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Abstract—Adaptive media such as HTTP adaptive streaming
(HAS) is becoming a standard tool for online video distribution.
The non-cooperative competition of network resources between
a growing number of adaptive streaming applications has a
significant detrimental impact on the user experience and network
efficiency. Existing network infrastructures often prioritise fast
packet forwarding and not the quality of the delivered content.
Future network management must leverage application and user-
level cognitive factors to allocate scarce network resources effec-
tively and intelligently. Our software defined cognitive networking
(SDCN) project aims at incorporating new developments in
human cognition, media technology and communication networks
to ensure the user experience, user-level fairness and network
efficiency of online adaptive media.

I. INTRODUCTION

Online audio-visual content distribution has become a
cornerstone of digital economy and creative industry. With the
proliferation of video streaming services and the increasing
online presence of traditional broadcasters, users are spending
more time consuming media content over the Internet [3].
Meanwhile, adaptive media such as HTTP adaptive streaming
(HAS) is becoming the standard tool to streamline media
distribution on various types of user devices over heteroge-
neous networks. HAS delivers media content in adaptation
sets of one or multiple representations. Each representation
is a version of the same content using a different encoding
scheme. User devices can choose the most suitable media
representation on-the-fly based on client-side statistics such
as network throughput and player buffer occupancy.

With the growing deployment of adaptive media applica-
tions, a number of fundamental challenges emerged, of which
the most pressing is the unsupervised and non-cooperative
competition of network resources between media applications.
Such competition leads to detrimental quality degradations to
the delivered media content and an inefficient share of net-
work resources. Conventionally, over-provisioning and client-
side optimisation are possible solutions to mitigate the issue.
However, in the face of the vast and growing media con-
sumption, resource over-provisioning does not resolve network
bottlenecks or fluctuations especially with “content hopping”
and flash-crowd during peak hours. Single-stream HAS opti-
misation algorithms [12], [8] are unaware of each other on the
same network. As a result, the resource competition between
adaptive media causes highly bursty traffic and fluctuating user
experience [5], [8]. Existing network management models are
not designed with adaptive media in mind and their goal is to
maximise the aggregate utility based on the assumption that
all applications share the same characteristics [6]. Research in
video quality assessment has shown that there is a number of

crucial cognitive factors affecting the user experience of online
media services [1]. These factors determine the non-linear
correlation between the throughput of a video stream and its
actual perceptual quality [2]. For adaptive media, the switching
between media representations in different frequencies and
magnitudes also lead to complex and perceivable impact [10].
Furthermore, the inequality of media quality between applica-
tions on the same network, caused by unbalanced sharing of
network resources, also affects a user’s overall experience [11].
Therefore, resource provisioning must consider the user-level
QoE fairness between applications and devices as a primary
factor. Unfortunately there is a lack of systematic studies on
modelling the combined impact attributed to picture fidelity,
motion, switching event, content characteristics, session dura-
tion and other perceptual and psychological factors [13].

Improved resource provisioning for better QoE and fairness
hinges on a fundamental premise: the networks can accurately
and efficiently estimate and ensure user experience on media
flows at scale. Most video quality assessment models such
as Netflix’s VMAF model [7], are built for offline evaluation
and not suitable for synchronous network-level management.
Parametric no-reference video quality evaluation on adaptive
streaming is still at an early stage. Improving resource provi-
sion at edge networks must also benefit from programmable
networks such as software-defined networking (SDN) to exe-
cute flow management, routing, and access control efficiently
across equipment from different vendors. There have been
some pioneering studies on exploiting SDN for network man-
agement in both fixed and mobile networks. Liotou et al.
exploited the SDN global resource view and complementary
QoE metrics to assure the desired network performance in LTE
environment [9]. Bentaleb et al. introduced a SDN architecture
to dynamically allocate network resource for user clients based
on QoE measurements [1]. Most of the related work only
focus on single-objective performance improvement. A holistic
approach to model human factors and user-level fairness is
absent, whereby the model is integrated as part of a network
management eco-system.

II. PROJECT AIMS AND DEVELOPMENT PLAN

Our project aims at developing software defined cognitive
networking (SDCN) to ensure the user experience, user-level
fairness and network efficiency of online adaptive media
using SDN-assisted and QoE-aware resource management.
To achieve this goal, the project will develop a user-centric
resource optimisation model, which will be paired with tailored
software-defined networking functions to form a service for
QoE-aware in-network monitoring and resource allocation. In



particular, there are two strands of work in progress that
underpin our objectives, as described below.

