This work has been submitted to NECTAR, the Northampton Electronic Collection of Theses and Research.

Article

Title: Lucid dreaming incidence: a quality effects meta-analysis of 50 years of research

DOI: 10.1016/j.concog.2016.06.002

It is advisable to refer to the publisher's version if you intend to cite from this work.

Version: Accepted version

Official URL: http://dx.doi.org/10.1016/j.concog.2016.06.002

Note:

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

http://nectar.northampton.ac.uk/8705/
LUCID DREAMING INCIDENCE: A QUALITY EFFECTS META-ANALYSIS OF 50 YEARS OF RESEARCH

David T. Saunders*, Chris A. Roe, Graham Smith & Helen Clegg

*Corresponding author

Address for correspondence:
Centre for the Study of Anomalous Psychological Processes, Psychology Division, The University of Northampton, Park Campus Northampton NN2 7AL UK

David.Saunders@Northampton.ac.uk
1. Introduction

Dreams in which the dreamer becomes aware they are dreaming are known as 'lucid dreams' (LaBerge & Rheingold, 1990). Hearne (1978) and LaBerge (1980) demonstrated that lucid dreams represent an objectively verifiable altered-state of consciousness when showing participants could signal their lucid state, during dream periods, using pre-agreed eye-movement signals when becoming aware during a dream. While this shows that certain people under certain conditions can achieve awareness during dream states, it tells us little about their occurrence in situ among the general public. Knowledge of this is important, if it can be established that lucid dreaming is a common experience for individuals this may act as an impetus for increased research investigating the causes of its occurrence and stimulate a greater consideration for the ways in which the experience of lucid dreaming may be utilised as a practical tool.

The most recent review of estimates of lucid dreaming incidence (Snyder and Gackenbach, 1988) distinguishes between lucid dreaming prevalence (the number of individuals experiencing at least one lucid dream) and frequent lucid dreamers (those reporting one or more lucid dreams per month). In summarising survey data, Snyder & Gackenbach report “conservative” estimates for lucid dreaming prevalence of 58% of the population with a further 21% of individuals as frequent lucid dreamers. Unfortunately it is not clear how these estimates were calculated, since the method of analysis is not described — a weighted mean would be the most likely estimation technique — and we assume that a study reporting 100% prevalence was omitted from their calculation. Weighted means for two studies (Gackenbach, et al., 1987 cited in Snyder & Gackenbach, 1988; LaBerge, 1985) could not be calculated by us as sample sizes were not reported. Calculating weighted means with these studies omitted produces rates of 62% for prevalence and 19% for frequency. Snyder and Gackenbach (1988) do not report confidence intervals for their estimates which cannot be calculated via secondary analysis without information of the total sample size (Cumming, 2011). Of concern is the high variation amongst effect size estimates in Snyder and Gackenbach’s review, which the authors attribute to methodological inconsistencies between studies and differences in sample characteristics, though they do not subject this speculation to any empirical test. Since their paper was published statistical methods have been developed which enable a reduction in the impact of poor methodological features upon pooled effect size estimates. The primary aim of the current study is therefore to provide an updated meta-analytic review of studies reporting incidence data for the occurrence of lucid dreams, including additional analyses to identify sources of the variance in outcomes.

One of the potential sources of variability identified by Snyder and Gackenbach (1988) is an inconsistency in how lucid dreams are defined or exemplified when asking people about their experience of them; unclear definitions have been demonstrated to lead to participant error that can affect as much as a fifth of a sample (Gackenbach, 1988). Whereas Green and McCreery (1994) argue that lucidity is sufficiently defined as the dreamer being aware they are dreaming, Tart (1988) argues for the earlier conceptualisation of lucid dreams as presented by van Eeden (1913) which requires that the dreamer has complete memory of their waking life and is able to exert control over aspects of the dream. This latter definition is problematic as Voss, Frenzel, Koppehele-Gossel and Hobson (2012) found only 37% of lucid dreamers in their sample reported they could manipulate the dream. Mota-Rolim, Targino, Souza, Blanco & Araujo
Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

(2013) also report only 25.2% of their sample claimed very frequent or consistent control within lucid dreams. Despite control being highlighted as a key element of lucidity alongside disassociation and insight (Voss & Hobson, 2015) these findings suggest that control is not in itself a qualifying criterion necessary to determine whether a lucid dream has been experienced. Tart & Van Eeden’s definition with its emphasis on control may therefore be useful in differentiating between ‘degrees’ or ‘depths' of lucidity, however using it as a definitive definition to the exclusion of dream experiences which lack control but retain other characteristics such as insight and disassociation may provide us impoverished estimates of lucid dreaming incidence. Therefore in this paper the broader definition of lucid dreaming shall be adopted in an effort to provide the most valid estimates of lucid dreaming incidence\(^1\).

Additionally, Snyder and Gackenbach (1988) report prevalence rates are reduced (i.e. false positives are avoided) in studies where an example dream narrative — a written verbatim account of a dream from the perspective of the dream experient — is given alongside a definition of lucidity. This approach has been more recently recommended as good practice (Schredl, Henley-Einon & Blagrove, 2012) and has been adopted by a number of researchers (e.g., Erlacher, Schredl, Watanabe, Yamana & Ganzert, 2008; Voss, Frenzel, Koppehele-Gossel & Hobson, 2012). Others have asked participants to produce an example narrative of their own lucid dreams (Gackenbach, Heilman, Boyt & LaBerge, 1985) which can be used to identify misunderstandings. Here LaBerge (1985) reports a drop in prevalence rates from 85% to 77% while Gackenbach, Heilman, Boyt & LaBerge, (1985) reduced their lucid dreamer sample from 707 to 360 after an analysis of participant-provided dream narratives demonstrated 347 were either clearly or questionably not lucid.

A third factor identified by Snyder and Gackenbach (1988) is the method of data collection, with the most common approach using self-report being susceptible to errors common in retrospective recall (Hassan, 2005; Schacter, 1999). Here the format of the response scale can also be problematic, where a range of Likert-scales have been utilised for investigating lucid dreaming frequency, ranging from 3 to 9 point scales. Providing a wide enough response range for participants is important so subtle differences between frequency estimates are distinguishable; Lozano, García-cueto & Muñiz (2008) show reliability and validity of psychometric scale responses are directly affected by the sensitivity of the scale used, with a seven point scale being considered optimal.

