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Abstract. Mechanical systems modelled as rigid mass elements connected by tensioned 

slender structural members such as ropes and cables represent quite common substructures 

used in lift engineering and hoisting applications. Special interest is devoted by engineers and 

researchers to the vibratory response of such systems for optimum performance and durability. 

This paper presents simplified models that can be employed to determine the natural 

frequencies of systems having substructures of two rigid masses constrained by tensioned 

rope/cable elements. The exact solution for free un-damped longitudinal displacement response 

is discussed in the context of simple two-degree-of-freedom models. The results are compared 

and the influence of characteristics parameters such as the ratio of the average mass of the two 

rigid masses with respect to the rope mass and the deviation ratio of the two rigid masses with 

respect to the average mass is analyzed. This analysis gives criteria for the application of such 

simplified models in complex elevator and hoisting system configurations. 

1.  Introduction 

We focuses our attention on the mechanical substructure shown in figure 1 in which two lumped mass 

components M1 and M2 are connected by an elastic tensioned member/rope-piece of length l which can 

be the equivalent mechanical model of a number of common substructures in lift engineering and 

hoisting equipment. We are particularly interested in traction lift suspension ropes substructures. It 

should be mention that the system in figure 1 is a semi-definite system. Thus, there is a rigid body 

mode with zero frequency. 

    The prediction of dynamic response of the suspension ropes is essential to understand and model the 

elevator system. In a typical lift installation the car/counterweight suspension system is formed by a 

number (nR) of equally tensioned steel wire ropes acting in parallel, attached to the car frame at one 

end, passing over a traction sheave and diverter pulleys to the counterweight at the other end. The 

contact between the rope and traction sheave and diverter pulleys is specially critical, not only for the 

neccesity to produce the desired motion of the car but  for its control, safety, and maintenance of 

relevant traction condition according to EN-81-20. If we assume that no slipping exists between the 

ropes and the traction sheave both sides of the rope can be represented by the simplified substructure 

shown in figure 1. Thus: M1 would correspond to the traction sheave equivalent mass (rotary or linear) 
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for both sides and M2 would correspond to the car mass for the frame side substructure or the 

counterweight mass for the counterweight side substructure. Another model from the opposite side to 

that free (M1)-free (M2) model shown in figure 1 is the fixed (M1)-free (M2) model which was 

extensively studied by Leung [2]. This model could be the best aproximation for static stopped 

elevator slings(brakes pressed) but its response wouldn’t be affected at all by the lumped mass (M1).  

 

    The dynamic behavior of the mass suspension system can be analyzed by treating the ropes as linear 

distributed-parameter elastic members. To give criteria about the relative influence of the mechanical 

characteristics of the rope-pieces with respect to the joined up rigid masses properties and the method 

of analysis, several substructuring techniques were studied [2-3] and the system shown in figure 1 will 

be analyzed. 

    The dynamics of suspended ropes has been intensively studied. Several contributions from Zhu et 

al. [4-5] and Kaczmarczyk [6-7] give a wide and complete solution to the rope modelled as linear 

elastic continua. The assumptions for the car and counterweight as assemblies to be treated as rigid 

bodies are based on the low longitudinal elastic modulus of the rope whilst perfect flexural flexibility 

and high elastic modulus of the metallic components. 

    Typical analysis capable of generalization and modularity of complex systems is the application of 

the finite element method [8-9]. The continuous description of the rope is substituted by a finite 

number of sections/ elements, with their deformations described by equations in terms of unknowns 

displacements.  

    In the simplified models it is proposed to discretize the suspended rope- substructure using only one 

element. This has the advantage of maintaining small number of unknowns and equations and 

facilitates any further synthesizing strategy. In such an approach these models describe the elevator 

response well without significant loss of accuracy. Particularly, special interest is devoted to justify the 

application to suspended rope-substructures which were discretized to adopt a 6 degrees of freedom 

discrete model of the elevator system [1]. 

    In a typical lift or elevator system the car and the counterweight are mounted in a 

frame/sling (see figure 2). Both are generally made of steel sections and fixed to each counter-

part by bolts and nuts or by welding techniques [1]. Special attention is devoted to tighten the 

pieces to avoid noise during travel. Each of these components can be treated as an ideal rigid 

body constrained by the lift guiding system. In this arrangement the six degrees of freedom of 

a rigid body moving in space are reduced to only one (vertical translation) assuming ideal 

sliding joints between car-frame or counterweight and the guide rails.  

