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Abstract 

For the past 15 yr, the Sneeuberg uplands in the eastern Karoo, South Africa, have been a 

focus for research on land degradation by the above authors and other colleagues. Earlier 

work in the Karoo emphasised vegetation change whereas we concentrate on physical 

changes to the landscape at the small catchment scale, e.g., bare, degraded areas (badlands) 

and gully (donga) systems. Analysis of sedimentation in farm dams allows for reconstruction 

of environmental histories using 
210

Pb, 
137

Cs, geochemical and mineral magnetic properties of 

the sediments. Erosion rates on badlands are monitored using arrays of erosion pins. 
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Sediment source tracing within small catchments points to the importance of hillslope sources 

and the relative erosional inactivity of gully systems.  

Sediment supply from hillslope and colluvial sources is maintained by high rates of 

weathering on mudstones and sandstones. Current degradation should be viewed in the 

context of a c. 200 yr history of overgrazing by European-style stock farming and limited 

areas of former cultivation in the valleys. Grazing pressures are now much reduced but the 

loss of soils and vegetation suggests that landscape recovery will require several decades. 

Additional drivers of past degradation are likely to have been periods of drought and fire 

(natural and managed) and a gradual increase in both rainfall intensity and the frequency of 

extreme rainfall events. The future of the degraded Sneeuberg landscape will depend on 

future farming practices. Desirable options include more sustainable livestock practices, 

adoption of wildlife farming and other more benign regimes involving mixes of agriculture, 

tourism, and wildlife protection together with landscape rehabilitation measures. 

Keywords: land degradation; Sneeuberg uplands; sediment sources, reservoir sedimentation; 

weathering; soil erosion; connectivity 

*Corresponding author: John Boardman: email John.Boardman@eci.ox.ac.uk 

1. Introduction 

Land degradation, of which soil erosion is an important component, has been of global 

concern since the early years of the twentieth century. Bennett‟s (1939) book, which 

described both erosion and conservation methods, and the establishment of the US Soil 

Conservation Service in response to public and political pressure as a result of the Dust Bowl, 

marked major steps in awareness of a serious environmental problem. In recent years other 

important reviews have taken this work forward (e.g., Pimental, 1993; Morgan, 2003; 
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Montgomery, 2007). The causes of land degradation are recognised as a combination of 

physical and socio-economic factors (Boardman et al., 2003a). The use and management of 

the land is critical and is subject to economic, social and political pressures (Beinart, 1984). 

Much degradation is due to decisions regarding stocking rates and choice of crops resulting in 

bare ground vulnerable to rainfall, runoff or high winds. On-site consequences of land 

degradation include decline in crop yields as soils lose nutrients, become thinner and lose 

their moisture retention capacity. Off-farm impacts include reservoir sedimentation, 

ecological damage to freshwater systems and flooding of properties. Despite these adverse 

effects of erosion, soil conservation measures are rarely implemented unless encouraged by 

governmental policies and incentives.  

Bennett (1945) drew global attention to the state of soil erosion in South Africa, where it had 

been recognised as an issue at least since the turn of the twentieth century (Rowntree, 2013). 

Despite this lengthy awareness of the problem, only limited research efforts have explored 

the extent and severity of degradation at the national scale, based on expert opinion (Hoffman 

and Ashwell, 2001) and modelling (Le Roux et al., 2007). Hoffman and Ashwell (2001) 

suggest a correlation between degradation and former communal land (as opposed to 

commercial farming areas) and with poverty, supporting Beinart‟s (1984) earlier contention. 

Dardis et al. (1988) provide a review of soil erosion forms in southern Africa, with a strong 

focus on gully erosion. More recently Laker (2004) has reviewed soil erosion research since 

the late 1970s. The national picture is reviewed in Boardman et al. (2012). Detailed case 

studies are rare, one exception being Talbot‟s (1947) perceptive analysis of serious erosion in 

the Swartland, with a more recent follow-up study by Meadows (2003). Other local studies 

include Watson‟s (2000) research from KwaZulu-Natal and Weaver‟s (1988) survey of soil 

erosion in the former homeland of the Ciskei. Off-site impacts have generally been neglected 

but are receiving increasing attention (cf., Gordon et al., 2013, 2014).  
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The aim of this article is to review work on land degradation in the Sneeuberg uplands in the 

Eastern Karoo of South Africa, undertaken by researchers from British and South African 

universities through a co-operative international project. Our research builds on earlier work 

by ecologists who sought explanations for the degraded nature of the Karoo vegetation cover 

( . Although vegetation plays a 

key role in controlling erosion, much of this early work did not extend to investigating 

erosion processes themselves. This review aims to begin to fill that gap.  

We pull together disparate studies conducted over the last ~15 yr, incorporating new material 

where appropriate. Causes of degradation are explored and possible solutions suggested. 

Interpretations focus on relatively new ideas in geomorphology; in particular we explore 

ideas of connectivity and complexity. We recognise that our geomorphological view of the 

world has moved away from simple ideas of cause and effect; instead we increasingly 

acknowledge that geomorphic systems are characterised by disorder, irregularity, instability, 

unpredictability and non-linearity (e.g., Church, 2010). Thus we now accept that several 

different processes can operate at the same place and time; that scale (temporal and spatial) 

affects our recognition of process operation; that sediment storage is important and, in 

consequence, so is recent history; that the existence of thresholds can lead to abrupt and rapid 

change, and that variable system forcing exists at all timescales. We explore these ideas here 

in relation to suggested causes of land degradation for which a plethora of postulated 

explanations exist.   

2. The study area 

The Sneeuberg uplands form a distinctive landscape in the eastern Karoo of South Africa and 

are described by Clark et al. (2009) as being surrounded by major river valleys and plains 

except in the northeast where the Suurberg provide a bridge to the Stormberg uplands (Fig. 
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1a). The highest point is Kompassberg (2502 m). Geologically they are composed of 

mudstones and sandstones of the Beaufort Group (late Permian and Triassic ~225 Ma) 

(Johnson et al., 1996; Adams et al., 2001). Igneous intrusions are likely to be a remnant of the 

continental-scale Karoo Igneous Event (~183 Ma) which led to formation of intrusive dykes 

and sills (Riley et al., 2006). The upper slopes tend to be fine sandstones (Katberg Formation) 

with mudstones and sandstones in the valleys (Balfour Formation). Dolerite dykes and sills 

outcrop on hilltops and form prominent steps in river long profiles (Johnson et al., 2006). 

Footslopes and valley-bottoms are mantled by alluvium, colluvium and debris-flow deposits 

up to 6 m thick. Oldknow et al. (2016) identify a series of cut and fill features in alluvial 

sediments in the upper Sundays Valley that accreted from the Late Glacial Maximum 

onwards. Former wetland (vleis) deposits overlie early Holocene colluvium and, in places, a 

pre-Holocene palaeosol and older weathered beds (Holmes et al., 2003). The valley-bottom 

sequence is often incised to bedrock by gullies (dongas) (Boardman, 2014).  

