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ABSTRACT In Software-Defined Networks, the Intrusion Detection System is receiving growing attention,
due to the expansion of the internet and cloud storage. This system is vital for institutions that use cloud
services and have many users. Although the Intrusion Detection System offers several security features, its
performance is lagging behind in large enterprise networks. Existing approaches are based on centralised
processing and use many features to implement a protection system. Therefore, system overload and poor
performance occur on the controller and OpenFlow switches. As a result, the current solutions create
issues that must be considered, especially when they are implemented on large networks. Furthermore,
enhancements in security applications improve the reliability of networks. Following a literature review of
the existing IntrusionDetection Systems, this paper presents a newmodel that offers decentralised processing
and exchanges data over an independent channel, in order to solve issues relating to system overload and poor
performance. Our model utilises an appropriate feature selection method to reduce the number of extracted
features and minimise the data transmitted over the channels. Additionally, the Naive Bayes algorithm has
been employed for flow classification purposes, since it is a fast classifier. We successfully implemented our
framework, using the Mininet emulator, which provides a suitable networking environment. Evaluations
indicate that our proposed system can detect various attacks with an accuracy of 98.46% and nominal
decreasing rates of 1.5% in throughput and 0.7% in latency analyses, when the model is implemented in
wide range networks.

INDEX TERMS Naive Bayes—protection system based distribution process (NB-PSDP), Naive Bayes
(NB), software-defined network (SDN), intrusion detection system (IDS), machine learning (ML), distri-
bution process, CSE-CIC-IDS2018 dataset.

I. INTRODUCTION
The world is moving toward virtualising data by utilising
cloud computing facilities. Therefore, it is necessary to pro-
tect sensitive data from intruders in these platforms. Existing
Intrusion Detection Systems (IDS) need to be flexible to
cope with big data and the rapid development of networks.
Technological expansion and fast data transmission have
led to a growing number of perilous attacks on institutions.
Therefore, it is essential to develop efficient IDSs in line with
the proliferation of new technology. An IDS plays a critical
role in network security as it enables the observation of the
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traffic flow across the network and predicts abnormal activity
by investigating new incoming flows/packets individually,
or within fixed time windows.

Conventional network architectures have failed to meet
the market requirements for rapid technological growth. The
Software-Defined Network (SDN) is a new network archi-
tecture that can deal with most market necessities, due to it
is flexibility [1]. The central concept of SDN is based on the
detachment of the control and data planes. In other words, the
data plane simply forwards incoming data to the destination,
while the control plane manages the network. Therefore, the
data plane does not involve networking configurations, but
consists of forwarding devices, such as hubs, switches, and
routers, managed by a controller in the control plane. These
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planes exchange data by using the OpenFlow protocol. The
control plane is connected to the data plane via a south-
bound interface, using the OpenFlow channel [1], as shown
in Fig.1. The control plane has absolute authority to monitor
and configure the network over a centralised authentication
process.

FIGURE 1. Standard SDN Architecture.

SDN is widely considered as one of the next-generation
network architectures, and it has serious security chal-
lenges that enable attackers to target various vulnerable
points. Traditional IDSs are inappropriate for the SDN con-
text [2]. Furthermore, state-of-art IDSs do not satisfy the
businesses requirements. Most of the solutions were devel-
oped for small enterprise networks, and some researchers
have been breaking the SDN concept. Therefore, it is essen-
tial to develop a modern IDS that handles security issues
in an SDN framework and is suitable for large-scale net-
works. IDS is categorised into two types: signature-based and
anomaly-based [3]. Signature-based IDSs identifies as mis-
use detection or knowledge-based detection. It detects attacks
by utilising specific patterns and compares the observed
behaviour with those stored as a unique signature in a
database. Such IDSs have high speed and low scalability [1].
On the other hand, anomaly-based IDS monitors network
traffic activity by employing statistical analysis methods.
This method collects specific data of the regular user’s
behaviour over time. It is utilising the Machine Learning
algorithms for classification purposes. At the same time, it is
characterised by low speed and high scalability.

