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ABSTRACT Software-Defined Networking is an innovative architecture approach in the networking field.
This technology allows networks to be centrally and intelligently managed by unified applications such as
traffic classification and security management. Traditional networks’ static nature has a minimal capacity to
meet organisations business requirements. Software-Defined Networks (SDNs) are the emerging architec-
tures that address a range of networking challenges with new solutions. Nevertheless, these centralised and
programmable techniques face various challenges and issues that require contemporary security solutions
such as Intrusion Detection Systems. Recently, the majority of this type of security solution has been
developed using Machine Learning techniques. Deep Learning algorithms have recently been used to provide
more accuracy and efficiency. This paper presents a new detection approach based on Convolutional Neural
Network (CNN). The experiments proved that the proposed model could be successfully implemented
in a Software-Defined Network controller to detect various attacks with 100% accuracy, achieved a low
degradation rate of 2.3% throughput and 1.8% latency when executed in a large-scale network.

INDEX TERMS Deep learning-early warning proactive system (DL-EWPS), convolutional neural network
(CNN), software-defined networking (SDN), intrusion detection system (IDS), deep learning (DL), RGB

image, InSDN dataset.

I. INTRODUCTION

Security of modern communication networks alongside the
integrity and privacy of data are growing to be a necessity
in recent years. The essential requirement of an institution
is to preserve its own and sensitive data from internal and
external attackers. Some authorised users may infiltrate their
company’s data to be sent to others for various purposes.
A continuous live feed of data causes difficulty in iden-
tifying an attack in real-time. Modern networks are com-
posed of a combination of hardware and software entities
tailored to meet the requirements of each organisation in a
manner that appears arbitrary to the observer. These com-
ponents include risks, weaknesses, and security limitations.
The attack used by the software is complicated, and it puts
the data at high risk. The developer and the programmers
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may ensure security in the systems by using log files. The
complexity of modern communication networks makes sys-
tems vulnerable to security violations. The types of net-
work attacks differ in severity and speedy based on different
networking characteristics. The main challenge in modern
network security is efficiently and in real-time detecting and
mitigating the threats. Therefore, it is necessary to employ
the Intrusion Detection System (IDS) technique to identify
the internal and external intruders and protect the systems and
networks.

Software-Defined Network (SDN) enables the network
to be controlled by software that grans fewer networking
devices and provides simple physical connectivity and con-
figuration. Therefore, the network operators can adapt net-
work behaviour to support modern services and security
applications. Hence, the majority of the network’s services
will be more flexible, programmable, and not restricted by a
platform [1].
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FIGURE 1. SDN structure [6].

The main SDN characteristic is that the control and data
planes are separated using the Application Programmable
Interface (API). This implies that SDN decouples the for-
warding and control functions in the network [2]. The
forwarding devices, such as switches and routers, are sep-
arated from the control logic and moved into the logical
controller. The controller represents the centralisation in
SDNs [2]. Therefore, the data plane consists only of forward-
ing device sets managed by the controller. The decoupling of
the data and control planes allows the network’s services and
applications to be programmable to enhance scalability and
reliability [2].

The layers and planes of the SDN architecture are shown
in Fig. 1. As indicated, the administrator can activate the
network’s security and strategies in the application plane
by redirecting the network traffic to several applications or
systems by adopting the control plane [3]. OpenFlow rep-
resents the communication interface between the data and
control planes. Therefore, the data plane devices require the
OpenFlow protocol to be connected to the control plane [3].

SDN monitors the external and internal environments by
using the software [4]. The main advantage of SDN in imple-
menting an efficient IDS is active traffic observation, in which
the controller can access network traffic when needed. There-
fore, it has the potential to inspect any unusual traffic in
a network [5]. An IDS can identify and locate malicious
activities by monitoring the network’s traffic offline or in
real-time [6]. Existing IDSs in SDN are Signature-Based, and
Anomaly-Based [6].
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This paper presents new IDS developed for modern SDNss,
named Deep Learning-Early Warning Proactive System
(DL-EWPS). DL-EWPS is a new approach that can detect
various attacks across the SDN network in real-time using
the CNN classifier. CNN is one of the Deep Learning algo-
rithms used in images classification, Analysing Documents,
Face Recognition, etc [1]. The model detects various attacks
efficiently, such as Denial of Service (DoS), Distributed
Denial of Service (DDoS), Probe, User to Root (U2R), and
Remote to local (R2L). The proposed model reduces the con-
troller’s overhead in existing IDSs. Therefore, the proposed
model offers a lightweight algorithm for SDNs to confirm
that the current request has been completed and then sends
another request without stressing the controller. DL-EWPS
also presents a new swift method to convert the numerical
data to RGB images to be used by CNN classifier.