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Substructure  of 

two rigid masses tensioned 

by a rope. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Elevator 

system schem. 
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2.  Boundary-value problem solutions 

Two rigid components of masses M1 and M2 are connected by an elastic tensioned rope-piece of length 

l (figure 1). The rope-piece is characterized by its density ρ, net cross-section area Ω and apparent 

elastic modulus E and then its total mass m (m=ρΩl). Let us denote by M the average mass of M1 and 

M2. Then, two characteristics ratios of the system are intended to be analyzed: the ratio of the average 

rigid masses M with respect to the rope mass m, M/m and the ratio of the semi-difference mass (M1-

M2)/2 with respect to the average mass, d: 

 

        

1 2

1 2

M M

2d M M(1 d );M M(1 d )
M



                  (1) 

 

    The longitudinal vibrations (u) of the rope-piece are characterized by the differential equation [10]: 
 

         
2 0u b u             (2) 

 

where the dot denotes the differentiation with respect to the time t and the prime denotes derivative 

with respect to x, and b E  . The solution of (1) for stationary vibrations can be determined if u 

has the form u X( x )·T( t ) where X is a function of x only and T is a function of t only. Substituting 

this in (2) gives 

 

         
2b ·X ·T X·T            (3) 

 

 

    By separating the variables, 
 

       T Acos( t ); X C sin x Dcos x
b b

 
            (4) 

 

where A, B and C are integration constants. Combining the constants yields: 

 

u C sin x Dcos x cos( t )
b b

  
    
 

        (5) 

 

where C AD  and D AD . 

   The constants C  and D  are determined by the boundary conditions of the rope-piece and by the 

initial conditions of the vibration. The boundary conditions are: 

 

        
   
   

1

2

0 0 0at x :  E ·u’ ,t M ·u ,t

at x l :  E ·u’ l ,t M ·u l,t

  

   
        (6) 

 

which leads to: 

 

     
   

   

2

1

2

2

E C·cos t M D cos t
b

l l l l
E C cos D sin ·cos t M C sin Dcos cos t

b b b b b


           

       
                  

   

  (7) 
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This set of equations is compatible and undetermined if:  

 

                                                                

1 2

2 1 2

M M

m m
tg

M M
1

m m







 
 

 



                                       (8) 

 

where α=ωl/b. The solution of equation (8) gives n eigenvalues αi (i=1,…,n). Every αi defines the 

frequency of the system ωi in terms of the parameters M1/m, M2/m, l and b, so that the complete 

solution of (2) is of the form: 

 

                                                   
1

i

i i
ii

i i

i

u C sin x D cos x ·cos( t )
b b





  
    

 
                            (9) 

 

    Equation (8), which can be re-written in terms of parameters M and d as Equation (10), gives the 

eigenvale α1 corresponding to the fundamental frequency ω1 (ω1=α1b/l). 

 

                                    
   

 
2

2 2 2

2M M
2

m mtg
M dM M dM M

1 1 d 1
m m m

 


 

 
 
  

   
   

 

        (10) 

    The eigenvalue α1 which corresponds to the lowest root of (10) is listed for a number of mass M/m 

and d ratios in the table 1. It is evident that the first frequency of the substructure will be influenced by 

both the mass ratio and the deviation ratio. The limitation of this exact solution is the difficulty to be 

extended to damped and non steady state solutions. An alternative to the exact solution based on the 

frequency equation (10) capable of increasing complexity and modularity is that based on the finite 

element method (FEM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the FEM approach the rope-piece is subdivided into a number of finite axially loaded bar elements 

of length le and linear interpolation for the spatial part X(x) of the unknown displacement u is proposed 

which gives the oportunity to include the influence of damping, essential for modelling real elevator 

Table 1. First frequency factor α1 for a 

number of M/m and d ratios. 
 

    M/m           d=0          d=0.3         d=0.5  
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systems. This drives to a finite consistent element with two degrees of freedom characterized 

dynamically [12] by the matrices [me], [ke] and [ce] as follows: 

 

                  

1 1

1 1 1 13 6

1 1 1 1 1 1

6 3

e e e

e e

E c
[ m] m ;[ k ] ;[ c ]

l l

 
      

       
     

  

     (11) 

 

where c is the viscous damping coefficient in the rope that is assigned depending of the suspended 

overall mass and will be defined further on. If we discretize the rope-piece shown in Figure 1 by only 

one element following the Finite Element method, assemble together to the concentrated masses M1 

and M2 and express the governing equations using the matrices of the system [M], [K] and [C], force 

vector [F] and unknown displacements [u] we get: 

 

       [M] u [C] u [K] u F          (12) 

 

where:  

 

 

1

2

1 1 1 13 6

1 1 1 1

6 3

m m
M

E c
[M] ;[K] ;[C]

m m l l
M

 
      

       
     

  

     (13) 

 

    Another coarse simplified model for the dynamics shown in Figure 1 is based on the discrete 

approach in which the total mass of the rope is redistributed into two concentrated masses on its ends 

and these two masses are connected with and ideal equivalent spring/damper. Then we get the 

matrices as follows:   
 

1

2

0
1 1 1 12

1 1 1 1
0

2

m
M

E c
[M] ;[K] ;[C]

m l l
M

 
      

       
     

  

     (14) 

 

     Finally, if we consider the rope massless, the matrices of the governing equations are: 

 

1

2

0 1 1 1 1

0 1 1 1 1

M E c
[M] ;[K] ;[C]

M l l

      
       

     
      (15) 

 

     We can compare these simplified models of the substructure shown in Figure 1 with the exact 

solution solving: 

 

 │-ω2[M]+[K]│= 0       (16) 

 

which is the condition for getting the natural frequencies of the undamped system. The eigenvalue 

problem represented by Equation (16) can be easily solved using established numerical techniques 
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(implemented in software tools such as the ‘eig’ MATLAB function). The analytical solution for the 

massless rope model gives the following fundamental frequency:  

 

           
1 2

2

1

E l
·

d M


 


       (17) 

 

which is independent of the mass ratio M/m. 

