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Abstract

Background: Accurate objective assessment of sedentary and physical activity behaviours during childhood is integral to
the understanding of their relation to later health outcomes, as well as to documenting the frequency and distribution of
physical activity within a population.

Purpose: To calibrate the Actigraph GT1M accelerometer, using energy expenditure (EE) as the criterion measure, to define
thresholds for sedentary behaviour and physical activity categories suitable for use in a large scale epidemiological study in
young children.

Methods: Accelerometer-based assessments of physical activity (counts per minute) were calibrated against EE measures
(kcal.kg21.hr21) obtained over a range of exercise intensities using a COSMED K4b2 portable metabolic unit in 53 seven-
year-old children. Children performed seven activities: lying down viewing television, sitting upright playing a computer
game, slow walking, brisk walking, jogging, hopscotch and basketball. Threshold count values were established to identify
sedentary behaviour and light, moderate and vigorous physical activity using linear discriminant analysis (LDA) and
evaluated using receiver operating characteristic (ROC) curve analysis.

Results: EE was significantly associated with counts for all non-sedentary activities with the exception of jogging. Threshold
values for accelerometer counts (counts.minute21) were ,100 for sedentary behaviour and #2240, #3840 and $3841 for
light, moderate and vigorous physical activity respectively. The area under the ROC curves for discrimination of sedentary
behaviour and vigorous activity were 0.98. Boundaries for light and moderate physical activity were less well defined (0.61
and 0.60 respectively). Sensitivity and specificity were higher for sedentary (99% and 97%) and vigorous (95% and 91%) than
for light (60% and 83%) and moderate (61% and 76%) thresholds.

Conclusion: The accelerometer cut points established in this study can be used to classify sedentary behaviour and to
distinguish between light, moderate and vigorous physical activity in children of this age.
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Introduction

The importance of physical activity for healthy child

development is well established. There is evidence that sedentary

behaviour and low levels of physical activity in childhood are

associated with an increased risk of childhood obesity as well as

with a range of chronic adult disease risk factors including

hypertension, insulin resistance and dyslipidaemia [1]. Accurate

and valid assessment of sedentary behaviour and physical activity

levels during childhood is therefore integral to the understanding

of their relation to later health outcomes, as well as to

documenting their frequency and distribution within a popula-

tion.

The development of accelerometer technology has provided a

robust alternative to the methods of physical activity assessment

based on self report traditionally employed in large scale

epidemiological studies. Cost, practicality, and a high subject

burden prevent direct observation of physical activity being

feasible in population based physical activity research. Self

report measures of physical activity in children are of limited
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validity [2] and proxy report by parents can be unreliable,

especially in school-aged children.

Accelerometry is an attractive option as it provides an objective

measure of activity frequency, intensity and duration. It also eliminates

recall and social desirability bias and may overcome the challenges

posed by difficulties in language and literacy [3]. Continuing

technological development with subsequent increases in battery life

and decreases in unit cost have allowed accelerometers to become

feasible in large scale population based physical activity studies.

The Actigraph accelerometer (Actigraph, Pensacola, Florida) has

been extensively and successfully used to assess physical activity in

children in both small [4,5,6,7,8,9] and large scale [10,11]

epidemiological studies. Accelerometers provide dimensionless physical

activity scores in ‘counts’ which are summarised over a user specified

time period or epoch. By calibrating accelerometer counts with an

objective ‘gold standard’ measure of energy expenditure (EE) such as

oxygen consumption over a range of exercise intensities, threshold

values for accelerometer data can be established to delineate categories

of physical activity intensity. Accelerometer-based data can then be

summarised according to these threshold values to determine whether,

at a population level, physical activity meets current public health

guidelines, which are conventionally expressed in terms of the minutes

spent each day in moderate to vigorous physical activity (MVPA).

While accelerometer counts have been calibrated with respect

to EE data in a number of studies of different age groups using

either structured [9,12] or free living activities [13] these studies

have differed widely in design, methods and statistical approaches

to data reduction and analysis, resulting in considerable variation

in the threshold values published in the literature. The majority of

calibration studies have focused on discriminating between

differing intensities of physical activity (light, moderate, vigorous).

However, accelerometers are also able to identify sedentary

behaviour which is not simply the absence of physical activity. It

has been suggested that sedentary behaviour comprises the

majority of young children’s time [14] and it is increasingly

considered as an independent risk factor for a number of

metabolic disorders [15] with its own patterns and determinants

rather than simply one extreme of the physical activity continuum.