Additionally, we added new features extracted from the
flow table statistics to increase the reliability of the proposed
model. The added features have been selected based on the
investigation and analysis of some typical attacks behaviours.
These features are widely practical during attacks. The pro-
posed system has been implemented in the SDN controller.
The evaluation shows DL-EWPS can detect various attacks
with 100% accuracy and achieve a low degradation rate
of throughput and latency when executed in a large-scale
network.

The rest of this paper is organised as follows: Section two
presents a literature review, while Section three describes the
proposed model and the advantages. Section four explains
the feature selection and the dataset: Section five discusses
the evaluation and the results. Furthermore, Section six
included the conclusion of the proposed model and the future
work.

II. LITERATURE REVIEW

An IDS has been shown in [7] called DDosTC utilising the
hybrid neural network, which consists of flexible transform-
ers and CNN algorithm. The proposed model achieved a pre-
diction accuracy of 99.86% with a 6:4 (training: testing) ratio,
which is considered relatively high. However, the used hybrid
model increased the complexity of the model, which required
more resources, such as memory and CPU processing. The
proposed IDS can only detect DDoS attacks. In addition, the
proposed model involves many extracted features that require
extra memory and a long-time process. Therefore, it will
cause the controller’s bottleneck and cannot be implemented
in real-time in large-scale networks. The majority of these
extracted features are not related to the practices of DDoS
attacks. A less complex model was presented in [8]. The
authors proposed a Deep learning (DL) approach for the SDN
context to identify the DDoS and DoS attacks between the
controller and end-user devices in real-time. The proposed
model in this research detects the attack by utilising the
standard DL algorithm with Relu and Softmax functions. The
CICIDS2017 public dataset was used for the training and
testing phases. The proposed model achieved a prediction
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accuracy of 99.6%, which is also considered relatively high.
However, the presented model also involves many extracted
features that require high memory and a long CPU process.
Some of these features are unreachable in the SDN context
or require additional operations, leading to congestion on the
OpenFlow channel and controller overhead.

Niyaz et al. [9] presented an IDS which is Deep Learning-
based, identifying a DDoS attack in the SDN environment
for multi-vector attack detection. The model includes three
modules: Traffic Collector and Flow installer (TCFI), Feature
Extractor (FE), and Traffic Classifier (TC). The system
checks every packet in the SDN controller, extracts the fea-
tures, and then passes the extracted features to be classified
as either a regular or malignant packet. The authors collected
a dataset from a home wireless network (HWN). In this
paper, they employed the tcpdump tool and hping3 tools to
generate DDoS traffic. At the Feature Extractor (FE) module,
the proposed system extracts 68 features to be used in the
classification for every single packet. However, it could only
achieve a low accuracy of 95.65%. The number of extracted
features requires high-level memory and a long processing
time as this process performs for every packet. Therefore,
this causes a bottleneck in the controller. In addition, most
of these extracted features are not related to the practices of
DDoS attacks. Moreover, the authors broke the concept of
SDN architecture as they configured the controller to force
the switches to send all packets through the controller to be
treated and ignored the flow table function. Therefore, the
controller will be crashed when running such a model in
large-scale networks, resulting in a low performance in small
networks.

On the other hand, in [10], a detection technique was pro-
posed by employing a Deep Neural Network (DNN) approach
to identify the DDoS attacks in the SDN networks. The
NSL-KDD public dataset was used during the training and
testing stages. The proposed model used the six basic features
in the classification, and the controller extracts these features
for each flow in real-time. However, the small number of
the extracted features caused too low accuracy in the detec-
tion stage, which was 75.75%. These features have been
extracted from the flow’s basic statistics information and are
not sufficient to cover the attacks’ behaviours; therefore, the
attacker can easily avoid the IDS. The authors configured
the controller to receive flow statistics from all OpenFlow
switches sequentially each fixed time. This process stresses
the controller, but not more than in the model proposed in [9].

