filters, and median corrected filter are
being used, and additionally, in [70], the author mentioned
wavelet transform is an affective time-frequency analysis tool
that achieved good results in baseline wandering elimination,
QRS complex analysis, and the authors in [50], used a signal
decomposition in wavelet, to reduce noise and improve the
signal to noise ratio. The signal is decomposed in wavelet
and later it is built based on the variance, mean, average of
the signal.

On the other hand, the studies [41], [66] developed a
hardware platform using internal filters from microcontroller
units that allow the signal processing and improve the signals
that come from the electrodes.

As Jan et al. [26] explained, one of the prerequisites for
wearable devices is to achieve the demand for real-time
health and accuracy. This demand is related to the algorithm’s
performance. To facilitate the state-of-the-art research, Ta-
bles 1 and 2 summarises the results of different CNN al-
gorithms and accuracy from the research papers considered
in this review. It can be observed from Tables 1 that the
MIT-BIH standard arrhythmia database [71] is the most used
dataset from the research papers considered in this review.

VI. DISCUSSION: COMPARATIVE ANALYSIS AND GAPS
Previous works and articles present important and essential
studies for the development of AI since they validated models
and present a range of acceptable percentages for it. However,
it is important to review some aspects of management and
improvement at a general level. According to the literature
reviewed, there are some discussions related to the results of
the chosen articles.

First of all, biomedical devices that offer 24/7 operation
are still not comfortable for patients, especially if patients
need to go to the bathroom or have any movement that they
require. Besides, some wearable devices offer limited com-
putation and storage capacity, and the duration of the battery
remains one another of the concerns in this material. BAN
development requires regular maintenance and robustness to
avoid cyber attacks. Wan et al. [26] mentioned that, in real-
time services, there is an important consideration that the
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TABLE 1: CNN Architectures and Accuracy

Authors
and Year

Dataset/Database Technique ECG Diseases Embedded System Used Accuracy

Qayyum
et al. 2018
[8]

PhysioNet/Computing
in Cardiology [72]

CNN AlexNet AF, Noises, Normal, Others The NIVIDA GPU used in experiment
has capacity 3GB RAM with K-4000
series

96%

Lin et al.
[12] 2019

Clinical trials MIT-BIH
[71]

CNN Normal ECG, AF, atrial flutter, and
ventricular fibrillation

Electronic device based on IC and
Bluetooth modules; and Cloud Server

95%

Cai et al.
[13] 2020

Chinese PLA General
Hospital Dataset [73]

CNN + DDNN AF and Normal IDIA TITAN XP GPU with 12G mem-
ory, Intel Xeon E5-2620v4 and python
3.6.

99.35 %

Hongling
et al. [14]

Dataset extracted from
the Division of Cardi-
ology of University of
Science and Technol-
ogy, Wuhan, Chin [14]

CNN Multilabel: 21 Classes N/A 99.5%

Yildirim
et al. [17]
2018

MIT-BIH arrhythmia
database [71]

Proposed
1D-CNN
classification
model

All classification used in MIT
Databases

Experimental studies were performed
on a computer with a 3.40 GHz Intel
Xenon E3 1240 v3 machine with 8
GB RAM and Nvidia Quadro K600.
The proposed deep network used Keras
platform and GPU-based Tensorflow
backend

91.33 %

Murat et
al. [20]
2020

MIT-BIH arrhythmia
database [71]

1-D CNN,
LSTM

Normal Beats (N), Atrial Prema-
ture beats (APB), Left Bundle
Branch Block (LBBB), Right Bun-
dle Branch block (RBBB), and
Premature Ventricular Contraction
(PVC)

The computer used in the experimental
studies has an Intel Core i7-7700HQ
2.81 GHz CPU, 16 GB memory and
8 GB NVIDIA GeForce GTX 1070
graphics card

98.93 %

Li et al.
[24] 2017

MIT-BIH standard ar-
rhythmia database [71]

CNN+ Wavelet
as a pre filtering
process

Normal (N), left bundle branch
block (L), right bundle branch block
(R), atrial premature contraction (A)
and ventricular premature contrac-
tion (V)

Computer. No specifications about the
computer

97.50%

Murugesan
et al. [25]
2018

MITDB [74], LTDB
and LTAFDB arrhyth-
mia databases [75]

CNN + LSTM Normal (N), Premature Ventricular
Contraction (PVC) and Premature
Atrial Contraction (PAC).