The principal contributions of this article are as follows:

• It presents a concise literature review of IDSs in SDN.
• Develops a novel IDS called Naive Bayes – Protection
System, based Distribution Process (NB-PSDP). The
proposed model distributes the processing steps across
the OpenFlow switch and SDN controller. Our system is
the first security model that spreads the processing steps
between the SDN planes.

• It utilises a new independent channel, called the IDS
channel, for signalling purposes in order to avoid the
overload in the OpenFlow channel.

• The proposed approach reduces the signalling overhead
byminimising the transmission ofmessages between the
IDS and OpenFlow switches.

• The model is the first IDS-based SDN that employs
a univariate feature selection method on the CSE-
CIC-IDS2018 dataset to reduce the number of features
extracted.

• It enhances the protection of SDN networks from sev-
eral types of attack, including document infiltration,
SSH-Bruteforce, Brute Force-XSS, and DoS attacks-
Slowloris.

• The experiments indicate that NB-PSDP demonstrates
high throughput at a low delay rate and less CPU usage
compared with state-of-the-art IDSs.

• The NB-PSDP achieves high prediction accuracy, while
implementing a minimum number of features.

The rest of this article is organised as follows: Section two
introduces a background on IDS. Section three defines the
proposed system and its benefits. Section four discusses the
evaluation, experimental setup, and results. Lastly, Section
five combines the conclusion of the paper and potential future
works.

II. LITERATURE REVIEW
A. WHAT IS THE INTRUSION DETECTION SYSTEM (IDS)?
The IDS defences a network by controlling and monitoring
its traffic. The IDS is essential, particularly when a network
enterprise has security concerns or sensitive data [4]. The
IDS releases an alert to the administrator, when malicious
traffic has been identified, and redirects or filters this traffic,
according to its requirements and policies [5]. In a network-
based IDS, the typical components are the IDS management,
IDS collector, and IDS classifier. The IDS examines every
packet that arrives through the switches using a south-bound
API. This process is performed by using a standard switch
managed by the controller, so the controller can see and
analyse the network traffic moving over the switches [6].

B. TYPES OF IDS
Based on its targets, IDS can be categorised as follows:

1) Host-based IDS: this installs on devices and examines
all the activity that occurs on a computer [7].

2) Network-based IDS: this system observes the traffic
to detect malicious activity by checking the traffic
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behaviour at various stages and raises an alarm when
it identifies an anomaly [7].

C. POTENTIAL ATTACKS IN THE SDN
In SDNs, the most concerning attacks are Distributed Denial
of Service attacks (DDoS), Denial of Service attacks (DoS),
Root to Local (R2L), User to Root (U2R), and Prob attacks.
However, there are other threats, and their possible effects on
SDNs are discussed below:

1) Saturation of the controller resource: the controller
is considered the core of the SDN network. Therefore,
if the controller crashes, it can affect the network per-
formance. Controller can be exhausted by processing a
high volume of flooded requests by an attacker. During
controller overloading, it is impossible to handle all
incoming flows, which causes a high volume of regular
traffic delays, or lapses in the essential processing [8].

2) Switch overloading: DoS and DDoS attacks are the
main threats to SDN architecture. Such attacks can
generate many malignant packets, in order to flood
switches. When the switch cannot find an entry that
matches a malicious packet in the flow table, it for-
wards it to the controller to apply specific rules. How-
ever, because the switch is limited by the TCAM, not
all incoming packets can be processed. Therefore, the
incoming flows and requests exceed the flow table’s
memory. Consequently, regular traffic will not be sub-
jected to this necessary process [7].

3) Congestion bandwidth between switch and con-
troller: missing events occur because of two actions
during the new incoming packets. The first occurs when
incoming packets are stored in the buffer of a flow table.
The second occurs when anOpenFlow request has been
created, containing an IDwith information stored in the
packet header. Thus, packets can collide with another
bound interface, causing the blocking of services [9].

D. VULNERABLE POINTS IN SDN
The SDN consists of three planes: data, control, and applica-
tion, as shown in Fig.1. This nature of SDN makes the net-
work vulnerable to several attacks, such as DDoS and DoS.
The points targeted by these attacks are described below:

1) SDN switches: the main function of the OpenFlow
switch is forwarding the newly received traffic to the
controller to take proper action. However, the switch
has a flow table with limited memory. Therefore, there
is a major security issue if the attacker forwarded
a massive number of malignant packets to flood the
switch [10].