A. Human factor modelling and multi-objective optimisation

We will develop a cognitive model that estimates the user
experience of adaptive media and optimises the allocation of
network resource between applications and devices. To achieve
its objectives, the model will incorporate multi-faceted human
factors related to content characteristics, video codec, media
encapsulation, quality adaptation, psychological effects and
device capabilities. The work will define reference use scenar-
ios and the supporting systems such as an enterprise network
switch or a smart home gateway. The modelling work will
be led by analytical studies and initial user tests to establish
candidate human factors in adaptive media consumption and
their corresponding quantitative metrics. In order to enable the
cognitive model in practice, the model will employ metrics that
are directly measurable or can be inferred through a network
monitoring service.
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Through analytical research and empirical studies, we have
established a number of impact metrics related to fairness,
video quality, switching impact and cost (Equation 1,2,3) [10].
However, not all supporting research behind these metrics
has been conducted in the context of emerging online video
services and programmable network infrastructure. We plan
to take a holistic view of the problem space and employ
subjective user studies to 1) verify the statistical significance
of the metrics in capturing the user experience, and 2) derive a
large user response dataset for modelling human perception of
distortions in different forms and severities. The experiments
will reflect real-world scenarios where users consume a broad
range of online media content on various types of user devices
over heterogeneous networks. Through the test plan, we will
produce a large set of test videos (to be open to the community)
that covers a spectrum of crucial configurations such as session
duration, viewing condition, native/screen resolution, frame-
rate, genre, compression loss, stalling, and quality fluctuations
in different frequencies, directions and scales. The experiments
will capture test participants’ immediate and cumulative expe-
rience.

Based on analytical research and empirical data, a model
will then be developed and validated using various statis-
tical analysis and machine learning tools. Specifically, user
perception will be modelled using a “sliding window” of
perceptual and psychological impact in the context of online
media consumption as illustrated in Figure 1. Metrics such as
relative standard deviation between the cumulative QoE from
different applications will be defined to quantify user-level
fairness. We will also measure network efficiency based on the
aggregated user experience and the consumption of network
resources.
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Fig. 1. Cognitive model

The work also includes a multi-objective optimisation
function, which assembles measurements of QoE and network
dynamics and seeks optimal solutions to provision network
resources between applications for an improved balance be-
tween QoE, fairness and resource efficiency. The function must
support resource allocation in a multi-household and multi-
device topology (such as the one shown in Figure 2) and be
able to scale up for larger networks. The function will also
estimate the impact of any potential solution for resource re-
allocation, hence unnecessary and detrimental adjustments will
be avoided. We will also investigate the run-time complexity
of the cognitive model, which is affected by the number
of media applications and adaptive media representations, to
facilitate real-time resource management of multiple network
segments. Specifically for the algorithm that searches for
optimal solutions, full-search will be used as the baseline
for benchmarking. Reference supporting systems will also
be defined based on different use scenarios. For a home
environment, we envisage an advanced home gateway with
processing power akin to Raspberry Pi 3 that supports P4
development. Other scenario will see the usage of enterprise-
grade SDN switches such as HPE Aruba 3810 series.
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Fig. 2. Multi-household and multi-device topology

We carried out functional evaluations to study how different
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Fig. 3. Functional evaluation

QoE and fairness metrics capture the user experience over
adaptive media streams. Preliminary results show that the
metrics and models employed by SDCN can improve user-
level fairness while reducing the impact of video quality
degradation (Figure 3). In particular, our design is able to
improve fairness in the face of bandwidth fluctuations (a
lower fairness measure depicts better fairness), compared with
TCP and Proportional fairness models. Although the analytical
studies and simulations can produce very positive results, the
actual model performance must be studied through compre-
hensive experiments that involve close-to-practice networking
testbed and human participants. This is assisted by a dedicated
experimentation environment.

B. Model deployment using SDN and NFV

The cognitive model will be integrated and evaluated using
an experimentation environment. We aim to streamline the
validation of essential functions and designs using a network
and service environment that is close to practice, rather than
starting from simulation. Figure 4 depicts the architecture
of our SDN/NFV (Network Function Virtualisation) research
and experimentation testbed [4]. The testbed encompasses
OpenFlow-capable network switches and an OpenStack-based
private cloud environment to instantiate and control a large
number of user devices and networks.
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Fig. 4. Architecture of our SDN/NFV research and experimentation testbed

To provide a harness capable of supporting rapid deploy-

ment and orchestration of experiments, our experimentation
platform fulfils the following requirements:

• Experiments close to practice and at scale. The system
should be able to realise and manage a large number
of clients and networks.

