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Many biological and biomedical research areas such as drug design require analysing

the Gene Regulatory Networks (GRNs) to provide clear insight and understanding of
the cellular processes in live cells. Under normality assumption for the genes, GRNs

can be constructed by assessing the nonzero elements of the inverse covariance matrix.

Nevertheless, such techniques are unable to deal with non-normality, multi-modality and
heavy tailedness that are commonly seen in current massive genetic data. To relax this

limitative constraint, one can apply copula function which is a multivariate cumulative

distribution function with uniform marginal distribution. However, since the dependency
structures of different pairs of genes in a multivariate problem are very different, the reg-

ular multivariate copula will not allow for the construction of an appropriate model. The

solution to this problem is using Pair-Copula Constructions (PCCs) which is decompo-
sition of a multivariate density into a cascade of bivariate copula, and therefore, assign
different bivariate copula function for each local term. In fact, in this paper, we have
constructed inverse covariance matrix based on the use of Pair-Copula Constructions
when the normality assumption can be moderately or severely violated for capturing a

wide range of distributional features and complex dependency structure. To learn the
non-Gaussian model for the considered GRN with non-Gaussian genomic data, we ap-

ply modified version of copula-based PC algorithm in which normality assumption of
marginal densities is dropped. This paper also considers the Dynamic Time Warping
(DTW) algorithm to determine the existence of a time delay relation between two genes.
Breast cancer is one of the most common diseases in the world where GRN analysis of
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its subtypes is considerably important; Since by revealing the differences in the GRNs
of these subtypes, new therapeutic and drugs can be found. The findings of our research

are used to construct GRNs with high performance, for various subtypes of breast cancer

rather than simply using previous models.

Keywords: Gene regulatory networks; Gaussian graphical models; Dynamic time warping

algorithm; Modified PC algorithm; Pair-copula constructions.

1. Introduction

The past few decades have witnessed numerous developments of GRNs using time

series gene expression data which is measured by microarray technology 1,2. The

mechanism of genetic regulation and the interactions of genes are crucial in a wide

range of biological and biomedical research. If there is a problem in this mech-

anism, it can lead to a disease as discussed in 5. One of the benefits of genetic

network modelling is to obtain hypotheses for possible relationships between differ-

ent genes and the role of each gene followed by the practical confirmation of these

assumptions 3. In addition, these networks provide the possibility of comparing the

expression patterns of different genes, and so the unknown genes can be guessed 3.

Since GRNs play an important role in cell processes, numerous methods have

been proposed for simulating/modelling GRNs. Among the available techniques

linear models, neural networks, (stochastic) differential equations, and the Bayesian

networks are more well-known 6,7. Generally, the existing methods can be classified

into three categories. The first category is focused on using association rules to

find the regulatory relations between genes 8-10. Methods belonging to the second

category use soft computing approaches to predict GRNs 11,12. The last category

focused on using the probabilistic models, particularly Bayesian network (BN) to

predict GRNs. Friedman et al. 13 were the first to use BNs to study GRNs by

analysing using bread gene expression data. Moreover, dynamic Bayesian networks

(DBNs) are used to construct GRNs (See 10,14,15).

Under normality assumption for the genes, GRNs can be constructed by as-

sessing the nonzero elements of the inverse covariance matrix (precision matrix) by

considering the conditional independencies between genes. In such a model gene i

and gene j are conditionally independent if and only if the (i, j) entry in the inverse

covariance matrix equals zero. Therefore, much effort has been made to achieve

inverse covariance matrix through the use of L1 (Lasso) regularization such that it

makes sense to impose an L1 penalty to increase its sparsity. However, constructing

inverse covariance matrix using Lasso are often confined to Gaussian models. This

Lasso technique may not reflect the true connectivity between genes when the nor-

mality assumption is not accurate. Nevertheless, such techniques are unable to deal

with non-normality, multi-modality and heavy tailedness that are commonly seen in

current massive genetic data. In fact, the resulting estimates can be inaccurate when

the normality assumption is moderately or severely violated, making the techniques

unsuitable for dealing with genetic data 16. To relax this limitative constraint, one

can apply copula function which is a multivariate cumulative distribution function
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and marginal probability distribution of each variable is uniform. However, since the

dependency structures of different pairs of genes in a multivariate problem are very

different, the regular multivariate copula will not allow for the construction of an

appropriate model. The solution to this problem is using Pair-Copula Constructions

(PCCs) which is decomposition of a multivariate density into a cascade of bivariate

copula, and therefore, assign different bivariate copula function for each local term

which here we have applied the technique of Bauer and Czado (2016). In fact, in

this paper, we have constructed precision matrix based on the use of Pair-Copula

Constructions (Lasso technique based on the copula function) when the normality

assumption can be moderately or severely violated.

