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Abstract 
Mixtures of metal salts such as ZnCl2, AlCl3 and CrCl3·6H2O form eutectic mixtures with 

complexing agents, such as urea, liquids. The aim of this research was to see if alkali metal 

salts also formed eutectics in the same way. It is shown that only a limited number of sodium 

salts form homogeneous liquids at ambient temperatures and then only with glycerol. None of 

these mixtures showed eutectic behaviour but the liquids showed the physical properties 

similar to the group of mixtures classified as deep eutectic solvents. This study focussed on 

four sodium salts: NaBr, NaOAc, NaOAc·3H2O and Na2B4O7·10H2O. The ionic conductivity 

and viscosity of these salts with glycerol were studied, and it was found that unlike previous 

studies of quaternary ammonium salts with glycerol, where the salt decreased the viscosity, 

most of the sodium salts increased the viscosity. This suggests that sodium salts have a 

structure making effect on glycerol. This phenomenon is probably due to the high charge 

density of Na+, which coordinates to the glycerol. 1H and 23Na NMR diffusion and relaxation 

methods have been used to understand the molecular dynamics in the glycerol-salt mixtures, 

and probe the effect of water on some of these systems. The results reveal a complex 

dynamic behaviour of the different species within these liquids. Generally, the translational 

dynamics of the 1H species, probed by means of PFG NMR diffusion coefficients, is in line 

with the viscosity of these liquids. However, 1H and 23Na T1 relaxation measurements suggest 

that the Na-containing species also play a crucial role in the structure of the liquids.  
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Introduction 
Deep Eutectic Solvents (DES) are mixtures of Lewis and Brönsted acids and bases. The most 

commonly studied systems are those composed of quaternary ammonium salts and hydrogen 

bond donors such as amides, alcohols or acids.1,2 The depression of freezing point for some 

mixtures can be up to 200 oC. Many applications of these compounds have already been 

studied including their use as: catalysts, solvents, extraction media and media to carry out 

electrochemical processes. A comprehensive review on the properties and applications of 

DESs has recently been published.3 

A variety of metal salts e.g. ZnCl2 and AlCl3 and metal salt hydrates e.g. CrCl3·6H2O have 

been shown to form eutectic mixtures with compounds such as urea.45 Most form ionic 

species due to disproportionation of the metal salt:  

e.g. 2AlCl3 + urea → [AlCl2.urea]+ + AlCl4
-  

These liquids have been studied for metal deposition applications.6 Gambino et al.7 have 

shown that mixtures of alkali metal halides with urea can form eutectic mixtures with typical 

melting points greater than 120 oC; however, the systems were not suitable for the 

applications tested. Mjalli et al.8 applied the same methodology to mixtures of potassium 

carbonate and glycerol, or ethylene glycol, and found that a 1:4 respective molar mixture of 

potassium carbonate and glycerol formed a colourless liquid at room temperature, with the 

potential application as a CO2 capture medium.8 

Ideally, a DES based on a concentrated mixture of NaCl and glycerol would be the most 

economically viable DES.9 Unfortunately, NaCl has a relatively low solubility in glycerol (83 

g kg-1 of glycerol), which is not sufficiently concentrated enough to be compared against 

DES and ILs.10 DESs exhibit rather complex behaviour; in particular, the presence of several 

molecular and ionic species makes these systems very interesting to study. Diffusion often 

does not obey the classical Stokes Einstein model and it was suggested other factors such as 

the amount of free volume in the liquid and size of “hole”, are important factor in controlling 

the motion of these species.11 Initial studies on DESs have been carried out to understand the 

dynamics of molecular and ionic species and see how these relate to macroscopic properties 

such as viscosity and electric conductivity.12 Recent diffusion studies on aqueous choline 

chloride-based DES were able to show that some of these liquids are inhomogeneous at a 

macroscopic level and it was observed that the addition of water significantly changes the 

molecular and ionic interactions between the different species. 13 For example, in some cases, 
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the hydroxyl protons of the hydrogen bond donor behave differently from its parent molecule 

when water is added to the system.  

Electrical conductivity, density and viscosity measurements of relatively dilute alkali metal 

halides and glycerol have been previously carried out.14 In this study, very concentrated salt-

glycerol systems have been studied and their properties are compared to deep eutectic 

solvents. NMR diffusion and relaxation studies have been carried out to understand the 

dynamics of molecular and ionic species in sodium-based DES. 1H PFG NMR diffusion and 
1H and 23Na T1 relaxation methods were used to understand translational and rotational 

dynamics of molecular and ionic species, including Na+ ions and see how microscopic 

behaviour correlates with the viscous properties of these fluids in order to understand what 

are the main factors affecting the macroscopic behaviour of these fluids. 