• Dynamic manipulation of the network. Rate limiting,
queuing, flow redirection, and other features of SDN
implementation are required to enforce decisions made
by intelligent network traffic management modules.

• Configurable clients. The client’s configuration should
be quickly changeable after an experiment to set up
for a new experiment as well as at run time.

• Rapid repeatability of experiments in a clean envi-
ronment.

Our testbed consists of a three-layer architecture (Figure 4):
the top layer contains components provided by the researcher
including the test manifest and application/user-level functions
such as our case studies: QoE and security applications. The
middle layer contains the orchestrator which interfaces with,
and includes, the infrastructure managers. The bottom layer
contains the network and virtualisation infrastructure where
the experiments are deployed.

We will focus on interoperability between the cognitive
model and network-level OpenFlow monitoring and control
functions. Our testbed is also equipped with a cross-layer
orchestration function, which coordinates QoS metrics and
corresponding OpenFlow features. We will use this function as
the blueprint to develop an QoE orchestrator which will serve
as a monitoring and control service that 1) assembles network
and application statistics as the input metrics of the cognitive
model, and 2) deconstructs user-level QoE requirements and
resource allocation arrangements to flow, port, or device-level
rules to be installed by OpenFlow-controllers. The orches-
trator will be designed using virtualised network functions,
allowing advanced network management to be instantiated or
decommissioned when necessary. The orchestrator includes
two subcomponents, the Virtual Infrastructure Manager (VIM)
and Network Infrastructure Manager (NIM). VIM controls
the virtualization infrastructure through a RESTful API, it
launches and configures experiment nodes with information
from the test manifest. NIM controls the network infrastructure
and consists of a Ryu OpenFlow controller containing a meter-
ing and monitoring application. It installs meter flow mods on



request from the SDN application and provides information
from the network including current throughput of flows and
switches. The orchestrator to define and configure network
setup on-the-fly through a simple JSON formatted request.
A typical request would be to report the current network
traffic level for a port or previously defined flow. An example
command would be to define a flow (e.g. source/destination
IP pair), and request that the flow is limited to a certain level
(defined in Mbps).

Experiments will be conducted to contour the overall
performance of cognitive networking designs using a range of
configurations that reflect real-world use scenarios. The work
will use live media applications and fully functional network
environment to evaluate the entire SDCN eco-system as a
whole. To this end, open-source toolsets of our existing testbed
will be used to configure bandwidth fluctuations, the quantity
and diversity of user devices, media session flash-crowd, and
typical adaptive streaming configurations. A logging function
will track time-coded network, system, and application-level
statistics for visualisation and further data analysis. Human
participants will also be involved as part of the experiments to
provide user opinion ratings as the “ground truth” references.
The cognitive model will be benchmarked against relevant
resource allocation models using tools such as bucket testing.
We will also evaluate the scalability and interoperability of
our work in different environments and over equipment from
various vendors by connecting our testbed to other network
testing facilities in academia and industry.

III. CONCLUSIONS

SDN is a rapidly evolving landscape. IDC estimates SDN
market to experience strong growth over the next several years
and reach the value of $12.5 billion in 2020. Meanwhile,
Internet video streaming and downloads will grow to more
than 80% of all consumer Internet traffic by 2020 according
to Cisco’s estimates. An intelligent networking architecture
with a deep understanding of media applications and human
perception has a pivotal role in optimising content distribu-
tion for better cost efficiency, higher penetration of digital
media, and resilience against flash-crowd and attacks. The
development of SDCN will contribute to the growth of media
and Internet sector, and cherish new markets in the area
of IoT and creative media while maximising the value of
any investment in networking infrastructure. With the rise of
SDN, fog computing and network function virtualisation, the
capability of cloud computing is being brought closer to the
end user in the form of micro data centres or cloudlets. This
creates computing capabilities at edge and home networks
for contextual network management services, supporting the
distribution of cognitive networking functions.

Our work in progress on software defined cognitive net-
working will capitalise on our recent work on QoE fairness
and OpenFlow-assisted network management while taking
on new challenges in the understanding and modelling of
human factors in adaptive media experiences and its cross-
layer integration with software-defined networking. The work
will fill the gap of QoE-aware resource management for large-
scale concurrent adaptive media. The design and prototyping
of the described work will be open and modular, allowing the

resultant applications to be purposed for different objectives
such as network resilience and energy-aware content delivery.
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