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Highlights 

 In Ceropegia, there are phylogenetic differences in the use of Diptera 

families 

 Biogeographic patterns in pollinator exploitation are more limited  

 Most taxa are relatively specialised at least to the level of Diptera 

family 

 

ABSTRACT 

Pollination by flies (Diptera) has been important to the diversification and ecology of 

the flowering plants, but is poorly understood in contrast to pollination by other 

groups such as bees, butterflies and birds.  Within the Apocynaceae the genera 

Ceropegia and Riocreuxia temporarily trap flies, releasing them after a fixed, species-

specific period of time, during which pollination and/or pollen removal occurs.  This 

“trap flower” pollination system shows convergent evolution with unrelated species in 

other families and fascinated Stefan Vogel for much of his career, leading to ground-

breaking work on floral function in Ceropegia (Apocynaceae). In this new study we 

extend the work of the latest broad analysis published by some of the authors 

(Ollerton et al., 2009 – Annals of Botany).  This incorporates previously unpublished 

data from India and Africa, as well as recently published information, on the diversity 

of pollinators exploited by Ceropegia.  The analyses are based on a more accurate 

phylogenetic understanding of the relationships between the major groups, and 

significantly widens the biogeographic scope of our understanding of fly pollination 

within Ceropegia.  Information about the pollinators of 69 taxa (species, subspecies 

and natural varieties) of Ceropegia is now available.  Twenty five families of Diptera 

are known to visit the flowers of Ceropegia, of which sixteen are confirmed as 

pollinators.  Most taxa are pollinated by species from a single family.  Overall, there 

were no major biogeographic differences in the types of Diptera that were used in 
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particular regions, though some subtle differences were apparent.  Likewise there 

were no differences between the two major clades of Ceropegia, but clear differences 

when comparing the range of Diptera exploited by Ceropegia with that of the 

stapeliads.  This clade, one of the largest in the Asclepiadoideae, is a fascinating 

example of a species radiation driven by an apparently relatively uniform set of 

pollinators.  

 

Keywords: Apocynaceae, Asclepiadoideae, Ceropegia, Diptera, flower evolution, 

pollination, specialisation, Ceropegieae-Stapeliinae 

 

1. Introduction 

Current understanding of the global biodiversity of plant-pollinator 

interactions has tended to be biased towards angiosperms that are pollinated by 

relatively large, often charismatic insects, particularly bees and larger Lepidoptera, 

and vertebrates such as bats and birds.  However a significant fraction of the 

flowering plants is pollinated by apparently unremarkable, easily over-looked insects 

including Diptera (Kearns, 2001; Larson et al., 2001; Ollerton et al., 2009, Ollerton in 

review).  Studying such interactions can provide a fuller insight into the biodiversity 

of plant-pollinator relationships, and therefore the ecology and diversification of the 

angiosperms.  The tribe Ceropegieae of the Apocynaceae is remarkable for its high 

proportion of fly pollinated species, particularly in the large genus Ceropegia and 

within the closely related stapeliads (Vogel, 1961; Meve & Liede, 1994; Ollerton & 

Liede, 1997).  However the full diversity of fly families and genera exploited by 

Ceropegia, and the exact nature of the relationship between flowers and pollinators, 



 4 

has only recently been appreciated (Masinde, 2004; Ollerton et al., 2009; Coombs et 

al., 2011; Heiduk et al., 2010, 2015, 2016, 2017). 

In addition to the studies of pollination in Ceropegia there has been a growing 

body of work aimed at understanding the complex evolutionary history of the genus in 

relation to related genera of Ceropegieae (Meve & Liede-Schumann, 2007; Bruyns et 

al., 2015; Meve et al., 2016). All studies agree that the long-tubed trap flowers of 

Ceropegia (Stapeliinae) are paralleled in Riocreuxia (Anisotominae), even though the 

two genera differ in coronal structures. Furthermore, open flowers of the 

Brachystelma type have evolved several times from Ceropegia-type flowers and the 

stem-succulent, open-flowered Stapeliads are also retrieved inside long-tubed 

Ceropegia.  This provides an important phylogenetic framework for interpreting 

patterns of pollinator use within this clade.  

What is particularly remarkable about this clade of plants is that they have 

diversified without major shifts between pollinator types, such as switches between 

bee,  bird, bat and butterfly pollination, as has been observed in other taxa, e.g. 

Johnson et al., 1998; Kay et al. 2005; Muchhala 2006; Wilson et al., 2006; Castellanos 

et al. 2004; Smith et al. 2008.  We examine this further in the Discussion.       

The purpose of this paper is to extend the recent work on this group by 

synthesising additional records of pollinators of Ceropegia which were not available 

for the analyses by Ollerton et al. (2009), including data from the Indian subcontinent, 

one of six centres of particular diversity for Ceropegia that has so far been under-

sampled (see Table 1 in Ollerton et al., 2009).  In addition we use new phylogenetic 

analyses of Ceropegia (Fig. 4) to test the robustness of the conclusions drawn 

previously.   
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The present study addresses the following questions: (1) What is our current 

understanding of the diversity of pollinators of Ceropegia and how has this 

understanding changed over time? (2) How does the diversity and specialisation of 

pollinators of Ceropegia compare across centres of diversity for the genus? (3) Does 

the improved phylogenetic understanding of the major groups of Ceropegia and allied 

taxa, and the additional data on pollinators, change our interpretation of the evolution 

of plant-pollinator interactions within this group of plants?  