In this regard, Elidan 18 was the first that introduced an innovative by copula

function, a marriage between copula functions and graphical models. The combi-

nation of copula with graphical model constructs multivariate distribution with

univariate marginals and a copula function C that links the marginals. However,

the regular copula functions such as Gaussian copula may not be able to accurately

depict multi-modal joint distributions in the genomic data 16. In addition, the non-

Gaussian probabilistic graphical model is subject to selection of a copula function

for each local term.

In this paper, we propose a novel methodology to construct GRNs based on

the so-called Pair-Copula Constructions (PCCs) which are merged with graphical

models. In fact, PCC is a more flexible multivariate copula which has recently

developed for modelling multivariate dependency 19,20,21. This modelling structure

is based on decomposition of a multivariate density into a cascade of bivariate

copula. The only restriction of PCC model is the challenge of selecting the best

model structure 22,23,24. This can be fixed by capturing conditional independence

in the graphical model. PCCs create a novel class of multivariate statistical models,

that combine the distributional flexibility of PCCs with the parsimony of conditional

independence models associated with graphical models, which could be used to

construct GRNs. The flexibility of these PCCs allows for capturing a wide range

of distributional features such as heavy-tailedness, tail dependence, and non-linear

asymmetric dependence in genomic data to construct GRNs. Further details about

the combination of PCC with graphical models are provided in 22,23,24. In fact, in

this paper, we have constructed precision matrix based on the use of Pair-Copula

Constructions (Lasso technique based on the copula function) when the normality

assumption can be moderately or severely violated.

The majority of the existing methods for GRNs construction ignore the time

delay regulatory relation 25 between two genes. Hence, in addition to the PCCBNs

as a novel method for GRNs construction, we apply Dynamic Time Warping (DTW)

that takes the time delay regulatory relation into consideration for GRNs prediction.

Therefore, we use DTW, to construct GRNs from microarray datasets. In the other

words, the proposed method uses the DTW algorithm to determine the existence

of a time delay relation between two genes.

Breast cancer is one of the most common diseases for which many researchers
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have been tirelessly working to discover new drugs and treatments. This cancer

has several subtypes and each subtype has different therapeutic approaches based

on the GRNs. Therefore, analysis of a GRN subtype can be beneficial. Given the

mentioned properties of genetic data, we use the method outlined in this paper to

analyse different subtypes of breast cancer’s GRN.

The paper is organised as follows. In Section 2, we present the PCCs associated

with the non-Gaussian BNs of multivariate genomic data. In Section 3, we study

some concepts about the breast cancer GRNs and its different subtypes. Moreover,

we study the dynamic DTW algorithm to determine the existence of a time de-

lay relation between two genes. The rest of Section 3 include learning Bayesian

networks for the breast cancer GRNs using modified version of PC algorithm for

non-Gaussian data. In the sequel, we demonstrate breast cancer GRNs construction

using described PCCBNs based on the model selection techniques and parameter

estimation. A simulation study from constructed GRNs is illustrated in Section 4,

and finally we conclude the paper in Section 5.

2. Pair-copula construction for non-Gaussian Bayesian networks

The genes within GRN can be shown as nodes. An interaction between two consid-

ered genes can be shown as a directional edge (activation, inhibition). This direc-

tional edge actually represents the causal relationship between the two genes. When

a specific gene is expressed within the GRNs, due to the causal relationship to the

other gene, it can lead to a range activities within the organisms 28. Therefore, one

can use a BN, which is a probabilistic Directed Acyclic Graph (DAG) with Markov

property, to model and predict a GRN.

A BN is certainly the most common and applicable probabilistic graphical model

to construct and predict GRNs. It represents a set of genes as our random variables

and their conditional dependencies via a DAG with Markov property. The prelim-

inary notations of the BNs and their detailed theory with some applications are

presented in 29.

The decomposition of a multivariate distribution can be efficiently implemented

benefiting from the conditional independencies offered by a DAG. In a GRN, sup-

pose that gene i is expressed by time series {Xi : i = 1, 2, . . . d, d ∈ N}. Then, the

density function f(.) of d genes expression, (X1, . . . , Xd), can be decomposed as a

product of d conditional density functions as:

f(x1, . . . , xd) =

d∏
i=1

f(xi|pa(xi)), (1)

where pa(xi) represents the parent set of gene i that is expressed by gene expression

xi. The density decomposition given in (1) illustrates that once the value of pa(xi)

is learned, knowing the value of the other preceding variables is redundant.