The watershed between south-flowing tributaries of the Sundays River and the north-flowing 

tributaries of the Orange River runs through this area. The Klein Seekoi River is one such 

tributary which drains the area around Compassberg farm. 

Soils are generally thin and often lack A and B horizons due to erosion.  They are described 

as lithosols (shallow soils on hard or weathered rock (SANBI, 2012). This is particularly true 

of badlands and heavily degraded areas where surfaces are compact: bulk densities 1.6–1.9 g 

cm
3
 with mean organic matter content of 2.4% (Keay-Bright and Boardman, 2009; Dickie 

and Parsons, 2012). Mean particle size for 10 badland sites (< 2mm) is reported as 7% clay, 

66% silt and 27% sand using a Malvern laser-granulometer with Hydro-2000 dispersal unit 

(Boardman et al., 2015).  
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The current vegetation of the area is typically Elytropappus rhinocerotis–Euryops annae 

shrubland with Merxmuellera (now Tenaxia) disticha tussocks. Around the northern base of 

Kompassberg is a shrubby variant of Karoo Escarpment Grassland (Dr V.R. Clark, personal 

communication). The vegetation of the Sneeuberg in general is described in Clark et al. 

(2009). Detailed description of what is described as Albany Broken Veld is provided in 

SANBI (2012). 

Rainfall across the region is temporally and spatially variable due to the mountainous 

topography. In the uplands annual rainfall approaches 500 mm with lower altitude sites c. 300 

mm. Rainfall amount peaks in the summer months. Rainfall trends over the last century show 

a significant increase in mean wet day precipitation and shorter return periods for high 

magnitude events (Boardman and Foster, 2008; Foster et al., 2012). The temperature range in 

the Sneeuberg is considerable with a range of 41 to -19°C recorded at Kriegersbaaken in 

2016 (Ms Shauna Westcott, personal communication).  

For over 200 yr since settlement of the area by European farmers, stock farming (primarily 

sheep) has been the dominant activity. Stock numbers peaked 1850-1950 and have declined 

substantially since then. Stock numbers in the Middelberg magisterial district were around 

twice the Karoo average for nearly 100 yr (Hoffman et al., 1999) hinting at severe 

environmental stress. Stock numbers in the region had decreased by between 40-60% by 

1980 (Esler et al., 2006). However, between 1950 and 1980 the average farm size was halved, 

putting more pressure on an already degraded landscape (Esler et al., 2006). In recent years 

many farms in the Sneeuberg have been amalgamated into bigger wildlife farms. Wheat and 

fodder crops have been grown on valley-bottom „lands‟ with or without irrigation, although 

this practice has now sharply declined (Suich and Boardman, 2016).  
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Land degradation in the Karoo leads to changes in vegetation from mixed shrubs and grass to 

a shrub-dominated ecology; this change has been widely reported and has frequently been 

referred to as „desertification‟ (Acocks, 1975). The extent, timing and causes of this 

vegetation change are contentious with both climatic shifts and overgrazing suggested 

(Hoffman et al., 1999). However, Beinart (2003) suggests that overgrazing by sheep in the 

Graaf-Reinet area as early as 1810-1850 resulted in loss of grass and shrub invasion. Present-

day farmers report much higher stocking levels in the early and mid-twentieth century than 

now (Keay-Bright and Boardman, 2007).  Physical degradation of soils is seen in the loss of 

A horizons and the formation of gully systems and badlands. Definitions of badlands vary 

(Boardman et al., 2015) but usually include, bare ground, a lack of soil, deep dissection, 

networks of gullies, little vegetation, and unsuitability for agriculture (Fig. 2). Gullies, or 

„dongas‟ are permanent features of the landscape which, in semi-arid climates such as the 

study area, are generally hydrologically inactive for long periods. Their existence has 

important implications for sediment delivery to dams and major reservoirs, although not all 

valleys show evidence of gully formation. 

3. Methodology 

Land degradation and badland areas were mapped using air photography from 1945, 1959, 

1966, 1980, 2002 and latterly using Google Earth images from 2010 (Keay-Bright and 

Boardman, 2006; Boardman et al., 2015). Remotely-sensed images and field mapping were 

used to delineate formerly cultivated land and identify the locations and state of small farm 

dams (Boardman and Foster, 2011). Agricultural management in the area and the history of 

wheat farming were investigated with farmer and farm advisor interviews plus archival 

sources (Keay-Bright and Boardman, 2007; Suich and Boardman, 2016). Archival sources 

from the nineteenth and early twentieth century were used by Rowntree (2013) to investigate 

the initiation of gully erosion. 
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Erosion rates on badland areas were monitored for 15 yr (2001–2016) using erosion pins 

repeatedly measured at roughly yearly intervals and correlated with rainfall amount and 

intensity (Boardman et al., 2015). However, it is problematic to obtain rain data which are 

relevant to the study sites, due to their remoteness. Official daily rain gauge records exist for 

Middelburg (Grootfontein college) (1878-present) and Graaf-Reinet (1878-1979). Records 

from farm gauges are also of value; those known to the authors are: Cranemere (1883-

present), Gordonville (1905-2002), Compassberg-Lucernvale combined record (1975-

present), Aandrus (1969-1999), Weltevreden (1901-2010), Kreigersbaaken ((1971-1993), 

Wellwood (1895-present), Nieu-Bethesda (1886-1999), Struishoek (1928-2007), Dalveen 

(1979 - present), Quaggasvlei (1945-present), The Rest (1969- present) and Doornberg 

(1904-present) (Fig. 1b). Additional short term erosion pin data has been obtained for the 

catchment of the Ganora Dam (Rowntree and Foster, 2012) and for a small catchment close 

to Ganora Farm (Rowntree, unpublished). Five-minute rainfall intensity data are available 

from 2009 for this site. 

Rock weathering in the Compassbereg area was investigated by infield monitoring and 

strength testing and laboratory experiments. 

A series of small farm dams have been cored and sediments have been dated using fallout 

radionuclides 
210

Pb and 
137

Cs. Sediment volumes have been estimated and several 

characteristics of the sediments have been measured including particle size (by laser 

granulometry), sediment geochemistry (ICP-OES) and colour (using a colour scanner), 

mineral magnetic properties and organic matter content (by loss on ignition and Carlo-Erba 

C:N analyser) (Foster et al., 2005, 2007, 2008, 2012; Pulley et al., 2015; Pulley and 

Rowntree, 2016a,b). 
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Characteristics of the main studied catchments are listed in Table 1. Ganora and the 

Compassberg catchments are in the Sneeuberg uplands typically at 1500–1600 m asl, 

whereas Cranemere is just south of the Sneeuberg on the plains of Camdeboo (Fig. 1b).  