Answering these questions will give us a much fuller understanding of the 

diversity, variability and specificity of plant-pollinator interactions in Ceropegia, and 

of the ecology and evolution of fly pollinated plants more broadly. 

 

2. Material and methods 

2.1 Ceropegia and its pollinators 

Our study focuses on Ceropegia L. (Apocynaceae: Asclepiadoideae, 

Ceropegieae), a large, paraphyletic (Meve & Liede-Schumann, 2007; Surveswaran et 

al., 2009; Bruyns et al. 2015) genus of more than 200 accepted species distributed 

from the Canary Islands in the west, across much of sub-Saharan Africa, Madagascar, 

the Arabian Peninsula, Southeast Asia (including the Indian subcontinent, Laos, 

Myanmar, Thailand and China), to the southwestern Pacific Region (including 

Indonesia, Philippines, Papua New Guinea and Northeast Australia).  New species are 

frequently described  (e.g. Bruyns, 2003; Malpure et al., 2006; Dold, 2006; Meve 

2009; Thulin, 2009; Sujanapal, 2013; Punekar et al., 2013; Kidyoo, 2014; Kidyoo & 

Paliyavuth 2017) and the full diversity of the (currently paraphyletic) genus may 

exceed 250 species. Regardless of taxonomy, the Ceropegieae is one of the largest 

monophyletic clades within the Asclepiadoideae.    



 6 

As with all Asclepiadoideae genera, flowers of Ceropegia present their pollen 

as coherent masses (pollinia) that mechanically clip as pollinaria onto the body of 

flower visitors, making it relatively straightforward to distinguish between true 

pollinators and non-pollinating flower visitors. 

The records of pollinators used in this paper come from three sources: (1) 

published studies from the literature, including recent work not included in Ollerton et 

al. (2009); (2) dissection of flowers in the spirit collection of the Herbarium at the 

Royal Botanic Gardens, Kew, most of which were included in Ollerton et al. (2009), 

but including some additional records; (3) field work since 2009 by some of the 

authors which has resulted in new, unpublished records from India (SP & KG), 

Ethiopia (MT), the Canary Islands (MT & JO), western Africa (Porembski) and 

southern and eastern Africa (AH et al.)  A full list of all records, with sources and 

accession numbers (as appropriate) is provided in Appendix 1.  

All insects have been identified to at least family level by taxonomic 

specialists (KG, AW, and individuals cited in acknowledgements of Ollerton et al., 

2009, and the publications of Heiduk and colleagues). 

 

2.2 Data analysis 

 All pollinators so far identified for Ceropegia (this study included) have 

proven to be true flies (Diptera). The taxonomy of small sub-tropical and tropical 

Diptera is relatively poorly known so we have limited our analyses to the level of 

family for this particular study, to give a robust comparison with previous research.  

Future work will focus on the Diptera genera and species as identifications become 

available.   
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 The phylogenetic analysis presented in section 2.3 shows that Ceropegia plus 

Brachystelma plus the stapeliads form a grade within which two major groups of 

Ceropegia can be identified.  Although not technically the correct terminology, for 

simplicity we refer to these Ceropegia groups as Clade I and Clade II.  To test for a 

clade effect (differences between Clade I versus Clade II) and region effect (see 

supplementary material) in presence and absence of Diptera families as pollinators of 

the different Ceropegia species, we performed a PERMANOVA analysis (fixed 

factors: clade, region; 10,000 permutations; only species with both region and clade 

information available were included) based on pairwise Sørensen similarities, using 

Primer 7.0.11 & PERMANOVA+1 add on. PERMANOVA was also used to test for 

differences in pollinator pattern among the five major centres of diversity of 

Ceropegia (see below; analysis was performed independent of clade membership of 

the species), and between the two major clades of Ceropegia and the stapeliads 

(factor: clade/plant group; 10,000 permutations; using all taxa of these groups with 

pollinators available), again based on Sørensen similarities.  Differences in 

specialization between clades and regions (i.e. average number of families used as 

pollinators) were tested using Kruskal Wallis tests, and comparisons of similarities in, 

for example, use of pollinator families between regions and clades were made using 

Spearman Rank Correlations, carried out in SPSS 22.  Visualisation of the interactions 

between Ceropegia spp. and fly families was conducted using the “bipartite” package 

in R (Dormann et al. 2008, R Core Team, 2014). 

 

2.3 Phylogenetic methods 

The dataset was assembled to comprise as many Ceropegia / Brachystelma 

species as possible, using a combination of the data of Meve & Liede-Schumann 
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(2007), Surveswaran et al. (2009) and Bruyns et al. (2015), augmented by some well 

documented GenBank sequences of other sources and 194 partial sequences newly 

created for the present study. For stem-succulent stapeliads, the dataset was restricted 

to twenty representative taxa, comprising, as far as possible, the species for which 

pollinator data are available (Appendix 1).  Because the available datasets (Meve & 

Liede, 2002, Bruyns et al., 2005, 2014) often contain identical taxa, but differ slightly 

in markers analysed, sequences of two accessions of the same taxon were combined 

for 11 species, after comparison of partial sequences available for both accessions 

were found to be identical, or almost so (99%).  The outgroup was assembled from 

Meve et al. (2017), comprising representatives of all genera of Heterostemminae, 

Anisotominae and Leptadeniinae. Appendix 2 details species, vouchers and GenBank 

accession numbers. 