2) SDN switch links: the packets received may transfer
between the switches, before reaching the controller.
Packets are not encrypted when transmitted over links.
Therefore, an attacker can easily catch these packets,
particularly in wireless environments [10]. This type of
attack is known as man-in-middle attack. In addition,

DoS and DDoS attacks can be implemented at this
point, so the attacker can forward a massive amount
of malignant traffic to stop the transmission of regular
traffic, thereby blocking network services.

3) SDN controller: as it represents the core of the net-
work, the controller takes critical actions for the envi-
ronment. Any anomaly can stop network activity. The
controller influences the functionality of the network,
turning it into an engaging activity for attackers. How-
ever, if a single controller is used, the network will
face a single point of failure. Therefore, this security
concern must be addressed [11].

4) Controller and switch communication: when the
incoming packet cannot match the flow table records,
it will be redirected to the controller for in-depth pro-
cessing. Consequently, the controller will insert new
rules into the flow table entries of the specific switch.
At this point, an attacker can intercept a packet to inject
malignant code or modify the current rules. Hence,
most packets take the wrong direction [7].

5) Applications: these applications include traffic mon-
itoring and traffic classification. Attackers target such
applications to obtain sensitive information, or to add
malignant rules to the controller. An unauthenticated
user can perform this process, while communicating
with the API. Therefore, SDN applications are con-
sidered direct target points to block controller ser-
vices [12].

E. RELATED WORKS AND CRITICAL REVIEW
In this subsection, a critical review of existing research is
presented, as is a summary in Table 1.
Jin et al. [13] constructed a simulation platform, based on

Mininet in SDNs, to identify DDoS attacks. A SVM classifier
was used to classify new incoming packets. Flow table col-
lection was performed through characteristic value extraction
to feed the classifier during the attack detection process.
However, this was not performed through a feature selection
process. Therefore, some features can affect the classifier’s
performance and accuracy, which presents a challenge related
to the proper selection method. According to the results, the
best accuracy rate was obtained by testing with a dataset
of 600 TCP packets, achieving 96.83% accuracy. Compared
to UDP and ICMP, the best results were obtained for the TCP
protocol because the TCP protocol has more network fields
for classification. However, UDP has more representative-
ness, based on the application analysed. Finally, ICMP has
representative payload characteristics that allow individual
behaviour during attacks. The proposed system achieved a
95.24% detection accuracy rate and 1.26% false alarm rate.
Song et al. [14] created an IDS framework called Eunoia.

Their proposed model is an IDS ML for SDN networks.
Eunoia targets malicious traffic in SDNs. Their solution con-
sists of three sub-processes: data pre-processing, data mod-
elling, along with decision-making and response. However,
this method faces many challenges, such as having sufficient
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TABLE 1. IDSs based machine learning.

computational power to withhold and process the enormous
amount of data coming into the SDN-based network intru-
sion system as malicious traffic. The features extracted in
the model filter valuable data from nonvaluable data. The
efficient packet processing is another relevant challenge in
order to avoid bottlenecks of the system.

Sathya and Thangarajan [15] focused on security violations
in an SDN environment and how the model can be identified
to prevent attacks using anomaly-based detection methods.
The authors presented an IDS to recognise DoS, Probe, U2R,
and R2L attacks. The proposed model uses the NSL-KDD
dataset, which includes various types of attack. The system
achieved a 90.9%, 91.1%, 80.2%, and 98.1% detection rates
and 0.111%, 0.249%, 0.69%, and 0.887% false alarm rates for
the DoS, Probe, R2L, and U2R, respectively. However, this
system did not achieve the highest accuracy, compared to the
other approaches. It failed to minimise the features selected
by the Binary Bat algorithm, when a large number of selected
features were used.