4. Degraded land and badlands 

Here we distinguish between degraded land and badlands: the latter are considered to be a 

more degraded subset of the former. However, some surveys have not clearly distinguished 

the two, as discussed below. Degraded land forms a continuum from loss of some plant 

species to complete loss of all soil including nutrients, carbon and vegetative cover, at which 

stage the term „badlands‟ is commonly applied. 

Different surveys have produced different estimates of the area of degraded land due to 

contrasting methodologies, definitions and problems of the scale of remotely-sensed images. 

Acocks (1975) noted, “a conversion of 32,000 km
2
 of grassveld into eroded Karoo” (Beinart 

2003, p. 370). In the Compassberg area, Boardman et al. (2003b) classify 25% of the land as 

moderately to severely degraded in 1945 and give the same value in 1980. This is based on 

the SARRCUS (1981) system and analysis by Holland (2000). Keay-Bright and Boardman, 

(2006) using a sequence of air photographs from 1945-2002, estimated the degraded area to 

have declined over this time period from 17.8-14.5% of the research area (~35 km
2
). These 

two surveys include badlands within „degraded areas‟.  

It is clear that most of the area has experienced a severe loss of grass from a former mixed 

shrub-grass cover: Boardman et al. (2003b) had difficulty finding any grassed areas on which 

to carry out simulated rainfall experiments. This loss has led to a substantial increase in bare 

areas vulnerable to runoff generation and sediment production. Still, farmers now report that 

the condition of the veld (natural vegetation cover) is improved compared to former times, 

although they point to continued variation between farms related to stocking regimes. Fig. 3 
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shows severely degraded areas (badlands) and adjacent less degraded areas draining 

northwards to the Good Hope Dam. 

Badlands have not been much reported in South Africa: there is probably a tendency to 

overlook them as a „normal‟ part of the landscape. In the Eastern Cape, apart from those 

reviewed in this paper, only Kakembo and Rowntree (2003) and Kakembo et al. (2009) 

investigated badlands (in the Peddie area of the former Ciskei).  

Boardman et al. (2015) estimate badlands to cover 4% of the study area based on field 

survey, the topographic map and Google Earth data. However, for some small catchments 

studied in detail up to 15% of the catchment area has been defined as badland e.g., Ganora 

catchment (Rowntree and Foster, 2012). Badlands in the Sneeuberg occur on valley-side 

footslopes and on formerly cultivated land, generally in valley-bottom locations. Some feed 

directly into valley-bottom gullies, others are less well connected (Grenfell et al., 2012), 

providing a complex mosaic of strong and weak functional connectivity (sensu Fryirs et al., 

2007). Badland connectivity also varies temporally depending on the magnitude of rainfall 

and runoff events. Where connectivity is imperfect sediment is frequently stored in large fans 

in footslope positions.  

Badland surfaces in the Sneeuberg are compact with high bulk densities. This results in rapid 

runoff response to rainfall events. Runoff and sediment production has been observed during 

rainfall events of only 10 mm. Although these badlands occupy a relatively small area of the 

landscape, they have erosion rates far higher than the degraded areas around them. Rates of 

erosion have been estimated at 10 badland sites in the Compassberg area for the past 15 yr 

using arrays of 25 erosion pins at each site (Fig. 4). This approach is discussed in Boardman 

and Favis-Mortlock (2016) and results have been presented in Keay-Bright and Boardman 

(2009) and Boardman et al. (2015). Table 2 updates these results to 2016.  
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Erosion pins were placed in distinctive topographic positions within the badlands (Fig. 5). 

Average rates of net erosion were highest on interfluves and footslopes with channel floor 

rates being inhibited by proximity to bedrock at three sites (Table 3). 

Net rates of erosion vary between 2.4 and 8.1 mm yr
-1

 (~41 – 138 t ha
-1 

yr
-1

 assuming a bulk 

density of 1.7 g cm
-3

). A similar rate (3 mm yr
-1

) was measured at Ganora in 2007-08, on the 

southern slopes of the Sneeuberg (Rowntree and Foster, 2012). Differences between sites are 

difficult to explain but most likely result from contrasts in local slopes. When all site data are 

combined, a correlation exists (at 99% significance) between erosion amounts and rainfall 

during measurement periods, and between erosion amounts and numbers of rainfall events 

>10 mm. Correlations are not perfect because amounts of erosion are related not only to 

rainfall: erosion is also related to amounts of weathering (break-up and loosening) of the 

surface in the measurement period. This suggests temporal switches from energy-limited to 

supply-limited system states.  

Rates of erosion on the Sneeuberg badlands are similar to those reported on other badlands 

worldwide although great ranges exist, and values are sensitive to measurement methods as 

well as factors such as parent materials, slope and rainfall (Boardman et al., 2015, Table 1).  

We assume that the principal process of degradation on the Sneeuberg badlands is, in 

addition to runoff, the rate of weathering largely driven by wetting and drying. Some fine 

grained material is probably removed by wind but no studies of wind erosion have been 

undertaken in the region. In the past, drought and fires have damaged vegetation and must 

have affected runoff and erosion. The regular occurrence of fires in the area in the last 15 yr 

is a matter of observation and they appear to be both naturally caused and out-of-control fires 

originally started for management purposes.  Fire frequency has not been quantified directly, 

although charcoal layers indicative of veld burning have been recorded in farm dam 
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sediments. The record, however, is only since the 1930s and there appears to be no change in 

fire frequency (Mighall et al., 2012). Rainfall simulation experiments show that on small 

plots runoff is ~10 times greater on bare (badland) surfaces compared to well vegetated 

(grassed) surfaces. Similarly, erosion rates are increased by a factor of ~6 (Boardman et al., 

2003b).  

As well as being of limited spatial extent, the depth of incision on the Sneeuberg badlands 

rarely exceeds 2 m. This is related to the thickness of colluvium over bedrock on footslopes. 

It suggests a relatively recent age for the inception of badlands. Backcasting of current rates 

of erosion suggests an age of about 200 yr but many assumptions are involved in this exercise 

(Boardman et al., 2015, Table 4). The extensive badland near Lucernvale, on formerly 

cultivated land, has developed since the termination of wheat farming there in the 1920s 

(Keay-Bright and Boardman, 2009). At Ganora, badlands existed prior to 1945 and were 

probably initiated in the late 1930s to early 1940s (Rowntree and Foster, 2012) but a major 

badland became connected to the local gully system in the 1960s, contributing to high rates of 

dam sedimentation thereafter (Rowntree and Foster, 2012). Overgrazing appears to be the 

main driver of badland formation in this area both on valley-side footslopes and on formerly 

cultivated valley-bottom land. 