A comprehensive IDS is presented in [11]. The proposed
model is a flow-based anomaly detection approach in the
OpenFlow controller that uses Gated Recurrent Unit Long
Short-Term Memory (GRU-LSTM DNN). A feature selec-
tion technique called ANOVA F-TEST was used to obtain
a high-performance classification. The NSL-KDD public
dataset was utilised for the training and testing stages of
the experiment. The proposed model detects various attacks
such as Prop, U2R, R2L, and DoS. The proposed model
employed 41 features in the classification extracted for each
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flow at the SDN controller in real-time. However, the model
achieved an accuracy of 87% with a false alarm rate of
0.76% which are considered relatively low. The proposed
system is complex as more DL algorithms have been used
in feature selection and classification. Such algorithms utilise
the resources. In addition, the presented model also involves
a large number of extracted features that require high mem-
ory and a long CPU processing time. Hence, the controller
will generate an overload, negatively affecting the network’s
performance. In contrast, a lightweight method was proposed
in [12] to reduce the controller overload. This approach
utilises the Gated Recurrent Unit Recurrent Neural Network
(GRU-RNN) to classify traffic in real-time. The NSL-KDD
public dataset was used during the training and testing phase.
The proposed model used six basic features for the classi-
fication. These features are extracted for each flow inside
the SDN controller in real-time. However, the presented
model achieved a low throughput degradation rate of 7%
and achieved a low detection rate of 89%. This limited num-
ber of extracted features has resulted in low efficiency in
attack detection because it is primitive and does not suffi-
ciently cover the attack behaviours, especially when traffic is
real-time and threats can harm the communication in a short
time.

Jiaqi et al. [13] proposed an ML approach in the SDN
5G environment for identifying DDoS, DoS, U2R, and R2L
attacks. The proposed system is executed using the SDN
controller. The K-means++ and AdaBoost algorithms were
used to classify the traffic, and the Random Forest (RF)
algorithm was used for feature selection. The authors used
the KDD Cup 1999 dataset, which is widely used to evaluate
the IDSs. However, the proposed model in this paper uses
a Big Data Center module to store the network packets for
further analysis, resulting in increased model complexity.
The model has been achieved an accuracy of 84%, which is
considered relatively low. The Random Forest (RF) algorithm
failed to select related features that cover the behaviours of
the attack, and this can be observed when the model achieves
a low detection accuracy. The authors did not consider the
controller’s bottleneck as the controller requests all flows
from flow tables while it has not yet finished the previous
request. Therefore, the presented model requires a technique
to confirm that the current process has been completed and
then sends other flow statistics requests. Conversely, Hybrid
Neural Network (HYBRID-CNN) method was used in [14]
in order to detect the attacks. The model has been achieved
an accuracy of 95.64% which is considered relatively high.
The proposed method is highly complex because it combines
two Deep Learning (DL) algorithms: Deep Neural Network
and Convolutional Neural Network. The nature of these algo-
rithms is high resources utilisation. Therefore, the proposed
system is inappropriate with a large network.

Alternatively, in [15], an approach to identify attacks was
presented. The neural network algorithm was used to clas-
sify each flow inside the SDN controller. The NSL-KDD
public dataset is used to train and test the proposed IDS.
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The model’s target is to define the DOS, U2R, R2L, and
Probes. The model achieved a detection rate of 97.4%.
However, in the training stage, the use of a small dataset
size negatively affects the actual test’s detection accuracy.
The extracted features are obtained only from the header
packet, which are not cover the attack behaviours. In addi-
tion, the dataset used has a highly redundant record. The
processing operation was conducted in the controller for each
packet involved in generating a bottleneck for the controller
and a single point of failure. This is a big challenge in
implementing Machine Learning (ML) approaches with IDS.
Additionally, the proposed model requires a feature selection
method to select the features that are effective when an attack
occurs.

The essential issues with ML/DL approaches are extrac-
tion and feature selection methods. Existing systems suffer
from many features used in classification or use only basic
features. Using a large number of features causes overload
and problematic latency in the network. While using a small
number/basic features does not provide accurate detection
of attacks as it does not cover the behaviour of attacks.
Therefore, obtaining a high accuracy with limited raw fea-
tures using DL/ML approaches requires more attention from
researchers.