Le et al. [16] presented an IDPS network-based detection
method in SDN such as DoS and Probe attacks. The proposed
system used the Decision Tree approach with the 1999 Darpa
dataset. The C4.5 algorithm averted overfitting data and han-
dled the missing attribute values of the training data. They
claimed that the effect of DoS and Probe attacks in SDN
can be mitigated by this method. The model was evaluated
based on Precision and Recall measurements. The DoS attack
results were 0.989 and 0.964, respectively, whereas those for
the Prob attack were 0.984 and 0.921, respectively. How-
ever, they used the 1999 Darpa dataset for training, whereas
many researchers no longer used this dataset because it does
not contain features related to new types of DoS attacks.
The attackers always create new behaviours for DoS and
Prob attacks. The integration of the SDN controller and their
IDP involved a high volume of control packets to monitor
traffic. Therefore, the model overloads the controller, which
this is another challenge that needs to be addressed in their
work.

Hüseyin et al. [17] applied an IDS to identify DDoS in
SDN networks. The main contribution of this research is to
merge two DL approaches in parallel for traffic classification
and SVM for feature extraction. The DL algorithms of LSTM
and GRU have been utilised in the proposed system. The

model was validated with SCADA topology. The experiments
showed that the proposed model improved the performance
by 5%. Moreover, the system was evaluated using accu-
racy measurement, and the result was 96.67%. However, the
detection system needs to be extended to identify several
attacks, not only DDoS attacks. The researchers employed
only 420 non-attack and 3780 attack examples in the learning
phase, which were considered too low for good training.
Therefore, the obtained accuracy does not reflect the actual
rate. Furthermore, the framework involves high complexity
after using two DL methods to perform the traffic classifica-
tion as these approaches use many computations operations.
Hence the system consumes the network resources.

Jankowski and Marek [18] implemented five IDS mod-
els in SDN networks, using several ML algorithms: self-
organising Maps (SOM), Learning Vector Quantization
(LVQ1), and some modified editions. The machine learning
algorithms that were used in this work are as follows: Self-
Organising Maps (SOM), Multi-pass Self-Organizing Maps
(M-SOM), LearningVector Quantization (LVQ1),Multi-pass
Learning Vector Quantization (M-LVQ1), and Hierarchical
LearningVector Quantization (H-LVQ1). The proposedmod-
els detect multi-level attacks, such as Prop, U2R, R2L, and
DoS by classifying the incoming traffic. All the models
implemented showed that they were achievable: the True
Positive Rate was 94% on average. However, the authors
generated a dataset containing features that were native and
easily extracted from the packet header. Therefore, the model
implemented will not detect real network attacks and does not
cover the attack’s behaviour.

Van et al. [19] introduced an anomaly-based detection
method. The proposed model helps to prevent and detect
known and unknown attacks in SDN networks. The J48-tree
algorithm was used, which is a type of decision tree algo-
rithm developed for classification purposes. The proposed
model was implemented using a NetFPGA10G board. The
system achieved a 91.81% detection rate and a 0.55% false
alarm rate, and the KDD’99 public dataset was used in the
training and test stages. However, they did not consider the
high volume of data in a large-scale network. These require
time and energy for efficient processing. An overload is
generated on the controller and switches, where the Open-
Flow switches check each incoming packet. Additionally,
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the proposed system extracts too many features in the inves-
tigation stage, which causes increased consumption of the
network’s resources.

By classifying incoming traffic using the ML algorithms,
Barki et al. in [20] introduced a method to deal with dynamic
nature of the SDN to discover DDoS attack in the application
plane. The selected ML algorithms were Naive Bayes, KNN,
K-means, and K-medoids. The experiment used a private
dataset obtained from a traced file that belongs to the real
network to train and test the models. The detection rate metric
was used to evaluate the algorithms implemented and the
results were 94%, 90%, 86%, and 88%, respectively. How-
ever, the controller extracts 50 features for each incoming
traffic event. This high volume of features requires more
memory and lengthy processing, so when the attack starts,
after a short time, the controller suffers from a substantial
overload.

Lataha and Toker [21] attempted to prove that SDN can
be part of a DoS attack solution. The proposed model sepa-
rates the intrusion detection into two phases: flow based, and
packet based. The disadvantage of high resource use emerges,
when filtering and analysing packets in two states, similar
to stateful and stateless firewalls. These problems cause the
model to face performance degradation, owing to extensive
incoming data rates. The proposed model can detect mali-
cious flows by employing the KNN approach. However, such
an algorithm is efficient in binary classification. As a result,
the proposed approach has 91.27% accuracy and 0.99% pre-
cision, compared with algorithms, such as KNN, using the
NSL-KDD dataset, neural networks, and others. The results
were better under the same conditions. Even when the false
positive rate improved, handling packet processing exhausted
the controller.