5. Weathering 

Rates of weathering on sandstones and mudstones of the Katberg Formation appear to be 

very high. A small alluvial fan formed in January 2010 as a result of a flood in an infilled 

dam at Compassberg farm. Within a month many mudstone clasts had disintegrated, 

presumably due to wetting and drying. Four years later, 36% of mudstone clasts were 

weathered with nearly half „completely weathered‟. Low numbers of sandstone clasts suggest 
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that most do not survive transport from hillslope and local colluvium exposures (Boardman, 

2015).  

Work carried out on the sandstone and mudstone outcrops around the infilled dam showed a 

complex lithology resulting in differentiated weathering patterns, and thus clast production. 

Field observations indicated that sedimentary layers in direct contact with igneous intrusions 

weather slower than sedimentary rock in unaffected parts of the sequence. This was 

particularly noticeable in the sandstone exposures, where overhangs are clearly pronounced 

within 0.5 m of overlying dolerite intrusions.  

These observations were supported by infield microscopy, which showed that the non-altered 

sandstone layers were prone to crumbling and flaking, whereas altered layers exhibited a far 

greater degree of cohesion on the surface. Sediment traps placed beneath sandstone 

overhangs showed that sediment produced underneath these overhangs consists largely of 

fine sands with few larger lithic fragments. 

Furthermore, field observations indicated that more friable surfaces were likely to sustain 

lichen colonies, which can accelerate deterioration (Paradise, 1997; Chen et al., 2000), 

thereby exacerbating differential weathering rates. Thus, lithic materials in the area produce 

both cohesive clasts, as observed on the alluvial fan, which are likely to have been 

strengthened through contact with igneous intrusions, and very fine material that directly 

contributes to the colluvium on the slopes of the valleys. Clasts from sections that have not 

been altered deteriorate as they are moved down slope and are returned to a loose sediment 

state before they reach the valley floor. The exception to this are rapid transport events, such 

as the January 2010 high-magnitude rain event (Boardman, 2015) which deposited clasts of 

both altered and unaltered material on the infilled dam. The unaltered material deteriorated 

rapidly after this rapid wetting and drying event, whereas reduced permeability in altered 
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material ensured clasts from the igneous/sedimentary boundary survived for at least six 

subsequent years.  

6. Gully systems 

Gully systems are frequently, but not always, found in major and tributary valleys of the 

Sneeuberg. In some valleys discontinuous gullies and floodouts are typical (Grenfell et al., 

2012, 2014). Characteristically gully systems are dry for much of the year and incised to 

several metres below the former flood plain level or slope surface. They may follow the line 

of former river systems as in the case of the Klein Seekoei.  

Gully erosion is likely to have been the result of a number of different factors as is discussed 

by Rowntree (1988) who points to the dynamic nature of Karoo landscapes. Oldknow et al. 

(2016) identify a sequence of cut and fill cycles that formed four distinct terraces in the upper 

Sundays Valley through the Late Glacial and Holocene. Grenfell et al. (2012) present 

evidence that gullying and depositional floodout formation is a long-term landscape process. 

Changes to sediment supply and connectivity are thus a natural feature. There is strong 

evidence, however, that the present gullies are a response to environmental changes brought 

about by European settlement in the mid nineteenth century (Rowntree, 2013). She places the 

date of gully formation in the Karoo at between 1820 and 1850. Boardman (2014) argues that 

the extensive late-Holocene valley-bottom wetland deposits cannot have formed in the 

presence of gullies that incise, in many cases to bedrock, and effectively drain them. When 

the wetlands formed, non-incised streams with hippopotami (thus the Klein Seekoei name) 

existed (Neville, 1996; Holmes, 2001; Skead, 2007). A seasonal, semi-arid rainfall regime 

would have produced long periods of low flow with the pools („zeekoegaten‟ - hippopotamus 

wallows) described by early travellers (Grenfell et al., 2014). 
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Changes in vegetation related to an overgrazed landscape is likely to have been a significant 

factor in causing gully erosion. One trigger for the incision of gullies may well have been the 

development of road networks in the Sneeuberg following the incursion of Trekboers in the 

1770s and movement through the area in the 1870s associated with the Kimberly diamond 

rush. Outspanning of oxen and horses and transhumance of animals were other possible 

causative factors (Neville et al., 1994). Evidence of tracks becoming incised and leading to 

the development of gullies is not unusual in the Sneeuberg (Boardman 2014, Fig. 4).  

Gully erosion does not appear to be a widespread process at the present day and gullies are 

reaching a more stable state. Major gully systems certainly pre-date the 1945 air photographs 

but evidence from aerial photographs suggests that they have not extended significantly in 

length since 1945. There has been some increase in density of the gully networks and rills 

which connect to them (Fig. 5 in Keay-Bright and Boardman, 2006). The gullies appear to 

operate as efficient transport routes for large quantities of hillslope sediment in extreme 

rainstorm events. The sedimentary records in the dams attests to this: the events of 1-4 March 

1974 (329 mm), for example, resulted in gravel layers in Dams 7 and 10 and the breaching of 

Dam 53; the event of the 24 March 2000 (118 mm day
-1

) resulted in the breaching of Dam 7 

(Foster et al., 2007). The alluvial fan in Dam 7 resulted from a storm of ~50 mm on 22 

January 2010 (Boardman, 2015). 

The role of gully incision in valley planation is controversial. Grenfell et al. (2014) identify 

palaeo-floodouts and suggest repeated phases of gully incision. However, most current 

gullies incise minimally into bedrock. In both the Klein Seekoei and the Gordonville valleys 

pre-Holocene palaeosols overlie bedrock (Holmes et al., 2003; Grenfell et al., 2012) and 

therefore Holocene planation of the palaeo-valley surface seems unlikely. 

7. Farm dams and small catchments 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

16 
 

Since the first dam corings in 2003, seven small catchments with farm dams have been 

investigated (Foster et al., 2005 and Table 1). Four of these are located within the larger 

Good Hope (Dam 37) catchment. The dams were selected in order to isolate the effects of a 

range of land use, farming activities and the presence or absence of differing landscape 

elements (Foster et al., 2012). Dams 7 and 10, for example, have no badlands but Dam 7 has 

a large area of former cultivation. Ganora has extensive badland sytems and grazing but no 

history of cultivation back to 1910. Cranemere, on the plains of Camdeboo, has cultivation 

and badlands but is located on an extensive plain and has a record spanning over 150 yr as it 

was probably constructed in the 1840s (Foster and Rowntree, 2012). Dam 53 and 

Hartebeestefontein (Dam 94) have no cultivation and minimal badlands but Dam 53 has little 

dolerite in the catchment whereas Dam 94 contains extensive outcrops of dolerite. Good 

Hope (Dam 37) represents the integration of processes in the Dam 7, 10 and 53 

subcatchments. 

To date we have reconstructed sediment yield histories from only four sites, based on the 

methods of fallout radionuclide dating and multiple dam coring described by Foster et al. 