Using copula function, a marriage between copula functions and BNs, conven-

tional BNs models can be extended to a more flexible non-Gaussian BNs. In order
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to define copula function, we suppose that gene i is expressed by time series Xi,

i = 1, 2, . . . , d, d ∈ N with cumulative distribution function (cdf) Fi. A d-variate

copula for d considered genes is an cdf on [0, 1]d such that all univariate marginals

are uniform on the interval [0, 1]. In fact, every cdf F for d considered genes on Rd
with marginals Fi can be written as:

F (x) = C(F1(x1), F2(x2), . . . , Fd(xd)),

for x = (x1, x2, . . . , xd) ∈ Rd, and some suitable copula C. If F is absolutely con-

tinuous and F1, . . . , Fd are strictly increasing, a similar relationship exists for the

probability density function (pdf) f of F , namely

f(x) = c(F1(x1), F2(x2), . . . , Fd(xd))
d∏
i=1

f(xi),

for x = (x1, x2, . . . , xd) ∈ Rd where the copula pdf c is uniquely determined (See 30

for more details about the copula function).

While in recent years numerous bivariate copula families (also known as pair-

copula families) have been developed, many of these bivariate families have no

straightforward multivariate extension. A rich and flexible class of multivariate cop-

ulas that uses bivariate (conditional) copulas as building blocks only has recently

investigated and applied on the numerous applications in 19,21. The corresponding

decomposition of a multivariate copula into bivariate copulas is called a pair-copula

construction (PCC) 19. The most widely researched copulas arising from PCCs

are the vine copulas. These vine copulas admit a graphical representation called a

regular vine (R-vine), which consists of a sequence of trees, each edge of which is

associated with a certain pair copula in the PCC 30,19.

There have been several attempts to develop a method through using the nice

properties of both graphical model and vine model, simultaneously. The main pur-

pose is to benefit from the conditional independence in the graphs and the vine

structure. This gap was filled in 22 and 23 by introducing non-Gaussian graphical

model by combining useful properties of both pair-copula and DAG which was then

called non-Gaussian PCCBNs.

Bauer et al. 22 and Bauer and Czado 23 by merging PCCs with (1), illustrate

how the multivariate density given in (1) can be represented in terms of the PCC

model. They suppose D = (V,E) to be a DAG for a considered GRN with vertex

set V and edge set E, and let f be a multivariate density function on d genes

with marginal density fi and the corresponding cumulative distribution function

(CDF) Fi, i = 1, 2, . . . , d. Then f is uniquely determined by its univariate margins

fi, i = 1, 2, . . . , d; its conditional pair-copula cvw|pa(v,w), vεV, wεpa(v) and f can

be decomposed as:

f(x1, . . . , xd) =
∏d
v=1 f(xv)

×
∏
w∈pa(v) cvw|pa(x,w)(Fv|pa(v,w), Fw|pa(v,w)). (2)
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Such that pa(x,w) ∈ E stands for an arrow x −→ w. By making suitable choices

of marginal densities and pair-copula functions, the above presentation given in (2)

provides us with an approach for the multivariate density. However, in practice, we

have to use copula from a convenient class, and this class can be selected by criteria

such as AIC and maximum likelihood (ML) and model selection techniques (For

more explanations see 22,23). In the following sections, we address this issue in more

details to construct breast cancer GRNs.

3. Data Analysis: Breast Cancer Gene Regulatory Network

Breast cancer first develops from breast tissue and usually there are signs such

as a mass in a breast, deformity in a breast, nasal discharge in a breast, secre-

tion of fluid from a nipple, and so on, while many breast cancers have no obvious

symptoms at all. Therefore, analysis of the GRNs for the breast cancer tumors

is critical. On the other hand, breast cancer as a heterogeneous disease has mul-

tiple distinct molecular subtypes which depend on different therapies. There are

4 subtypes of breast cancer based on gene expression profiles: Basal-like (Basal),

HER2-enriched (Her2), Luminal A (LumA), and Luminal B (LumB) 31. LumA can-

cers are hormone-receptor positive (estrogen-receptor and/or progesterone-receptor

positive) and Her2 negative. Her2-enriched cancers are hormone-receptor negative

(estrogen-receptor and progesterone-receptor negative) and Her2 positive. LumA

cancers tend to grow slowly and have the good prognosis, while basal-like cancers

tend to grow fast and have poor prognosis. Therefore, in this section we intend to

construct and compare the GRN of these breast cancer subtypes using the method

outlined in this paper. It is hoped that this research could be a guide for various

researchers to treat various subtypes of breast cancer.

