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are often subject to environmental phenomena such as wind and seismic excitations [2]. The corresponding response 
and excitation mechanisms can be represented by deterministic functions or treated as stochastic processes [3,4]. In 
this paper a deterministic model and the corresponding stochastic model of a mass –cable system constrained to 
move vertically in a host structure are considered. The system is equipped with an auxiliary spring – damper - mass 
combination attached to the main (primary) mass to act as a tuned mass damper (TMD). In this arrangement the 
TMD can be applied to mitigate the effects of resonance when the frequency of the base motion becomes near the 
natural frequency corresponding to the primary mass – cable mode. 

2. Mathematical model 

2.1. System Configuration 

Fig. 1 shows a mass – vertical cable system mounted within a host structure with a primary mass M attached to the 
lower end of the cable of time-varying length  L L t  moving axially at transport speed V. The cable is mounted 
within a host structure of height AB = Z0 with its upper end passing thrpough O at the top of the structure. The mean 
quasi-static tension, mass per unit length, modulus of elasticity and cross-sectional metallic area of the cable are 
denoted as    i

dT M m m L x g a       , m, E and A, respectively. The Eulerian spatial coordinate x is measured 
from the upper end downwards as shown. The lateral dynamic displacements of the cable are denoted as v(x,t). They 
are coupled with the longitudinal vibrations denoted as u(x,t). The mass M is constrained in the lateral direction by a 
linear spring of coefficient of stiffness k and can move in the vertical direction. Its lateral and longitudinal vibrations 
are denoted as vM(t) and uM(t), respectively. An auxilliary small mass md is attached to the main mass via a spring – 
dashpot system of coefficient of stiffness kd and coefficient of viscous damping cd, respectively. The auxilliary mass 
is constrained to mover horizontally with its motion denoted as zd. The equations of motion Eq. (1) are developed by 
applying the extended Hamilton’s principle. 

     
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where 2
x xu v 2    represents the axial strain,      t xD Dt V  ( )t and ( )x represent partial derivatives 

with respect to time t and x, respectively, and   dT M m mL g a    , where a represents the acceleration of the 
transport motion. For tensioned members such as metallic cables the lateral frequencies are much lower than the 
longitudinal frequencies. Thus, considering that the excitations frequencies are much lower than the fundamental 
longitudinal frequencies the longitudinal inertia of the cable can be neglected in the first equation in (1). Thus, this 
equation can be integrated to give   2

x xu e t v 2   where e(t) represents the quasi-static axial strain in the cable. 

2.2. Base Excitation 

The host structure is subjected to bending deformations acting as base excitation and described by the polynomial 
shape function   2 33 2      (see Fig. 1), where 0z Z   with z denoting a coordinate measured from ground 
level and 0Z  representing the height at the top end of the cable. In this scenario the structure undergoes harmonic 
motions  0v t  of frequency 0  and amplitude A0, measured at the level 0Z . Thus, at the upper end the 
displacements of the cable are 0(0, ) ( )v t v t . In order to accommodate the base excitation in the equations of 
motion (1) the overall lateral displacements of the cable – mass system are expressed by Eq. (2).  
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It is assumed that the variation of length L with time is small. Thus, L is a slowly varying function in time meaning 
that the change of L(t) over a period corresponding to the fundamental frequency of the system is small compared to 
L [3]. In order to represent this fact a slow time scale defined as єt  , where where є 1  is a small parameter, is 
introduced. This parameter is quantified as  0 0є V L  where 0  denotes the lowest natural frequency and L0 is 
the corresponding length of the cable [5]. Considering that  L L   the relative lateral displacements are then 
expressed using the finite series given by Eq. (3). 

Fig. 1. Model of the mass – cable system under consideration: (a) undeformed configuration, (b) deformed configuration. 
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The generalised coordinates  nq t  are time-dependent and fast varying. Using (2), (3) together with (4) in the 
equations of motion, orthogonalising with respect to the trial functions, when terms O(є) and O(є2) are neglected, 
equations Eq. (5) and Eq. (6) result.  
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this paper a deterministic model and the corresponding stochastic model of a mass –cable system constrained to 
move vertically in a host structure are considered. The system is equipped with an auxiliary spring – damper - mass 
combination attached to the main (primary) mass to act as a tuned mass damper (TMD). In this arrangement the 
TMD can be applied to mitigate the effects of resonance when the frequency of the base motion becomes near the 
natural frequency corresponding to the primary mass – cable mode. 