Few studies have objectively assessed free-living sedentary

behaviours in children, and those that have, have included

considerably different age groups [5,8].

The Millennium Cohort Study (MCS) is a nationally represen-

tative, UK-wide, cohort study of 12768 children born in the new

century (between September 2000 and January 2002). A range of

social, economic and health-related information has been collected

from cohort members at home interviews held at ages nine months

and three, five and seven years. At the age seven year interview,

these data were enhanced by measures of physical activity

obtained by accelerometer. The present study aimed to calibrate

accelerometer counts against measured EE (kcal.kg21.hr21) in a

sample of children of similar age to those participating in the MCS

in order to establish thresholds which define sedentary behaviour

and light, moderate and vigorous activity based on accelerometer

counts, and to do this using entirely self-paced rather than

structured activities since the former are more representative of

free living activities of children at this age. The overall aim is to use

these thresholds to summarise the physical activity data collected

from the MCS, and other large epidemiological studies.

Methods

Participants
The study sample consisted of children aged between 7 and 8

years attending a North London primary school. Information

letters were sent to the parents of all 83 children in the relevant

year group inviting them to participate in this study. Written

consent was obtained from the parent/guardian of 55 children

prior to participation in study. This study was approved by the

University College London Research Ethics Committee (reference

1325/001).

Anthropometry
Height was measured using Leicester Height Measure Stadi-

ometers (Seca Ltd, Birmingham, UK), recorded to the nearest

0.1 cm. Weight (to the nearest 0.1 kg), and body fat percentage (to

the nearest 0.1%) were measured using an electronic body

composition scale (Tanita BF 522W, Middlesex, UK). Waist

circumference was measured (to the nearest 0.1 cm) using a SECA

tape (SECA, Hamburg, Germany), midway between the costal

margin and the iliac crest. Two measurements were taken and

their mean was recorded.

Accelerometry
Measurements were made using the Actigraph GT1M uni-axial

accelerometer (Actigraph, Pensacola, Florida). This uses a

piezoelectric lever to detect accelerations in the vertical plane in

the range of 0.05–2 g. This range is consistent with normal human

movement and allows the rejection of high intensity vibrations.

Flexion of this lever caused by movement generates a signal

proportional to the amount of acceleration. This signal is then

summed over a user defined time period (epoch) which may range

from 1–240 seconds. It is small (38 mm637 mm618 mm ),

lightweight (925 g) and has been demonstrated to measure

physical activity in children reliably when compared with heart

rate monitoring [16] indirect [9] and room [4] calorimetry, and

doubly labelled water [17] techniques.

While a number of previous studies have used one minute [4,9]

or 30 second epochs [8] it has been suggested that the sporadic

nature of children’s movements when compared to adults requires

more frequent assessment [18]. In view of this, in the current study

we used 15 second epochs. Participants wore the accelerometer on

a flexible elastic belt worn round the waist, in the right midaxillary

line and level with the iliac crest. Data were downloaded

immediately following completion of the protocol using the

Actigraph software version 3.8.3 (Actigraph, Pensacola, Florida).

Indirect Calorimetry
Oxygen consumption (VO2) and heart rate were measured using a

portable breath by breath metabolic unit developed by COSMED

(Model K4b2, Rome). This is a small (70 mm650 mm6100 mm),

lightweight (475 g) indirect calorimetry system that is worn in a chest

harness. It is ideally suited to the determination of EE in non

laboratory settings, and has been demonstrated to be a valid measure

of oxygen uptake in both adults [19] and children [20]. All expired

gases pass through a face mask connected to a bidirectional flowmeter

to O2 and CO2 analysers via a sample line, allowing air flow volumes

and fractions of expired oxygen (FEO2) and carbon dioxide (FECO2)

to be measured. On each day of testing the unit was warmed up for

30 minutes and a delay calibration (to account for the delay between

expiration and gas analysis) was carried out according to the

manufacturer’s guidelines. Prior to each test the unit was calibrated

using a reference gas of known volume (5.2% CO2, 16.0% O2, 78.8%

N).

Protocol
All activities were performed indoors in the school’s own

gymnasium. Three children took part each test day, two in the

Actigraph Boundaries for Activity Intensity
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morning and one in the afternoon session. The study protocol and

equipment were explained to each child, anthropometric mea-

surements obtained and the accelerometer and COSMED devices

positioned. The COSMED and accelerometers were then

synchronised and the test initiated. Each participant was required

to perform seven activities of increasing intensity. These activities

were selected to provide a full range of physical activity intensities,

from sedentary to vigorous, which also reflected free living

activities typical of children of this age. The activities were as

follows:

1. Lying Down – subjects lay down for 30 minutes while watching

a DVD.