Experimental 
Glycerol (Fisher Scientific) was heated to 50 oC and mixed with one of the four salts NaOAc, 

(Fisher Scientific) NaBr, (Sigma-Aldrich) Na2B4O7·10H2O (Sigma-Aldrich) or NaOAc·3H2O 

(Fisher Scientific) using an overhead stirrer (Stuart Scientific, ss10, 500 rpm) until all the 

components formed a homogeneous liquid phase. All liquids were stored at 50 oC. The 

mixtures salt/glycerol are labelled as NaOAc, NaBr, Na2B4O7·10H2O and NaOAc·3H2O. 

The viscosities of all the ionic solvents were measured using a rotational viscometer 

(Brookfield DV-II+PRO), fitted with a temperature probe. Samples were heated to 45 oC and 

viscosity measurements were taken down to 25 oC (± 1 oC). Ionic solvents were tested for 

non-Newtonian fluid behaviour using the above instrument and apparatus over the viscometer 

rotation speed range 10-200 rpm. Sample viscosity was recorded for 10 minutes for each 

rotation speed to provide a stable measurement. Where error bars are not obvious they are 

within the dimensions of the plot symbol. 

The electrical conductivities of all the ionic solvents were measured using a conductivity 

probe (Jenway 4510, cell constant K = 0.96), which was fitted with an integral temperature 

probe. Conductivity was measured over the temperature range 25-45 oC (± 1 oC). 

Glass transition temperatures were determined using a Differential Scanning Calorimeter 

(Mettler Toledo, DSC1) controlled by STARe version 12.10 software. The mass of each 

sample ranged between 5 - 20 mg, and was sealed inside a 40 µl Al pan (Mettler Toledo) with 

a vent hole pierced into the lid. Samples were cooled to -140 oC at a rate of 10 oC min-1, then 

held at -140 oC for 10 min and then heated up to 25 oC at a rate of 5 oC min-1. All experiments 
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were carried out under a N2 atmosphere. The resulting theromgrams showed an endothermic 

peak corresponding to the glass transition of the samples. 

All NMR measurements were conducted on a Bruker DMX 300 spectrometer operating at a 

frequency of 300.13 MHz. A diffusion diff-30 probe equipped with gradient coils capable to 

produce a maximum magnetic field gradient in the z-direction of up to 11.76 T m-1 was used 

for both diffusion and relaxation measurements, using 1H and 23Na resonant coils for 1H and 
23Na NMR measurements respectively. 1H PFG NMR measurements were conducted using 

the APGSTE (alternating pulsed gradient stimulated echo) pulse sequence with a homospoil 

gradient, which has the advantage of minimizing the effect of any possible background 

gradient present in the sample.  

The NMR signal attenuation, ( ) 0EgE is related to the experimental variables and the 

diffusion coefficient D according to:  
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where ( )gE  and 0E  are the NMR signal in the presence and absence of the gradient pulse, 

respectively; Hγ  is the gyromagnetic ratio of the nucleus being studied (i.e., 1H in our case), g 

is the strength of the gradient pulse of duration δ, and Δ is the observation time. The 

observation time for diffusion was fixed to Δ = 100 ms with values of δ in the range 1 – 4 ms. 

The magnitude of g was linearly varied and up to sixteen points were acquired for each 

diffusion measurement. Maximum gradient values of up to 11.50 T m-1 were necessary to 

reach the required signal attenuation due to the very low diffusivity observed for some of the 

species present in these samples. The diffusion coefficients D can be calculated by fitting 

Equation (1) to the experimental data.  

1H and 23Na T1 relaxation measurements were performed using the inversion recovery pulse 

sequence using a list of sixteen variable delay times. The T1 relaxation time constant was 
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where 0S  is the NMR signal at equilibrium (i.e., initial time) and ( )tS  is the NMR signal 

recorded after a delay time t. NMR measurements were conducted a variable temperature in 

the range 25-65 oC and the temperature was controlled by a BVT 3000 control unit. 