Total DNA was extracted using the DNeasy Plant Mini Kit (Qiagen, Hilden, 

Germany) following the manufacturer’s instructions. Six plastid markers (trnH-psbA, 

trnS-G, trnT-L and trnL-F intergenic spacers, trnL and rps16 intron) as well as the 

Internal Transcribed Spacer region (ITS), including 5.8S of ribosomal DNA (rDNA) 

were amplified following the procedures detailed in Meve et al. (2017). 

For all new partial sequences, forward and reverse sequences were aligned 

with CodonCode Aligner, v.3.0.3 (CodonCode Corp., Dedham, Massachusetts, USA), 

and the consensus was exported in fasta format. The seven partial matrices were 

assembled inside Mesquite v. 3.0 and aligned with the OPAL package (Wheeler & 

Kececioglu, 2007); the resulting alignments were corrected manually. For the trnH-

psbA spacer, outgroup sequences were removed, because they could not be aligned 

with confidence. No well-supported incongruence was found between the partial 

matrices, in accordance with previous studies in Ceropegieae (Bruyns et al., 2014, 
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2015; Meve & Liede-Schumann, 2007; Meve et al., 2017), therefore, the matrix was 

exported using the "Fused Matrix Export (Phylip / RAxML)" option of Mesquite. The 

Maximum Likelihood tree was calculated using RAxML v. 8.2.9 (Stamatakis, 2014) 

as implemented on the CIPRES platform (Miller et al., 2010) with automatically 

stopped bootstrapping and implementing a mixed partition model to allow different 

evolutionary rates for every partition. 

 

2.4 Phylogenetic signal in pollinators 

To test for a phylogenetic signal in use of pollinators (based on the 

presence/absence of pollinating fly families in the different plant taxa for which both 

pollinator and genetic data were available), we used Phylogenetic Principal 

Components Analysis (pPCA) (Jombart et al. 2010) and Pagel’s λ (see Prieto-Benítez 

et al., 2016). pPCA creates two principal components (PCs) that summarize the 

phylogenetic resemblance in the phylogeny (see previous section) owed to pollinators. 

The first PC has the largest eigenvalues (large variance and strong positive 

autocorrelation) and the last PC has the lowest eigenvalues (high variance and strong 

negative autocorrelation). In this way, the first PC denotes pollinators that are more 

similar in related species and thus are phylogenetically constrained; the last PC 

denotes pollinators that create dissimilarities between closely related species. For this 

analysis, we used the measure of phylogenetic proximity underlying the test of 

Abouheif (1999) because of its abilities in detecting phylogenetic signal (Pavoine et 

al., 2008). As pPCA does not explicitly test for the presence of a phylogenetic signal, 

we used Pagel’s λ to test for a phylogenetic signal in the PCs (see Freckleton et al., 

2002; Prieto-Benítez et al., 2016). 
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As we detected a strong effect in the PCs of the clade formed by non-

Ceropegia stapeliad species (Orbea, Stapelia, Desmidorchis and Apteranthes) and 

Ceropegia bulbosa, and a strong phylogenetic signal in PC1 (see Results), we 

performed a second pPCA that excluded these species in order to test whether there is 

a phylogenetic signal in pollinators also outside this clade. Pagel’s λ detects 

phylogenetic dependence of an observed trait (values of λ approximately 1 indicates 

phylogenetic signal, λ approximately 0 indicates phylogenetic independence) 

(Freckleton et al., 2002).  All analyses were implemented in R (R Core Team, 2014); 

we performed the pPCAs using the package “adephylo” (Jombart & Dray, 2008), and 

Pagel’s λ using the function fitContinous in the package GEIGER (Harmon et al., 

2008). 

 

3. Results 

The records presented in Appendix 1 indicate that we currently have 

information on the pollinators (as distinct from simply flower visitors) of 69 taxa 

(species, subspecies and natural varieties) of Ceropegia, almost twice as many as 

were available for the previous analysis by Ollerton et al. (2009).  The following 

analyses focus only on those Ceropegia taxa for which pollinator identity has been 

confirmed (i.e. the Diptera that carried pollinaria). 

 

3.1 Diversity of pollinators of Ceropegia 

Sixteen families of Diptera are known to act as pollinators of Ceropegia taxa, 

whilst a further nine are visitors but unproven pollinators (Table 1).  As Fig. 1 

demonstrates, our understanding of the diversity of pollinators for these plants has 

increased almost linearly since the early 2000s, following a long period where a 
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limited diversity of pollinators had been identified.  The family accumulation curve in 

Fig. 1 shows no sign of levelling off, indicating that the true family-level diversity of 

Ceropegia pollinators may be much higher.  Indeed we have records of a further nine 

Diptera families which are known to visit flowers of Ceropegia but have not yet been 

confirmed as pollinators (Table 1).  Further work may prove some of these to be 

insect predators or plant parasites, but others are almost certain to be pollinators 

(indeed one of them - Tephritidae - is known to pollinate at least one stapeliad species 

– see Appendix 1).  