(2007, 2008), Foster and Rowntree (2012), Rowntree and Foster (2012), Foster et al. (2012), 

and Walling and Foster (2016). The final sediment yields from these dams show a complex 

temporal history with all four sites having twentieth century increases in yield. The sediment 

yield maxima are recorded in the 1950s (Cranemere and Dam 7) and the 1960s (Ganora and 

Dam 10). 

By way of comparison, Midgley et al. (1994) provide modelled estimates of sediment yield 

for five quaternary catchments close to the catchments we have studied in the Compassberg 

region. On average they are of larger area than the catchments in which we have undertaken 

sediment yield reconstruction (see Table 6 for five small catchments referred to in South 
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African nomenclature as „quaternary catchments‟). These modelled yields, however, are 

generally lower than estimates produced from palaeoenvironmental reconstruction suggesting 

that the models are poor representations of actual sediment yields in these degraded areas and 

more closely mirror those yields seen in the earliest period of reconstruction before 

significant mid to late twentieth century increases in sediment yield occurred.  

  

Foster et al. (2012) explored four key drivers (extrinsic / intrinsic thresholds) likely to lead to 

significant increases in sediment yield: 

1. High sediment yield is related to overstocking, but the temporal pattern of sediment 

yield reflects a lag effect as proposed by Archer (2000); 

2. Increased sediment yields in the mid-twentieth century are due to the expansion of 

cultivation; 

3. Increased sediment yields from the mid-twentieth century are due to changes in 

weather patterns that have resulted in increased rainfall energy, greater erosivity and 

flooding in the last 50 yr; 

4. Increased sediment yields from the mid-twentieth century are due to changes in 

connectivity between sediment sources, sediment stores and the farm dams. 

It is well documented that stocking rates peaked in the late 1930s, at a time when the Karoo 

was experiencing a significant number of drought years in succession and much lower than 

average temperatures (du Toit and O‟Connor, 2016). This combination may well have 

triggered a reduction in veld density and quality subsequently leading to high erosion rates. 

However, some of the highest rainfalls in the Karoo were recorded in 1941 (4 and 5 Feb ~79 
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mm; Feb 13 ~83 mm) yet do not appear to have triggered extensive and widespread erosion. 

Until the last decade, fire has also been used as an important management tool perceived to 

increase veld productivity and frequently leaves records as charcoal layers in sedimentary 

deposits in farm dams (Mighall et al., 2012). Wild fires continue to cause widespread burning 

of the veld.  

The area of cultivation peaked in the Karoo in the 1950s at a time when sediment yields 

increased to a maximum in Dam 7. High rates of accumulation in a core from Dam 37 

probably reflect extensive cultivation in the Good Hope Valley adjacent to the dam (Fig. 6). 

The rise in sediment yield happened much earlier at Cranemere and appears to correlate with 

a significant change to the structure of the R63 road that links Somerset East to Graaf-Reinet. 

Here, the road was elevated above a former wetland and new drainage lines beneath the road 

re-connected the upper catchment to the dam.  

Foster et al. (2012) demonstrated that there had been a significant increase in rainfall 

intensity at both lowland plain and mountainous catchments in the Karoo, most notably the 

exceptional rainfall in early March 1974. However, the non time-synchronous increase in 

yield at all sites suggests that catchment response was more complex than a simple erosional 

response to a single event in time and that simple single thresholds in rainfall intensity cannot 

be isolated as the direct cause of increased erosion rates across the region. 

Trends in sediment yield therefore exhibit complex responses in these Karoo catchments to a 

range of potentially controlling variables and to a combination of factors that might trigger 

increases in erosion rates (drought, low temperature, fire, reduced vegetation density, high 

rainfall intensity, changing connectivity). What is also clear from the trends identified is that, 

despite several decades of lower stocking rates and not using fire as a veld management tool, 

sediment yields have remained stubbornly high and orders of magnitude above those rates 
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estimated for the early history of all four dams (Table 4). Esler et al. (2006) stress that 

severely degraded Karoo veld is unlikely to recover by simply reducing livestock densities 

and point to the unpredictable response of veld to the combined factors of rainfall and 

grazing. 

8. Sediment source tracing 

In addition to dating and reconstructing sediment yields, many of the sedimentary deposits 

accumulating in farm dams have been analysed for a range of properties including particle 

size, loss on ignition, sediment geochemistry, mineral magnetism and geogenic radionuclides 

in order to determine whether changes in sediment yield are accompanied by changes in 

sediment source. Pulley and Rowntree (2016a) suggested that colour could also be used 

effectively for discriminating sediment sources in the Karoo. Environmental magnetism has 

proved to be especially useful in discriminating sediment sources in the region (e.g., Foster et 

al., 2007, 2012; Foster and Rowntree, 2012; Rowntree and Foster, 2012; Pulley and 

Rowntree, 2016b) as the records in almost all dams show good preservation of fine grained 

magnetites that appear to be unaffected by post-depositional dissolution (Pulley et al., 2015). 

The record in Ganora, for example, shows that the initial rise in sediment yield in the late 

1930s / early 1940s is accompanied by a temporary switch in source from dolerite dominance 

to badland (sandstone / shale) dominance. From the 1960s onwards this switch in source 

dominance became permanent until the date of sampling (Table 1) and was associated with a 

channel avulsion connecting the badlands to the channel network (Rowntree and Foster, 

2012). Sediment source changes appear to have significantly impacted the sedimentary 

records at Cranemere, Ganora and Dam 37 (Good Hope) whereas the other sites show little 

evidence for major or sustained changes in sediment sources over time. 
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An example of downprofile changes in magnetic susceptibility and the diameter of the 50
th

 

percentile of the particle size distribution, measured by laser granulometry, are shown for 

Dam 37 (Good Hope) in Fig. 7. The entire sequence spans the period from the late 1950s to 

the date of coring and the peaks in low frequency magnetic susceptibility are interpreted to be 

associated with contributions from relatively remote dolerite sources that are only connected 

to the dam during periods of extreme rainfall and runoff. The sustained increase in the D50 

between 190 and 150 cm depth is tentatively linked to the 1974 flood and the breaching of 

Dam 53 upstream. 

While changes in sediment source can be interpreted from mineral magnetic signatures, 

additional clues as to the dominance of surface sources come from the use of fallout 

radionuclides like 
137

Cs (Walling and Foster, 2016). Table 5 provides the 
137

Cs inventories 

for the master cores taken from each farm dam and also provides measured reference 

inventories for the Compassberg region and plains of Camdeboo. 