Results and discussion 

Component Selection 

Figure 1 shows a selection of group 1 and group 2 metal salts mixed with either: urea, xylitol 

(an example of a complex sugar alcohol) and glycerol. All of the mixtures in Figure 1 were 

heated to 100 oC for 2 hours with intermittent shaking, and all systems were tested at a 1:4 

salt to glycerol molar ratio, except for NaCl and KCl, which were tested at a ratio of 1:8. Of 

the metal salts mixed with urea in Figure 1 only Na2B4O7·10H2O and MgCl2·6H2O showed 

signs of partial liquid formation, whereas all of the other salts tested remained as two separate 

solid phases. Marginally better miscibility was achieved when urea was substituted for 

xylitol, but none of the systems investigated completely formed liquids. When xylitol was 

substituted for glycerol, all of the systems investigated formed colourless liquids at 100 oC, 

which remained liquid upon cooling to room temperature. In no cases was the freezing point 

of the mixture below that of pure glycerol and so it can be concluded that salts of groups 1 

and 2 do not form eutectic mixtures in the same way as salts such as zinc chloride and 

aluminium chloride.4, 5  

Considering the research from Gambino et al.,7 many of the systems tested in Figure 1 may 

have fully formed if heated to over 150 oC, but further heating would have resulted in 

decomposition of urea. Also, in cases where a colourless liquid formed at 100 oC, the system 

formed a hard glass at room temperature, which means thermo-physical measurements at 

room temperature would be impractical. From the results shown in Figure 1, mixtures of: 

NaBr, NaOAc, NaOAc·3H2O or Na2B4O7·10H2O with glycerol were investigated further and 

their thermo-physical properties were studied as a function of salt concentration. 
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Figure 1. A selection of group 1 and group 2 metal salts mixed with either: urea, xylitol or 
glycerol. All systems tested were a 1 salt: 4 HBD molar ratio or to, except for NaCl and KCl, 

which were tested at a ratio of 1:8. 
 

Phase Behaviour 

Figure 2 shows the glass transition temperature for a range of sodium salts mixed with 

glycerol in the concentration range 20 mM to 4 M. All measurements were made using 

differential scanning calorimetry (DSC). True melting points were not observed, which is 

common in ILs and some DES as solidification kinetics are slow, and tend to only form 

glasses. 15 Mixtures of NaOAc, NaBr, Na2B4O7·10H2O or NaOAc·3H2O with glycerol all 

showed a linear increase in Tg with increasing salt concentration, and did not show the 

characteristic depression, which is observed with DES, which is shown by the purple trend 

(ChCl) in Figure 2. Aqueous solutions of NaCl are known to show a depression in melting 
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temperature with a eutectic composition of 23.3 wt% which equates to 6.7 mol% or a 

concentration of approximately 4 M.16 The 3.55 M NaBr solution in glycerol equates to 22.5 

mol% suggesting a eutectic composition might be observable at much lower salt 

concentrations but because true melting points are not observed (only Tg) eutectic formation 

may not be observable. Zaidi et al. developed an electrolyte based on sodium nitrate and N-

methylacetamide and found a 1:9 respective molar ratio lead to a system with a melting point 

below that of the components, suggesting eutectic systems are possible with sodium salts, and 

an alternative method of determining melting points may be necessary.17 

 

 

Figure 2. Glass transition onset temperature for a series of salt: glycerol mixture as a 
function of salt concentration with linear trend lines. 

 

The positive trends in Tg in Figure 2 suggest the inorganic salts tested have a reinforcing 

effect (kosmotropic) on the structure of glycerol as the heat energy required to transfer into 

the molten state increases with salt concentration. In contrast, the quaternary ammonium salt, 

QASs used in DESs appear to have a structure disrupting (chaotropic) effect on glycerol as 

the heat energy required to transfer into the molten state decreases with salt concentration 

until the eutectic point. At low QAS concentrations, the Tg of glycerol appears to initially 

increase, which is surprising as a linear response is observed for the inorganic salts studied. 

The [EMIM]Cl/AlCl3 system shows a eutectic maximum at an approximate AlCl3 mole 

fraction of 0.5, due to the presence of different anionic species at different molar ratios of 

[EMIM]Cl to AlCl3.18,19  
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Viscosity 
Figure 3 shows the viscosity of the salt: glycerol mixture as a function of salt concentration. 

At the highest concentrations measured for each sodium salt: glycerol system, viscosity 

varied from 487 ± 3 cP for a 2.83 M NaOAc·3H2O mixture to 16300 ± 100 cP for a 3.98 M 

NaOAc mixture at 298 K. The range of viscosities measured is comparable with what is 

typically seen with DESs but are considerably more viscous that most commonly used ILs 

and molecular solvents.15  

 

Figure 3. Viscosity measurements for a series of salt: glycerol mixture as a function of salt 
concentration at 298 K with linear trend lines. 

 

Except for NaOAc·3H2O, the other sodium salts studied, at all concentrations, increased the 

viscosity of glycerol. Ionic species that have high charge densities are known to have a 

kosmotropic effect on polar solvents resulting in stronger solvent-solvent interactions.20,21 In 

the context of viscosity, stronger solvent-solvent interactions implies greater resistive forces 

between shear planes, which results in a greater Eη that leads to a greater dynamic viscosity. 