2. Sitting – subjects sat upright on a bench while playing a

computer game for 5 minutes.

3. Slow walking – subjects were instructed top ‘walk slowly’ round

a marked track for 5 minutes.

4. Brisk walking – subjects were instructed to ‘walk quickly’ round

a marked track for 5 minutes.

5. Jogging – subjects were instructed to ‘jog’ round a marked

track for 5 minutes.

6. Hopscotch –subjects played hopscotch at their own pace for

5 minutes.

7. Basketball – subjects performed a basketball drill involving,

dribbling, running and shooting for 5 minutes.

All activities were self paced. The walking and jogging activities

took place around a marked 10 m64 m track. There was a brief

interval (,2 mins) between each activity to allow for movement of

equipment, although activities 2, 3 and 4 (slow walking to jogging)

were performed continuously. All activities were 5 minutes in

duration with the exception of the first activity (lying down) which

lasted 30 minutes in order to achieve EE values close to those of

resting metabolism (note these values were used to represent

sedentary behaviour and not to establish basal metabolic rate).

Oxygen consumption and accelerometer counts were recorded

throughout.

Data reduction
The COSMED and accelerometer data were exported and

aligned using a specially designed Microsoft Access macro, and a

two minute sample from each activity period selected for analysis.

For all activities, lying down excepted, data were sampled between

minutes 2.5 and 4.5 to ensure that participants had achieved

steady state EE [21] in each activity and to minimise the effect on

VO2 of the anticipation of the end of each task. Data were taken

between minutes 22.5–24.5 for the lying down period. VO2 was

converted to units of EE (kcal.kg21.hr21) using the constant 1 L

O2 = 4.825 kcal [22]. O2 data were then converted into METs.

The standard definition of 1 MET as being equal to a VO2 value

of 3.5 ml.kg21.min21 is inappropriate for use with children as

VO2 can decline from ,6 ml.kg21.min21 at age 5 to

3.5 ml.kg21.min21 at age 18 [23]. Since participants were

measured in a school environment and were realistically not able

to attend the testing sessions in a fasted state we considered it was

not feasible to attempt accurate measurement of basal metabolic

rate (BMR) in this setting. Furthermore, existing published

equations have been well validated. In view of this we predicted

BMR in kilocalories for each child using Schofield’s gender

specific equations based on age, height and weight [23]. MET

values for each activity were then calculated as total EE divided by

individual BMR. Accelerometer counts in 15 second intervals,

were summed for the first and second minutes of the sample period

(i.e. using 8 observations). One mean value in counts per minute

was then compared to corresponding MET values across each

2 minute sample.

Statistical Methods
All statistical analyses were performed using R version 2.12.1

[24]. Intraclass correlations coefficients (ICC) for EE in METs and

accelerometer counts per minute for each activity were calculated

across the 2-minute sample period for each child, thus eight

individual measurements contributed to the ICC’s. Functions in

the R library (psychometric) [25] were used to obtain confidence

intervals for the ICC estimates and if they were not significantly

different from zero it was assumed that the accelerometer counts

were stable during this interval, in which case mean values were

used in subsequent analyses.

The Shapiro-Wilk test was used to assess normality [26].

Pearson or Spearman correlation coefficients were used to test the

association between METs and accelerometer counts, depending

on whether the distribution of the corresponding activity was

considered Normal. Grubbs tests [27] as implemented in the R

library (outliers) [28] were used to identify and remove outliers on

a one at a time basis. For skewed distributions outliers were

defined using the method by Huber and Vendervieren [29].

Paired t-tests with Welch’s correction to account for unequal

variances were used to compare gender subgroups. Wilcoxon-

Mann-Whitney tests were used to assess differences in the energy

expenditures of each activity by time of day in which the child was

assessed (morning or afternoon). Regression modelling was used to

assess the proportion of the variance in accelerometer counts that

could be attributed to the height of the participant.

Three cut points were established, assuming a normal

distribution for counts in each activity using accelerometer data

for sitting, slow walking, brisk walking and jogging only. These

three cut points represent the boundaries between sedentary

behaviour, light activity, moderate activity and vigorous activity.