2. Mathematical model 

2.1. System Configuration 

Fig. 1 shows a mass – vertical cable system mounted within a host structure with a primary mass M attached to the 
lower end of the cable of time-varying length  L L t  moving axially at transport speed V. The cable is mounted 
within a host structure of height AB = Z0 with its upper end passing thrpough O at the top of the structure. The mean 
quasi-static tension, mass per unit length, modulus of elasticity and cross-sectional metallic area of the cable are 
denoted as    i

dT M m m L x g a       , m, E and A, respectively. The Eulerian spatial coordinate x is measured 
from the upper end downwards as shown. The lateral dynamic displacements of the cable are denoted as v(x,t). They 
are coupled with the longitudinal vibrations denoted as u(x,t). The mass M is constrained in the lateral direction by a 
linear spring of coefficient of stiffness k and can move in the vertical direction. Its lateral and longitudinal vibrations 
are denoted as vM(t) and uM(t), respectively. An auxilliary small mass md is attached to the main mass via a spring – 
dashpot system of coefficient of stiffness kd and coefficient of viscous damping cd, respectively. The auxilliary mass 
is constrained to mover horizontally with its motion denoted as zd. The equations of motion Eq. (1) are developed by 
applying the extended Hamilton’s principle. 
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where 2
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longitudinal frequencies the longitudinal inertia of the cable can be neglected in the first equation in (1). Thus, this 
equation can be integrated to give   2

x xu e t v 2   where e(t) represents the quasi-static axial strain in the cable. 
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shape function   2 33 2      (see Fig. 1), where 0z Z   with z denoting a coordinate measured from ground 
level and 0Z  representing the height at the top end of the cable. In this scenario the structure undergoes harmonic 
motions  0v t  of frequency 0  and amplitude A0, measured at the level 0Z . Thus, at the upper end the 
displacements of the cable are 0(0, ) ( )v t v t . In order to accommodate the base excitation in the equations of 
motion (1) the overall lateral displacements of the cable – mass system are expressed by Eq. (2).  
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It is assumed that the variation of length L with time is small. Thus, L is a slowly varying function in time meaning 
that the change of L(t) over a period corresponding to the fundamental frequency of the system is small compared to 
L [3]. In order to represent this fact a slow time scale defined as єt  , where where є 1  is a small parameter, is 
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2.3. Single-mode approximation 

Consider a single-mode approximation and the rth mode with the relative displacements expressed as 
   ( , ; ) ;r rv x t x L q t      . The equations of motion (5) are then expressed as (7), where r r rrk k K  , (0)

r ,
(1)
r , (2)

r  are known slowly varying coefficients and the modal damping is introduced through the coefficient 
2 ,r r r r r r rc m k m      . The linearized lateral response (uncoupled from the longitudinal mode) of the main 

mass can then be defined by a set of two equations (8). 
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3. Stochastic excitation model 

The motion 0 ( )v t  of the host structure is seldom exactly harmonic. For example, the excitation due to the action of 
wind is usually a wide-band stochastic process. Then the response in the fundamental mode is a narrow-band 
process with a centre frequency equal to the fundamental natural frequency 0 . The stochastic motion could be 
determined from the analysis of the structure response. Alternatively, it may be assumed that 0 ( )v t  is a narrow-band 
process mean-square equivalent to the harmonic process with the amplitude A0 and the frequency 0 . The motion 

0 ( )v t  must be continuous together with its first and second derivatives 0 ( )v t  and 0 ( )v t .These conditions are 
satisfied by assuming that the motion 0 ( )v t  is the response of the second order auxiliary filter to the process ( )X t ,
which is in turn the response of the first-order filter to the Gaussian white noise ( )t  excitation [6]. The governing 
equations are 

             2
0 0 0 0 0 02 ;  2fv t v t v t X t X t X t S t             (9) 

where damping ratio f  of the filter defines its band width,   is the filter variable, 0S  is the constant level of the 
power spectrum of the white noise. Consider the linearized single-mode approximation (8). The augmented state 
vector defined as 0 0( ) [ , , , , , , ]T

r r d dt q q z z v v XY    is then governed by the following set of stochastic equations 

 ( ) ( )d t t dt dW t Y AY b    (10) 
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where ( )W t  is the standard Wiener process (corresponding to the Gaussian white noise ( )t ) and A is the state 
matrix defined in terms of the system coefficients. The differential equations governing the second-order statistical 
moments of the state vector ( )tY , i.e. the covariance matrix [ ]TEYYR YY  are then represented by Eq. (11).  