Jiaqi et al. [22] proposed an ML approach in a 5G based
SDN environment to identify DDoS, DoS, U2R, and R2L
attacks. The K-means++ and AdaBoost algorithms have
been used to classify traffic, and the Random Forest (RF)
algorithm has been used for feature selection. The authors
used the KDD Cup 1999 dataset, which is widely used in
IDS evaluation. The model achieved an average classification
accuracy of 84%. However, the Random Forest (RF) algo-
rithm failed to select related features that cover the behaviours
of U2R and R2L attacks, as it has achieved a low accuracy
of detection. The selected features are insufficient to cover
the behaviours of the attack. The authors did not consider the
controller’s bottleneck, where the controller at the large-scale
network does not perform the functionality efficiently. There-
fore, the system requires a lightweight method to process
packets efficiently.

III. MODEL DESIGN
Our model is a new IDS, designed for the SDN context called
Naive Bayes - Protection System based Distribution Process
(NB-PSDP). The proposed framework includes a Features
Extractor, Analyser, and Decision Maker modules, as shown
in Fig.2. Fig.3 depicts the NB-PSDP design across the SDN

FIGURE 2. The model overview with the network topology.

planes. The model detects 13 types of attack in real time.
These types of attack are listed in Table 2. Our proposed sys-
tem distributes the processing steps across the SDN layers and
utilises an appropriate number of features to transmit them via
a new, trusted channel in order to avoid controller overload.
Due to its lower complexity and negligible overload, the
NB-PSDP is a reliable and flexible protection system for large
SDN networks. Explanations of the modules are discussed
below.

A. FEATURES’ EXTRACTOR
This module contains new terms that should be added to the
OpenFlow switch. These terms include: IDS_info_request
message, IDS_info_reply message, IDS_info_ID, and the
IDS channel. The switch receives an IDS_info_request with
an allocated IDS_info_ID from the controller. Then, the
switch, in turn, sends IDS_info_reply with the assigned
IDS_info_ID to the controller via the IDS channel. The terms
above replace ofp_flow_stats request and reply messages.

If the controller sends an IDS_info_request message to the
switch, this module extracts the selected features from the
flow table. The switch sends the extracted features to the con-
troller, using an IDS_info_reply message. These messages
use the IDS channel to transfer data between the data and
control planes. Since the traditional IDSs exhaust the Open-
Flow channel by demanding extensive requests, we invented
the IDS channel to transmit the IDS_info_request mes-
sage, instead of the OpenFlow channel, in order to reduce
overload in the OpenFlow channel, when installing such
systems [2]. In addition, the OpenFlow channel trans-
fers other data between the controller and switches, such
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FIGURE 3. The system design.

as synchronise, hello messages, installing/amending flow
entries, and Packet_in/ Packet_out messages [23]. Therefore,
the load on the OpenFlow channel increases, when it is
used to exchange IDS data. For this reason, the proposed
model distributes the processing between the switches and
the controller, instead of only the controller. At the same
time, most of the current research merely used the controller
to extract all the flow features. This module accomplishes
the extraction features for each switch independently inside
the OpenFlow switch, as depicted in Fig.3 and Algorithm 1.
As a result, this module minimises the overload of the
network.

B. ANALYSER MODULE
At this stage, this module passes all IDS_info_replymessages
and converts them into row-data style. Each row represents a
single flow with its own features. The module then forwards
all these features to the Decision Maker module, as shown
in Fig.3. This module considers as pre-processing stage,
it prepares the IDS_info_reply messages to be used by the
following module.