We used linear discriminant analysis (LDA) as implemented in R

library (MASS) [30] to determine the two optimal bounds

separating the three non-sedentary activity groups. LDA produces,

for each observation, a vector of posterior probabilities belonging

to each level of the known activities being performed. Ideally these

individual probabilities would be very close to 1 for one particular

group and close to 0 for the other possible groups. We obtained

the boundaries as the count values at which the posterior

probability functions for each activity intersect.

Receiver Operating Characteristic (ROC) curves, as imple-

mented in R Library (ROCR) [31] were used to assess the

discriminatory power of the cut points proposed by LDA via their

sensitivity and specificity. ROC curves were calculated for values

across the range of observed accelerometer counts. Values of 1-

specificity and sensitivity corresponding to the cut point values on

the ROC curves were plotted and compared with the optimal

sensitivity and specificity achievable with a particular ROC curve.

This optimal value is the point minimising the distance between

the calculated ROC curve and the point representing perfect

classification, i.e. complete specificity and complete sensitivity. We

also obtained the area under the ROC curve (AUC) which

condenses the shape of the ROC curve into one number. If

AUC = K then the model’s predictions are equivalent to a

random allocation meaning that the model does not discriminate

between pre-defined groups, whilst AUC = 1 implies perfect

classification. For each of the activities considered we tested the

null hypothesis that the AUC is K against the composite

alternative AUC.K.using the procedure based on the Wil-

Actigraph Boundaries for Activity Intensity
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coxon-Mann-Whitney U statistic described in Mason & Graham

[32].

The performance of the cut points was also evaluated by

examining the misclassification rate obtained by predicting the

corresponding physical activity intensity using the fitted linear

discriminant model and comparing these predictions with the

observed physical activity groupings.

We used the running lines smoother implemented in the supsmu

function [33] in R library(stats). This is a running lines smoother

that represents the data structure in a scatterplot. The smoothness

of the fitted line, expressed as the width of the window around

each point considered is decided in an adaptive manner depending

on the local variation of the scatterplot.

Results

Of the 55 children who consented to take part, 53 (29 male)

completed the study and were included in the analysis; of these, 39

were assessed in the morning and 14 in the afternoon. The mean

sample values for height (132.966.5 cm), weight (31.366.8 kg), body

mass index (17.6 kg/m262.7 kg/m2) and waist circumference

(61.1 cm68.2 cm) did not differ significantly by gender. Mean

predicted BMR for the sample was 1.5860.18 kcal.kg21.hr21 or

5.46 mlO2.kg21.min21 which is equivalent to the lower EE values

recorded during the sedentary activities. ICC estimates, calculated

with eight consecutive measurements obtained over the 2 minutes of

observations showed no significant variation within individuals across

any of the seven sample periods; they were all considerably large,

ranging from 0.77 to 0.90, and in all cases the standard errors yielded

tight confidence intervals; as they were all smaller than 12% of the

estimated ICC. This indicates that accelerometer counts were stable

and that steady state activity was achieved for all activities. Data were

therefore summarised as a mean for the 2 minute sample period from

each activity and used in subsequent analyses. The means of each

physical activity for all subjects were therefore included in the

analysis. There were no significant differences in the energy expended

for a given activity by the time of day in which the child completed

the protocol (Wilcoxon-Mann-Whitney tests, p.0.01)

As expected, accelerometer counts for the sedentary activities

were not normally distributed due to the high proportion of zero

counts. In 35 (66%) of children the mean accelerometer count

value for the sitting activity was 0; there were three outliers (251.0,

292.5, 483.0) confirmed by the method described in Hubert and

Vandervieren [29] and the rest of the values were 1.5, 3.0, 3.0, 3.0,

4.5, 5.5, 5.5, 6.0, 10.5, 11.0, 11.0, 71.5, 94.5, and 96.5. thus we

decided to establish a cut-point of 100 cpm to separate sedentary

from non-sedentary behaviour. The distributions of accelerometer

counts for slow walking and jogging did not deviate significantly

from normality (p = 0.53 and p = 0.44). However, accelerometer

data for brisk walking were not normally distributed (p,0.001) due

to two outlying values (mean values of 6459 counts.min21 and

6684 counts.min21 compared to the sample mean of 2879).

Grubbs’ test identified these as the only outliers (p = 0.002 in both

cases) in the dataset. Therefore for the purposes of the LDA the

distribution of accelerometer counts for brisk walking was

considered normal; the only consequence of deviating from this

assumption regarding the LDA would be a slight increase in the

misclassification rate caused by these two outliers.