Not all inorganic salts have a structure forming effect on the viscosity of water, and the 

observed effect is dependent on the components of the salt.22 (See supplementary data file for 

a full Dole-Jones analysis of the data) 

It has previously been shown that QASs decrease the viscosity of glycerol, oxalic acid, urea 

and other HBD as a function of QAS concentration.2 23,24, This was rationalised as the QAS 

disrupts the hydrogen bonding network and decreases the viscosity due to weaker resistive 

forces between fluid shear planes, which lower Eη. 23 Chaotropic salts are known to show 

structure breaking effects via disruption of non-covalent intermolecular forces. This can 
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result in the formation of ion-dipole interactions between ions and the hydrogen-bonding 

species, which is thermodynamically favourable compared to the solvent intermolecular 

interactions.25 

The role of water is not clear from the trends shown in Figure 3 as NaOAc·3H2O shows a 

decrease in viscosity as a function of salt concentration, whereas Na2B4O7·10H2O indicates in 

increase in viscosity. A comparison between NaOAc·3H2O and NaOAc suggests the waters 

of hydration may be relatively free, implying the free water could act as a diluent. 

Unfortunately, a comparison between Na2B4O7·10H2O and Na2B4O7 could not be achieved, 

as Na2B4O7 is insoluble in glycerol. 

There are conflicting arguments in the literature regarding the fluid behaviour of ILs and 

DESs, but component choice has been repeatedly regarded as the deciding factor.26,27 The 

viscosity of approximately 2 M salt: glycerol mixtures were studied as a function of 

viscometer rotation speed. The NaBr, Na2B4O7·10H2O, ChCl, NaOAc·3H2O systems and 

pure glycerol showed a Newtonian fluid response. The NaOAc system showed a positive 

gradient, which suggests the NaOAc: glycerol system is behaving as a shear-thickening fluid. 

(See supplementary data file) Shear-thickening fluid behaviour is typical of many colloidal 

suspensions, and is a result of a system crystallising under stress and behaving more like a 

solid.28 ILs generally show shear thinning fluid characteristics at high shear rates, which has 

been attributed to the onset of stacking of polar and apolar layers that breaks down the 

hydrogen-bonded network, thus accommodating easier shear deformation.29 Jacquemin et al. 

found diisopropyl-ethylammonium based protic ionic liquids showed shear-thickening 

behaviour at shear rates greater than 4000 s-1; however, they gave no indication as to why the 

phenomenon occurred. 30 Abbott et al. found that the eutectic mixture of ChCl and urea 

showed non-Newtonian fluid properties in the pure state. Upon the addition of 2.5 % water, 

the mixture was found to behave as a Newtonian fluid.13 The pronounced effect of water on 

the fluid behaviour of the ChCl: urea mixture was linked to the hydrogen bond donating 

parameter (α) of the system being lower compared to other ChCl: HBD systems and pure 

water, which suggested water was preferentially solvating the chloride anion. Studies into the 

solvent parameters of sodium salt: glycerol mixtures have not been investigated, and studies 

in this area may be needed to explain the uncharacteristic fluid behaviour in the NaOAc: 

glycerol system.  
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Ionic Conductivity 
Figure 4 shows the change in molar conductivity (Λ) as a function of the square root of salt 

concentration for a series of salt: glycerol systems. ChCl: glycerol mixtures show a decrease 

in molar conductivity up to 0.25 M suggesting the formation of ion pairs, followed by an 

increase to approximately 4 M, which is indicative of triple ion formation. Concentrations 

larger than 4 M cause a decrease in molar conductivity due to decreased ionic mobility.31 

NaOAc and NaBr mixtures with glycerol show a consistent decrease in molar conductivity 

across the measured concentration range, which appears to be due to the high viscosity of the 

liquids.32.  

 

Figure 4. Molar conductivity measurements for a series of salt: glycerol mixtures as a 
function of the square root of salt concentration at 298 K. 

 
The NaOAc·3H2O: glycerol system shows an initial decrease in molar conductivity followed 

by an increase above 0.25 M. This behaviour is usually characteristic of ion pair formation at 

lower concentrations followed by triple ion formation beyond the minimum. The trend 

displayed by the NaOAc·3H2O: glycerol system is very different to that of the anhydrous 

system and suggests water is contributing to the charge transport mechanisms in this system. 