Reference inventories are low (less than 50 mBq cm
-2

) as would be expected in the Southern 

Hemisphere and it now seems likely that the first occurrence of 
137

Cs in a sedimentary record 

is around 1958 (Foster et al., 2012). However, inventories in the farm dams are significantly 

higher and, in the case of the Good Hope Dam, exceed 1300 mBq cm
-2

. Dam 53 has a low 

inventory, but sediment stopped accumulating there after 1974 when the dam wall was 

breached by a major flood. Examination of current potential sediment sources shows that 

undisturbed and cultivated topsoil contains measurable quantities of 
137

Cs whereas it is 

generally undetectable in heavily eroded badlands (except in small pillars of undisturbed soil 

protected by bushes) or in gully sidewalls (except in topsoil to  ~ 15 cm depth in the profile 

of uncultivated sites). This suggests that much of the sediment deposited in dams after the 

1970s came from sources that were labelled with 
137 

Cs, i.e., topsoil or shallow rilling rather 

than badlands and gully sidewalls. Moreover, the observed stability of modern gully systems 
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(Keay-Bright and Boardman, 2006) casts doubt on the idea that the filling of small farm dams 

is a result of erosion of the gullies. Analysis of other source properties prior to the 1970s 

(Foster et al., 2007) supports the contention that for the entire history of dam sedimentation in 

the Compassberg area (approximately the last century) gullies acted as conduits and not 

sediment sources.  

The large body of work emerging from an analysis of farm dam and other sedimentary 

deposits in the Karoo suggests that most sediment properties are likely to be well preserved 

and that a number of techniques could be used to identify sediment sources and to help design 

targeted catchment rehabilitation programmes. The early to mid-twentieth century erosion 

rates estimated from sediment yield reconstructions in farm dams could also provide a target 

rate for any catchment rehabilitation to achieve and emphasise that yields will naturally vary 

spatially, depending on local environmental conditions (see Foster et al. (2012) and Foster 

and Greenwood (2016) for a discussion of the value of dam sediments for establishing 

environmental targets).  

9. Formerly cultivated land 

On some farms in the Sneeuberg and adjacent plains, land degradation is clearly associated 

with former cultivated areas. In the mountains these are largely in valley bottoms and often 

on former wetland areas. There is some evidence that terracing and contour bunds were 

constructed, although it is not known whether these were built as water retention or erosion 

control features or a combination of the two. Most of these areas grew wheat either for home 

consumption, for sale off the farm, or as fodder with sheep frequently grazed on the growing 

crop. Latterly, lucerne has proved more popular. Both crops were irrigated from small dams 

and springs in some areas but in others were rainfed. Since the 1980s wheat has virtually 

ceased to be grown in the Sneeuberg. Suich and Boardman (2016) investigated the rise and 
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fall of wheat and its association with land degradation. There was little evidence that land 

degradation caused the demise of wheat. Drivers of this decline were changes in farm 

economies, technological developments, government policy, a growing preference for lucerne 

as a fodder crop, and probable ecological factors. Many farmers mentioned the decline in soil 

quality as a result of wheat farming, and over a long period of time, overgrazing. These 

declines would have affected the productivity of the veld soils. These comments are 

supported by loss on ignition (LOI) data from the very long term record at Cranemere 

reservoir showing declining values of carbon incorporated into the sediments over the last 

~170 yr as soils were stripped from the catchment (Fig. 8). The S ratio (a mineral magnetic 

index relating to the balance between hematite-type and magnetite-type minerals; see Walling 

and Foster, 2016) also reduces over time in the same sediment core (Fig. 8) suggesting that 

fine grained magnetites, that are often present as secondary minerals in topsoil, are reducing 

over time at the expense of coarser grained hematite-type minerals associated with less well 

weathered material.  The trends are less clear in other shorter sedimentary records (possibly 

often due to significant changes in sediment sources), except for a strong and consistent 

decline in LOI from the base of the sequence at ca 5 m depth to the surface in Dam 53 

(corresponding to the breach date in 1974). Changes in rainfall patterns and in the 

consistency of summer rainfall were also mentioned by interviewees and are backed up by 

rainfall analysis. There is no doubt that serious degradation occurred during the phase of 

wheat cultivation and this impacted on dam sedimentation (see above). Wheat cultivation 

peaked in the 1950s in the Good Hope Valley (Fig. 6). 

Land degradation continued on formerly cultivated land after cultivation ceased. A good 

example of this is described in Keay-Bright and Boardman (2006, Fig. 11) where an early 

twentieth century threshing floor is now surrounded by severely eroded former cultivated 

fields. 
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10. Discussion 

The Sneeuberg habitat has fundamentally changed from what it was before the introduction 

of livestock and cultivation, giving rise to increased rates of erosion and runoff. Rates of 

erosion and sedimentation vary predictably with scale of measurement, typically ~8500 t km
 -

2
 yr

-1
 on badlands and ~500 t km

-2
 yr

-1
 in small catchments. In contrast, the nearest large 

water-supply reservoir of Nqweba at Graaf-Reinet, has sedimentation rates of ~200 t km
-2

 yr
-1

 

from a catchment area of 2197 km
2
 (Msadala et al., 2010; Boardman and Foster, 2011). Rates 

also vary temporally with higher rates of both erosion and sedimentation in the second half of 

the twentieth century.  

Erosion has led to the loss of the A horizon and what remains are shallow, nutrient poor soils. 

Valleys are incised by gullies that have changed the connectivity of the system and prevent 

the ancient process of vlei formation and the accumulation of moisture and fertile soils in the 

valley floors. There has thus been a state change in the system. In the Karoo, the drivers of 

this state change were the introduction of livestock at numbers above the natural carrying 

capacity of the land, and the introduction of cultivation of the valley bottom. Additional 

historic triggers include wagon and livestock tracks and periodic heavy rainfall. In addition, 

global climate change, and the resultant shifts in the rainfall regime to favour increased 

erosion, is now a further external driver of the system. Our research demonstrates that the 

response to these drivers is unpredictable and spatially and temporally variable. We are thus 

dealing with a complex, non-linear system that is best described using non-equilibrium 

conceptual frameworks. Esler et al. (2006) describes the non-linear response of the veld to 

rainfall; the same must apply to erosion which is highly dependent on vegetation condition.  

An important change of state can be attributed to changes in connectivity that affect the 

movement of sediment between stores, representing a significant component of this non-
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linear response. The generic conceptual model of Fig. 9 shows the major elements and 

connections between landscape sources and stores in a typical small Karoo catchment at a 

snapshot in time. Important natural stores include colluvium on footslopes, fans, floodouts 

and valley floor sediments, the latter often associated with former wetlands. Channel systems 

have played a dynamic and changing role in connecting hillslopes to the valley floor 

throughout the Quaternary as evidenced by research by Grenfell et al. (2012) and Oldknow et 

al. (2016). Our research shows that a significant increase in connectivity in the recent past has 

played a major role in accelerating downstream sediment delivery rates. Both badland erosion 

and gully systems contribute to increased connectivity. Badlands promote rapid runoff while 

gullies (incised channels) form effective conduits for sediment transport. Increased 

connectivity has to some extent been offset by the buffering effect of farm dams built for 

water storage and erosion control walls constructed across channels. Many farm reservoirs 

are now filled with sediment and erosion control walls have reached their trapping capacity. 