There was a significant relationship between METs and counts

for all of the non-sedentary activities (p,0.001) with the exception

of jogging (Figure 1). The mean EE (kcal.kg21.hr21 and in METs)

and corresponding accelerometer counts (per minute) for each of

the seven activities are summarised in Table 1. The accelerometer

counts for the two sedentary activities are not reported in the

Table because 62% and 66% of the values for lying and sitting

respectively were zero.

The variance in accelerometer counts was not significantly

attributable to the height of the participants in six of the seven

activities. The only exception was the slow walking activity where

height accounted for a relatively small proportion (just over 5%) of

the variance (p = 0.04). The lowest values for counts and EE were

observed during the lying and sitting activities. These activities also

provided the smallest variation in METs and counts. The jogging

activity yielded the highest accelerometer count values. Mean EE

was highest during basketball although the mean accelerometer

count value for this activity was significantly lower than those

recorded for both jogging and hopscotch. This may be indicative

of the inability of waist mounted accelerometers to accurately

assess the upper body movements involved in this activity. The

hopscotch activity yielded high count values but EE values were

far lower than expected. This may be attributed to fatigue

(observed in almost all subjects at this point) caused by the

continuous and progressive nature of the three preceding activities

(slow walking, fast walking and jogging) affecting the intensity at

which this activity was performed. Due to these measurement

issues and the hopscotch and basketball activities were excluded

from further analyses. The relationship between EE during activity

and accelerometer counts is illustrated in Figure 1. The linear

model represented there was fitted using a linear mixed effects

procedure with a random effect on the intercept to account for the

repeated observations from each child. The dotted line corre-

sponds to the locally adaptive super smoother function [33].

Mean (6 standard deviation) distances covered during the slow

walk, brisk walk and jogging activities were 278650 m,

387657 m and 532685 m respectively. These distances did not

differ by gender for brisk walking and jogging although boys on

average walked significantly (p,0.001) faster and covered more

distance during the slow walk task.

Figure 2 shows the posterior probability vectors for each activity

and the cut points characterised as the intersections of these

curves. These cut points for sedentary behaviour and for light,

moderate and vigorous intensity exercise defined by the linear

discriminant analysis were 100, 2240 and 3840 counts per minute

and are shown in Table 2 along with the corresponding sensitivity

and specificity values and the AUC obtained from the ROC curve

analysis. Table 2 also describes the ROC curves which are

illustrated in Figure 3. These cut points provided excellent

discrimination of both sedentary behaviour and vigorous physical

activity as demonstrated by AUC values of 0.98 for both activities,

in contrast to light and moderate activities which were not so not

as well defined by the cut points (AUC 0.61 and 0.62 respectively).

The overall misclassification rate for these four cut points,

calculated as the total number of correctly predicted classifications

divided by n (53)64, was 22.2%. The null hypothesis that all four

ROC curves constructed did not predict intensity of physical

activity accurately was significantly rejected (p#0.003).

Discussion

Summary
We have demonstrated a strong association between acceler-

ometer counts and EE measured in a sample of seven year old

children over a range of free-living activities. Using these data we

have, for the first time established cut points (counts.min21) to

identify sedentary behaviour (#100) and to differentiate between

light (#2240), moderate (#3840) and vigorous ($3841) physical

activity in UK 7 year olds. Using ROC curve analysis we have

demonstrated that these cut points provide good discrimination

Actigraph Boundaries for Activity Intensity
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between physical activity intensity categories, especially for

sedentary behaviour and vigorous physical activity, with an

overall low misclassification rate and are therefore a useful tool

in analysing population physical activity data for this age group.

Comparisons with existing research
Comparison of our findings with those reported from other

published calibration studies are complicated due to variation in

sample age, criterion measure, accelerometers used and calibra-

tion activities employed. However the cut points defined in the

current study are very similar to those previously observed by

Evenson et al. [3] in a similar age group (sedentary #100

counts.min21, light #2292 counts.min21, moderate #4008

counts.min21, vigorous $4009 counts.min21). In Evenson et al.’s

study two accelerometers including the Actigraph were calibrated

against the COSMED K4b2 over 10 activities covering a range of

intensities. The cut points obtained for the Actigraph were similar

to those obtained in our study. AUCs reported by Evenson et al.

were also similar to those reported in our study for sedentary

behaviour (0.98), lower for vigorous physical activity (0.86), and

higher for moderate physical activity (0.85). The better discrim-

ination between moderate and light physical activity in Evenson

et al.’s study may be due to the more structured nature of the

activities used in their protocol which were in addition all

performed at a predetermined pace. Locomotor activities such

as walking and running were performed on a treadmill at a

specified speed, while activities such as stair climbing and ‘jumping

jacks’ were performed in time with a metronome. A number of

studies have used similar pacing techniques [4,12,34,35]. This

uniformity of activity would ensure significantly reduced inter

individual variation in EE and accelerometer counts when

compared to the current study in which all activities were entirely

self paced. The focus in the current study was to calibrate the

accelerometer for use in the measurement of free-living activities.