These are all key characteristics for which the methodological quality of a study in this area can be judged and must be considered as potential influencing factors on any final estimates provided.

Additionally, with the introduction of new data collection methods in recent decades the method of data collection was considered a potential factor influencing estimates, particularly with the increasing utilisation of online data collection methods (Benfield & Szlemko, 2006). Manual and electronic survey collection methods have been examined for potential issues of comparable validity and reliability. Studies have found test-retest reliabilities to be nearly equal, internally consistent, with high predictive validity and comparable socio-demographic recruitment trends between the two formats (Banov, Kongsved, Bech & Hjollund, 2009; Berrens, Bohara, Jenkins-

\(^1\)Here we focus on the simple definition of lucid dreaming for ease of participant understanding in incidence studies, proposing insight as the principle lucid dream defining criteria. However the authors wish to acknowledge this is a more complex debate, please see (Kühle, 2015; Noreika, Windt, Leggenhager, & Karim, 2010; Windt & Metzinger, 2007).
Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Smith, Silva, & Weimer, 2003; Lewis, Watson & White, 2009; Schilewaert & Meulemeester, 2005; Sethuraman, Kerin, & Cron, 2005; Vosylis, Malinauskiene & Zukauskiene, 2012) with internet surveys in some instances providing greater diversity of respondents (Lewis, Watson & White, 2009). This indicates that both formats are generally reliable, assuming the questions posed are valid and participants are truthful in their responses. Overall the method of data collection used (electronic or manual) does not appear to impact on the type of respondent recruited, nor does it impact on the quality of data provided by that respondent. To test this assumption, a comparison of study estimates via forest plot for data collection method was conducted (See supplementary material) which demonstrated little difference between a pooled prevalence estimate of online studies (65%, 95% C. I. [55%, 75%]) in comparison to postal surveys (60%, 95% C. I. [51%, 68%]) surveys completed with the researcher present (57%, 95% C. I. [47%, 57%]) and surveys where participants were given the measure in person to complete in their own homes and return at a later date (59%, 95% C. I. [29%, 87%]). Thus despite online studies on the whole providing higher pooled estimates, the degree of overlap with estimates of other methods highlights this is not a factor pertinent as a quality-assessment criterion. Despite this, information regarding each studies data collection method is provided in Table 1.

The current meta-analysis further provides an opportunity to identify participant characteristics associated with the propensity to experience lucid dreams. It has been found that children and adolescents report dreaming lucidly more often than other age groups (Blackmore, 1984; Gackenbach, 1980; Palmer, 1979; Schredl and Erlacher, 2004, 2011; Voss et al., 2012, Watson, 2001). In an effort to explain this Voss et al. (2012) proposed the brain maturation hypothesis, postulating that lucid dreaming is a disassociated, hybrid neurobiological state which occurs as an epiphenomenon of the brain’s natural maturation processes, such that higher frequency of lucid dreams would be reported from adolescence until the early years of adulthood at which point frequency would decline for the majority of people.

Additionally, it has been suggested that lucid dreaming represents a specialised form of mental imagery. Mental imagery can be defined as “a symbolic sensory experience that may occur in any sensory mode” (Hardy, Jones & Gould, 1996). Lucid dreaming has been linked to waking imagery vividness as measured by the Betts Inventory (Gackenbach, Prill & Westrom, 1983) to visual and auditory imagery (Hearne, 1983) to gustatory, kinaesthetic, olfactory and tactile waking imagery tasks (Kueny, 1985) and also has some overlap with the mental training of motor-imagery, commonly experienced by professional athletes (Erlacher & Schredl, 2008, 2010; Tholey, 1990). Motor-imagery (the mental rehearsal of physical skills, without the motor-execution of the actions involved) is the variant of mental imagery most frequently applied to sports and the frequency with which sports professionals utilise these techniques is shown to be between 70-90% (Cumming & Hall, 2002) making many athletes adept at mental imagery. Athletes may therefore be more likely to experience lucid dreams due to their regular immersion in imaginary environments as an aspect of their day-to-day training. Furthermore athletes may receive practical gains from lucid dreaming experiences, an online survey found 21.3% of 301 of frequent lucid dreamers report utilising their lucidity to practise waking skills (Schädlich & Erlacher, 2012). Exploratory research has also shown lucid dreaming practice may improve waking task performance (Erlacher & Schredl, 2012; Stumbrys, Erlacher & Schredl, 2016). This evidence implies that actions performed within lucid dreams corresponds to physiological arousal within the body, supporting the notion of some shared central neural structures between imagined, dreamed and executed motor actions.
Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

(Erlacher & Schredl, 2008). Athletes may therefore be particularly motivated to cultivate lucidity for the practical benefits it potentially provides. They also possess the necessary commitment levels and mental toughness (Crust, 2007) to succeed in their sport professionally, which may make them cognitively well equipped to succeed in the application of lucid dreaming induction techniques.

Culture, as the shared beliefs, attitudes, norms, role perceptions and values of a group of individuals (Triandis, 2002) may also have an influence on lucid dreaming incidence. Differences in dream content (Nielsen et al., 2003; Schredl, Ciric, Gotz & Wittman, 2004; Yu, 2008) and its interpretation (Spaulding, 1981; Lohmann & Dahl, 2014) have been observed between cultures. An individual belonging to a culture which ascribes importance to dreams may spend a greater amount of time recording and reflecting upon them; important prerequisites of high dream recall (Condron, 1994), and subsequently dream lucidity (LaBerge & Rheingold, 1990). Cultural awareness of lucid dreaming may also determine whether a lucid dream is correctly identified. For example, racial differences in lucid dreaming frequency between African-American and Caucasian participants have been reported by Palmer (1979). Erlacher et al. (2008) also highlights clear differences in incidence estimates for Japanese and Chinese samples when compared to European samples. Furthermore similarities have been drawn between the phenomenal aspects of lucid dreams, out-of-the-body experiences (Levitan & LaBerge, 1991) alien abductions and near death experiences (Gackenbach, 1991). In some cases individuals may incorrectly interpret a lucid dream as one of these experiences due to a limited knowledge of dream lucidity. This is not to say that the associated experiences above can be comprehensively explained as misinterpreted lucid dreams (See Rogo, 1978, 1985; Salley, 1986) but may provide an explanation for some of the variance between sample estimates.