 

3.2 Pollinator specialisation at a Diptera family level in Ceropegia 

There is a very right-skewed pattern to the distribution of the number of 

pollinating Diptera families, with more than three quarters of the Ceropegia taxa for 

which we have identified the fly family being pollinated by a single family of flies 

(Figs. 2 and 3).  Some of these records are based on limited collections of flowers 

with pollinators and thus it is possible that a proportion of these taxa are more 

generalised in their interactions with pollinators than we currently know.  But 

nonetheless a striking feature of Ceropegia is the high degree of Diptera family-level 

specialisation.  There are some exceptions to this, however, as 17 taxa are pollinated 

by up to four Diptera families, and two species are pollinated by seven.  As Fig. 3 

shows the latter species are the very large flowered C. ampliata from southern Africa 

(Coombs et al., 2011) and C. aristolochioides subsp. deflersiana from the Arabian 

Peninsula, part of a species complex (Meve et al., 2001) that was previously identified 

as being much more generalised in its interactions with pollinators than other 

Ceropegia taxa (Ollerton et al., 2009).  Both of these taxa have been extensively 

sampled compared with most other Ceropegia (Coombs et al., 2011; Appendix 1), 
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which may also be a factor (see also comments below on sampling effort).  The focus 

on Diptera family, however, masks greater specialisation at the genus and species 

level which we will not immediately address in these analyses but which has been 

dealt with preliminarily by Ollerton et al. (2009; see also Heiduk et al. 2017).  

 

3.3 Biogeographic patterns and the effect of main clades in the exploitation of 

pollinators in Ceropegia 

Overall, there were no differences in the use of pollinator families among 

different regions (PERMANOVA: pseudo-F11,46 = 0.93, P = 0.65), and between Clade 

I and Clade II (PERMANOVA: pseudo-F1,46 = 0.64, P = 0.68). There was also no 

significant effect of the interaction between regions and clades (PERMANOVA: 

pseudo-F2,46 = 0.84, P = 0.61). Most data are available for five of the major centres of 

diversity of Ceropegia - the Indian subcontinent, the Arabian Peninsula, East Africa, 

southern Africa, and West Africa (Fig. 4; Appendix 1).  When including only species 

which occur in one of these centres in the analysis, and neglecting the clade 

membership, there also was no difference in the use of pollinators within the different 

regions (PERMANOVA: pseudo-F4,51 = 1.08, P = 0.36). In all these regions the 

families Milichiidae and Chloropidae are important pollinators, accounting for 

between 10% and almost 30% of the pollinator records.   

The biogeographic PERMANOVA analyses show no difference because 

variation within regions is very high, masking some of the more subtle differences of 

the frequency of particular families in certain parts of the world; for example the 

Indian subcontinent taxa frequently exploit the families Drosophilidae, 

Mycetophilidae and Cecidomyiidae, which are rare or unknown as pollinators in other 

regions (Fig. 4, Table 2).  Likewise Phoridae is an important family of pollinators in 



 13 

West Africa but is less often exploited in other regions (Fig. 4) though West Africa is 

less well represented in our analyses than the other regions and this pattern could 

change with additional sampling.   

The Indian subcontinent and southern Africa share the most diverse pollinator 

family profiles, with eleven families each; however, these families are rather different 

and the profiles for the two regions are not correlated (Table 2).  The addition of so 

much new data from the endemic taxa of the Indian subcontinent has added three new 

families (Anthomyiidae, Cecidomyiidae and Mycetophilidae) as pollinators of 

Ceropegia, though two of them (Cecidomyiidae and Mycetophilidae) had previously 

been recorded as flower visitors (Ollerton et al., 2009).  Indeed, across all seven 

regions there is a strong positive correlation between the number of records of 

pollinators and the diversity of fly families used (Spearman rank correlation r = 0.93, 

n = 7, p = 0.003) which suggests that conclusions about the diversity of pollinators in 

a particular region are strongly influenced by sampling effort.  

The specificity of the interactions between Ceropegia and its pollinators (at 

Diptera family level) was examined by comparing the average number of families 

used per Ceropegia taxon in each region for which there is sufficient data (Fig. 4).  

Overall there is no difference in the average number of fly families exploited as 

pollinators; mean (median) ± SD [range] number of families: Arabian Peninsula = 2.1 

(1.0) ± 2.2 [1-7]; East Africa = 1.4 (1.0) ± 0.8 [1-3]; Indian subcontinent = 1.5 (1.0) ± 

0.8 [1-4]; southern Africa = 1.6 (1.0) ± 1.6 [1-7]; West Africa = 1.8 (1.0) ± 1.2 [1-4] 

(Kruskal-Wallis test χ2 = 1.17, d.f. = 4, p = 0.88).   