Water may help to solvate the sodium ions enabling more charge separation and showing a 

contribution from ion aggregates (e.g. triple ions) rather than molar conductivity being 

controlled just by ion transport. The Na2B4O7·10H2O:glycerol system does not show a clear 

trend in Figure 4, but molar conductivity is in the range 0.27 to 0.34 S cm2 mol-1 implying 

little variance occurs. It suggests that water may be behaving differently than in 

Na2B4O7·10H2O: glycerol compared to the NaOAc·3H2O: glycerol system. It has previously 
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been shown that addition of 5 wt% water to a range of ChCl: HBD systems significantly 

decreased viscosity and in turn increased molar conductivity.13 At 0.08 M, Na2B4O7·10H2O 

in glycerol the water content of the system is 5.5 wt%, and at 2.02 M, the water content is 

69.2 %. Despite the significant water contents, little variance in molar conductivity occurs, 

which suggests some of the waters of hydration are bound sto the sodium cation and the 

tetraborate anion. The anion can be more precisely written as [B4O5(OH)4]2− showing that 

two of the water molecules are covalently bound to the anion. 

At their maximum concentrations, the sodium salt: glycerol systems showed molar 

conductivities in the range 0.02 to 0.32 S cm2 mol-1, whereas ILs are typically in the 0.35 to 

10 S cm2 mol-1 range, and DESs are 0.05 to 3 S cm2 mol-1.1,15 The sodium salt: glycerol 

systems measured are significantly lower than those generally experienced for ILs however, 

ILs are normally less viscous than the sodium salt: glycerol mixtures and DESs allow for a 

much greater ion mobility.15  

Figure 5 shows the logarithmic plots of molar conductivity vs. fluidity for a series of 

approximately 2 M sodium salt: glycerol systems as a function of temperature. Molar 

conductivity has been substituted for molal conductivity to provide an absolute concentration 

factor that did not vary with temperature. In all instances, there is a clear linear trend between 

molal conductivity and fluidity. The slopes of these lines, known in the literature as Walden 

products (molar conductivity × viscosity) are summarised in Table 1. 

Figure 5. Walden plots for a series of approximately 2M salt: glycerol mixtures as a function 
of temperature. 
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The Walden product describes the effect of fluidity on molar conductivity. The NaOAc, NaBr 

and Na2B4O7·10H2O systems all show very similar, comparatively high, Walden products 

showing that fluidity has a significant effect on conductivity. Systems where the molar 

conductivity lies above the black equivalence line (NaOAc, NaBr and Na2B4O7·10H2O in 

Figure 5) are generally described as superionic glasses. 

 

Table 1. Walden products of salts in glycerol. 

Salt: glycerol system Walden product (S g cm-1 mol-1 P) 
NaOAc 2.63 ± 0.10 
NaBr 2.45 ± 0.08 

Na2B4O7·10H2O 2.42 ± 0.05 
ChCl 0.79 ± 0.01 

NaOAc·3H2O 1.02 ± 0.01 
 

ILs typically have Walden products in the range 0.30 – 1.00 S cm2 mol-1 P.15 The 

NaOAc·3H2O and the ChCl systems both show lower Walden constants. This could be 

because the first three liquids exhibit greater structure compared to the other two. This 

certainly fits with the data in Figure 3 and confirms that the latter two are structure breaking. 

For both NaBr and NaOAc the salt decreases the free volume of the liquid which in turn 

increases the viscosity and Tg and results in low molar conductivities which would be 

expected for structure making salts (see supplementary data file). The hydrate salts, however 

behave differently. NaOAc.3H2O shows a decrease in free volume accompanied by a 

decrease in viscosity whereas Na2B4O7·10H2O shows an increase in free volume but an 

increase in viscosity. This must be due to the behaviour of the hydrate water molecules. To 

probe this further diffusional measurements were carried out to understand the mobilities of 

the individual species. 

1H PFG NMR measurements 
A typical PFG NMR signal decay measured for the samples studied in this work is shown in 

Figure 6A, which shows the diffusion attenuation of NaOAc sample at 298.15 K. It is 

possible to observe the signal attenuation of the NMR resonances of the different species, in 

particular the hydroxyl and aliphatic resonance of glycerol at 4.54 ppm and 2.68 ppm, 

respectively, and the resonance of the OAcˉ anion at 1.03 ppm. The figure also shows the 

usefulness and potential of this technique, which is able probe multi-component diffusion 
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even in cases of such samples, whereby the NMR resonances are broadened due to the 

significant high values of viscosity.13 

  

                             A                                                                                B 
Figure 6. Typical NMR spectrum of the NaOAc: glycerol system (A) and associated 

characteristic signal decay profile (B). 