 

It can be shown that there is a simple closed-form formula for the models (14) and (15)  

 

       
1

eff

k

m
          (18) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. The first frequency dimensionless 

factor ω* of the substructure shown in figure 1 

against the mass ratio M/m for a number of 

deviation ratios d and models. 
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where k E l   and 1 2

1 2

eff

m m
m

m m



 where  mi=Mi, i=1, 2 for model (15) and mi=Mi+m/2, i=1, 2 for 

model (14). 

3.  Results and Conclusions 

Figure 3 shows the dimensionless parameter ω* defined which is related to the first frequency of the 

substructure ω1 (ω1=α1b/l), as a function of the mass ratio M/m for a number of deviation ratios. 

 

           1 1

1

M M M
* ,d

m m mE l E l

M m

   
      

   
      (19) 

 

    It is observed how the consistent simplification gives the best approximation in practically every 

condition of mass and deviation ratios with respect to the other simplification models. Considering the 

rope massless -equations (15)- or using the discrete aproximation –equations (14)- gives a 

considerable error in the range of mass ratio which applies to elevator applications (M/m=2 and d=0: 

α1=0.9602 and ω*=0.9602*(2)^0.5=1.3579 and by (19) ω*aprox= (2)^0.5, that is, an 3.98% error), 

though it  can be acceptable for coarse approximations.  

    We have studied the consistent approximation for a number of typical configurations of residential 

elevators (number of passengers nP ranging from 4 to 16) in the car-frame sling which is worse case 

than that of the counterweight sling. We have considered both the rotary and the translational lift 

drive-car frame substructures (See table 2). The mass of the sling m’ has been computed according to 

the number of ropes nR and roping system (n:1). It is observed that the mass deviation d is always 

below 75.1% and the maximum mass ratio is above 1.46 (M/m>1.46) giving an error in the 

fundamental frequency in the range 0.3%-1.4% after computing equation (10) and solving equation 

(16). The question that must be discussed now is whether the same results would arise by analyzing 

higher natural frequencies of the substructure.  

 

                    Table 2. Application to car-frame sling of residential elevators 

 
nP M2 Car-frame 

(empty car)  
      [kg] 

M1  Lift Drive 

+bedplate  
       [kg] 

M1=0.75·I/R2  

Rotary lift drive  
        [kg] 

  nR(n:1)    ρ 

 

[kg/m] 

m’=ρhnnR 

(h=30m) 

[kg] 

M  

 

[kg] 

  d M/m’ 

          

4      167     245 

    203 

400x72  :  53.97 

240x110:  29.69 

  3(1:1) 

  4(2:1) 

0.423 

0.179 

38.07 

42.96 

110 

  98 

0.511 

0.698 

2.90 

2.29 

6      167     310 

    220 

400x87:    65.22 

240x110   29.69 

  4(1:1) 

  5(2.1) 

0.423 

0.179 

50.76 

53.7 

116 

  98 

0.438 

0.698 

2.29 

1.83 

8      167     300+50 

    182+55 

400x102:  76.46 

240x110   29.69 

  6(1:1) 

  6(2:1) 

0.423 

0.179 

76.14 

64.4 

122 

  98 

0.372 

0.698 

1.60 

1.53 

13      241     350+75 

    214+70 

400x72:    53.97 

240x130   35.08 

  6(1:1) 

  8(2:1) 

0.423 

0.179 

76.14 

85.92 

148 

138 

0.634 

0.746 

1.94 

1.61 

16      247     450+100 

    232+80 

400x102:  76.46 

240x130:  35.08 

  6(1:1) 

  9(2:1) 

0.610 

0.179 

109.8 

96.66 

161 

141 

0.527 

0.751 

1.47 

1.46 

 

    This was studied by Leung in the case of longitudinal vibrations in a fixed-free bar [2]. It is obvious 

that p natural frequencies can only be predicted by a p degree-of-freedom mathematical model. It is 

evident that the accuracy of the predicted frequencies decreases with the increase of the number of 

degrees of freedom.  

     The consistent simplification is the best one element-substructure. The application of simple 

models to suspended rope-substructures of only 6 degrees of freedom discrete model of an elevator 

system seems to be adequate and coherent. In future work, the effect of increasing the number of 
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elements of the rope-piece using the FEM method for increasing knowledge in the dynamic 

response of the elevator system, specially to higher frequencies and retardation estimations, must be 

analyzed.  
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