T Td
dt

  YY YY YYR AR R A bb    (11) 

4. Parametric case study   

A parametric study has been conducted which involves the primary mass M = 6768 kg constrained in the horizontal 
direction by a spring of constant k = 2.8 kN/m, suspended on nr = 6 steel wire ropes. The ropes have mass per unit 
length mr = 2.18 kg/m and longitudinal stiffness EA = 22.889 MN/m2, each. In the scenario considered the system is 
ascending from the lower level, when the initial length of the ropes is L(0) = 258.66 m, upwards at speed of 2.5 m/s. 
The travel height is 200 m so that the length of the ropes changes from L(0) to Lmin = 58.66 m during the travel. The 
height of the host structure is Z0 = 261.86 m. The host structure is subjected to the fundamental resonance sway of 
frequency 0 0.6597 rad/s (0.105 Hz)   and the amplitude of the sway at the top level (corresponding to Z0) is A0 = 
0.1 m. In this example a TMD system of mass ratio 0.05d rem m    and the optimum damping ratio determined 
as 0.13op   is considered to mitigate the effects of transition through the first (fundamental) lateral mode 
resonance of the mass-cable system. The frequency of base excitation becomes tuned to the fundamental mode 
during the travel when the length of the suspension ropes L is approximately 161 m (see Fig. 2 (a)). It should be 
noted that the fundamental longitudinal frequencies (determined as / ,M eq eqk m   where reqk n EA L ,

3req rM nm m L and shown vs. L in Fig. 2(b)) are of over one order of magnitude higher than the fundamental 

lateral frequencies. Fig. 2(c) shows the lateral response Mv  of the primary mass vs. time, determined by numerical 
simulation of nonlinear model Eq. (7), where r = 1 is used and the damping ratio 1 0.1   is assumed. The response 
plots with the TMD action (red line) and the response without TMD being applied (black line) are superimposed on 
each other, demonstrating that the fundamental mode resonance oscillations are becoming attenuated (the largest 
amplitude is reduced by about 34%). The corresponding longitudinal motions uM, coupled with the lateral mode, are 
shown in Fig. 2(d). It is evident that the longitudinal response, which is three orders of magnitude smaller than the 
lateral response, is attenuated by the action of TMD on the lateral mode. Fig. 2(e) shows that in the resonance region 
the lateral response determined by the numerical simulation of linear model (8) (blue dashed line) is almost identical 
to the response determined from the nonlinear model (7) (red line). The linearized approximation (8) has been used 
to develop Eq. (11) to study the effects of stochastic excitation on the behaviour of the system. Fig. 3 shows the 
variance functions 2

Mv  for speeds of 1.5, 2.5 and 3.5 m/s, respectively. It is evident that the higher the speed the 
lower the scatter levels of the response.  

Concluding remarks 

The proposed mathematical model accommodates the nonlinear effects of cable stretching and is used to determine 
the response of the system under the excitation caused by low frequency sway motions of the host structure. The 
lateral response of the system is then approximated by a single-mode formulation. In this approach the mode 
corresponding to the main mass motion should be chosen in order to implement the TMD action. The approximation 
is used to implement stochastic excitation model. In this model the excitation is represented as a narrow-band 
Gaussian process mean-square equivalent to a harmonic process. The proposed linear approximation then leads the 
determination of covariance matrix with its elements showing the statistical scatter of the response of the system. 
The dynamic behaviour of the system can readily be investigated by the application of numerical techniques. The 
case study presented in the paper demonstrates the effectivness of the proposed modelling approach. 
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Consider a single-mode approximation and the rth mode with the relative displacements expressed as 
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r  are known slowly varying coefficients and the modal damping is introduced through the coefficient 
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mass can then be defined by a set of two equations (8). 
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3. Stochastic excitation model 

The motion 0 ( )v t  of the host structure is seldom exactly harmonic. For example, the excitation due to the action of 
wind is usually a wide-band stochastic process. Then the response in the fundamental mode is a narrow-band 
process with a centre frequency equal to the fundamental natural frequency 0 . The stochastic motion could be 
determined from the analysis of the structure response. Alternatively, it may be assumed that 0 ( )v t  is a narrow-band 
process mean-square equivalent to the harmonic process with the amplitude A0 and the frequency 0 . The motion 