From the plot in Figure 6B it is possible to obtain the Stejkal-Tanner plot,33 i.e., 
 
( ) 0EgE  

vs. ( )3222 δδγ −ΔgH , which is then used to extrapolate the value of self-diffusion coefficient 

by taking the negative of the slope of this plot. As an example of such plots, Figure 6B 

shows the log attenuation plots the glycerol and acetate resonances of the NaOAc. The 

reproducibility of the measurements had a relative error of approximately 3%. 

A summary of the diffusion measurements at variable temperature is shown in Figure 7 in 

terms of self-diffusion coefficients plotted against 1000/T. Figures 7A and B show the self-

diffusion coefficient for the NaOAc: glycerol and NaBr: glycerol systems. In both cases there 

is relatively good agreement between the measured self-diffusion coefficients and that 

calculated by the Stokes Einstein equation. The Na2B4O7·10H2O: glycerol and NaOAc·3H2O: 

systems in Figures 7C and 7D, shows poor agreement for both the glycerol hydroxyl protons 

which are in some cases underestimated by an order of magnitude. This suggest water plays a 

significant role in delocalising the hydroxyl protons whilst having only a nominal effect on 

the aliphatic parent molecule, which agrees with the uncharacteristically high diffusivity of 

the hydroxyl protons in such a viscous medium. This suggests the aliphatic glycerol parent 

species and the acetate anion are more mobile in the NaOAc·3H2O system, compared to the 

aliphatic glycerol parent species and the tetraborate anion in the Na2B4O7·10H2O system, 

hence the lower observed macroscopic viscosity. The diffusivity of the hydrate waters is 

more restricted than would be expected from a pure water phase, showing that the system is 

quite complex and not just two separate phases.  
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NMR diffusion measurements show a single average diffusion coefficient that describes the 

hydroxyl proton of glycerol and water protons, suggesting an exchange of protons between 

the two species diffusing at that average rate. Such phenomena have previously been 

observed when studying diffusion in alcohol/water solutions.34 This also implies that glycerol 

hydroxyls are diffusing in a rather “independent” fashion relative to their aliphatic parent 

molecules, which agrees with previous observation on aqueous DES samples.13 Otherwise, 

the NMR signal decay for the glycerol OH/water peak would clearly show a much slower 

second component with values of close to the self-diffusivity of the glycerol aliphatic chain, 

which is not the case. 

 

 

  

A) NaOAc B) NaBr 

  

C) Na2B4O7·10H2O D) NaOAc·3H2O 

Figure 7. Self-diffusion coefficients measured by NMR and calculated using Stokes-Einstein 
(SE) versus inverse temperature for a range of salt: glycerol mixtures. Within each plot there 

are trends from PFG NMR and trends from the Stokes-Einstein equation. 
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highest. This suggests that free hydroxyl protons may be involved in the charge transport 

mechanism as the molar ionic conductivities of the sodium salt: glycerol systems appear to be 

dependent on the mobility of the glycerol hydroxyl protons. The relatively free nature of the 

hydrate waters in the Na2B4O7·10H2O: glycerol system may explain why the free volume of 

this system increases with salt concentration, whereas the free volume of the NaOAc·3H2O 

glycerol system decreases with salt concentration. (See supplementary data file) 

The diffusion data as a function of temperature were fitted with an Arrhenius expression

( ) ( )RTEDTD a−= exp0  and plotted on a vertical log scale, from which it is possible to 

calculate the activation energy barrier for diffusion, aE . The values of activation energy for 

diffusion are reported in Table 2: 

 

Table 2. Activation energies of NMR self-diffusivity. 

 Activation energy of diffusivity (kJ mol-1) 

Sample Glycerol OH 
Glycerol 

OH/ Water 

Glycerol 

aliphatic H 
Acetate aliphatic H 

NaOAc 53.4 ± 2.9 - 54.5 ± 1.7 53.9 ± 2.9 

NaBr 53.4 ± 1.2 - 54.0 ± 0.9 - 

Na2B4O7·10H2O - 42.9 ± 3.0 48.8 ± 2.1 - 
NaOAc·3H2O - 44.9 ± 2.5 47.9 ± 0.9 47.3 ± 1.1 

 

The aE  values are similar to those for other ionic liquids23 but Table 2 shows that the 

presence of water decreases aE for diffusion which can be seen by comparing the dry and 

hydrate NaOAc samples. aE  for the glycerol hydroxyl/water protons in exchange are 

significantly lower than those measured for the glycerol hydroxyl diffusion only.  