Most researchers propose models that require monitoring
traffic in real-time; therefore, this process needs to analyse
each packet/flow pass through the network and then clas-
sify it as normal or malignant by using a specific classifier.
Therefore, the processing requires time, memory, and more
CPU usage to collect, process, and classify the traffic. This
process causes congestion in the controller and the switches.
Therefore, researchers must consider the trade-off between
classifiers efficiency and network performance.

lll. SYSTEM MODEL

DL-EWPS is a flow-based IDS for the SDN networks,
as shown in Fig. 2. The system consists of three mod-
ules: Flow Table Statistics’ Sender, Statistics’ Receiver and
Features’ Extractor, and Flow Classification and Counter. The
model was designed to identify DoS, DDoS, Port Scan, U2R,
and R2L attacks in real-time. The proposed system exhibits
the following properties:

1) Flexibility: It is easy to add more types of attacks by
feeding the model new data, including new threats.
The system can be configured and operated using an
OpenFlow device.

2) Scalability: The proposed system can be used for
large-scale and small networks. In addition, it is fixable
to be implemented in networks that have more than one
controller.

3) Swiftly: The proposed model offers swift methods to
perform the IDS and significantly decreases the con-
troller overhead.

4) Reliability: DL-EWPS is reliable as an accurate
dataset, and efficient algorithms have fed it.
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A. FLOW TABLE STATISTICS’ SENDER MODULE

This module collects the statistics of each flow for
all switches. After the OpenFlow switch receives the
ofp_flow_stats request message from the controller,
the switch responds and sends the flow table details. The
switch sends those information to the controller via an
ofp_flow_stats reply message through the OpenFlow chan-
nel [16]. In this module, we added a new indicator that refers
to the last update time for each flow. This indicator is used
by the Statistics’ Receiver and Features’ Extractor module
to extract the features for each received flow that is updated
within the last 3 seconds.

B. STATISTICS’ RECEIVER AND FEATURES’

EXTRACTOR MODULE

This module receives all flow table statistics of each con-
nected OpenFlow switch after being sent by the Flow Table
Statistics’ Sender module, as shown in Fig. 2. This model
is the first step process that the controller must perform.
After receiving all ofp_flow_stats reply messages, the mod-
ule extracts the selected eleven features in Table 2 for each
updated flow in the last three seconds. Three seconds interval
time was selected to obtain sufficient information to identify
the attack [17]. The too-long interval time allows the con-
troller and switches to process many flows, which negatively
affects the network’s performance and sometimes causes con-
troller crashes. The module then calculates the number of
received messages and the number of flows (CountFlow) to
be used in the next module.

C. FLOW CLASSIFICATION AND COUNTER MODULE

This module is being enabled when the features have been
extracted. After the essential process is complete, the mod-
ule will receive all the currently requested flows from the
Statistics’ Receiver and Features’ Extractor module. At this
time, each flow was enclosed by its features and statistics.
Afterwards, the module performs a pre-processing step for
each flow. In the pre-processing stage, the module converts
the numerical features into RGB images to be classified
utilising the CNN algorithm.

The purpose of converting numerical data into RGB
images is that the CNN classifier is designed for images
classification. Therefore, the CNN requires images as input to
work appropriately [18]. Hence, the proposed model presents
a novel method to generate RGB images using the selected
eleven features, as demonstrated in Fig. 3. These features are
numerical; to convert it to an RGB image, the model demands
to re-scale the data within the range of 0-255 because the
RGB image takes values within that range for red, green, and
blue. The RGB image consists of a set of pixels, and each
pixel has three bytes acting on the R, G, and B values [19].
To adapt that with the given numerical data, we selected a 3 x
4 array to cover all the selected eleven features. Each location
in the array has three identical values. Only the last location
in the array takes three different values, where R is the value
of the first feature, G is the value of the fifth feature, and B is
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FIGURE 2. The system architecture.

the value of the eleventh feature. These specific features were
selected to take the location (3,2) of the image array because
these features are widely affected when an attack occurs. For
example, the first feature’s value is 33.36, after re-scale it by
equation 1, it will be equalled to 0.2, so the R, G, and B values
will be equal to (0.2, 0.2, 0.2), and these values will be settled
in location (0,0) of the array. The combination of these values
gives a special colour, as depicted in Fig. 2.

X — min

New_Value = x 255 (1)

max — min
where x is an original value, New_Value is the re-scaled
value.

The converted RGB image will be forwarded to the
pre-trained CNN classifier. The CNN classifier will predict
forwarded image according to its analysing. When CNN has
performed the forecasting process, the result will be allo-
cated to the type of the current flow, whether normal or
attack. The CNN model was fully trained by using the InSDN
dataset [20]. In the experiments, we employed Keras and
TensorFlow to develop the CNN model [21], [22]. The speci-
fications of the CNN model are listed in Table 1. These spec-
ifications have been selected through several experiments.
It was noted that the use of Epoch 10 with a batch size of 32
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TABLE 1. CNN model specifications.