Consider a real data set containing gene expression measurements from breast

tumors, obtained from the Cancer Genome Atlas (TCGA) project 32. The primary

goal is to understand the underlying patterns of GRN variation among tumors in

different subtypes of breast cancer: Basal, Her2, LumA, and LumB. Therefore, we

will have the gene expression information of disease subtype for each tumor. We

may regard cancer subtypes as a partial driver of the underlying structure of the

gene expression data 2. Samples from the same subtype will share common genetic

variations. The raw data set contains 17814 genes and 343 samples. Out of the

343 samples, there are 4 subtypes of breast cancer with different number of 450

samples in each subtype: Her2 (42), Basal (66), LumA (154) and LumB (81). We

preprocessed the data in the same way as in 33. We first imputed missing values

with the k-nearest neighbours algorithm (k = 10), then removed genes with low

variations across samples (standard deviation smaller than 1.8), and finally mean

centred each gene. The result is a 455 column-centred data matrix X with 343

samples and 645 genes.

Another widely cited characteristic of GRN is their abundance of certain repet-

itive sub-networks known as network motifs. In fact in many cases, due to the large
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size of a GRN, the researchers examine an important sub-network that has been

frequently repeated within the main network. Network motifs can be regarded as

repetitive topological patterns when dividing a large network into smaller blocks 34.

Therefore, given that the GRN associated with breast cancer tumors is typically

very large, we shall examine the considered motif for different subtypes of the breast

cancer tumor using the method proposed within this paper, i.e. the non-Gaussian

PCCBNs. The raw data set contains 17814 genes and 348 samples. We preprocessed

the data in the same way as in Lock and Dunson (2013). We first imputed missing

values with the k-nearest neighbors algorithm (k = 10), then removed genes with

low variations across samples (standard deviation smaller than 1.8), and finally

mean centered each gene. The result is a column-centered data matrix X with 348

samples and 10 genes. Note that by reducing the standard deviation of the studied

genes, the less effective genes are incorporated into the model and the model com-

ponents become significantly larger such that eventually leading to an inefficient

model. The motif has been selected through an approach explained in 34, and it

consists of 10 genes (EYA2, PRC1, TACC3, GSTP1, AQP5, CSDA, EFS2, TPM2,

BCL2 and HEC ). Hereafter, we denote these genes by G1 to G10, for readers’

convenience. Figure 1 shows gene expression for different subtypes of breast cancer

tumor Her2, Basal, LumA and LumB, individually. We first examine whether or not

the gene expression data for the Her2 subtype follow a Gaussian distribution. The

result of descriptive statistics and Kolmogorov-Smirnov normality test are reported

in Table 1. As it is evident, the null hypothesis of normality for some genes are

rejected (p-value is less than 5% significance level). Thus, a flexible and effective

modelling is needed to model both non-Gaussian distributions and complex depen-

dency structure between genes. Similarly, patterns can be used for other subtypes.

Table 1. Descriptive statistics and Kolmogorov Smirnov test for genes of Her2 breast cancer subtype

Gene Mean Std Skewness Kurtosis p-value

G1 1.36 2.97 1.16 0.47 0.011∗

G2 -3.26 2.17 0.44 -0.71 0.163

G3 3.27 3.25 0.27 -1.29 0.139

G4 0.087 2.26 1.45 0.85 0.000∗∗∗∗

G5 0.755 2.81 -1.006 -0.44 0.000∗∗∗∗

G6 1.56 2.77 -0.73 -0.42 0.001∗∗∗

G7 -0.93 2.91 -0.064 -0.97 0.086

G8 2.55 2.15 -1.05 0.43 0.000∗∗∗∗

G9 -2.94 2.19 1.12 0.92 0.046∗

G10 -3.75 3.27 -0.25 -1.39 0.006∗∗
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Fig. 1. gene expression for different subtypes of breast cancer tumor: Basal, Her2, LumA and

LumB

3.1. Dynamic Time Warping

To construct GRNs, when the gene A is expressed, it takes a certain amount of time

to express the gene B ; therefore there will be a time delay. In many previous studies
26,17,27 during GRN construction, the time delay regulatory relation 25 between two

genes has been ignored. We therefore consider the time delay regulatory relation for

constructing GRNs using PCCBNs. This can be done using Dynamic Time Warping

(DTW) which is a popular technique for comparing time series, providing both a

distance measure that is insensitive to local compression and stretches, and the

warping which optimally deforms one of the two input series onto the other.