In terms of relating the viscosity of the sample with the experimental NMR diffusion 

coefficients, it is clear that in general the samples with lower self-diffusion coefficient of the 

various 1H different species are those with the highest viscosity. However, the mobility of the 
1H species is not sufficient to fully explain the viscosity data. Indeed, comparison of the NaBr 

data in Figure 7B with sample Na2B4O7·10H2O, might lead to the conclusion that the latter 

should be less viscous. Both samples have similar diffusivity values for the glycerol aliphatic 

chain; the latter, however, shows an increased mobility of the glycerol hydroxyl protons in 
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exchange with water despite Na2B4O7·H2O having a higher viscosity. This suggests that the 

Na2B4O7 plays a crucial role in increasing the viscosity of this sample due to solution 

ordering. 

Measurements of diffusion coefficients for Na+ ions in these samples were not possible due to 

the very high solution viscosity; this, together with the quadrupolar interaction involved in 
23Na NMR makes the relaxation times of these species extremely short precluding PFG NMR 

measurements even by minimising the echo time in the pulse sequence. Indeed, we measured 

T1 values for these samples of the order of µs, which are extremely small. Given that the T2 

transverse relaxation is equal or less then T1,35 no 23Na NMR signal could be detected. 

To circumvent this problem, T1 relaxation measurements were carried out on both 1H and 
23Na to give useful information on rotational dynamics36 and gain further information on the 

microscopic behaviour. 

 

1H and 23Na NMR T1 relaxation measurements 

The 1H T1 relaxation times for the proton species in the different samples as a function of 

temperature are reported in Figure 8. Minima in the T1 relaxation times can be observed in 

many cases, which has been previously observed by Remsing et al.37 and Hayamizu et al.36 

when studying ionic liquids with similar viscosities and diffusivities to those reported in this 

work.  

For non-viscous liquids, T1 usually increases with temperature, i.e., T1 increases with 

temperature as the rotational correlation time decreases due to a faster molecular tumbling 

rate.35 However, for very viscous samples, minima in T1 can be observed, as a result of the 

Bloembergen-Purcell-Pound (BPP) theory of liquid relaxation.38 The presence of minima 

indicates a transition from the slow tumbling (or diffusion limit) relaxation regime, where 

10 >τω  to the fast tumbling (or extreme narrowing) relaxation regime, where 10 <τω .  Here 

0ω is the frequency and τ is the correlation time for molecular tumbling.35 As the 

temperature increases a transition from diffusion limit regime (low mobility, higher 

correlation times) to extreme narrowing (fast mobility, lower correlation times) occurs. 
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A) NaOAc B)  NaBr 

  

C) Na2B4O7·10H2O D) NaOAc·3H2O 

Figure 8. 1H T1 relaxation times versus temperature for a range of salt: glycerol mixtures. 
Changes in T1 relaxation times as a function of temperature are linked to changes in 

molecular dynamics. 

 

Analysis of the T1 trends using the BPP theory shows that the faster the mobility of the 

species under investigation, the lower the temperature at which this transition from slow to 

fast regime occurs, in other words, more mobile species will be in the fast regime at lower 

temperatures.35  

In NaOAc, Figure 8A, this transition occurs above 328 K for the glycerol OH, whereas it is 

not observed at all for the glycerol aliphatic and the acetate anion, which both remain in the 

slow tumbling regime. This is consistent with the much higher viscosity and lower mobility 

of these species compared to the mobility in NaBr, Figure 8B. It is noted that NaOAc is the 

sample with the highest viscosity among the sample studied here. For NaBr this transition 

occurs at about 318 K for the glycerol OH and at 325 K for the glycerol aliphatic, which is 

reasonable as in general we expect the hydroxyls to be more mobile than the aliphatic chains.   
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In Figure 8D the NaOAc·3H2O, has the highest mobility (lowest viscosity) and highest 

diffusivity values of all species with the transition for the glycerol OH/water occurring at 308 

K and that for the glycerol aliphatic, at about 315 K which is consistent with the other results. 

In Na2B4O7·H2O, Figure 8C, the transition for the glycerol OH/water peak is observed at 

about 308 K, a value lower than the minimum for the glycerol OH observed in  NaBr, which 

is consistent with the higher mobility of these protons in exchange with water as measured by 

PFG NMR. However, the glycerol aliphatic fails to undergo this transition and remains in the 

slow tumbling regime. This may therefore explain the observation that, despite the presence 

of mobile water, overall, this sample has a viscosity significantly higher than that of NaBr. In 

addition, it is noted that the diffusivity values of the glycerol aliphatic in Na2B4O7·H2O + 

glycerol are lower than those observed in NaBr, which is consistent with the restricted 

mobility. 