Culture may also play a role in the engagement in/avoidance of activities associated with lucidity (Laughlin, 2011; Lohmann & Dahl, 2014). Certain meditative states such as mindfulness meditation share commonalities with lucid dreaming, where attention is focused upon one’s current state of consciousness (Kühle, 2015; Pagal, 2014; Schredl, 2010). Hunt (1987, 1989) argues that lucid dreaming contains elements of detached receptivity and enhanced self-awareness reflective of the desired goals of meditative practice. Drawing on his own lucid experiences and those of Gillespie (1984) Sparrow (1976) and Van-Eeden (1913) Hunt argues lucid dreams and meditation both correspond closely in their experiential qualities. In addition, eastern spiritual traditions which address lucid dreaming such as the practices of “dream yoga” or “Milam” in Tibetan Buddhism (Chang, 1963; Wangyal, 1998) “dream witnessing” from Hindu transcendental meditative practice (Alexander, Cranson, Boyer & Orme-Johnson, 1987) and the Dzogchen meditative approach of Zen Buddhism (Pagal, 2014) provide practitioner tools for experiencing lucid dreams as a meditative technique to attain spiritual growth. Lucid dreaming frequency and degree of meditational practice have been shown to be significantly related (Gackenbach, 1990; Gackenbach, Cranson & Alexander, 1986; Hunt & McLeod, 1984; Hunt, 1987, 1991; Reed, 1978) strengthening the proposed correspondences between the two experiences. Therefore individuals from cultures where meditative practice is widespread may be more inclined to induce lucid dream experiences (however, see Gackenbach, 1978).

Additionally cultures where video-games are popular may also have higher reported lucid dreaming prevalence and frequency rates, as frequent video game play has been associated with lucid dreaming incidence (Gackenbach, 2006, 2009; Gackenbach & Kuruvilla, 2008). Gackenbach & Hunt (2014) have proposed this may be due to significant parallels between game play and meditation and ultimately lucid
dreaming. Lucid dreaming and video-game play are both grounded in similar spatial skills (Gackenbach et al., 1985; Greenfield, Brannen & Lohr, 1996) require resilience to motion sensitivity (Gackenbach, 1982; Gackenbach et al., 1986; Preston, 1998) and focused attention (Gackenbach & Bosveld, 1989; Maynard, Subrahmanyam & Greenfield, 2005). Gackenbach & Hunt (2014) classify individuals as “hard-core” gamers if they play video games an average of several times a week, typically for periods of over two hours, if they have played video games since or prior to the third grade and have played a total of 50 or more video games over their lifetime. These hard-core gamers have a familiarity with waking immersion in virtual worlds (Calleja, 2007) which may transfer to their dream virtual worlds (Schredl, 2003) leading to an increased likelihood of experiencing lucid dreams.

Any contemporary review of the incidence literature must utilise methods that take study methodological quality and participant characteristics into consideration in order to present robust estimates of lucid dreaming incidence. An updated review, incorporating all available incidence studies (including several studies that were overlooked in the 1988 review: Green, 1966; Blackmore; 1982a, 1982b, 1982c, 1983, 1984, 1985) and utilising the meta-analytic method (Glass, 1976) is necessary. Meta-analysis aims to pool results of primary studies to provide a quantitative review of existing empirical evidence. The most frequently used method in psychology is the random effects meta-analysis, but this is considered inappropriate for synthesising studies that vary in methodological quality as biased pooled estimates and associated confidence intervals may be the result (Khalaf, Thalib & Doi, 2011). The Quality-Effects model (Doi & Thalib, 2008; 2009) attempts to avoid this biasing of the pooled estimate by taking individual studies methodological quality of into account when calculating statistical parameters. This makes the quality effects model more appropriate for the current purpose, where clear differences in study methodological quality appear to have an influence upon the a study’s final estimate. Additionally, effect size estimates collected across studies from either the same participants, same settings or same researchers are commonly found to correlate and can have an inflationary influence on the effect size average (Malle, 2006). As several researchers have published more than one study in the current review, authors are to be incorporated as a moderator variable, grouping studies from the same researcher together so that potential systematic biases in reported results can be identified.

The aim of the present study is to conduct a quality effects meta-analysis of the self-reported rates of lucid dreaming incidence for frequent lucid dreamer prevalence. Study methodological quality shall be assessed and reflected in the weights ascribed to each study estimate. In addition, three moderator variables will be investigated as potential sources of heterogeneity: participant characteristics, nationality and researchers contributing more than one study. For estimates of both lucid dreaming prevalence and frequent lucid dreaming, it is expected that samples with children, athlete and video gamer participant characteristics will report higher estimates of lucid dreaming than other participant characteristic groups. Potential cultural differences on the basis of participant nationality for lucid dreaming incidence will also be explored.
2. Method

2.1. Search strategy

A search for studies investigating lucid dreaming incidence was conducted. No publication date restrictions were applied thus identified studies ranged from 1966-2016. Computer-based literature indexes were searched (PsychNET, Swetswise, Lexscienc, IngentaConnect and WebofScience) using a combination of lucid dreaming specific terms. The terms Lucid* AND Dreaming* OR Dream* were searched, as well as terms relating to associated experiences that have been investigated in combination with lucid dreams (e.g. OBE* OR Altered-state* OR ASC* OR NDE*). Terms directly related to the occurrence of lucidity (Incidence* OR Prevalence* OR Frequency*) and terms of common research methodologies (e.g. Survey* OR Collection* OR Self-Report*) were also searched. Identified abstracts were read to assess a paper's relevance before moving to a careful hand search of appropriate reference lists, books and other relevant resources. Once these sources were exhausted correspondence was attempted with all primary authors to identify grey literature on the topic, see Figure 1 for a flow diagram of the identification process.

2.2. Inclusion/Exclusion criteria

For inclusion in the meta-analysis studies had to meet the following criteria: (1) Studies provided at least one measure of lucid dreaming incidence (2) studies were written in English (3) Data collection was by self-report measure or interview. (4) Studies did not select participants on the basis of pre-determined characteristics such as high dream recall frequency or experience at lucid dreaming. Of the initial 679 papers identified, of these 653 were not relevant, did not meet inclusion criteria or lacked sufficient details to allow proportions to be calculated. A further 9 additional papers were identified through hand searching and these were augmented by a further six ‘grey literature’ studies provided via e-mail correspondence sent to every author who had published a study included in the review, requesting if any unpublished manuscripts/data were available from them. Seven papers were then rejected due to the exclusion criteria or lack of detail, leaving a total of 34 papers included in the analysis.
2.3. Data extraction

Data on sample nationality; definition of lucidity used; sampling method; sample size; measurement protocol; measurement instrument; measurement of moderators; methodological controls and relevant participant characteristics were taken from every study included within the meta-analysis. When reporting for any of the above was unclear correspondence with the authors was attempted for clarification.