  

3.4 Pollinators of the major clades of Ceropegia and related taxa 
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In accordance with the latest phylogenetic analysis of Ceropegia and its 

relatives our tree shows that the group is broadly divided into two major clades that 

we refer to as Clade I and Clade II (Fig. 5).  The genus Brachystelma is scattered 

throughout the phylogeny and is polyphyletic, thereby causing multiple paraphyly of 

Ceropegia (Bruyns et al. 2015).  The stem-succulent stapeliads, a diverse group of c. 

400 species in 47 genera (sensu Endress et al. 2014), are nested within Clade II.  

Comparison of the use of fly families as pollinators by the two major clades of 

Ceropegia with that of the stapeliads s. str. (Fig. 5) shows that these three groups 

overall exploit different fly pollinators (PERMANOVA: pseudo-F2,76 = 6.93, P < 

0.001). Post-hoc analyses revealed that the two distantly related Ceropegia clades 

exploit the same spectrum of fly families (P = 0.24), particularly Milichiidae, 

Chloropidae and Ceratopogonidae (which are rare or unknown as pollinators in the 

stapeliads); in contrast these two clades are dissimilar in their use of pollinators 

compared to the stapeliads (P < 0.001 each).  This is in spite of the fact that the 

stapeliads are more closely related to Ceropegia Clade I than the latter is to Ceropegia 

Clade II.  However a caveat to this analysis is that the pollination ecology of the 

stapeliads has been poorly studied to date (Appendix 1) and future data may change 

these results. 

 There is no difference in the average number of fly families pollinating 

Ceropegia and stapeliad taxa; [mean (median) ± SD [range] number of families: 

Clade I = 1.5 (1.0) ± 1.3 [1-7]; Clade II = 1.5 (1.0) ± 1.2 [1-7]; stapeliads = 2.0 (1.0) ± 

1.7 [1-7] (Kruskal-Wallis test χ2 = 1.99, d.f. = 2, p = 0.37).   

 

3.5 Phylogenetic signal in the use of pollinators by Ceropegia 
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Phylogenetic principal component analyses summarized the phylogenetic 

signal due to the 17 Diptera families that pollinate Ceropegia (Fig. 7A). In the first 

pPCA, Muscidae and Calliphoridae, which mostly pollinate the stapeliad clade 

formed by taxa of Orbea, Stapelia, Desmidorchis, Apteranthes, as well as Ceropegia 

bulbosa, had the highest positive loading on PC1 (Fig. 7B). Chloropidae had the 

highest negative loading on the last PC (PC16, Fig. 7B) of the analyses. The 

presence/absence of this fly family varied most among closely related taxa, such as 

between the two subspecies of C. aristolochioides, and between C. attenuata and C. 

anantii. In the second pPCA, which excluded the non-Ceropegia clade together with 

C. bulbosa from the analysis, Milichiidae and Ceratopogonidae had highest positive 

and negative loadings on PC1, respectively (Fig. 7C).  Milichiidae occur as pollinators 

of several closely related species, such as the clade formed by C. sandersonii, C. 

radicans, C. nilotica, C. denticulata and C. stenantha, and the clade formed by C. 

longifolia and C. dolichophylla.  Ceratopogonidae pollinate several species of other 

clades, such C. linearis, C. barklyi and C. pachystelma. As in the first pPCA, the last 

PC was again strongly influenced by Chloropidae (negative loading in PC12, Fig. 

7C). As expected, the first PC had a significant phylogenetic signal in both pPCAs (λ 

= 1.0; P <0.002 each), but not the last PCs (λ = 0.0; P >0.05 each). 

 

 

 

4. Discussion 

4.1 Specialisation and generalisation in Ceropegia pollination ecology 

The functional details and floral Bauplan of the trap-flower “Kesselfallen-

Blüten” of Ceropegia have been studied for some time (Knuth, 1909; Vogel, 1961, 
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1993; Endress, 1996; Coombs et al., 2011) though the diversity of Diptera pollinators 

has only recently been fully appreciated (Masinde, 2004; Ollerton et al., 2009; 

Coombs et al., 2011).  In addition the chemical make up of the scents produced by 

some species has recently started to be investigated, indicating complex odour 

mimicry of dead insects by at least some of these flowers (Heiduk et al., 2010, 2015, 

2016, 2017).  Current evidence suggests that the sets of floral and vegetative 

characters that define the genus Ceropegia have been lost multiple times, and that the 

open flowers of Brachystelma and the stapeliads, for example, are derived from the 

trap flowers of Ceropegia (Meve & Liede-Schumann, 2007; Bruyns et al., 2015).  

Therefore convergent evolution driven by pollinators has probably resulted in similar 

floral phenotypes (including colour and scent) in the different clades of Ceropegia 

(and in Riocreuxia) compared to Brachystelma/stapeliads.  Whilst trap flowers are 

certainly ancestral in this clade additional sampling in poorly represented parts of the 

phylogeny would be required to understand whether this comprises a 

symplesiomorphy for the group.  Along these lines, floral scent is highly variable 

among species, phylogenetically not constrained, and may explain pollinator 

specificity in the more specialised members of this group of plants (Heiduk et al., 

2017).  It is clear from the considerable phylogenetic and ecological diversity of 

Diptera families exploited as pollinators of this genus (Table 1) that the evolution of 

plant-pollinator relationships within the group has been hugely complex.  All the more 

remarkable is the fact that all of this floral evolution has (as far as we currently 

understand) been driven by a single taxon (Diptera).  In contrast, floral diversity in 

most other plant groups so far studied is linked to evolutionary shifts between 

phylogenetically distinct pollinators, such as various combinations of bees, 

hummingbirds, butterflies, moths, bats, flies, etc. (e.g. Johnson et al., 1998; Kay et al. 
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2005; Castellanos et al. 2004; Muchhala 2006; Wilson et al., 2006; Smith et al., 

2008).  This may in part be due to researcher bias, such that plant clades with highly 

divergent flowers visited by diverse pollinators are more attractive as study systems.  