A present concern is the reactivation of sediment stores due to the breaching of dam walls 

and the release of large volumes of sediment (Boardman and Foster, 2011). 

A defining feature of a state change is that it cannot simply be reversed by removal of the 

pressures that drove the system to that state (Dickie and Parsons, 2012). The situation is well 

summarised by McAuliffe et al. (2014, p. 2): 

“Sparsely vegetated, semiarid landscapes are especially prone to change because small 

alterations of vegetation caused by either climate or land use can have large effects on the 

hydrological responses and soils.”   

In this case, relative aridity related to slope aspect, led to damage to vegetation and enhanced 

rates of erosion which has proved over hundreds of years to be an irreversible process. In the 
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Sneeuberg, we suggest, it was primarily land use pressures on the vegetation that led to 

hydrological change. 

 Rates of erosion remain high despite the reduction of livestock numbers and the cessation of 

cultivation at higher altitudes over the past 30 yr. Shallow soils with their low moisture 

holding potential and low nutrient content mean that simply reducing grazing will not result 

in the recruitment of vegetation as the vegetation cannot establish itself in the new regime 

(Esler et al., 2006). Vleis will not re-establish themselves until gullies are filled and the valley 

bottoms can become the traps for soil moisture and nutrients that they were in former times.  

The challenge for land management in the Karoo is to recognise this state change and realise 

that we need to find creative interventions that go beyond simply decreasing stocking levels 

and stopping upland cultivation. Our research has shown that the abandonment of cultivation 

and fire as management tools and major declines in stocking density have not resulted in a 

dramatic or rapid decrease in erosion rates, probably because it may take decades to centuries 

for a full recovery of nutrient status and vegetation density to take place (Foster et al., 2012). 

The rate of runoff on slopes first needs to be slowed to allow soils to build up faster than they 

are eroded. Esler et al. (2006) point to the need for physical interventions to promote water 

retention and sediment trapping. This is in line with measures taken in the Mgwalana 

catchment in the Eastern Cape Province (Kakembo et al., 2012). The lack of repair of 

breached dams adds to the problem. More effective management methods should target 

landscape connectivity as a means of disconnecting those landscape elements from the fluvial 

system that lead to the rapid conveyance of sediment from hillslope to channel and thence to 

downstream dams and water-supply reservoirs (Fig. 9).  

The studies reviewed here demonstrate that methods which have been tried and tested in 

other environments (e.g., Walling and Foster, 2016) work effectively in the Karoo and 
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suggest that combinations of field mapping and measurement, process rate measurement and 

environmental reconstruction can contribute to an understanding of the history and magnitude 

of erosion rates and to the identification of sediment sources, stores and pathways. Such 

information could clearly enable targeted catchment rehabilitation in many ways.  

11. Conclusion 

It is clear from national surveys that the Sneeuberg is not one of the most degraded parts of 

South Africa although when perceptions of soil and veld degradation are combined, the 

Eastern Cape in general, ranks high as a „problem area‟ (Hoffman and Ashwell, 2001, p. 

152). The term „degradation‟ is preferred to „desertification‟ with the latter‟s emotive and 

misleading connotations.  

The Sneeuberg is noteworthy in that there is a considerable body of evidence to assess the 

scale and development of the problem. We can summarise this as follows. Most degradation 

is a result of around 200 yr of sheep farming with stock numbers for much of that period at 

unsustainably high levels: this damaged the vegetation. Land degradation has not only 

affected the vegetation composition but has resulted in the development of degraded areas, 

badlands and gully systems. There is considerable evidence that these are relatively recent 

forms associated with human impact: such landscape changes have resulted in increases in 

runoff and sediment production. Degradation of former cultivated areas is also a clear, but 

local, impact on the landscape. Land degradation has had an obvious impact on soil quality 

and therefore the productivity of the veld but it has also had a largely unacknowledged 

impact on water resources. Many of the thousands of small farm dams in the Sneeuberg are 

sedimented and/or breached. Impacts on downstream reservoirs and public water supplies 

remain insufficiently investigated (Boardman and Foster, 2011). 
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The Sneeuberg has been shown to be a complex non-equilibrium system that has been subject 

to cycles of erosion and aggradation in response to environmental change through the 

Quaternary. The most recent driver of change has been European settlement and livestock 

farming (now shifting to game farming) that has had significant consequences for sediment 

processes, which have been variable in space and time. Erosion is a response to the 

interrelated effects of rainfall, vegetation cover, grazing pressure, cultivation and changing 

connectivity, but that response is unpredictable. This dynamic non-equilibrium state must be 

taken into account when advising rehabilitation measures, which need continued research and 

government support. Identifying key sediment source types and pathways is a useful starting 

point in targeting areas where rehabilitation can be most effective. 
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Fig. 1a 
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Fig. 1b 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

48 
 

 

Fig. 6a 
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Fig. 6b 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

50 
 

 

Fig. 6c 
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Fig. 7a & b 
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Fig. 8 
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Fig. 9 
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Captions for figures and tables 

 

Figure 1a.  The location of the Sneeuberg uplands (adapted from Clark et al., 2009) 

Figure 1b.  Studied catchments and rain gauges in the Sneeuberg region (note 

Kreigersbaaken, Lucernevale, Compassberg and Aandrus gauges lie within the 

Compassberg Catchments Square) 

Figure 2.   Badland near Lucernvale farm 

Figure 3.  Severely degraded and less-degraded areas looking northwards to the Good 

Hope Dam (Dam 37) 

Figure 4.  Location of badlands and erosion pin sites in the Compassberg farm area 

Figure 5.   A schematic cross-section illustrating the topographic categories of Table 3  

Figure 6a.  Cultivated land in the Good Hope catchment 1945 

Figure 6b.  Cultivated land in the Good Hope catchment 1959 

Figure 6c.  Cultivated land in the Good Hope catchment 1980 

Figure 7a.  Changes in a low frequency magnetic susceptibility (Xlf)  

Figure 7b.   The diameter of the 90
th

 percentile particle size (D50; µm) in the sediments of 

Good Hope dam (see Foster et al., 2012) 

Figure 8.   Long term trends in the S ratio and loss on ignition (LOI) in the sediments of  

Cranemere dam plotted against the Pb-210 „crs‟ model chronology 

extrapolated to the date of dam construction (see Foster et al., 2012) 

Figure 9.  Conceptual model of sediment stores and connectivity in a typical Karoo 

catchment 

 

 

Table 1:  Characteristics of the small catchments 

Table 2.  Erosion pin measurement details for ten sites (2001-2015) (updated from 