C. DECISION MAKER MODULE
This module employs the Naive Bayes classifier to fore-
cast whether the flows are normal or attacked. NB is a
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Algorithm 1: IDS Info Reply Message in Switch.
Input:
IDS_info_ID, last_packet_count
Output:
last_packet_count
Procedure IDSReply(IDS_info_ID,
last_packet_count):
Count_all_packets←− count(flows);
if Count_all_packets 6= last_packet_count then

features = the 14 features for all Flows
Send(IDS_info_reply(features), IDS_info_ID);

else
Send(IDS_info_reply(Null), IDS_info_ID);

end
return last_packet_count;

End Procedure

classification technique derived from Bayes’ Theorem. The
NB algorithm is considered a fast tool that assumes a low
independence condition between the features [24]. Bayes’
Theorem utilises to compute the posterior probability for
the given classes. Equation 1 has been used to calculate the
posterior probability [25]:

P(c|x) =
P(x|c)P(c)

P(x)
(1)

where P(c|x) indicates the probability of the predictor group
c (x, features), P(c) represents the preceding probability of
the class; P(x|c) represents the probability of a feature in
the current class. P(x) defines the likelihood of a feature
preceding it [25].

The Decision Maker module receives all current flows
from the Analyser module. After receiving all the flows, this
module stores the flows in a matrix and sends each flow
to the NB algorithm. If NB categorised the flow as regular,
the counter of the flows decreases. However, if the flow is
classified as malicious, the controller instigates two events.
The first event orders the controller to update the flow table
of the predicted flow to teach the switch to drop any further
matching packets. The second event warns the administrator
to take further action. In this case, the counter of the flowswill
also be decreased and proceed to the following flow of the
current request. The flow counter concept has already been
published in [26].

At the end, if the counter of flows has elapsed, the Decision
Maker module will generate a new IDS_info_ID and send
new IDS_info_request messages to all connected switches,
through the IDS channel, as shown in Algorithm 2 and Fig.3.

IV. PERFORMANCE ANALYSIS AND RESULTS
A. DATASET AND SELECTED FEATURES
We used the CSE-CIC-IDS2018 dataset, available online
on [27]. This dataset consists of 13 types of attacks, as listed
in Table 2.

Algorithm 2: IDS Info Requests in Controller.
Input:
IDS_info_ID, IDS_info_reply
Procedure IDSRequest(IDS_info_ID,
IDS_info_reply):
Count ←− count(IDS_info_reply);
features[] = IDS_info_reply;
while Count > 0 do

trafficType = NB( features[Count]);
if trafficType == Attack then

Send(FlowEdit);
Send(AlertToAdmin);

end
Count ←− Count − 1;

end
IDS_info_ID←− IDS_info_ID+ 1;
Send(IDSinforequest , IDS_info_ID);
return IDS_info_ID;

End Procedure

TABLE 2. The targeted attacks in the NB-PSDP model.

Many researchers only utilise basic flow features, which
are insufficient for accurately identifying the attack type.
Furthermore, the large number of features consumes the
network’s resources and causes saturation of the controller.
Therefore, the T-Test method has been utilised to perform the
feature selection. This method is kind of the univariate feature
selection methods. T-Test examines every factor to determine
the score of the feature’s relationship with the classes [28].
This method calculates the scores for each feature individu-
ally, based on Equation 2:

t =
(X1 − X2)√
(S1)2
n1
+

(S2)2
n2

(2)

where X1 is the mean of feature 1. X2 is the mean of group 2.
S1 and S2 represent the standard deviation of group 1 and
group 2 [29].

The 14 features with higher scores among the other fea-
tures were selected by using T-Test method, as shown in
Fig.4 and Table 3. Before applying the T-Test algorithm,
we removed some features that cannot be used in the SDN
environment. The T-Test method was selected to invest the
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FIGURE 4. Features importance score using T-test.

TABLE 3. The selected features description [27].

maximum benefit of the NB algorithm, which both work per-
fectly with high independence features [24], [29]. Therefore,
within this number of features, the model avoids long-time
processing without exhausting the switches and controller.
In addition, we adjusted the CSE-CIC-IDS2018 dataset to
include just two labels: 0 for benign flows and 1 for all types
of attacks.

B. THE DETECTION TECHNIQUE ANALYSIS
We utilised various metrics to measure the efficiency of our
NB-PSDP and the other detection techniques. These met-
rics are commonly used to evaluate the IDSs based ML
approaches.