Variable Parameters
Convolutional2D 2 Layers
MaxPooling 2 Layers
Flatten 5000
Ouputs 2
Activation Function Relu
Optimizer Function Adam
Loss Function Sparse Categorical Cross Entropy
Epoch 10
Kernel Size 3*3
batch_size 32

is more convenient and contributes to reducing the training
time. Fig. 4 shows the architecture of the proposed CNN
algorithm. The CNN architecture included two Convolutional
2D and two Max Pooling Layers.

If the current flow is identified as normal, the counter
flow (CountFlow) will be decreased by one, and then will take
the following flow within the current request. The controller
sends two orders if the current flow is identified as attack
flow. The first action will send to the switch to update the
flow table of the predicted flow by sending of. OFPP_DROP
request. This order orders the switch to drop any further
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FIGURE 3. Convert the features to RGB image.

matching packets in the future. The second action will be
forwarded to the administrator to take further actions to min-
imise the risk of the detected malignant traffic. In this case,
the counter of the flows (CountFlow) will also be decreased,
and the module then processes the following flow in the cur-
rent request to be processed using the same procedure that fol-
lowed previously. If the CountFlow counter has elapsed, the
model will send new ofp_flow_stats request messages for all
the connected switches, as shown in Fig. 1 and Algorithm 1.
This process is novel and reduces the controller’s overload
and OpenFlow channel congestion by confirming that the
current request has been completed and then sending another
request without stress to the controller and the OpenFlow
channel.

IV. FEATURES SELECTION AND DATASET
Some of the researchers have used only basic flow statis-
tics extracted directly from the flow tables. Such basic

MaxPoolig2D 1

wow w m

Con2D  §

FIGURE 4. CNN architecture.
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Creat RGB Image
0 Normal

Algorithm 1: Counter Algorithm

Data:

FlowCount < Length(ofp_flow_stats[S1]) 4+ ...+
Length(ofp_flow_stats[Sn)));

All_Flows < all_ofp_flow_stats_replies

for flow in All_Flows do
NewFlow < Rescale(flow);

FlowImage < ToRGB(NewFlow);
Predict < CNN_Model(Flowlmage);

if Predict is Attack then
Send(of .OFPP_DROP);

Send (alertToAdmin);
FlowCount < FlowCount — 1;
else
| FlowCount < FlowCount — 1;
end

if CountFlow == 0 then
| Send(ofp_flow_stats_request)

else
| Next

end

end

statistics: duration, protocol_type, count_bytes, src_port, and
count_packet [23], [24]. These statistics are inadequate for
identifying attacks efficiently and do not cover the attack’s
behaviours [24]. This issue negatively reflects the reliability
of the IDSs to detect the attacks. In addition, the high number
of extracted features also affects the network’s performance,
as it requires more processing time and consumes the network
resources.

To solve the above issues, we fed the model with eleven
features to increase the reliability of the proposed model,
which covered most of the attacks behaviours, as shown in
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Table 2. These features were chosen depending on how its
effects when an attack occurred. This feature number is not
large; hence, it avoids the long time and complexity of the
process.

We used the InSDN dataset to train our DL-EWPS. The
InSDN is a new dataset created by the University Col-
lege Dublin team in September 2020 [20]. This dataset
was generated by a mechanism that is realistic. Most of
the public dataset issues are solved in the InSDN, such
as redundancy [20]. The InSDN dataset is the first pub-
lic dataset created within the SDN architecture. Further-
more, this dataset includes updated attacks and simulates
new behaviours. The InSDN includes the attacks such as
DoS, DDoS, Prob, U2R, R2L, and Portscan. The InSDN
dataset is the first public dataset collected from the SDN
environment [20].

In addition, we added new features extracted from the
flow table statistics to increase the reliability of the proposed
model. These features are the following, Con_s_service,
ave_bytes, N_uiqIP, N_reDstIP, and Pkt_Avg, as described
in Table 2. The added features were selected based on the
investigation and analysis of some typical attack behaviours.
These features have been evaluated and clearly observed that
are effective when an attack occurs, as shown in Fig. 5. There-
fore, DL-EWPS has another contribution when these features
are added. Our experiments showed that the model reduced
the overhead on the controller and increased the accuracy of
the CNN classifier, as described in the next section.