2.4. Quality Assessment and Coding Procedure

No available scale was appropriate for the task; two of the most effective quality assessment scales (Deeks, et al., 2003) the Downs & Black scale (Downs & Black, 1998) and the Newcastle-Ottawa Scale (Wells et al., 2014), lacked items which sufficiently addressed internal validity dimensions relevant to the lucid dreaming incidence literature. Therefore a 12-item scale, the Lucid Dreaming Incidence Methodological Quality inventory (LDIM-Qi) was devised with questions addressing the three broad dimensions of reporting quality, external validity and internal validity (See Appendix I). The total available points on this scale are 18 with the majority of questions being scored 0 or 1. Questions 2, 3, 5, 7, 11 & 12 have a maximum score of
Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

two, with one point being awarded for limited coverage. Items within the reporting and external validity subsections are general and concern clarity of hypothesis/aims/objectives, representativeness of sample etc. The internal validity scale considers specific issues, devised from a consideration of the methodological differences that exist between studies and the relative impact these may have on the accuracy of findings.

Quality scoring for the studies was completed by the primary author, then a random selection of studies were assessed by a second, blinded judge, these scores were then correlated. Overall a high degree of reliability was found between both judges for the scores provided on the LDIM-Qi scale measurements. The degree of correspondence between judges was shown by a Spearman’s ranked correlation coefficient ($rs = .928, 95\% \text{ C. I.} [.80, .97] p<.001, n = 17$). Please see the supplementary material of this paper for Qi scores for each study.

Once studies were scored on the quality assessment measure separate quality effects analyses were run, for studies reporting rates of either lucid dreaming prevalence or frequent lucid dreaming, studies reporting both appear in both analyses. Potential sources of heterogeneity were investigated by the arrangement of studies into groups dependent on the moderator variables of sample characteristics (students, children, representative, athletes, interest groups, video-gamers and researcher groups), sample cultural background (British, American, German, Swiss, Dutch, Austrian, Japanese, Chinese & Brazilian) and researcher/research group. All analyses were completed using SPSS XX (IBM Corp, 2013) and MetaXL V4.01 for Microsoft Excel (Barendregt, Doi, Lee, Norman & Vos, 2013).

3. Results

The final sample included 34 studies spanning five decades of research with a total n of 24,282 comprised of differing sample types (student $n = 3,355$; representative $= 7,300$; children $= 4,162$; interest groups (individuals who have engaged with the research due to an explicit interest in the topic area) $= 6252$; Research groups (samples comprising individuals belonging to research societies such as the Society for Psychical Research; the Association for Research and Enlightenment) $= 886$; Athletes $= 2235$; Video gamers $= 92$). These participants also represented diverse nationalities (British $= 6,393$; Brazilian $= 3427$; German $= 3,190$; American $= 1,842$; Japanese $= 1,476$; Austrian $= 1,000$; Spanish $= 254$; Chinese $= 348$; Swiss $= 214$; Dutch $= 189$) the remaining 5949 participants were from online survey studies where no data for nationality was collected (Hess et al., 2016; Schredl et al., 2014; Stumbrys, Erlacher & Malinowski, 2015) Simple means for lucid dreaming prevalence and frequent lucid dreamers are reported in Table 1 as 63.25% and 23.27% respectively. Alongside this data collection method, sample characteristics, participant nationality and final Quality index score (Qi) ranging from 0 (meeting no methodological quality criteria) to 1 (fully meeting all criteria) is provided for each included study. The mean overall Qi score is shown as .46, in order to assess if study quality improved over time, a spearman’s correlation was conducted between year of publication and Qi score, this was shown as non-significant ($rs = .146, p =.409, n = 34$) suggesting study quality has not improved significantly over time.
Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Table 1: Estimates of lucid dreaming with percentages for lucid dreaming prevalence and frequent lucid dreamers in the population for all studies, ordered by year of publication.