DTW was first introduced in 35. It has been employed for clustering gene

expressions 36,37. After stretching, the distance between the two genes is com-

puted, by summing the distances of individual aligned elements. Suppose that

X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym) are two gene expression with

lengths equal to n and m, respectively. Also suppose that a non-negative, local

dissimilarity function γ is defined between any pair of elements xi and yj by

D(i, j) = γ(xi, yj) ≥ 0. The most common choice for γ(., .) is to assume the Eu-

clidean distance. DTW finds a vector of ordered pair denoted φk, warping curve,

for k = 1, 2, . . . , T such that φ(k) = (φx(k), φy(k)), with φx(k) ∈ {1, 2, . . . , n} and

φx(k) ∈ {1, 2, . . . ,m}. The warping functions φx and φy remap the time indices

of X and Y , respectively. Given φ, we compute the sum accumulated distortion
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between the warped gene expression X and Y by

dφ(X,Y ) =

T∑
k=1

d(φx(k), φy(k)),

To ensure reasonable warps, constraints are usually imposed on φ. For instance,

monotonicity is imposed to preserve their time ordering and avoid meaningless

loops such that φx(k+1) ≥ φx(k), & φy(k+1) ≥ φy(k). The idea underlying DTW

is to find the optimal alignment φ such that

D(X,Y ) = min
φ
dφ(X,Y ).

This minimization rule is fully described in literature 38. Package “dtw” in R soft-

ware provides a unification to compute and visualize DTW alignments 39. Usually,

two- and three-way plots are used to inspect the gene expression data along with

their alignment. One intuitive alignment visualization style places both time series

in the same plane, and connects the matching point pairs with segments. Another

effective layout to display alignments places a gene expression data (G1) horizon-

tally in a small lower panel, the other gene expression data vertically on the left;

a larger inner panel holds the warping curve. Hence, the matching points can be

recovered by tracing indices on gene G1, moving upwards until the warping curve

is met, and then moving leftwards to discover the index of matched gene G2. One

of the advantages of this method is the clear visualization.

The above pattern can now be used to determine time delay in breast cancer

gene expression data. For instance, two and three way plots can be used to show

the alignment for gene G1 and G2 in breast cancer Her2 subtype as presented in

Figure 2 (a) and (b), respectively.
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Fig. 2. Two (a) and three (b) way plot for gene expression alignment using DTW for Her2.
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3.2. Learning Bayesian networks for the breast cancer GRNs

Understanding causal relationships between genes is the primary goal in GRNs. A

convenient approach for learning BNs in genetics is the use of expert knowledge.

This method is ineffective since the elicitation process for such complex problems

is very lengthy and almost impractical. Therefore, alternatively, the computational

algorithms which can be implemented based on the existing gene expression data

are used. The high dimensionality of the data sets-common in GRNs have led to

the development of several learning algorithms focused on reducing computational

complexity yet discovering the correct network. These algorithms provide us with

invaluable information/statistics about the genes that could or could not be a cause

of other genes of interest.

In our method, we initially apply a modified version of PC-algorithm 41 which

Gaussian assumption of the marginal distribution is dropped. In other words, we

provide an algorithm to approximate the network structure. In particular, this algo-

rithm is well suited to determine a DAG structure of the non-Gaussian continuous

variables constituting different subtypes of breast cancer GRNs. In the conven-

tional version of the PC algorithm, a series of tests for conditional independence is

performed given the normality assumption of marginals. Alternatively, we shall in-

troduce a novel class of conditional independence tests that are particularly tailored

for the algorithm and are applicable to non-Gaussian continuous data. In a Gaus-

sian framework, the test of choice was usually a test for zero partial correlation (see
42). We therefore need to introduce an equivalent of this test for the non-Gaussian

case.

Suppose P is an absolutely continuous probability measure with Markov prop-

erty for a DAG (V,E) on [0, 1]d with uniform univariate marginal distributions.

Moreover, let u = {u1, . . . ,un, n ∈ N} be a random sample realisation of

{U1, . . . ,Un} from a random variable U distributed as P . Considering the PC al-

gorithm, for all distinct vertices i, j ∈ V and chosen vertex sets K ∈ V \i, j, the null

hypothesis H0 : Ui⊥Uj |UK is tested against the general alternative H1 : Ui⊥Uj |UK

of conditional dependence. Given a suitable independence test of choice, we should

therefore determine H0 and H1 at significance level α. By confirming H0, we remove

the edge i − j from considered DAG. In a Gaussian framework, the null hypoth-

esis is then translated into H0 : ρij−K(Xi, Xj ;XK) = 0, where Xk := Φ1(Uk) for

all k ∈ V , and Φ denotes the univariate standard normal cdf. In fact, conditional

independence test is translated to the test for zero partial correlation under the as-

sumption of joint normality. We will now introduce a copula-based alternative test

for conditional independence that is also applicable to non-Gaussian continuous

data. Let Fi,j|K(., .|vK) denote the conditional cdf of Ui and Uj given UK = vK,

and let Ci,j|K(., .|vK) be the corresponding conditional copula. Moreover, let C⊥ de-

note the independence copula on [0, 1]2. The conditional independence Ui⊥Uj |UK

holds if and only if

Fi,j|K(vi, vj |vK) = Ci,j|K(Fi|K(vi|vK), Fj|K(vj |vK)|vK)