1) EVALUATION METRICS
The following formulas were employed to assess the perfor-
mance of the NB classifier and the other algorithms used in
the comparisons.

• False Positive (FP): is the number of normal flows that
are mispredicted.

• True Positive (TP): is the number of attacked flows that
are expected correctly.

TABLE 4. The experiment results with CSE-CIC-IDS2018 dataset.

• False Negative (FN): is the number of attacked flows that
are mispredicted.

• True Negative (TN): is the number of normal flows that
are expected correctly.

• Accuracy (AC): is the accurate rate of predictor over
the total flow. The following formula calculates the
accuracy:

AC =
TP+ TN

TP+ TN + FP+ FN
× 100% (3)

• Precision (P): is utilised to get the percentage of attack
detection rate. P computes by using formula 4:

P =
TP

TP+ FP
× 100% (4)

• Recall (R): is represent the rate of the number of classi-
fied attacks to the total number attack flows. R calculates
by utilising equation 5.

R =
TP

TP+ FN
× 100% (5)

• F1-measure (F1): it evaluates the more reliable model
accuracy rate based on R and P rates. Formula 6 utilises
to compute F1 score.

F1 =
2

1
P +

1
R

× 100% (6)

The classifiers in Table 4 have been selected based on their
complexity in order to conduct fair evaluation. Furthermore,
all these algorithms have examined under a similar condi-
tions, same dataset, and same parameters that utilised with
our NB-PSDP.

2) EXPERIMENTAL SETUP AND RESULTS
All the selected classifiers including our NB were eval-
uated using labelled datasets. Each classifier was utilised
to categorise the flows in real-time. TensorFlow and
Keras libraries were employed to perform the ML algo-
rithms. TensorFlow [30] and Keras [31] are modern
libraries used in Python to implement the ML and DL
applications.

The results of the detection techniques are presented in
Table 4 and the confusion matrix of our model is shown in
Fig.5. The NB algorithm has been achieved the highest rate
and best performance among other classifiers. The proposed
IDS reached a maximum accuracy, precision, recall, and
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FIGURE 5. Confusion matrix of our NB.

F-Score of 98.46%, 96.15%, 100%, and 98.03%, respectively.
The NB classifier predicted the attack with 100% accuracy,
as illustrated in the confusion matrix shown in Fig.5. More-
over, all the experiments have been validated using the 5-fold
cross-validation technique. Hence, these experiments prove
that the NB classifier with the univariate selection method
produced an efficient approach for detecting several attacks
in real time.

C. NETWORK PERFORMANCE ANALYSIS
The integration between a controller and an IDS is essential,
especially when implementing an IDS in large networks.
Throughput and latency benchmarks were applied to assess
the performance of the NB-PSDP. Furthermore, CPU utili-
sation has been used to evaluate the controller overload and
show how the proposed model reduces the stress on network
resources.

1) EVALUATION METRICS
To evaluate the network performance, we used the Cbench
benchmark, which was developed to estimate the throughput
and latency of the SDN controllers [32]. Cbench is an open-
source tool, programmed by utilising the C programming
language [33].

• Throughput: represents the number of processes that
a system can handle within a fixed duration. Cbench
counts the number of packet_in events handled per
second.

• Latency: determines the time required for a single pro-
cess to be completed by a system, and is also known as
delay. Cbench calculates the time required to complete
a single process in latency mode.

• CPU Utilisation: specifies the percentage of the total
CPU capacity of the controller used during the IDS
implementation.

2) EXPERIMENTAL SETUP AND RESULTS
The Mininet platform and POX controller were employed
to execute NB-PSDP. In the throughput evaluation, Cbench
employs the switches to forward a significant number of
packet_in events to the control plane, and determines the
number of packet_out replies handled during the time unit.
Simultaneously, in latency mode, the switches forward a
single packet_in event to the control plane and calculate the
duration used to process this request.

The experiments were conducted using six scenarios, all
of which involved the following numbers of switches: 8,
16, 32, 64, 128, and 256. Switches were attached to the
POX controller and each switch was connected to 500 MAC
addresses. These scenarios have been executed individually:
the POX controller only, NB-PSDP, and state-of-the-art meth-
ods. At the same time, the NB-PSDP model and state-of-the-
art methods were implemented in the POX controller.