<table>
<thead>
<tr>
<th>Study</th>
<th>Method¹</th>
<th>n</th>
<th>%Prevalence</th>
<th>%Frequent</th>
<th>Characteristic²</th>
<th>Nationality</th>
<th>Qi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green (1966)</td>
<td>RP</td>
<td>110</td>
<td>76%</td>
<td>8%</td>
<td>S</td>
<td>GB</td>
<td>0.28</td>
</tr>
<tr>
<td>Gackenbach (1979)</td>
<td>Postal</td>
<td>78</td>
<td>62.8%</td>
<td>NR³</td>
<td>IG</td>
<td>US</td>
<td>0.56</td>
</tr>
<tr>
<td>Palmer (1979a)</td>
<td>Postal</td>
<td>354</td>
<td>56%</td>
<td>14%</td>
<td>R</td>
<td>US</td>
<td>0.56</td>
</tr>
<tr>
<td>Palmer (1979b)</td>
<td>Postal</td>
<td>268</td>
<td>71%</td>
<td>29%</td>
<td>S</td>
<td>US</td>
<td>0.56</td>
</tr>
<tr>
<td>Kohr (1980)</td>
<td>Postal</td>
<td>406</td>
<td>70%</td>
<td>21%</td>
<td>RG</td>
<td>US</td>
<td>0.50</td>
</tr>
<tr>
<td>Blackmore (1982a)</td>
<td>RP</td>
<td>157</td>
<td>79%</td>
<td>15.2%</td>
<td>S</td>
<td>GB</td>
<td>0.39</td>
</tr>
<tr>
<td>Blackmore (1982b)</td>
<td>RP</td>
<td>114</td>
<td>73%</td>
<td>29.8%</td>
<td>S</td>
<td>GB</td>
<td>0.33</td>
</tr>
<tr>
<td>Blackmore (1982c)</td>
<td>RP</td>
<td>189</td>
<td>73%</td>
<td>31.2%</td>
<td>S</td>
<td>NL</td>
<td>0.33</td>
</tr>
<tr>
<td>Blackmore (1983)</td>
<td>RP</td>
<td>234</td>
<td>61%</td>
<td>30.7%</td>
<td>S</td>
<td>GB</td>
<td>0.28</td>
</tr>
<tr>
<td>Blackmore (1984)</td>
<td>Postal</td>
<td>314</td>
<td>47%</td>
<td>16%</td>
<td>R</td>
<td>GB</td>
<td>0.61</td>
</tr>
<tr>
<td>Blackmore (1985)</td>
<td>RP</td>
<td>187</td>
<td>81%</td>
<td>NR²</td>
<td>S</td>
<td>GB</td>
<td>0.44</td>
</tr>
<tr>
<td>Gackenbach et al. (1985)</td>
<td>RP</td>
<td>360</td>
<td>56.9%</td>
<td>20.2%</td>
<td>S</td>
<td>US</td>
<td>0.61</td>
</tr>
<tr>
<td>Gackenbach (1988)</td>
<td>RP</td>
<td>284</td>
<td>44%</td>
<td>NR³</td>
<td>S</td>
<td>US</td>
<td>0.28</td>
</tr>
<tr>
<td>Thalbourne (1994)</td>
<td>Postal</td>
<td>402</td>
<td>52%</td>
<td>NR³</td>
<td>RG</td>
<td>GB</td>
<td>0.44</td>
</tr>
<tr>
<td>Gackenbach (1998)</td>
<td>RP</td>
<td>92</td>
<td>85%</td>
<td>NR³</td>
<td>VG</td>
<td>US</td>
<td>0.61</td>
</tr>
<tr>
<td>Stepansky et al. (1998)</td>
<td>RP</td>
<td>1000</td>
<td>26%</td>
<td>NR³</td>
<td>R</td>
<td>AT</td>
<td>0.56</td>
</tr>
<tr>
<td>Alvarado & Zingrone (2003)</td>
<td>Postal</td>
<td>49</td>
<td>82%</td>
<td>NR³</td>
<td>IG</td>
<td>GB</td>
<td>0.17</td>
</tr>
<tr>
<td>Schredl & Erlacher (2004)</td>
<td>Home</td>
<td>439</td>
<td>82%</td>
<td>36%</td>
<td>S</td>
<td>DE</td>
<td>0.56</td>
</tr>
<tr>
<td>Alvarado & Zingrone (2007)</td>
<td>Postal</td>
<td>254</td>
<td>88%</td>
<td>NR*</td>
<td>IG</td>
<td>ES</td>
<td>0.28</td>
</tr>
<tr>
<td>Erlacher et al. (2008)</td>
<td>Home</td>
<td>153</td>
<td>47%</td>
<td>17%</td>
<td>S</td>
<td>JP</td>
<td>0.67</td>
</tr>
<tr>
<td>Yu (2008)</td>
<td>RP</td>
<td>348</td>
<td>92%</td>
<td>18%</td>
<td>S</td>
<td>CN</td>
<td>0.17</td>
</tr>
<tr>
<td>Schredl & Erlacher (2011)</td>
<td>Home</td>
<td>919</td>
<td>51%</td>
<td>20.1%</td>
<td>R</td>
<td>DE</td>
<td>0.72</td>
</tr>
<tr>
<td>Voss et al. (2012)</td>
<td>Interview</td>
<td>622</td>
<td>51.9%</td>
<td>26%</td>
<td>C</td>
<td>DE</td>
<td>0.67</td>
</tr>
<tr>
<td>Erlacher et al. (2012)</td>
<td>RP</td>
<td>840</td>
<td>56.55%</td>
<td>23.69%</td>
<td>A</td>
<td>DE</td>
<td>0.56</td>
</tr>
<tr>
<td>Schredl et al. (2012)</td>
<td>RNP</td>
<td>3540</td>
<td>44%</td>
<td>28%</td>
<td>C</td>
<td>DE</td>
<td>0.56</td>
</tr>
<tr>
<td>Fingerlin (2013)</td>
<td>Online</td>
<td>214</td>
<td>50%</td>
<td>26%</td>
<td>S</td>
<td>CH</td>
<td>0.56</td>
</tr>
<tr>
<td>Mota-Rolim et al. (2013)</td>
<td>Online</td>
<td>3427</td>
<td>77%</td>
<td>20.9%</td>
<td>IG</td>
<td>BR</td>
<td>0.50</td>
</tr>
<tr>
<td>Zink & Pietrofsky (2013)</td>
<td>Online</td>
<td>332</td>
<td>47.7%</td>
<td>23.8%</td>
<td>S</td>
<td>DE</td>
<td>0.33</td>
</tr>
<tr>
<td>Schredl et al. (2014)</td>
<td>Online</td>
<td>2929</td>
<td>61.49%</td>
<td>25.2%</td>
<td>IG</td>
<td>NR²</td>
<td>0.56</td>
</tr>
<tr>
<td>Jones & Stumbrys (2014)</td>
<td>Online</td>
<td>72</td>
<td>75%</td>
<td>30.6%</td>
<td>A</td>
<td>DE</td>
<td>0.50</td>
</tr>
<tr>
<td>Erlacher et al. (2014)</td>
<td>RP</td>
<td>1323</td>
<td>41%</td>
<td>18%</td>
<td>A</td>
<td>JP</td>
<td>0.44</td>
</tr>
<tr>
<td>Stumbrys, Erlacher & Malinowski (2015)</td>
<td>Online</td>
<td>528</td>
<td>73.1%</td>
<td>49.8%</td>
<td>R</td>
<td>NR²</td>
<td>0.44</td>
</tr>
<tr>
<td>Hess, Schredl & Göritz (2016)</td>
<td>Online</td>
<td>2492</td>
<td>58.8%</td>
<td>24.7%</td>
<td>IG</td>
<td>NR²</td>
<td>0.56</td>
</tr>
<tr>
<td>Schredl, Henley-Eimon, Blagrove (2016)</td>
<td>RP</td>
<td>1286</td>
<td>52.38%</td>
<td>8.52%</td>
<td>R</td>
<td>GB</td>
<td>0.44</td>
</tr>
</tbody>
</table>
3.1. Lucid Dreaming Prevalence

Estimates of lucid dreaming prevalence were reported by all 34 studies (See Table 1). The Quality effects meta-analysis of these studies demonstrate a pooled estimate of 59.48%, 95% CI [51%, 67%] with estimates ranging from 26% to 92% and with heterogeneity significantly greater than zero amongst them ($Q = 2511.47$, $p = <.001$, $I^2 = 99\%$).