In contrast groups of plants that are pollinated by a single (albeit diverse) taxon may 

be relatively neglected (though see Armbruster et al. 2009).  However it also tells us 

that even an apparently phylogenetically constrained set of pollinators such as the 

Diptera can select for significant levels of floral novelty, and reproductive isolation, 

and drive an evolutionary radiation involving hundreds of species.       

The additional data obtained since the publication of Ollerton et al. (2009), 

particularly for species of Ceropegia endemic to the Indian subcontinent, conforms to 

the general view of pollination systems of Ceropegia taxa from other parts of the 

range of the genus.  In the terminology of Ollerton et al. (2007) these species are 

phenotypically and functionally specialised, with clear adaptations to being pollinated 

by a single functional group of pollinators, namely small Diptera.  However, at a 

Diptera family level, species may be ecologically specialised (using only one family 

of flies) or more generalised, exploiting up to seven different families.  These findings 

are largely in line with the analyses of Ollerton et al. (2009) who likewise found both 

highly specialised and more generalised interactions within the genus (see also 

Coombs et al., 2011, Heiduk et al., 2017).  However, given our comments above 

about the radiation of this group of plants, it is clear that there is probably 

considerable within-family functional diversity of these flies, in relation to ecological 

traits such as egg laying sites.  This question will be addressed in the future once all of 

the flies are identified to at least genus, and more is discovered about their ecology.       

 

4.2 Diversity of Diptera pollinators  
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The present analysis significantly extends the phylogenetic breadth of Diptera 

known to be pollinators of this large genus.  Particularly noteworthy is the family 

Cecidomyiidae that Ollerton et al. (2009) observed to be frequently found in 

Ceropegia flowers but never to carry pollinaria, perhaps because Cecidomyiidae are 

usually herbivores of buds and flowers, plant gall-making parasites, or predators of 

small invertebrates.  The discovery of Cecidomyiidae as pollinators of four species of 

Indian Ceropegia significantly adds to the range of plant families known to be 

pollinated by these gall midges, which includes species within Monimiaceae (Feil, 

1992), Sterculiaceae (Young, 1985), Schisandraceae (Luo et al., 2010), Araceae 

(Barriault et al., 2009), Moraceae (Sakai et al., 2000) and probably Piperaceae 

(Ollerton, 1996). 

There are a little over 180 families of Diptera worldwide, the adults of which 

(barring some exceptions) require a sugar meal for energy and reproduction, much of 

which is derived from floral nectar. Clearly, this is the driving force behind floral 

visitation to most groups of plants, which in turn leads to pollination, as few are 

obligate pollen feeders such as Syrphidae, Bombyliidae, some Ceratopogonidae and 

some Phoridae (Larson et al., 2001). Noteworthy is that their larger size excludes 

Syrphidae and Bombyliidae from pollination of trap flower Apocynaceae, whereas the 

small bodied Ceratopogonidae and Phoridae are known pollinators of this family. 

Entrapment of the flies is clearly a physical attribute of Ceropegia flowers that 

we can visually measure (floral shape and orientation, trichomes that collapse, 

presence of pollinia), whereas odour attraction has largely been overlooked until 

recently (Heiduk et al., 2010, 2015, 2016; but see Vogel 1961) and clearly plays a 

major role in plant-pollinator interactions within the Apocynaceae.  Besides prey 

mimicry of the type described by Heiduk et al. (2010, 2015, 2016) there is also the 
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possibility that mate attraction might play some role, with the flies being attracted by 

odours emulating fly pheromones.  Mimicry of breeding and egg laying sites was also 

suggested to occur in the genus (Vogel, 1961, 1993; Ollerton et al., 2009; Heiduk et 

al., 2017), but the mimicry strategy of most of the species remains unexplored. 

The presence of nectar in at least some Ceropegia species (Coombs et al., 

2011) indicates that either not all species are deceptive or that nectar-secreting species 

are partly deceptive as they advertise another reward through scent mimicry.  The 

presence of pollinaria only on the mouthparts of flies strongly suggests that nectar is 

used to manipulate the behaviour of the flies in the trap flowers as the nectar-bearing 

“cups” of Ceropegieae are all positioned below the guide rails of the gynostegium, 

where fly mouthparts can be steered to the pollinaria.  If this were not the case then 

we would expect pollinaria to be clipped to legs and body hairs due to random 

movements of the flies in the flowers.  Thus the kleptoparasitism of species of 

Milichiidae (Heiduk et al., 2010, 2015, 2016) is an aspect of a more general feeding 

behaviour in these flies centred on liquids, as they do not possess biting mouthparts.      