In order to have further insight into the molecular dynamics in these samples, 23Na NMR T1 

relaxation time measurements have also been carried out to probe the behaviour of the Na+ 

ions and see how this correlates with the viscous properties of these liquids. Compared to 1H 

NMR, 23Na NMR spectra are very broad due to the very high viscosity and quadrupolar 

interactions in the liquids.39 The results are shown in Figure 9. The 23Na T1 relaxation times 

are much shorter than the 1H T1 values of the other species due to 23Na being quadrupolar 

with enhanced relaxation.39 The analysis of these relaxation times can also be carried out 

using the BPP theory approach for liquids as it has previously been done for other 

quadrupolar species.37 
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Figure 9. T1 relaxation times 23Na versus temperature for a range of salt: glycerol mixtures 

with non-linear trend lines. The results show that Na ions have a significantly different 
molecular dynamics in the different salts. 

 

The NaOAc sample, Figure 9, is the only one showing a minimum for the 23Na T1 in the 

range of temperature studied, which implies a transition from the slow to fast regime. In all 

the other samples, the value of T1 increases with temperature in all cases. This implies that at 

those temperatures we are already in the fast regime for these samples as opposed to the case 

of NaOAc, which ties in with the much higher viscosity of this sample compared with the 

other ionic liquids.  

Compared to the trend observed for 1H T1 relaxation times, we can see a much steeper rise of 

the 23Na T1 values with temperature. This pronounced increase correlates well with the 

changes in viscosity observed and indicates a weakening of inter-ionic interactions.37 The 

rather different trend of 23Na T1 as a function of temperature compared to the other 1H species 

also suggests that the dynamic of these ions is independent to a large extent from that of the 

other species. Indeed, unlike the 1H species, for all the samples we can see a fully developed 

trend in the fast tumbling regime for 23Na T1 times and we note that the trend for the absolute 

values of 23Na T1 in the high temperature range, i.e., fast narrowing, reflects well that of 

viscosity: the less viscous the sample, the higher the T1 relaxation time values (i.e., slower 

1/T1 relaxation rate), which is in agreement with the BPP theory. We can also see that the 

addition of water to NaOAc has a significant impact on the T1 behaviour. When water is 

added the increase in 23Na T1 become much faster and reaches much higher values, which 

implies an enhanced molecular dynamics in agreement with the dramatic decrease of 

viscosity observed. 
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In summary, the macroscopic viscous properties of these liquids are determined by a series of 

dynamic phenomena at molecular level and the 1H and 23Na NMR measurements carried out 

in these work are able to elucidate such phenomena, which are responsible for the 

macroscopic behaviour of these liquids. Translational and rotational motion at microscopic 

level was studied using diffusion and T1 relaxation measurements and the results correlate 

well with the macroscopic behaviour of these liquids. The presence of water enhances 

significant the molecular dynamics of the species in NaOAc. However, an unusually low 

viscosity for the Na2B4O7·10H2O sample is observed despite the presence of water and 

relatively fast translation motion of this water in fast exchange with the glycerol hydroxyl. 

The 23Na NMR T1 relaxation measurements suggest that the mobility of Na2B4O7 species play 

an important role in determining the macroscopic behaviour of these liquid. 

 

 

Conclusions 

It has been shown that concentrated mixtures can be prepared using alkali metal salts and 

glycerol. The mixtures are not true eutectics (the melting point does not have a minimum as a 

function of concentration) but they have densities, viscosities and ionic conductivities 

comparable to DESs and ILs. All of the systems investigated showed Newtonian fluid 

behaviour over the rotation rate range of the rotational viscometer used, except for the 

NaOAc: glycerol system where a shear thickening response was observed.  

PFG NMR showed that the self-diffusion coefficients of the ions and molecules are in the 

range 10-11 - 10-13 m2s-1 which is similar to many DES and IL systems. For NaBr, the glycerol 

aliphatic and hydroxyl protons appear to be diffusing together, whereas in the NaOAc: 

glycerol system the glycerol hydroxyl protons appear to be diffusing with the acetate anion. 

There appears to be a clear link between dynamic viscosity and the self-diffusivity of a 

species as well as between ionic conductivity and diffusion of free hydroxyl protons; 

however the role of water complicates the diffusion mechanism. Hydrate waters increase 

species self-diffusivity, and reduce the viscosity of the NaOAc·3H2O: glycerol system 

however, water in this system appears to be more restricted compared to the Na2B4O7·10H2O 

system. In all of the systems investigated, the Stokes-Einstein relationship underestimated the 

self-diffusion coefficients of all of the 1H species probed.  
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The use of 1H PFG NMR diffusion measurements together with 1H and 23Na T1 relaxation 

measurements show that translation and rotational dynamics of 1H and 23Na species are 

intimately connected to the macroscopic behaviour of these systems in terms of ionic 

conductivity and viscosity.  
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