3.1.1. Publication Bias

There was evidence of minor levels of asymmetry in the lucid dreaming prevalence study estimates. With both Doi and Funnel plots (Figure 2) showing a greater frequency of higher estimate studies. The Doi (left) and Funnel (right) plots for lucid dreaming prevalence studies are shown in figure 2 identify potential asymmetry amongst estimates. In the presence of symmetry, the Doi plot is expected to have symmetrical right and left limbs, with comparable numbers of studies on either limb.

Figure 2: Doi & Funnel plots of lucid dreaming prevalence estimates

This is also shown by the greater number of estimates to the right of the model in the Funnel plot, where the lines of the funnel represent the 95% C. I. of the model estimate (already corrected for methodological quality), as the standard error increases (i.e. studies decrease in sample size, less precise estimates are expected. These graphs show that minor asymmetry exits with a larger proportion of studies on the right limb (higher estimates). With an LFK index score of +1.83 indicative of minor asymmetry of the estimates this suggests that publication bias or small study effects may lead pooled estimates to lean towards the higher percentiles. However this asymmetry is not substantial and may be attributable to the high levels of heterogeneity among effects (for detailed rationale for the LFK index and Doi plot, see Barendregt & Doi, n.d.)

Due to heterogeneity a sensitivity analysis was conducted, which identified four studies as large contributors (Alvarado & Zingrone, 2007; Mota-Rolim et al., 2013; Stepansky et al., 1998; Yu, 2008). Although not unique to them, three of these studies investigated lucid dreaming alongside other sleep experiences and this broader focus may explain why no additional steps were taken to ensure participant understanding of what constitutes a lucid dream by these studies. Mota-Rolim et al. (2013) is the only study for which this does not apply, it is also the only study conducted on a Brazilian sample. With a large sample size, their findings may reflect a cultural difference for the prevalence of lucid dreaming, however as the sample was self-selected it is possible
that many participants were motivated to complete the study due to their own lucid dream experiences, making the prevalence rates of lucid dreaming over represented within the sample. Alvarado and Zingrone (2007) also may have this issue, recruiting from among readers of a Spanish new age magazine whose interest in paranormal and consciousness topics may have been prompted by spontaneous anomalous experiences that could inflate their prevalence figure over other samples. Overall excluding these four studies reduced total heterogeneity, though it remained significant ($Q = 1134.78$, $p < .001, I^2 = 98\%$). With their removal the pooled estimate was reduced from 60\% to 58\%, with 95\% confidence interval estimates becoming more precise, changing from 51\%-68\% to 51\%-65\%. In an attempt to provide explanations for remaining heterogeneity moderator analyses were conducted on the variables of researcher/research group, participant nationality and participant characteristics.

3.2. Researcher/Research Group Moderator Analysis

Because of concerns about violation of the independence assumption, researchers contributing more than a single study were included in a moderator analysis (Figure 3). Overall this analysis strongly indicates no researcher systematic bias, going some way to support the violation of the independence assumption.
Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Figure 3: Quality effects moderator analysis for lucid dreaming prevalence by researcher/research group

3.3. Nationality Moderator Analysis

Moderator analysis organising the sample estimates by participant nationality (Figure 4) showed British samples provide the largest weight to the final model (30.5%) and 5 of the 9 estimates (Alvarado & Zingrone, 2003; Blackmore, 1982a, 1982b, 1985; Green, 1966) are above the pooled estimate. However due to methodological quality and sample size these studies are weighted as the smallest individual British contributors to the model estimate. Overall the British samples pooled estimate is lower (51%, 95% CI [36% - 66%]) than the model pooled estimate (58%, 95% CI [51%-65%]) and with a wider confidence interval due to the subgroup having the highest heterogeneity ($Q = 297.42$, $p < .001$, $I^2 = 97\%$) suggesting methodological quality and sample characteristics are most different for this nationality. Of the seven studies in the German sub-group, the three most weighted studies demonstrate substantial overlap with one another (Erlacher et al., 2012; Schredl & Erlacher, 2011; Voss et al., 2012). Japanese samples are the only homogeneous sub-group ($Q = 2.24$, $p=.13$, $F = 55\%$) their group estimate is also the largest observed deviation from the model estimate, being lower than the model by 15% (43%, 95% CI [37% - 48%]). Overall the two Japanese samples were the only
divergence from the pooled estimate on the basis of participant nationality, though their influence on the final model is small (7% weight) suggesting that no great effect of systematic bias by nationality on the final prevalence estimate is observed.

Figure 4: Quality effects moderator analysis for lucid dreaming prevalence by participant Nationality

3.4. Participant Characteristic Moderator Analysis

The next moderator analysis organises estimates by dominant participant characteristics (Figure 5). All moderator groupings contain significant heterogeneity, with student sample estimates making up the largest sub-group with a total of 13 out of 29 studies. The majority of higher estimates are found within this group (n = 7). Representative samples contribute the largest weight to the model, from five studies and have the second lowest heterogeneity compared to other groups. Children are the
second largest contributor to the model estimate, although only comprising two studies (Schredl et al., 2012; Voss et al., 2012) a combination of large samples and good methodological quality ratings account for this. The children studies group estimate (45%) is the only divergence from the model estimate of 58% however there is still an overlap of 95% confidence intervals between the two.

Despite intra-group heterogeneity, only interest group study point estimates consistently deviated from the overall model estimate. As these studies include individuals with a marked interest in lucid dreams, and consistently presented higher estimates, these were removed resulting in a reduction in the remaining significant heterogeneity ($Q = 790.9, p < .001, I^2 = 97\%$) resulting in an overall pooled estimate (Figure 6) of 55% [49%, 62%] for lucid dreaming prevalence, contributed from the remaining 27 studies included within the final model.

Figure 5: Quality effects moderator analysis for lucid dreaming prevalence by participant characteristics
Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

3.5. Frequent Lucid Dreaming

Frequent lucid dreaming (one or more lucid dreams per month) rates were reported by 25 of the 34 studies included within the prevalence analysis, with study estimates ranging from 8% to 50%. Studies included in the analysis of frequent lucid dreamers are reported in Table 1. An initial pooled estimate of 22%, 95% C.I. [19%, 27%] was calculated, with significant heterogeneity observed in the model ($Q = 553.99, p < .001, I^2 = 96\%$).