The fly pollinators so far identified for Apocynaceae cover the phylogenetic 

spectrum of Diptera, ranging from small Culicomorpha, through Platypezoidea, 

Psychodomorpha, Bibionomorpha and small acalyptrate Schizophora, to large 

calyptrate Schizophora in the Muscoidea and Oestroidea (Meve & Liede, 1994; 

Ollerton & Liede, 1996; Ollerton et al., 2009; this study). The majority of families 

encountered pollinating Apocynaceae belong to the Acalyptratae (Schizophora) and 

therein to the Milichiidae, Chloropidae and Drosophilidae. While Milichiidae and 

Chloropidae share close phylogenetic affinities (and may even be sister taxa - see 

Buck, 2006) Drosophilidae are loosely grouped with the Ephydridae.  Such a broad 

span of taxa does not easily map onto the phylogenetic structure of Apocynaceae, 



 20 

indicating that there has been no close co-evolution between these interacting clades.  

It further suggests that fly body size in comparison with flower size governs 

associations (see also Ollerton et al., 2009). 

 

4.3 Phylogenetic patterns of pollinator use in Ceropegia  

The phylogenetic analyses of pollinator use undertaken by Ollerton et al., 

(2009) can now be largely disregarded as it is clear that the underlying phylogeny 

used in that study was not an accurate reflection of the evolutionary history of this 

group.  At the present time we can say that there are both similarities and differences 

in the range of flies used as pollinators by the two major clades of Ceropegia (Clade I 

and Clade II) and that both of these, in turn, are very different from that of the 

stapeliads s.str. (Fig. 5 and Fig. 6).  Also, we can conclude that there is phylogenetic 

signal in the use of pollinators, being somewhat constrained within Ceropegia (which 

may correlate with fly size – see above), and also when comparing Ceropegia with the 

stapeliads (see also Heiduk et al., 2017).  Future work should focus on the pollination 

ecology of the stapeliads s. str. which, despite being a well-studied group 

taxonomically and horticulturally, are rather neglected ecologically (but see Meve et 

al., 2004, Jürgens et al., 2006), and on the genus Brachystelma.  The latter shows 

many convergent features of floral phenotype with the stapeliads s. str. but there are 

almost no published data on their pollination biology. 

 

4.4 Biogeographic patterns of pollinator use in Ceropegia  

Biogeographic patterns of pollinator use were previously assessed by Ollerton 

et al. (2009) who found that the region with the greatest diversity of pollinating 

families of Diptera was the Arabian Peninsula region.  The current work, plus the 
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study by Coombs et al. (2011) allows a reassessment of this, and it is clear that both 

the Indian subcontinent and southern Africa surpass the Arabian Peninsula in this 

respect.  However this is unlikely to be the last word on the subject as there is known 

to be a significant effect of sampling effort on plant-pollinator surveys, including 

large-scale biogeographic assessments (Ollerton & Cranmer, 2002; Herrera, 2005; 

Ollerton et al., 2003, 2009) and the present study hints that this will continue to be the 

case for some time until Ceropegia has been more thoroughly sampled (see also 

comments above regarding C. ampliata and C. aristolochioides subsp. deflersiana).  

Interestingly, the present work also shows that the taxa of different regions exploit 

overall the same pollinator groups, indicating that Ceropegia species make use of very 

widespread pollinator families.  Advances in Dipterology in tropical and other high-

diversity regions will also improve our ability to both identify taxa and understand 

their behaviour, and reveal how this might be manipulated by Ceropegia.   

 

4.5 Ceropegia pollination in comparison to other Ceropegieae  

The other subtribes of Ceropegieae interact with a wide range of different 

groups of pollinators, including Diptera; in Anisotominae, sister group of Stapeliinae, 

Sisyranthus trichostomus is beetle pollinated (Ollerton et al., 2003) and Riocreuxia 

spp. are fly pollinated (Heiduk et al., in prep.), whilst in the Leptadeniinae 

Orthanthera albida is moth pollinated (Nel, 1995), Leptadenia reticulata is mainly 

bee pollinated (Pant et al., 1982; Chaturvedi & Pant, 1986), L. pyrotechnica is mainly 

pollinated by flies and beetles (Ali, 1994), and L. madagascariensis is pollinated by a 

range of flies from the family Drosophilidae (Yassin et al., 2012).  In all of these 

examples pollinaria were placed on the mouthparts of the insects concerned and, 

indeed, such placement of pollinaria may be one of the defining features of the 
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pollination biology of this clade, in comparison with (for example) clades such as 

Asclepias and its relatives that place pollinaria on a range of body parts, including legs 

and abdominal and thoracic hairs, instead of or in addition to mouthparts (Ollerton et 

al., 2003).   

 

5. Conclusion 

This study has significantly extended our current understanding of the 

diversity of pollinators of Ceropegia at the level of Diptera family, and has 

demonstrated how this has changed over the past 55 years.  Future sampling will no 

doubt add to our knowledge of the range of families exploited by Ceropegia (and 

related taxa) and more detailed studies such as Coombs et al. (2011) and Heiduk et al. 

(2010, 2015, 2016, 2017) will provide important insights into the mechanisms by 

which pollinators are attracted and trapped.   