TABLE 2. The selected features description.

Feature Description
Flow Pkts/s Number of flow packets
Flow Byts/s Number of flow bytes

Duration of the flow in seconds
Protocol type
Number of flows that have same service connection

Flow Duration
Protocol_type
Con_s_service

Src Port Port number of the source
Dst Port Port number of the destination
ave_bytes Average of bytes in flows that have the same connection
N_uiqlP Number of the unique source IP addresses
N_reDstIP Number of the repeated destination IP
Pkt_Avg Average size of packet

V. SYSTEM MODEL EVALUATIONS AND EXPERIMENTS
A. THE DETECTION TECHNIQUE EVALUATION
We evaluated the DL-EWPS through various experiments.
We used the following metrics to test and evaluate the effec-
tiveness and performance of the detection technique in our
model.
o False Positive (FP): The number of regular traffic is
incorrectly classified as attack traffic.
o False Negative (FN): The number of attack traffic is
wrongly classified as regular traffic.
o True Positive (TP): The number of attack traffic classi-
fied correctly as attack traffic.
o True Negative (TN): The number of normal traffic that
is classified correctly as regular traffic.
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FIGURE 5. The impact of the added features at attack.

o Accuracy (AC): Percentage of accurate predictions over
the total traffic. The following equation has been used to
calculate the accuracy:

TP + TN
TP+ 1N + FP + FN

o Precision (P): also known as a false alarm, it is used
to assess the number of attack traffic detected correctly.
P calculates by equation 3:

TP
P=——
TP + FP
« Recall (R): estimates the rate of predicted attacks against

the total of attack traffic. R is calculated by follows
equation:

AC =

x 100% 2)

x 100% 3)

R=—— x100% )
TP + FN

o Fl-measure (F1): returns a more reliable measurement
of the model’s accuracy depending on both R and P.

2
Fl= 1" x 100% 5)

141
PTR
The CNN model was evaluated by using the above metrics
with a binary labelled dataset (Normal and Attack). The CNN
algorithm has been selected to classify the sample flows in
real-time. The architecture and CNN specifications are shown
in Fig. 4 and Table 1. The CNN was implemented by using
the TensorFlow and Keras libraries in Python. TensorFlow
and Keras libraries developed specifically for ML and DL
implementation in Python language [21], [22]. The experi-
ments were conducted by training and testing the model using
three feature groups of the InSDN dataset. The feature groups
are as follows,

« Basic Features Group: includes only basic statistics
directly extracted from the flow table. These features
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include Flow Pkts/s, Flow Byts/s, Flow Duration, Pro-
tocol_type, Src Port, and Dst Port. The researchers have
widely used these Features Group. These features sets
are rudimentary and do not cover the behaviours of
attack [24].

o All features Group: includes all features sets in the
InSDN dataset, which includes 83 features extracted for
each flow [20].

o 11 Features Group: includes the basic features and five
new features added to cover the behaviour of attacks and
increase the model efficiency. These features are listed
and described in Section IV and Table 2.

TABLE 3. Metrics evaluation with different features groups.

Features Group AC P R F1
Basic features 96.43% 96% 95.6%  95.7%
All features 98.94% 98% 98.4%  98.2%
11 features 100% 100% 100% 100%

The results of these experiments are shown in Table 3.
Our CNN achieved the highest accuracy, P, R, and F1. In all
features groups, the proposed model has achieved the highest
accuracy of 100%. This proves that the proposed model is
promising and can detect attacks with a 100% accuracy. The
CNN model was evaluated using a 5-fold cross-validation
method in all scenarios.

TABLE 4. Accuracy comparison with other classifiers.

Classifier Basic features  All features 11 features
NB 88.957% 97.367% 98.527%
DNN 75.50% 84.77% 85.32%
Logistic Regression 89.61% 93.11% 98.42%
SVM 76% 71% 78%
Our CNN 96.43% 98.94% 100%

We compared our model with other classifiers, such as NB,
DNN, SVM, and Logistic Regression. The proposed system
achieved the highest accuracy among the other classifiers,
as shown in Table 4.

We can conclude from the experiments that the CNN archi-
tecture and the invented method of generating RGB images
contributed to achieving highly accurate attack detection.