3.5.1. Publication Bias

There was no evidence of asymmetry for the frequent lucid dreamer study estimates, with both the Doi and funnel plots (Figure 7) showing symmetry amongst estimates. With an LFK index score of +.59 this indicates no evidence of publication bias for estimates of frequent lucid dreaming, despite the existence of significant heterogeneity.
A sensitivity analysis was performed to identify these sources of heterogeneity for which two papers were identified as being primary sources (Schredl et al., 2016; Stumbrys, Erlacher & Malinowski, 2014). With these studies removed, a large reduction in heterogeneity was observed, despite remaining significant ($Q = 178.2, p <.001, I^2 = 88\%$). This removal lowered the pooled estimate and made its interval estimate more precise (23%, 95% C.I. [20%, 25%]). Any further moderator analysis were conducted with these two studies omitted.

3.6. Frequent Lucid Dreaming: Moderator Analyses

Moderator analysis investigating researcher/research group showed no evidence of systematic bias; the independent study group estimate of 22%, 95% C.I. [18%, 26%] was 1% below the overall model estimate and with slightly wider confidence intervals.

For participant nationality as moderator variable, every nationality (Figure 8) except single Dutch and Swiss samples overlap with the model estimate, suggesting no systematic differences in frequent lucid dreaming for participant nationality.
 Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Figure 8: Quality effects moderator analysis for frequent lucid dreamers by participant nationality.

For the participant characteristic moderator analysis (Figure 9) the largest weight is contributed by studies utilising student samples (48.02%). The children subgroup diverge the furthest from the model estimate, with a moderator group estimate of 26%, 95% C.I. [23%, 29%]. Despite this and the lack of homogeneity within all subgroups overall participant characteristics do not substantially contribute to the heterogeneity observed within the model.
Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Figure 9: Quality effects moderator analysis for frequent lucid dreamers by participant characteristic.

None of the three moderator analyses exposed obvious sources of the remaining heterogeneity, thus all 22 studies retained following sensitivity analysis are included in the final model estimate for frequent lucid dreaming, shown in Figure 10.
4. Discussion

Our quality effects meta-analysis shows the proportion of individuals who have experienced at least one lucid dream in their lifetime is 55% [49%, 62%] and that 23% [20%, 25%] report experiencing lucid dreams once a month or more. Despite the existence of heterogeneity study asymmetry was not a large issue for both lucid dreaming prevalence and frequent lucid dreamer analyses. Greater confidence can be had in the estimates provided by the frequent lucid dreamer analysis due to their consistency, though heterogeneity is still an issue it is much more widespread for prevalence estimates and thus our conclusions must be more cautious.

The final estimates we have presented are similar to those reported by Snyder and Gackenbach (1988) in their narrative review (58% and 21% respectively) suggesting there has been little change to reported lucid dreaming incidence rates over the last three decades and increases confidence in these estimates being an accurate reflection of lucid dreaming incidence in the population. If so, then the incidence of frequent lucid dreamers in the population is twice that of left-handedness (McManus, 2009) demonstrating that lucid dreams are indeed a frequent experience for many people; it also highlights the necessity for further research to identify what differentiates these individuals from those who infrequently or never experience lucid dreams. That 55% of the population has experienced at least one lucid dream in their lifetime suggests the capacity for lucid dreaming prevalence is widespread; an understanding of the underlying differences between these two groups may lead towards many more individuals experiencing lucidty on a more frequent basis in the future. This will greatly benefit research and improve understanding by allowing larger samples for research studies looking into the experience of lucid dreaming and exploring its potential practical applications such as its use as a psychological tool for overcoming phobias (LaBerge & Rheingold, 1990) developing the ability to control and overcome nightmares (Spoormaker, van den Bout & Meijer, 2003; Zadra & Phil, 1997) or as a psychophysiological tool for the refinement of motor-skills (Erlacher & Schredl, 2010; Stumbrys, Erlacher & Schredl, 2016).
In exploring the sources of heterogeneity, for participant nationality all group estimates were in line with the model estimate apart from the lower values presented by two homogeneous studies using Japanese samples (Erlacher et al., 2008; Erlacher et al., 2014) both of which have comparably good methodological quality index (Qi) ratings (see Table 1). Given the small number of studies included in this group, it remains to be seen whether this represents a real difference for lucidity rates in Japan. Notwithstanding this subgroup, frequent lucid dreaming estimates for different nationalities demonstrated a consistent pattern, indicating that overall nationality does not appear to be a significant influencing factor in lucid dreaming incidence.

Similarly, the moderator analysis for researcher/research group demonstrates no overall systematic biases, indicating that violations of the independence assumption were unlikely to be consequential in the overall estimates arrived at.

The current study also highlights useful insights into the incidence of lucid dreaming for different participant types and may help inform future theory generation or refinement for both the how and why of lucid dreaming.

The maturation hypothesis claims that studies utilising child and adolescent samples would show higher reported prevalence rates and have a higher proportion of frequent lucid dreamers than adult samples. This was supported for frequent lucid dreaming but not for prevalence where child and adolescent sample estimates were lower than adult groups. This implies that as people age they are increasingly more likely to report having experienced spontaneous lucid dreams. Indeed Voss et al. (2012) reports that prevalence rates increased steadily with age, and were highest (70%) for the oldest in their sample (18 and 19 year olds) similar trends were also demonstrated by Schredl et al. (2012).

For frequent lucid dreaming, the estimate contributed by Voss et al. (2012) is higher than the final model estimate in line with the maturation hypothesis; this is also supported by student samples overall providing a higher pooled estimate at 25%. However, student studies did not fare well in terms of methodological quality (table 1), in part reflecting the fact that the majority of higher estimate studies were published prior to the methodological recommendations proposed by Snyder & Gackenbach (1988). Later research utilising some of these controls on the whole show lower estimates for student samples, suggesting that rates of lucid dreaming may steadily increase throughout adolescence and plateau at the prevalence rates reflective of those seen in representative samples. Further research is needed to ascertain if estimates provided by adolescent and student samples are methodological artefacts or reflect real differences which may be attributable to age.

Lucid dreaming prevalence estimates were also at the higher end of the distribution for interest groups (70%) and video-gamers (85%). The former finding is unsurprising given the potential for tautology, with members of special interest groups being members potentially due to experiencing a lucid dream which may have occurred to them spontaneously and for which they join the group in pursuit of an explanation for their experience. Also, such groups can provide a forum that encourages attempts to induce lucidity and so can become self-fulfilling. The latter estimate from the video-gamer sample is above the model estimate and all other participant characteristic categories, in line with is expected by Gackenbach’s hypothesis (Gackenbach, 2006; Gackenbach & Hunt, 2014).