It is clear that whilst there are phylogenetic differences in the use of Diptera 

families, biogeographic patterns in pollinator exploitation are more limited, and that 

most taxa (with some exceptions) are relatively specialised (at least to the level of 

Diptera family).  Although there is much still to discover, this study has helped to 

build a clearer picture of the biodiversity of plant-pollinator interactions within this 

remarkable group of plants, a process that was aided considerably by the foundational 

work of Stefan Vogel. 
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Figure legends: 

 

Fig 1: Cumulative number of Diptera families confirmed as pollinators of Ceropegia 

over time, from initial studies in the 1960s.  Note that Vogel’s (1961) study was of 

plants in cultivation, outside the natural range of the genus.  
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Fig 2: Frequency distribution of number of fly families acting as pollinators per 

Ceropegia taxon. 
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Fig. 3:  Interactions between Ceropegia taxa and pollinating fly families represented 

as a bipartite graph.  The box sizes are proportional to the level of specialisation of 

each Ceropegia taxon, and the number of Ceropegia taxa known to interact with a 

particular fly family, respectively.  Plants are ranked from most generalist to most 

specialist; fly families are ranked from least exploited to most exploited.    
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Fig 4: Comparison of the use of fly families as pollinators between five of the major 

biogeographic centres of distribution of Ceropegia.  Data are plotted as the proportion 

of occurrences of each family in Ceropegia taxa from those regions. 
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Fig 5: Maximum likelihood (ML) phylogenetic tree of Ceropegieae obtained with 

RAxML (Stamatakis 2014) based on combined trnT-F region, rps16 intron, trnH-

psbA and trnS-G spacers, and ITS data.  Bold lines indicate bootstrap support of 100 

%, medium lines 90-99 % and slightly thickened lines 75-89 %. For some major 

clades, bootstrap values have been added directly to the branches. Taxa in bold 

indicate species for which pollinator data are available. For clarity, outgroups and the 

two large Brachystelma clades, for which no pollinator data are available, have been 

summarized as triangles. 
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Fig 6:  Comparison of the use of fly families as pollinators by the two major clades of 

Ceropegia (Clade I and Clade II), with that of the stapeliads s.str.  Data are plotted as 

the proportion of occurrences of each fly family in taxa belonging to those clades. 
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Fig. 7. (A) Phylogeny of the species studied and results of the first (1st) and second 

(2nd) pPCAs. Positive and negative scores on PC1 (1st and 2nd), PC16 (1st) and 

PC12 (2nd) are indicated by black and white circles, respectively. Symbol size is 

proportional to absolute values. (B) Loading of the pollinators for the PC1 and PC16 

in the first pPCA. (C) Loading of the pollinators for the PC1 and PC12 in the second 

pPCA. 
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Table 1: Synopsis of the higher-level phylogenetic positions of Diptera families 

known to be flower visitors to Ceropegia.  Confirmed pollinators are shown in bold.  

Phylogenetic information is from the Tree of Life project (www.tolweb.org).   

Higher clade Families Common name 

Schizophora Agromyzidae Leaf-miner flies 

Schizophora Anthomyiidae Anthomyiid flies 

Schizophora Asteiidae Asteid flies 

Schizophora Calliphoridae Blow flies 

Schizophora Carnidae Carnid flies 

Schizophora Chloropidae Frit flies 

Schizophora Drosophilidae Fruit flies 

Schizophora Ephydridae Shore flies 

Schizophora Lauxaniidae Lauxanid flies 

Schizophora Milichiidae Milichid flies 

Schizophora Muscidae House flies 

Schizophora Sarcophagidae Flesh flies 

Schizophora Tachinidae Tachinid flies 

Schizophora Tephritidae Fruit flies 

Bibionomorpha Cecidomyiidae Gall midges 

Bibionomorpha Lygistorrhinidae Fungus gnats 

Bibionomorpha Mycetophilidae Fungus gnats 

Bibionomorpha Sciaridae 
Dark-winged 

fungus gnats 

Culicomorpha Ceratopogonidae 
Blood-sucking 

midges 

Culicomorpha Chironomidae 
Non-biting 

midges 

Empidoidea Empididae Dagger flies 

Empidoidea Hybotidae Dance flies 

Platypezoidea Phoridae Scuttle flies 

Psychodomorpha Psychodidae Moth flies 

Psychodomorpha Scatopsidae Scatopsid flies 
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Table 2: Spearman rank correlations of the proportional use of different fly families as 

pollinators between the major centres of diversity of Ceropegia.  Statistically 

significant correlations at p ≤ 0.05 are indicated in bold; note that two of the 

West Africa comparisons are marginally significant at p ≤ 0.10.  N = 16 in each 

case. 

 

 Arabian Peninsula East Africa Southern Africa West Africa 

Indian 

subcontinent 

r = 0.24, p = 0.37 r = 0.50, p = 

0.05 

r = 0.28, p = 0.29 r = 0.45, p = 0.08 

Arabian Peninsula r = 0.63, p = 

0.009 

r = 0.49, p = 0.05 r = 0.42, p = 0.10 

East Africa   r = 0.82, p < 0.001 r = 0.84, p < 0.001 

Southern Africa    r = 0.80, p < 0.001 