It could be argued that controlling the pace and intensity of

activities, such as walking and running, does not accurately reflect

natural activity for all individuals. However, Pate et al. [12] cross

Table 1. Energy expenditure (EE) in kcal.kg21.hr21 and METs,
and accelerometer counts (per minute) for each activity.

Activity
EE
(kcal.kg21.hr21) EE (METs) Counts.min21

Sedentary Lying 2.01 (0.54) 1.26 (0.26) 62%*

Sitting 2.25 (0.74) 1.42 (0.45) 66%*

Light Slow walking 4.74 (1.06) 3.02 (0.75) 1592 (783)

Moderate Brisk walking 6.50 (1.51) 4.15 (1.08) 2879 (1042)

Vigorous Jogging 10.59 (1.58) 6.77 (1.30) 4835 (1424)

Hopscotch 8.96 (1.31) 5.74 (1.13) 4299 (1162)

Basketball 10.67 (1.98) 6.83 (1.51) 3301 (1079)

EE = Energy expenditure calculated from VO2 measures as 1LO2 = 4.825 kcal.
METs calculated as activity EE (kcal.kg21.hr21)/individual BMR.
Values expressed as mean (standard deviation).
* = % of zero counts.
doi:10.1371/journal.pone.0021822.t001

Figure 1. Relationship between accelerometer counts per minute and energy expenditure in METs. Data included for five of the seven
activities (data for lying and sitting excluded due to the high number of zero values).
doi:10.1371/journal.pone.0021822.g001
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validated Actigraph cut points established for MVPA and VPA in

3–5 year old children using structured activities with periods of

unstructured play involving no prescribed activities and found

good agreement between the two.

Mattocks et al. [36] established cut points for a range of MET

values using self paced activities similar to those used in the current

study but for an older age group (mean age 12.4 years). Their

derived cut points were considerably higher than those established

in the current study (moderate $3581 counts.min21, vigorous

$6130 counts.min21). This may reflect differences in the

approach to estimation of BMR which is needed to determine

EE. Resting metabolic rate has been measured under controlled,

fasted conditions [3,8] using direct calorimetry [35] in a number of

studies but was not considered feasible in our study which took

place during school hours. Hence in our study we calculated EE in

METs using individual BMR values predicted from previously

validated age specific equations using height and weight [23]. In

contrast, Mattocks et al. [36] used the mean lowest VO2 value

recorded during their five minute sedentary activity period.

Although Mattocks et al. stipulated a one hour fast prior to their

assessment it is unclear whether this is sufficient to ensure a true

measure of basal metabolic rate. Overestimation of BMR would

tend to produce systematically higher cut off points and may

account in part for the higher values reported by Mattocks et al. in

comparison with the current study.

Evenson et al. [3] derived cut points for two age groups (5–6 and

7–8 years) and concluded, having compared the respective ROC

curve analyses, that no significant differences existed between the

sets of cut points and that age-specific intensity category

boundaries were not needed in this age range. In contrast, other

authors have argued that age-specific cut points are needed [7].

Puyau et al. [4] reported considerably higher cut points than in the

current study (sedentary #800 counts.min21, light #3200

counts.min21, moderate #8200 counts.min21, vigorous $8201

counts.min21); this may be attributable to the sample which

included children with a considerably greater age range (6–16

years). It has been postulated that variation in height, leg length,

and movement economy with age may affect count values

registered by a hip mounted accelerometer [7]. The wide ranging

cut points reported for the various age groups examined in the

literature could also be seen to support this argument. Stone et al.