April 21, 2020 7:59 WSPC/INSTRUCTION FILE ws-jbcb

Constructing gene regulatory networks .... 11

= Fi|K(vi|vK)Fj|K(vj |vK),

for all vi, vj ∈ [0, 1] and vK ∈ [0, 1]|K|. Therefore, the null hypothesis of the condi-

tional independence test can be stated as H∗0 : Ci,j|K(., .|vK) = C⊥(., .). The new

null hypothesis H∗0 can be tested 43 for the transformed observations W 1
i|K , . . . ,W

1
i|K

and W 1
j|K , . . . ,W

1
j|K , where

W k
i|K := Fi|K(Uki |Uk

K), and W k
j|K := Fj|K(Ukj |Uk

K),

for all k ∈ 1, . . . , n. In practice, with regards to DAG selection for non-Gaussian

data, we can substitute the function gaussCItest in the function pc from pcalg with

the independence test of Genest and Favre 44. This is the modified version of PC-

algorithm for the non-Gaussian data by the use of copula function property; such

that we have used the functions CDVineCopSelect and BiCopHfunc, implemented

in the CDVine package, to compute the Rosenblatt transforms 43, and a significance

level of α in the independence tests.

We are now in a position to create a GRN as a non-Gaussian BN for differ-

ent subtypes of the breast cancer in order to reveal their differences. Therefore, by

following the discussed approach for gene expression data of each breast cancer sub-

type, we can create the GRN. The related GRN for the Her2 breast cancer subtype

is illustrated in Figure 3 (a). In addition, this GRN for the other subtypes Basal,

LumA, and LumB is presented in Figure 3 (b), (c) and (d), respectively. As it is

evident, the number of edges in the Basal and Her2 subtypes is 12, while the LumA

and LumB subtypes have 11 edges. In Basal subtype, in comparison to Her2, there

exists edge G7−→G3, while in Her2 this edge is removed, and instead, unlike Basal,

G7−→G8 is active. LumA and LumB are quite similar to each other. However, as

shown in Figure 3, there are obvious differences with other subtypes. For example,

G3−→G8 is active in Basal while there is no such edge in LumA and LumB. Further-

more, instead of G7−→G3, in Basal there are two edges G3−→G8 and G7−→G8.

As discussed earlier, one of the most important principles in constructing GRNs is

to distinguish active and inhibit genes; this can be done by adding and merging

PCCs to the constructed DAGs for different breast cancer subtype. We explain this

within the next subsection.

3.3. Model selection

Given the derived non-Gaussian DAG for different subtypes of breast cancer, we

can decompose the multivariate density of our data by merging BNs with PCCs in

order to derive PCCBNs model. We fully explain this matter for subtype Her2 and

only present the final model for the rest of breast cancer subtypes.

Note that gene G8 has 4 parents (G3, G5, G6, G7) as the order of the parents

is based on the heuristic rule of modelling strong bivariate dependences prior to

weak dependences. Our decision was based on τ̂ of Kendall’s estimates between the

variables: τ̂G8,G3 = 0.248, τ̂G8,G5 = 0.269, τ̂G8,G6 = 0.155, and τ̂G8,G7 = −0.145. A

similar rule can be applied for gene G4 and its parents G2 and G3. The estimated
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(a) Her2 (b) Basal

(c) LumA (d) LumB

Fig. 3. The GRN for different breast cancer subtypes.

τ ’s Kendall between G4 and its parents G2 and G3 are: τ̂G4,G2 = 0.399 and τ̂G4,G3 =

−0.129. The estimated τ ’s Kendall between gene G9 and its parents G2 and G7

are reported as τ̂G9,G2 = 0.252, and τ̂G9,G7 = 0.142. Based on these ordering, the

resulting multivariate density decomposition using (2) is given by:

f1,...,10(x1, . . . , x10) =

10∏
i=1

fi(xi)× c21(F1(x1), F2(x2))×

c6,10(F6(x6), F10(x10))× c42(F2(x2), F4(x4))×
c92(F2(x2), F9(x9))× c10,2(F2(x2), F10(x10))×

c53(F5(x5), F3(x3))× c85(F5(x5), F8(x8))×
c97|2(F7|2(x7|x2), F9|2(x9|x2))×
c83|5(F3|5(x3|x5), F8|5(x8|x5))×
c43|2(F3|2(x3|x2), F4|2(x4|x2))×