Aside from student samples, estimates from athletes were the most heterogeneous; though with only three studies it is unclear if incidence rates for athletes different from other sample types. The estimate from Erlacher et al. (2014) is below the overall model estimate, however this sample comprised of Japanese athletes, so may be
confounded by nationality differences, as Japan were the only nationality to have a lower group estimate than the pooled model estimate for lucid dreaming prevalence estimates. The other two athlete estimates suggest they are either as likely as the general population to experience a spontaneous lucid dream or more so. This at present does not support the proposition that athletes utilise lucid dreaming more regularly due to potential practical benefits from a motor-skill enhancement effect. Evidence from the frequent lucid dreaming estimates suggests that athletes who experience frequent lucid dreams are proportionate to representative samples (21%) suggesting an increased use of mental imagery in waking life (Cumming & Hall, 2002) alone does not lead to a greater propensity for frequent lucid dreams. In light of the inconsistency of estimates for this sample type further studies are required in order to determine if the proposed benefits suggested by Erlacher & Schredl (2008) and Tholey (1990) of lucid dreaming for motor-action, translates into athlete groups more likely to experience lucid dreams and experience them in a greater frequency when compared to representative samples.

Regarding study methodology a key finding from this paper is the average Qi rating of studies presented as .46, suggesting lucid dreaming incidence methodologies can be improved in future research. It is recommended that researchers wishing to investigate lucid dreaming incidence ensure the necessary methodological steps are in place to increase confidence in their findings. These steps include: the provision of a clear definition of what constitutes a lucid dream, with no stipulation that dream control is a necessity (however additional information on the degree of disassociation, control and insight experienced would be useful); this definition should be supplemented by an example dream narrative and a request for a written account of one of their own experienced, which should be judged for characteristic signs that demonstrate the dream account is clearly of a lucid dream, questionable accounts should not be qualified. In self-report studies, questions regarding lucid dream frequency should provide no less than a 7 point response scale. Here it is recommended a standardised measurement protocol is utilised so direct comparisons across samples can be made. Due to providing the respondent with eight options the scale presented by Erlacher & Schredl (2004) was the most sensitive measure of frequent lucid dreaming we reviewed. By measuring the frequency of lucidity from less than once a year up to once a week or more it clearly determines the frequency of lucid dream experiences, unlike some other scales which have been used (e.g. Blackmore, 1983, 1985; Mota-Rolim et al., 2013) Furthermore Erlacher and Schredl’s scale has been shown by Stumbrys, Erlacher and Schredl (2013) to have good test-retest reliability $r = .89$ ($p < .001$) Therefore it is recommended here over other previously adopted self-report scales of lucid dreaming frequency for utilisation in future research in this area. Finally, a consideration of potential confounding variables is recommended as in the procedure presented by Voss et al. (2012) in order to control for issues of suggestibility and social desirability in self report studies.

It is further recommended all data regarding suspected relevant sample characteristics to be recorded alongside incidence measures to aid in the identification of sources of variability amongst estimates. By adhering to these recommendations, researchers can be confident that the data gathered is a valid reflection of lucid dreaming incidence in the population.

The quality effects meta-analysis method we utilised is a new technique which was initially developed for epidemiological research (Doi & Thalib, 2008). In this paper we have shown it can be usefully applied to other topic areas in place of a random of fixed effect analysis, particularly where clearly identifiable differences exist in study methodological quality, in order to provide additional control for this source of potential
bias. The degree to which this is effectively controlled rests on the development of an effective quality assessment scale, the scale developed for this study (LDIM-Qi) attempts to incorporate all methodological considerations which have been highlighted as problematic in the literature. The scale is scored in a way that reduces subjective judgement on the part of the assessor, with many items being binary decisions. Thus we believe it is an effective and reliable tool for measuring the methodological quality of studies in this area.

A limitation of this study is that despite attempts to be as inclusive as possible it is possible that papers may have been missed by our search for through the literature. Additionally, we were unable to gain contact with several primary authors, despite emails being sent no replies were received, thus it is likely that additional grey literature exists which was not included within this paper.

Furthermore, the sources of heterogeneity across both analyses were not effectively identified, though it seems interest group estimates and studies that do not focus on lucid dreaming specifically are certainly contributors to the observed heterogeneity. The findings from this analysis do go some way to informing us what these sources are not and also correct the model estimates in light of methodological quality, where the tendency appeared for poorer quality studies to provide higher incidence estimates.

In conclusion the findings imply the original estimates presented by Snyder & Gackenbach (1988) were not influenced by the kinds of bias this analysis controls for and thus this study lends support to the earlier conclusions while providing more robust point and interval estimates by taking study methodological quality and potential moderator variables into account. Overall this review can serve to inform future research by contributing to the confidence that can be had in our knowledge of how common lucid dreaming is and how many of the population experience them on a frequent basis of once a month or more.

Acknowledgements: We are indebted to Professors Jayne Gackenbach, Daniel Erlacher and Micheal Schredl; Drs Tadas Stumbrys, John Palmer, Nancy Zingrone, Carlos Alvarado and finally Miss Tamara Fingerlin for their cooperation and/or the provision of grey literature for incorporation into this analysis.
Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

References

Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Hassan, E. (2005). Recall bias can be a threat to retrospective and prospective designs. The Internet Journal of Epidemiology, 3, 2.

Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Lucid dreaming incidence: A quality effects meta-analysis of 50 years of research

Appendix I

Example Lucid Dreaming Incidence Methodological Quality Scale (LDIM-Qi)

Reporting

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Partially</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the hypothesis/aim/objective of the study clearly described?</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2. Were relevant details about the sample provided fully? (e.g. representativeness, sex, age)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3. Was the administration of the measurement protocol fully described?</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total for Reporting = 9/5

External Validity

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Was the sample representative?</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5. How was the sample obtained?</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Total for External Validity = 3/3

Internal Validity

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Partially</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Was a clear definition of lucidity provided to all participants?</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7. Was the definition of a lucid dream focused on insight and meta-awareness within the dream state only or with the addition of control?</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Partially</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Was an example lucid dream narrative provided to the participants?</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9. Were the participants asked to recount a lucid dream experience of their own to demonstrate understanding?</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10. Was the question asked of participants worded clearly?</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Partially</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Were measures taken to control for confounding factors? (Suggestibility/Social Desirability etc.)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Partially</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Response scale</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total for Internal Validity = 9/10

Total for scale = 18/18