[37] investigated the effect of leg length as well as age on the

accuracy of accelerometer based EE prediction equations, and

found that both factors influenced predicted values. When

considering the objective measurement of population level physical

activity, using accelerometer thresholds based purely on physical

characteristics would require a potentially infinite number of cut

points and prohibitively complicate data collection. In addition,

despite the range of heights in the current sample (120.2 cm–

147.4 cm), height was only seen to explain a small portion of the

Figure 2. Posterior probability vectors for light, moderate and vigorous activity. Posterior probability vectors for light, moderate and
vigorous activity and the cut points which occur at the points of intersection. Activities corresponding to the observed counts are indicated by the
height of the ticks on the x-axis: the shortest ticks represent slow walking and the tallest represent jogging.
doi:10.1371/journal.pone.0021822.g002
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variation in accelerometer counts for one of the seven activities.

The variation in cut points in the existing literature may be a

reflection of behavioural differences in sedentary and physical

activities between the age groups. Physical activity changes as a

child develops, moving from sporadic informal play in early

childhood to activities that begin to mirror those of adults in

adolescence. When activities are self paced children of different

age groups may approach what could be broadly described as the

same activity or game in very different ways and with very

different movement patterns depending on their own experience.

That accelerometers have been shown to have more or less

difficulty accurately capturing certain activities makes the way

these activities are typically performed an even more central issue.

The age of the individual being assessed therefore becomes of the

utmost importance. We are therefore confident that the Actigraph

cut points established here can be used to evaluate time spent

engaged in sedentary behaviour and light, moderate and vigorous

activity in children of this age group.

A number of studies have used linear regression analysis to

obtain cut points [4,6,12,35]. This method is limited by its

assumption that a linear relationship exists between EE and

accelerometer counts; this is not always the case [38]. The slight

plateaux in accelerometer counts (per minute) with continuing

increase in EE appears in the fitted super smoother shown in

Figure 1. This may indicate an inability of accelerometers to define

physical activity accurately at high levels of EE or an anaerobic

contribution to exercise metabolism which causes the relationship

to become more complex [3]. In the current study LDA was used

to establish boundaries for known subgroups (physical activity

categories) present in the data. LDA is the natural technique to use

to construct boundaries when the subpopulations (in this case

physical activities) to be identified are known; this is in contrast to

a situation in which they are latent or unobserved, in which finite

mixture regression models [39] would be adequate. Few studies

have evaluated accelerometer cut points based on the optimal

sensitivity and specificity values obtained from ROC curve

Figure 3. ROC curves including for sedentary, light, moderate and vigorous activity.
doi:10.1371/journal.pone.0021822.g003

Table 2. Cut points in counts per minute (cpm) for each activity intensity category and their corresponding optimal sensitivity and
specificity, and area under the ROC curve (AUC) values.

Intervals (cpm)
Optimal
sensitivity (%)

Optimal
specificity (%)

Achieved
sensitivity (%)

Achieved
specificity (%) AUC

Sedentary #100 99 97 99 97 0.98 (p,0.001)

Light 100–2240 60 83 59 83 0.61 (p,0.005)

Moderate 2241–3840 61 76 60 76 0.60 (p,0.005)

Vigorous $3841 95 91 95 91 0.98 (p,0.001)

doi:10.1371/journal.pone.0021822.t002
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analyses. This method should reduce the misclassification of

physical activity attributed to the wide variation in accelerometer

output for a given activity [40].

Strengths and limitations
We are confident that the experimental and analytical

methodologies employed in the current study have enabled us to

define robust cut points with which to identify sedentary behaviour

and light, moderate and vigorous physical activity in 7 year old

children. The use of a full range of age appropriate, self paced

activities analysed at 15 second intervals will allow sensitive and

effective analysis of everyday physical activity in children of this

age using data from the MCS. With continuing advances in

accelerometer technology it will be possible to measure free living

physical activity over a number of days using even shorter epochs.

It would therefore be useful to validate the cut points established in

the current study using an even more sensitive measure of

children’s physical activity.

A number of limitations must be acknowledged in the current

study. Data collection took place around the children’s normal

school day and it was therefore not possible to test each subject at

the same time of day. Some children therefore took part in the

activities directly after lunch which could potentially have

influenced their metabolic rate and lead to the misclassification

of light activity as moderate. However, Wilcoxon-Mann Whitney

tests revealed that EE did not differ significantly depending with

the time of day the protocol was completed. The age of the

participants and the constrains of the school day also meant that

obtaining basal metabolic measures under controlled and fasted

conditions prior to each trial was not feasible. Therefore, values for

BMR used to calculate MET values for each activity were

predicted rather than being measured using a controlled protocol.

However, the predicted mean BMR of 1.58 kcal.kg21.hr21 or

5.46 mlO2.kg21.hr21 falls well within the expected range.