April 21, 2020 7:59 WSPC/INSTRUCTION FILE ws-jbcb

Constructing gene regulatory networks .... 13

c86|35(F6|35(x6|x3, x5), F8|35(x8|x3, x5))×
c87|356(F7|356(x7|x3, x5, x6), F8|356(x8|x3, x5, x6)). (3)

Considering the model selection techniques for the non-Gaussian PCCBNs

(22,23,20), we can determine the best fitted copulas to any bivariate distribution

in (3). For this purpose, we use the package CDVine and apply the function Bi-

copSelect to the selected best fitted bivariate copulas. This also provides us with the

estimates of the parameters and Kendall’s τ for each copula. The results of the fitted

Table 2. Maximised log-likelihoods and parameters value for the Gaussian and non-Gaussian PC-

CBNs corresponding to the Her2 Brest cancer subtypes

Non-Gaussian PCCBN Gaussian BN

copula τ TD(L,U) Parameters LL Parameters LL

c1,2 BB8270 -0.35 (0,0) -4.09(-0.65) 54.58 -0.44 42.29

c2,4 Frank 0.39 (0,0) 4.07 65.51 0.49 53.58

c2,9 Frank 0.25 (0,0) 2.41 25.16 0.33 23.08

c2,10 SBB8 0.53 (0,0) 4.05(0.89) 142.89 0.61 88.6

c7,9|2 t-student 0.37 (0.27,0.27) 0.56(4.3) 87.55 0.43 44.41

c5,3 Frank 0.25 (0,0) 2.46 25.94 0.31 19.8

c8,5 Gaussian 0.24 (0,0) 0.36 28.8 0.19 28.8

c10,6 SG 0.24 (0.31,0) 1.32 31.03 0.33 22.9

c3,4|2 Gaussian 0.45 (0,0) 0.66 68.19 0.48 68.19

c3,8|5 t-Student -0.45 (0.06,0.06) -0.66(3.58) 105.11 -0.51 66.96

c6,8|3,5 Clayton -0.37 (0.56,0) 1.2 121.04 -0.36 83.49

c8,7|3,6,5 Gumbel 0.09 (0,0.03) 0.2 88.09 0.11 69.78

non-Gaussian PCCBN model and Gaussian BN are presented in Table 2. Some of

the selected copula functions have two parameters, hence the second parameter is

added in brackets. Note that each conditional distribution (or copula) in the Gaus-

sian BN model must be normally distributed. Results, based on Log-Likelihood (LL)

and AIC criteria, suggest that the non-Gaussian PCCBN model is much better fit

to Her2 breast cancer subtype. As discussed, the flexibility of PCCBNs allow for

capturing a wide range of distributional features and complex dependency structure

such as heavy-tailedness, tail dependence, and non-linear, asymmetric dependence

in the constructed GRN for Her2 subtype. One approach to present these features

is contour plot. The contour plots for the estimated copula are presented in Fig-

ure 4. As it can be seen from these contour plots, the occurrence of extreme events

in some pair of genomic data is evident. Also, in order to study the occurrence of

extreme events in genomic data, the pair-wise analysis of upper (U) and lower (L)

tail dependence (TD) of the gene expression variables can be implemented using

the fitted copula models 30,45. The computed coefficients of upper and lower tail

dependence of any two gene expression variables are presented in Table 2. In ge-

netic data, it is crucial to consider the tail-dependence coefficient in modelling of
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Fig. 4. Contur plot for the estimated copula function of Her2 subtype.

joint GRN construction 45. Otherwise, it can lead to a serious misspecification of

GRNs’ structures. Therefore, computing the tail dependence coefficients as precise

as possible can provide an accurate interpretation of the constructed GRN accu-

rately. The resulted contour plots for the estimated copula confirms the obtained

calculations in Table 2. As an example, the contour plot, demonstrated in Figure 4,

between G3 and G8 given G5 confirms the calculated TD in this table. The final

Table 3. Maximised log-likelihoods, numbers of parameters, and AIC values for the Gaussian and
non-Gaussian PCCBNs corresponding to the different Breast cancer subtypes

Subtype Model Log-Liklihood Parameters AIC

Her2 Gaussian 611.88 30 -1163.76

non-Gaussian 843.99 16 -1655.98

Basal Gaussian 758.6 26 -1465.2

non-Gaussian 989.1 15 -1948.2

LumA Gaussian 586.4 27 -1118.8

non-Gaussian 721.2 17 -1408.4

LunB Gaussian 678.9 25 -1307.8

non-Gaussian 776.3 16 -1520.6
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(a) Her2 (b) Basal

(c) LumA (d) LumB

Fig. 5. The final GRN for different breast cancer subtypes.

results for the other subtypes of breast cancer based on the LL and AIC criteria in

Table 3 confirms our claims about the superiority of non-Gaussian PCCBN versus

Gaussian BN.