FIGURE 6. Throughput evaluation.

The results of the throughput scenarios are shown in Fig.6.
In all cases, the throughput decreased, when the network
expanded. This behaviour is expected, as the size of the net-
work broadly affects the network performance. After obtain-
ing the results fromCbench tool, we computed the decreasing
rate of the controller in each scenario using the following
formula:

Decreasing rate =
newvalue− oldvalue

oldvalue
× 100% (7)

The decreasing rate values were calculated relative to SDN
controller throughput. The results of decreasing NB-PSDP
throughput rates were approximately between 0.18% and
1.5%. The 1.5% ratewas observed in the case of 256 switches.
The previously mentioned rates are not significant and do
not affect the network performance. In contrast, as shown
in Fig.6, we conducted other experiments using state-of-the-
art methods and found all scenarios had a high decreasing
rate of throughput: between 1.4% and 29.5%. The 29.5%
rate is considered to be too high and consumes the network’s
resources.
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FIGURE 7. Latency evaluation.

FIGURE 8. CPU utilisation.

As shown in Fig.7, the NB-PSDP has a low decreasing
rate in latency. The maximum decreasing rates were between
0.18% and 0.7% when the controller was connected to
256 switches. These values do not impact the network perfor-
mance. Compared with the selected state-of-the-art methods,
we can observe that the decreasing rates of the high latency
were between 1.2% and 30%. The 30% rate is considered too
high and negatively affects the network performance.

The CPU usage average in terms of the SDN controller
was only around 3%. While in the case of applying state-
of-the-art methods, the CPU usage rates were between 15%
and 45% of the total CPU capacity. However, these rates
are relatively high and reflect the way in which traditional
approaches consume resources. Yet, the usage rate of our
model was around 4% of the total CPU capability, so the
decentralisation approach in the proposed model prevents
resources from being exhausted. Therefore, the experiments

prove that the NB-PSDP can be efficiently implemented on
large-scale networks.

These improvements indicate that our NB-PSDP uses a
novel framework, utilising a new independent channel to
transmit the required data. The model distributes the proceed-
ing stages of handling data between the controller and the
switches. In contrast, most studies simply used the controller
to extract and sort the requested data; this process exhausts
the OpenFlow channel and controller, when implementing an
IDS. Most researchers use ofp_flow_stats events to collect
flow tables for each fixed time. These events cause conges-
tion and overload in the controller and hinder the network
performance. Therefore, we designed a novel framework to
solve these issues and allow sufficient time for the controller
to handle all the requests. Moreover, the NB-PSDP uses only
14 features. Latency, throughput and CPU utilisation evalua-
tions prove that our model can be successfully implemented
in large-enterprise networks.

V. CONCLUSION
This paper has offered a brief literature review of IDSs and
proposed a novel security model for SDN networks, called
NB-PSDP, which can categorise network flows in real time,
using the NB classifier. The system utilises a new indepen-
dent channel to transmit data between switches and the con-
troller, employing a novel extension called IDS_info, in order
to avoid requesting unwanted data from the flow tables, and it
distributes the processing steps over the SDN planes. More-
over, the proposed model employs the Univariate Selection
algorithm to only select the relative features that cover attack
behaviours. Furthermore, NB-PSDP protects SDN networks
from various attacks, including document infiltration, SSH-
Bruteforce, Brute Force-XSS, and DoS attacks-Slowloris.

The experiments proved that our NB-PSDP has the highest
accuracy: 98.46% in flow classification and 100% recall,
compared with other ML algorithms. Moreover, network per-
formance evaluation shows that the proposed system has high
reliability and integrity in both large and small enterprise
networks. In future work, we intend to extend the framework
and add a new dynamic module to conduct a balanced real
time trade-off between the security level and network perfor-
mance. Finally, we will utilise other performance metrics to
perform a comprehensive evaluation.

VI. DATA STATEMENT
No new data were created during this study. Pre-existing
data underpinning this publication were obtained from CSE-
CIC-IDS2018 dataset (https://www.unb.ca/cic/datasets/ids-
2018.html) and are subject to licence restrictions.
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