System Nvidia GTX1060 6GB GPU
and Torch Software.

98%

Wan et al.
[26] 2018

No Database used. No applied The heartbeat sensor data indicates
the regularity of the heartbeats,
which can also reflect the myocar-
dial activities.

Arduino sensor platform integrated
with sensors. WISE is also empowered
with a WiFi module.

No
applied

ElSaadany
et al. [33]
2017

No Database used. No applied First stage, extracting all features
from the sensor. Then, using a
thresholding technique, they make
sure that the patient’s body temper-
ature and heart rate are within the
normal range

Determine the heart rate beat and tem-
perature of the body and The IoT sys-
tem consists of a pulse sensor, a tem-
perature sensor, an Arduino, and a Low
Energy (LE) Bluetooth. A smart phone
is used to collect sensors data.

No
applied

Kiranyaz
et al. [37]

MIT/BIH arrhythmia
database [71]

ADAPTIVE 1-D
CNNS

N (beats originating in the sinus
mode), S (supraventricular ectopic
beats), V (ventricular ectopic beats),
F (fusion beats), and Q (unclassifi-
able beats)

N/A 98.6 %

Zhang et
al. [39]

MIT-BIH arrhythmia
database [71]

1-D CNN normal beat, left buddle branch
block beat (LBBB), right buddle
branch block beat (RBBB), prema-
ture ventricular contraction (PVC)
and atrial premature beat (APB)

N/A 97.7 %

Yildirim
et al. [40]
2020

Chapman University
and Shaoxing People’s
Hospital

CNN Atrial Flutter, Fibrillation, and
Tachycardia; Atrioventricular
Node Reentrant Tachycardia and
Reentrant Tachycardia, Sinus
Irregularity, Atrium to Atrial
Wandering Rhythm, Bradycardia,
Rhythm, Tachycardia,and
Tachycardia

A computer with specifications of Intel
Core i7-7700HQ 2.81GHz CPU, 16GB
memory, and 8 GB NVIDIA GeForce
GTX 1070 graphics card.

97.7 %

Singh et
al. [41]
2020

MIT-BIH arrhythmia
dataset [71]

CNN NOR, PVC, PAB, RBB, LBB APC,
VFW, VEB

ECG arrhythmia using Arduino Uno +
AD8232 sensor

98.99 %

Ihsanto et
al. [42]
2020

MIT-BIH arrhythmia
database [71]

CNN + DSC +
ECNN

All the classes proposed in the MIT-
BIH arrhythmia Database

N/A 99.88 %
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TABLE 2: CNN Architectures and Accuracy (Continued)

Authors
and Year

Database Technique ECG Diseases Embedded System Used Accuracy

Savalia et
al. [43]
2018

Dataset downloaded
from PhysioBank [76]

CNN + MLP Normal, Ventricular Tachycardia ,
Atrial Fibrillation, AF, Ventricular
Bigeminy, Second Degree AV, First
Degree AV

N/A 83.8 %

Shi et al.
[44] 2020

MIT-BIH arrhythmia
[71]

CNN + LSTM Normal beat (N), supraventricular
ectopic beat (S), ventricular ectopic
beats (V), fusion beat (F)

a computer Intel Xeon E5-2620 CPU
and two NVIDIA GTX 1080 GPU.
And the dynamic memory of the com-
puter is 128 GB. The network was
implemented with a high-level neural
network API called Keras

99.26 %

Wang et
al. [45]
2020

MIT-BIH
supraventricular
arrhythmia database
(SBDB) [77]

Dual fully
connected neural
networks

Normal beat (N), supraventricular
ectopic beat (S), ventricular ectopic
beats (V),fusion beat (F) and un-
known beat (Q).

A notebook equipped with an Intel
Core i7 4870HQ CPU and an NVIDIA
GT 750 M GPU. The memory size of
the notebook was 16GB. Python as the
programming language with the scikit-
learn library and the TensorFlow li-
brary

93.40 %

Takalo-
Mattila et
al. [46]
2018

MIT-BIH arrhythmia
database [71]

CNN Normal (N), Supraventricular Ec-
topic beat (SVEB), Ventricular Ec-
topic beat (VEB), Fusion beat (F)
and Unknown beat (Q).