In the current study activities were chosen which provided a

range of intensities and reflected free living activities typical of

children of the sample age. Previous investigations have used up to

10 activities [4,6,8,12] however, practical considerations prevented

this in the current study. Activities involving climbing and upper

body movement which may be considered equally typical of this

age group were not included due to the documented inability of

accelerometers to accurately define external and load bearing

work as well as topographical transition (i.e. lifting or walking on a

slope) [41]. However, although studies such as this are limited by

the capabilities of the accelerometer it has been previously

observed that children’s activity is largely comprised of locomotor

activities [42].

In our study, the relationship between EE and counts was

significant for all non-sedentary activities with the exception of

jogging. It has been previously observed that accelerometer counts

do not increase linearly at high speeds [43] which may account for

this. A number of studies [3,36] allowed several minutes between

activities to allow VO2 to return close to resting values. In the

current study, although a few minutes were needed to move

between activities these breaks were not consistent across subjects.

In addition, the two walking activities and jogging were performed

continuously. This may have affected the subsequent two activities.

Both counts and EE for hopscotch were significantly lower than

during jogging, which may suggest an effect of fatigue from the

previous 15 minutes continuous activity (slow walking, brisk

walking and jogging). The basketball activity elicited the highest

mean energy expenditure, but a mean counts value lower than

those for either jogging or hopscotch. This indicates an inability of

waist worn accelerometers to accurately determine upper body

and load bearing activity [41]. The relatively low counts value for

basketball compared to jogging also indicates that changes in EE

may not accurately reflect changes in body movement. This would

be particularly apparent in intermittent, game-type activities

where body movement occurs in sporadic bursts. Treuth et al.

[8] observed a similar effect when examining the relationship

between Actigraph counts and EE during basketball. Energy

expenditure would also remain high in post-exercise periods which

may result in the underestimation of total EE by accelerometers

[35]. Hopscotch and basketball activities were a useful inclusion as

they reflect the varied nature of activities typical of this age and

both demonstrated a significant relationship between EE and

counts (p,0.001 for both). However, the jogging activity provided

an adequate representation of vigorous steady state activity so data

from the hopscotch and basketball activities were excluded from

the linear discriminant and ROC curve analyses.

It would be useful to cross validate our findings with a larger

sample of 7 year old children both under free living conditions and

using controlled prescribed activities. This was beyond the scope of

the current study. However, a number of studies using children of

different ages have included a cross validation of cut points in their

protocol [12,34] and found good agreement between structured

and free living activities.

Discussion within the published literature as to the optimal

way of objectively classifying population level physical activity

data is ongoing. Aside from the derivation of accelerometer cut

points, pattern recognition based approaches have emerged as

an alternative method of broadly classifying specific activity

types to estimate EE from accelerometer data. Accelerometer

data can be classified as belonging to a particular activity type

by comparison with pre-determined data patterns for specific

activities. Such studies have shown reasonable success in

classifying a small range of controlled physical activities in

adults [44,45]. However, only two studies have attempted to

apply these approaches to accelerometer data from children

[46,47] and these focussed purely on differentiating between

specific activity types rather than activity intensity. Activity

misclassification was also considerably higher than in previous

adult studies, potentially due to the wider variation and sporadic

nature of children’s activity patterns compared to adults. It must

also be recognised that the utility of the pattern recognition

approach to free living physical activity data from population

based studies would be dependent on the development of

patterns from a huge range of specific activities. For this reason,

for the time being the use of accelerometers cut points remain

the most important tools in the surveillance of population level

physical activity levels in children.

Recommendations
The variation in cut point values derived for different age

groups may be partially attributable to the different methodol-

ogies used. However, differences in the behavioural aspects of

self paced sedentary and physical activities at different age

groups may also have a significant effect on their measurement.

Further investigation is needed into the measurement of true

free living activities and the variations that could potentially

exist between different age groups of UK children. Differences

in the movement patterns that make up spontaneous locomotor

and game type activities could certainly alter the evident

relationship between EE and accelerometer counts. A better

understanding of these differences may allow more effective

measurement and reduce the misclassification of physical activity

during objective measurement.
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Conclusion
In conclusion, the Actigraph GT1M accelerometer can be used

to identify sedentary behaviour and to discriminate between light,

moderate and vigorous activity in 7 year old children. The cut

points defined in the current study will be useful in interpreting

physical activity data from the MCS, as well as other studies

examining sedentary behaviours physical activity in children of

this age.
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