Using Kendall’s τ correlation criterion obtained from fitted copula function be-

tween two interested genes, it can be shown which genes deactivate others. A simple

rule in this is that if Kendall’s τ correlation coefficient of the fitted copula between

two interested genes is negative, then the two genes inhibit each other. Final GRN’s

for each subtype of breast cancer, following coefficient calculations using a copula

function,are shown in Figure 5. For instance, in Figure 5 (a) for Her2 subtype, G1

deactivate G2 (dashed line), and G6 deactivate G8. Similar pattern is repeated for

Basal. The difference between the two structures is that in Her2, G3 deactivate G8,

while in Basal G5 deactivate G8. Moreover, LumA and LumB cn be easily compared

visually. In fact, such network construction for various breast cancer subtypes-with

activated and inhibited genes-can help to discover new drugs, new treatments, and

even new preventive approaches.
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4. Simulation

First, we follow the simulation method proposed in 30 which is based on the sampling

of the cumulative distributions and is widely known as the probability integral

transform (PIT). This simulation method has later been followed by 22,23. The same

simulation method is used in 20 to draw samples from the approximated PCCBNs

where data availability is very limited. The sampling strategy, based on the PIT

is as follows: 1) sample from two independent variables, denoted by U1, U2 and

distributed uniformly on [0, 1]; 2); then calculate values of the original variables

using the following equations:

x1 = u1, x2 = F−12|1 (u2|x1),

where xi’s and and ui’s are realization values of Xi’s and Ui’s respectively. Finally,

this can be easily continued to all variables within the PCCBN considering a similar

argument 20,19,24.

One of the effective measures to evaluate the performance of non-Gaussian PC-

CBN against Gaussian BN in the construction of GRN of interest, is the F -score

which is defined as:

F =
2pr

p+ r
, (4)

where p and r denote precision and recall, respectively. They can be computed using

the following equation:

p =
TP

TP + FP
and r =

TP

TP + FN
,

where TP is true positive, FP is false positive and FN is false negative. TPs denote

the number of the edges that are inferred by the GRN algorithm that actually exist

within the true network. FPs are the edges inferred by the GRN algorithm however

do not actually exist in the true network. FN edges actually exist in the true

network but cannot be inferred by the GRN algorithm. The use of truly and falsely

inferred edges (TPs and FPs) only is not sufficient to measure the performance

of the underlying model fairly. Missing edges (FNs) in the final network should

also be considered in the performance evaluation process. Since the F -score given

in Eq. (4) takes into account all types of edges, it is a more reliable measure for

completely known networks (mostly the synthetic ones). Table 4 presents F-scores

for non-Gaussian PCCBN versus Gaussian BN associated with reconstruction of

the different breast cancer subtypes. It can be observed that the F-score of the

GRNs for different subtype reconstructed based on the non-Gaussian PCCBN is

significantly greater that the ones reconstructed using the Gaussian BN.

5. Conclusions

The Gaussian graphical models with Markov property, in particular BNs, have been

widely used in modelling gene regulatory networks in many research studies such as
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Table 4. The F -score evaluation of the reconstructed GRN for different breast cancer subtypes.

Her2 Basal LumA LumB

GBN 0.56 0.47 0.54 0.57

PCCBN 0.63 0.59 0.64 0.61

detecting the activator genes of the genetic diseases, determining the functions of

the regulating and regulated genes, obtaining the drug targets of the medical cures,

etc. The main drawback of the Gaussian BN models is that the normal assumption

of data in most of these applications is not realistic, and the inferred networks will

be misleading if the data distributions are non-Gaussian. In the present paper, we

propose a novel method of constructing GRNs based on the PCCBN models which

benefit from the computational power and flexibility of the PCC models and the

parsimony of conditional independence concepts of the BNs. We demonstrated that

the effectiveness of using the PCCBNs in constructing GRN where the marginal and

conditional distributions are not normal. In addition, we adopted the PC algorithm

to select the best network structure for the GRNs of interest by considering the

conditional independence/dependence extracted from the considered BN and PCC

models. Furthermore, we demonstrated that the flexibility of PCCBNs allow for

capturing a wide range of distributional features with the complex dependency

including the tail dependence, non-linear, and asymmetric dependence which are

common in the underlying GRNs. We also compared the proposed non-Gaussian

PCCBNs with Gaussian BN based on various goodness-of-fit measures and the

F -score which is a combination measure of TP, FP, and FN. The results clearly

suggest that the non-Gaussian PCCBN outperformed Gaussian BN based on the

aforementioned criteria illustrated in Tables 3 and 4.
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