N/A 92%

Xu et al.
[47] 2020

MIT-BIH arrhythmia
Database [71]

CNN Nonectopic beat (N), supra ventric-
ular ectopic beat (SVEB, S), ven-
tricular ectopic beat (VEB, V), fu-
sion (F), and unknown (Q).

The CNN was trained using an Intel
Core i7-8700K CPU. @3.70 GHz, 32G
B RAM, GeForce GTX 1080 Ti GPU

99.90 %

Kiranyaz
et al. [48]
2017

MIT/BIH arrhythmia
database [71]

ABS+ CNN N (normal), S (supraventricular ec-
topic), V (ventricular ectopic), F
(fusion), and Q (unclassifiable)

N/A 97.75%

Isin et al.
[49] 2017

MIT-BIH arrhythmia
AF database [71]

Transferred deep
convolutional
neural

Normal, rbbb or paced PC with Intel i5-6500 3.20 GHz CPU,
NVIDIA Geforce GTX 1060 GPU and
16 GBs of RAM. Matlab and AlexaNet

91.20 %

Mahajan
et al. [50]
2020

MIT-BIH arrhythmia
[71]

CNN-derived
features from the
raw ECG data,

Normal, AF, Other, Noise N/A N/A

Borde et
al. [51]
2019

MIT-BIH arrhythmia
database [71]

CNN and LSTM Normal, P width, PQ interval QRS
width ,T width

Nvidia GeForce GT 1030 GPU for
prototyping and testing models.Google
Colaboratory with Tesla K80 GPU for
training.

99.18 %

Fujita et
al. [52]
2019

MIT-BIH AF database
[71]

CNN AF, I-AVB, LBBB, RBBB, PAC,
PVC, STD

N/A 99.78%

Zhou et al.
[53] 2020

MIT-BIH database [71] CNN-ELM n-ectopic beats (N), fusion beats
(F), supraventricular ectopic beats
(S) and ventricular ectopic beats (V)

N/A 97.50 %

Li et al.
[64] 2018

MIT-BIH arrhythmia
database [71]

GCNN N, S, V, F, Q N/A 98.70 %

Acharyal
et al. [65]
2017

MIT-BIH arrhythmia
database [71]

CNN N, S, V, F, and Q classes The proposed CNN algorithm was
trained on a PC workstation with two
Intel Xeon 2.40 GHz (E5620) proces-
sors and 24 GB of RAM. Matlab Soft-
ware

93.30 %

Guiasi et
al. [68]
2017

PhysioNet/CinC
Databases [72]

CNN Normal, AF and Other arrhythmias N/A 78 %.

Hong et al.
[78] 2020

MIT-BIH arrhythmia
and AF dataset [71]

CNN, RNN, GA Disease detection such as AF, MI,
CHF, ST

The proposed CNN algorithm was
trained on a PC workstation with two
Intel Xeon 2.40 GHz (E5620) proces-
sors and 24 GB of RAM. Keras DL
library is used for DL algorithms

90 %
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application should be personalized for patients and families,
doctors, and nurses due each participant require only to read
specific information from the patient.

Regarding electrodes, Merone et al. [18], shown the design
of dry electrodes is comparable with other electrodes that
are implemented with gel. These allowed quick access to
the signals and no prior preparation is required and could
follow possible scenarios that a patient may have: In-person,
On Person, or Off the person. The last one offers a better
condition to work because there is no need to place a sensor
on the body, and there should not be prepared. On the other
hand, regarding image processing, the recommendation from
the authors is to normalize the axis values concerning the
highest value. For example, the fewer the contact points of the
electrodes, the acquisition is much easier and more practical.

Hong et al. [78], focused on the acquisition and processing
of information, and after reviewing the paper, there is not
a standard to classify the signals. There are different leads,
durations, frequencies and classes in today’s databases. The
classes found in all the papers are presented in a great
variety and are distributed diversely. This could generate
ambiguities in some classes because although few of them
are not common, there is a probability patients could suffer.
In some reviewed papers, the classification consists of four
types of diseases as unknown. It is important to include them
in a formal study, and as Kiranyaz et al. [37] mentioned,
following the classes of the Advancement of Medical Instru-
mentation (AAMI) to improve the quality of the results and
contributes to the best practices in this field. Another concern
is getting this information is almost impossible, since being
2020, there are still the same databases from 40 years ago.
The models presented in the selected papers differ in many
ways, and there could be more complicated models with, and
others that are associated with improvement parameters such
as dropout, learning rate, etc. This also makes it difficult for
us to understand and implement. Hong et al. [78], suggested
researchers must work complex models from simple schemes
and dividing the tasks corresponding to each of the layers. In
this way, there can be a better interconnection and interpreta-
tion between the reader and the writer.