0 ( )v t  must be continuous together with its first and second derivatives 0 ( )v t  and 0 ( )v t .These conditions are 
satisfied by assuming that the motion 0 ( )v t  is the response of the second order auxiliary filter to the process ( )X t ,
which is in turn the response of the first-order filter to the Gaussian white noise ( )t  excitation [6]. The governing 
equations are 
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where damping ratio f  of the filter defines its band width,   is the filter variable, 0S  is the constant level of the 
power spectrum of the white noise. Consider the linearized single-mode approximation (8). The augmented state 
vector defined as 0 0( ) [ , , , , , , ]T

r r d dt q q z z v v XY    is then governed by the following set of stochastic equations 
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where ( )W t  is the standard Wiener process (corresponding to the Gaussian white noise ( )t ) and A is the state 
matrix defined in terms of the system coefficients. The differential equations governing the second-order statistical 
moments of the state vector ( )tY , i.e. the covariance matrix [ ]TEYYR YY  are then represented by Eq. (11).  
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A parametric study has been conducted which involves the primary mass M = 6768 kg constrained in the horizontal 
direction by a spring of constant k = 2.8 kN/m, suspended on nr = 6 steel wire ropes. The ropes have mass per unit 
length mr = 2.18 kg/m and longitudinal stiffness EA = 22.889 MN/m2, each. In the scenario considered the system is 
ascending from the lower level, when the initial length of the ropes is L(0) = 258.66 m, upwards at speed of 2.5 m/s. 
The travel height is 200 m so that the length of the ropes changes from L(0) to Lmin = 58.66 m during the travel. The 
height of the host structure is Z0 = 261.86 m. The host structure is subjected to the fundamental resonance sway of 
frequency 0 0.6597 rad/s (0.105 Hz)   and the amplitude of the sway at the top level (corresponding to Z0) is A0 = 
0.1 m. In this example a TMD system of mass ratio 0.05d rem m    and the optimum damping ratio determined 
as 0.13op   is considered to mitigate the effects of transition through the first (fundamental) lateral mode 
resonance of the mass-cable system. The frequency of base excitation becomes tuned to the fundamental mode 
during the travel when the length of the suspension ropes L is approximately 161 m (see Fig. 2 (a)). It should be 
noted that the fundamental longitudinal frequencies (determined as / ,M eq eqk m   where reqk n EA L ,

3req rM nm m L and shown vs. L in Fig. 2(b)) are of over one order of magnitude higher than the fundamental 

lateral frequencies. Fig. 2(c) shows the lateral response Mv  of the primary mass vs. time, determined by numerical 
simulation of nonlinear model Eq. (7), where r = 1 is used and the damping ratio 1 0.1   is assumed. The response 
plots with the TMD action (red line) and the response without TMD being applied (black line) are superimposed on 
each other, demonstrating that the fundamental mode resonance oscillations are becoming attenuated (the largest 
amplitude is reduced by about 34%). The corresponding longitudinal motions uM, coupled with the lateral mode, are 
shown in Fig. 2(d). It is evident that the longitudinal response, which is three orders of magnitude smaller than the 
lateral response, is attenuated by the action of TMD on the lateral mode. Fig. 2(e) shows that in the resonance region 
the lateral response determined by the numerical simulation of linear model (8) (blue dashed line) is almost identical 
to the response determined from the nonlinear model (7) (red line). The linearized approximation (8) has been used 
to develop Eq. (11) to study the effects of stochastic excitation on the behaviour of the system. Fig. 3 shows the 
variance functions 2

Mv  for speeds of 1.5, 2.5 and 3.5 m/s, respectively. It is evident that the higher the speed the 
lower the scatter levels of the response.  

Concluding remarks 

The proposed mathematical model accommodates the nonlinear effects of cable stretching and is used to determine 
the response of the system under the excitation caused by low frequency sway motions of the host structure. The 
lateral response of the system is then approximated by a single-mode formulation. In this approach the mode 
corresponding to the main mass motion should be chosen in order to implement the TMD action. The approximation 
is used to implement stochastic excitation model. In this model the excitation is represented as a narrow-band 
Gaussian process mean-square equivalent to a harmonic process. The proposed linear approximation then leads the 
determination of covariance matrix with its elements showing the statistical scatter of the response of the system. 
The dynamic behaviour of the system can readily be investigated by the application of numerical techniques. The 
case study presented in the paper demonstrates the effectivness of the proposed modelling approach. 
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Fig. 2. Variations of the natural frequencies (a,b) and deterministic displacements Mv  (c-d). 

Fig. 3.Variance 2
Mv for speeds 1.5, 2.5 and 3.5 m/s. 
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