Table III in Boardman et al., 2015) 
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Table 3.  Average net erosion (i.e. the difference between erosion and accumulation) in 

mm year-1 in five topographic categories at ten erosion pin sites. (See Table 2 

for the period of measurement at each site. The topographic categories (see 

Figure 6) are a: interfluve, b: very steep or vertical channel side wall, c: 

channel floor, d: footslope, e: interfluve between channels) 

Table 4.  Minimum and post-1970 average sediment yields in the four Compassberg 

catchments 

Table 5.  Reference and dam sediment core 
137

Cs inventories decay corrected to 2016 

(Units are mBq cm
-2

) 
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Compassberg Dam 
Number Dam 7 Dam 10 

Dam 
37 Dam 53 Dam 94 

  

Dam Name 

  

Good 
Hope 

 

Hartebeestefontein Ganora Cranemere 

Catchment topography 

       Catchment area (ha) 630 148 3058 244 852/813* 258 5751 

Maximum altitude 2502 2113 2502 2092 2121 1741 1507 

Maximum basin relief 
(m) 662 253 825 332 496 313 754 

Percentage dolerite* 51 9 19 3 85 4 5 

Percentage sedimentary 49 91 81 97 15 96 95 

Reservoir metrics 

       Reservoir dam 
construction date ~1935 ~1935~1935 ~1958 ~1930's ~1914 1910 1843 

Breach Date 2000 No 2010 1974 Probably 1974 No No 

Repair Date No No 2013 No 1976/7 No No 

Reservoir area (ha) 3.37 1.52 10.63 1.02 5.36/4.04** 5.23 30.22 

Catchment to reservoir 
area ratio 187:1 98:1 288:1 239:1 159:1 / 196:1** 53:1 190:1 

Erosion features 

       
Badlands No No Yes Yes No Yes Limited 

Gullies Yes Yes Yes Yes Yes Yes Discontinuous 

Fans and hillslope 
storage areas Minor Minor Yes No No Yes Yes 

Land use 

       
Grazing Yes Yes Yes Yes Yes Yes Yes 

Cultivation Yes No Yes No No No Limited 

Sampling year 2003 2003 2013 2013 2008 2006 2007 

        

        * Excludes Areas of 
Mapped Dolerite Dykes 

       ** Dam and catchment 
area reduced after 
breach repaired as new 
dam wall was built over 
the existing dam 
sediments and excluded 
a small northern 
tributary. 

       Pre and post- new dam 
catchment areas are 
given as (pre/post) in 
Catchment Area, 
Reservoir Area and 
Catchment to reservoir 
area ratio 
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Site name Measure- 

ment period 

(years) 

N measure-

ment intervals 

Erosion pin measurements Average erosion/accumulation rate 

(mm yr
-1

) 

N total % missing % showing 

erosion 

% showing 

accumulation 

% no 

change 

Eroding pins Accumulating 

pins 

Net 

Good Hope 1 15.05 21 525 3 53 32 11 6.0 ± 0.4 2.5 ± 0.2 3.5 ± 0.5 

Good Hope 2 15.05 21 525 6 56 33 6 8.1 ± 0.5 4.2 ± 0.4 4.9 ± 0.9 

Compassberg 1 15.04 19 475 9 58 26 7 7.4 ± 0.5 3.3 ± 0.3 4.2 ± 0.8 

Compassberg 2 15.04 19 475 13 58 25 5 12.7 ± 1.3 4.7 ± 0.7 8.0 ± 1.9 

Oppermanskraal 1 14.31 18 450 8 60 23 9 9.0 ± 0.6 2.4 ± 0.4 6.6 ± 0.9 

Oppermanskraal 2 14.11 17 425 9 61 20 10 6.1 ± 0.3 1.3 ± 0.1 4.9 ± 0.4 

Low Upper Oppermanskraal 14.11 17 425 5 56 30 9 6.2 ± 0.4 3.1 ± 0.4 3.0 ± 0.8 

Up Upper Oppermanskraal 14.11 17 425 1 60 33 6 7.3 ± 0.4 4.9 ± 0.6 2.4 ± 1.0 

Lower Lucernvale 14.11 17 425 7 66 20 7 8.7 ± 0.5 1.9 ± 0.3 6.8 ± 0.8 

Upper Lucernvale 14.11 17 425 5 71 19 5 9.6 ± 0.5 1.4 ± 0.2 8.1 ± 0.7 

AVERAGES  8.12 ± 0.53 2.99 ± 0.35 5.14 ± 0.88 

 

Table 2. Measurement details for the ten erosion pin sites, and average rates of erosion, 

accumulation, and net erosion 
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Site Topographic category (see caption) 

 a b c d e 

Good Hope 1 1.3 0.0 1.0 1.3 0.0 

Good Hope 2 0.7 1.2 -0.2 2.2 0.1 

Compassberg 1 2.5 0.6 0.2 0.3 0.5 

Compassberg 2 3.0 1.1 1.3 1.4 1.3 

Oppermanskraal 1 1.7 3.6 -0.3 0.8 0.9 

Oppermanskraal 2 2.3 0.5 0.2 1.6 0.4 

Low Upper Oppermanskraal 1.8 0.3 -0.4 1.3 0.0 

Up Upper Oppermanskraal 1.4 0.2 -1.0 1.5 0.3 

Lower Lucernvale 1.3 0.5 1.6 3.5 0.0 

Upper Lucernvale 2.6 2.6 0.1 2.9 0.0 

AVERAGE 1.9 1.0 0.2 1.7 0.3 
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Table 4  Minimum and post-1970 average sediment yields in the four 

Compassberg catchments 

Location  Period  Minimum Sediment   Period  Sediment yield

       Yield(t km
-2

 yr
-1

)         (t km
-2

 yr
-1

) 

Ganora  1910-1922       1.7   1970–2007          1096 

Dam 10 1935-1941       5.8   1970–2003    445 

Dam 7  1935-1941       1.7   1970–2000     153 

Cranemere  1843-1888       4.2   1970–2007     175 
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Table 5 Reference and dam sediment core 
137

Cs inventories {decay corrected to 

2016 (mBq cm
-2

)} 

Compassberg Area 

Reference  

Inventory (2 sites)     41 +/- 8 

Dam 7       732 +/- 122 (Breached 2000)  

Dam 10    384 +/- 70 

Dam 53     190 +/- 44 (Breached 1974) 

Dam 37          1348 +/- 184  

Ganora      184 +/- 37  

Dam 94    522 +/- 73  

 

Plains of Camdeboo  

 

Reference  

Inventory (2 sites)     35 +/- 6 

 

Cranemere     212 +/-28 
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Table 6. Modelled sediment yields for nearby quaternary catchments  (Midgely et al.,1994) 

quaternary  

Catchment  Yield  Area  Specific Yield 

   (x 10
3
 t yr

-1
)     (km

2
)                (t km

-2
 yr

-1
) 

 

N12A    136    739           184 

N12B    148       801         185 

N12C    121      657         184 

N11A    120      701         171 

N11B    143      775         185 