B. NETWORK PERFORMANCE EVALUATION
It is vital to evaluate the network performance when installing
an IDS to check the integration. The most commonly used
metrics in network performance evaluation are throughput
and latency. Therefore, the throughput and latency metrics
have been utilised to evaluate our DL-EWPS.

1) THROUGHPUT EVALUATION

In general, throughput is defined as the number of ele-
ments passing through a process. In this step, DL-EWPS
was tested using the Cbench tool. Cbench is a benchmark
equipment employed to evaluate the throughput and latency
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of the controller [17]. This tool is open-source and pro-
grammed in C language and is available online on [25].
Cbench calculates how many packets the controller can treat
per second. In throughput mode, Cbench sends extensive
packet_in requests to the controller by all switches and cal-
culates how many packet_out replies have been returned per
second.

6,500
= Controller
—=—  Our Method
5,5004 Traditional Method
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FIGURE 6. Throughput evaluation.

We used the Mininet emulator and POX controller to
implement the DL-EWPS and test the network performance
with the throughput evaluation. The implementation was per-
formed utilising six scenarios. Each scenario used a specific
number of OpenFlow switches: 8, 16, 32, 64, 128, and 256.
These switches were connected to a single controller via port
number 6633. Each switch had 1000 end-users in all scenar-
i0s. All scenarios were tested using our features extraction
method and the traditional method. Our features extraction
was performed in two phases. The first phase extracts only the
features of flows that are updated within the last 3 seconds to
minimise the generated overhead on the controller. In the sec-
ond phase, the controller does not send further ofp_flow_stats
requests to the switches without completing the processing of
the current request. This phase reduced the overload on both
the controller and OpenFlow channel. In comparison, many
researchers have configured the controller to send requests
during a fixed period, regardless of the current request has
been processed or not. Hence, such a process will lead to
exhausting the OpenFlow channel and the controller.

As shown in Fig. 6, the DL-EWPS does not have a high
controller’s degradation rate. The highest degradation rate
was 2.3% when the controller was tested using 256 switches.
The degradation rates of the other scenarios were between
1% and 2%. These rates are insufficient and do not affect the
controller performance when the DL-EWPS is installed in the
POX controller. Therefore, the throughput evaluation proves
that the proposed DL-EWPS is promising and highly efficient
in large-scale networks.
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In contrast, as shown in Fig. 6, we tested the topology using
the traditional method to coach all flows in the OpenFlow
tables of the connected switches. The controller sorts the data
and extracts the features for all flows. This process increased
the overhead/congestion of the controller and decreased the
throughput to a degradation rate of approximately 29.5%
when 256 switches were used.

2) LATENCY EVALUATION

Latency is defined as the time required for packet_in to reach
a target [26]. In the latency evaluation, we used a series
of the same experiments used in the throughput evaluation.
In latency mode, Cbench makes all connected switches send
a single packet_in request to the controller and calculates how
long it will take to hit the destination [17].

As shown in Fig. 7, DL-EWPS does not cause a high
latency rate. The highest latency rate was 1.8% when the con-
troller was tested using 256 switches. Moreover, the latency
rates of the other scenarios were between 1.4% and 1.8%.
These rates do not affect the network performance when
installing the DL-EWPS. Accordingly, the latency evaluation
also proves that the proposed model is highly efficient for
large-scale networks.

As presented in Fig. 7, the topology was tested utilising
the traditional method to coach all the flows in the OpenFlow
tables of the connected switches. This process increased the
latency rate to 34.8% when 256 switches were used. There-
fore, this rate is considered very high and causes deficient
network performance.

VI. CONCLUSION

This paper presented a new DL-EWPS model that can predict
the network attacks early using a Deep Learning approach in
SDN networks. The model employed a novel method to con-
vert the numerical data into RGB images to benefit from the
advantages of a CNN-based classifier. This method increased
the accuracy of the CNN predictor and reduced the size of the
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images. In addition, we added new features extracted from the
flow table statistics to increase the reliability of the proposed
model. The added features were selected based on the inves-
tigation and analysis of some typical attack behaviours.

Through the experiments and evaluations, the DL-EWPS
achieved an accuracy of 100% in traffic classification. At the
same time, the latency and throughput evaluations prove that
our model is promising and has high efficiency for large-scale
networks. In general, our proposed system is the first model in
SDN to achieve 100% accuracy with significant performance
when installed on large-scale SDN networks.

In future work, we intend to implement our proposed detec-
tion system on physical devices, where all the researchers use
emulation to evaluate their systems.
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