Jumping in the computational cost, although the CNN
structure is preferred, these models have their tuning parame-
ters that demand computational cost. Hybrid models can be a
solution to have more accurate results, but the computational
cost is enormous since the time in which the algorithm is
executed takes time to process. Ebrahimi et al. [10] empha-
size the processing complexity of DL depends on the number
required of the floating-point. This reference depends on
parameters like hardware, compiler optimization, and APIs
used like TensorFlow, anaconda3, PyTorch. In addition, there
is a fact that the presented models are complex. This means,
if researchers want to implement those models in a mobile
device for healthcare, is a great obstacle since it requires great
resources for the understanding and the classification of the
signals. As a recommendation, simpler models must be han-
dled, and few articles express that model should be modelled

and the CNN model in a real setting. Murat [20] suggests that
researchers should find more scalable and integrable methods
with mobile and cloud systems applied in clinical standards.
This would imply the importance of working with wearable
devices with power consumption. For instance, Kiranyaz et
al. [37], proposed a simpler and cheaper model that only
implemented 1-D convolutions, having an individual training
per each patient.

Regarding few concerns about the structure of papers,
ElSaadany et al. [33] presented a basic device scheme for
detecting heart rhythm and predicting cardiac arrest is pre-
sented. Although there are graphs and data associated with
the experiment done, there is no indication that evidence
readers the system works correctly because extreme situa-
tions are not included in the test of this algorithm. The data
presented in the document does not allow for validation if the
situations were taken using a computer or from the mobile
system, or any other device. Another example found in the
work presented by Wan et al. [26] where the structure of
the paper is well done, but the captured results only present
a healthy patient. Also, faced with this scenario, we cannot
have any percentage of algorithm accuracy. Expanding the
information further, it would be important to take into ac-
count some percentage to handle and involve other scenarios
to test how the algorithm behaves.

The authors also presented few recommendations at the
end of their research. For instance, Lin et al. [12] recom-
mend future developers improve the presented model in a
simple model. This model should be tested on an electronic
chip and allows the detection of other types of arrhythmia,
and Yildirim et al. [17] emphasize that a short-time pro-
cessing model should be used for potential applications in
telemedicine and mobile devices or cloud computing for real-
time. Here, the authors give guidelines of what a clinical case
scenario could look like, where the patient could be moni-
tored in a specific time frame, so, then the patient’s ECGs
will be processed in the cloud. This can lead to a potential
reduction in real-time processing. Another suggestion came
from Zhang et al. [24] that a CNN and LSTM structure is
proposed to extract implicit features and sequential that can
be used in the medical decision support system to assist
doctors to diagnose arrhythmias using wearable devices for
automatic diagnosis. Finally, Fujita et al. [52] proposed a
proposed model where an R-peak detection is not required
and could be implemented in health-care industries as an
added tool to assist physicians in providing a decision support
system on the diagnosis. If necessary, it can also be used at
home for patients of a wide age range or relatives with heart
problems.

Further research and innovations for arrhythmia detection
using IoT, AI and Visualization are required to acquire,
detect, and classify different ECG heart rhythms taken from
patients. Furthermore, future research directions could use
forecasting techniques to predict potential heart diseases.
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VII. CONCLUSION
In this paper, we have discussed the main methodologies
that relate the study and classification of heart diseases to
CNN models. The state-of-the-art research and industrial
applications have been provided along with the findings
from the literature, through which the key challenges and
recommendations have been outlined. It has been shown that
there is a very low percentage of electronic devices that allow
the detection and classification of the different classes of
heart diseases. Understanding that most of the studies involve
the learning and testing stages without including any devices
other than the computers, and bearing in mind the recom-
mendations about the place where the electrodes should be
located, the embedded system to be used and its challenges;
and the CNN model implemented, gives us the motivation for
our future work which is to implement an IoT-CNN enabled
wearable device for early detection of arrhythmia patterns.
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