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Abstract 

The objective classification of sediment source groups is at present an under-investigated 

aspect of source tracing studies, which has the potential to statistically improve 

discrimination between sediment sources and reduce uncertainty. This paper investigates this 

potential using three different source group classification schemes.  

The first classification scheme was simple surface and subsurface groupings (scheme 1). The 

tracer signatures were then used in a two-step cluster analysis to identify the sediment source 

groupings naturally defined by the tracer signatures (scheme 2). The cluster source groups 

were then modified by splitting each one into a surface and subsurface component to suit 

catchment management goals (scheme 3). The schemes were tested using artificial mixtures 

of sediment source samples. Controlled corruptions were made to some of the mixtures to 
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mimic the potential causes of tracer non-conservatism present when using tracers in natural 

fluvial environments. It was determined how accurately the known proportions of sediment 

sources in the mixtures were identified after unmixing modelling using the three 

classification schemes. 

The cluster analysis derived source groups (2) significantly increased tracer variably ratios 

(inter- / intra-source group variability) (up to 2122%, median 194%) compared to the surface 

and subsurface groupings (1). As a result, the composition of the artificial mixtures was 

identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found 

that the cluster groups could be reclassified into a surface and subsurface component (3) with 

no significant increase in composite uncertainty (a 0.1% increase over scheme 2).  The far 

smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 

and 3) was primarily attributed to the increased inter-group variability producing a far larger 

sediment source signal that the non-conservatism noise (1). Modified cluster analysis based 

classification methods have the potential to reduce composite uncertainty significantly in 

future source tracing studies. 

Keywords: Sediment fingerprinting; Sediment sources; Discrimination, Tracing, Uncertainty 

Highlights: 

 Robust discrimination between sediment sources is essential for fingerprinting

 Source groups were classified according to management goals and tracer signatures

 Objective classification reduced intra- and increased inter-group variability

 Objective classification significantly reduced uncertainty in unmixing model outputs

 The impacts of tracer non-conservatism were reduced with objective classification
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1. Introduction

Sediment fingerprinting has become a key method of determining the importance of the 

sediment sources in a catchment (e.g. Collins et al. 2010a). However, several methodological 

uncertainties associated with existing fingerprinting procedures have been highlighted in 

recent publications (D’Haen et al. 2012; Koiter et al. 2013; Smith and Blake, 2014; Laceby 

and Olley, 2015; Pulley et al. 2015a & b). Establishing a robust discrimination between 

sediment sources using suitable tracers is a key recommendation for accurate source tracing 

(Collins and Walling, 2002), making it a goal of many sediment fingerprinting based studies. 

A fairly robust discrimination between different land uses as well as subsurface (i.e. 

streambank) sources has been established using some tracers. For example, 137Cs or excess 

210Pb, where the mixing of tracer fallout through the soil profile during ploughing results in 

lower activities in cultivated land in comparison to undisturbed grassland or woodland 

(Walling and Woodward, 1992). Additionally, very low activities would be expected in 

subsurface sources, which are not exposed to direct fallout (Collins and Walling, 2002; 

Walling, 2004). However, fallout radionuclides (i.e. 137Cs) my not produce ideal source 

identification in many catchments. For example, robust discrimination might be limited in 

many catchments if channel banks are composed of displaced surface material or floodplain 

deposits (with ages >1950’s), which has high activities (Walling, 2003). Alternatively, where 

environmental factors only support shallow channel banks comprising surface soils rather 

than well-developed vertical faces and processes of diffusion, bioturbation and eluviation 

cause migration of 137Cs down through the soil profile (Walling and Woodward 1992; 

Walling, 2003; Mabit et al., 2008), or where agricultural rotation between arable crops and 

short-term ley or untilled grass reduces the distinction between cultivated and undisturbed 
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surface soils (Smith and Blake, 2014). As a result, there is often incomplete discrimination 

between sediment source using 137Cs, or similarly, excess 210Pb (e.g. Collins et al. 2001; 

Collins et al. 2007; Smith and Blake 2014). Because of this, it is common practice that 137Cs 

and many other individual tracers are utilised in a composite fingerprint consisting of many 

tracers, to help avoid spurious source-sediment matches (e.g. Stanton et al. 1992; Collins et 

al. 2013). Due to the complex nature of the dynamics of most tracers in the environment, the 

basis for source discrimination of many of the tracers utilised in composite fingerprints is 

rarely understood, and instead, a ‘black box’ type methodology is commonly used, which has 

been criticised (Koiter et al. 2013; Smith and Blake, 2014). 

A review by Haddadchi et al. (2013) shows that it is currently practice to classify sediment 

source groups by land use (including surface/ subsurface sources) in the vast majority of 

sediment fingerprinting research (Slattery et al. 1995; Walling and Woodward, 1995; Collins 

et al. 2010a; Collins et al. 2010b; Smith and Blake, 2014). This is despite the fact that the 

majority of catchments investigated in source tracing studies will contain heterogeneous 

geology or soil types. For example, Pulley et al. (2015a), Collins et al. (2013), Smith and 

Blake (2014), Wilkinson et al. (2013), Palazón et al. (2015), Nosrati et al. (2014), Evrard et 

al. (2013) and Gellis et al. (2009) have all recently published source tracing studies in 

catchments with heterogeneous geology and/or soil. This potentially represents a problem if 

the signal of different land use is weakly expressed by the tracers used. Horowitz and 

Stephens (2008) investigated the impact of land use on the chemistry of river sediment in a 

large scale study of 51 river basins across the USA, with drainage areas ranging from 28 to 

49,800 km2. It was found that the only land use to have a significant effect on sediment 

chemistry was urban areas. Therefore, the geochemical signal of land use (and subsurface 

sources) in river sediments may possibly be very weak. In contrast, the signal of geology or 

soil type may often be very strong. For example, with the dissolution of magnetic iron oxides 
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which can take place in anoxic and reducing soil conditions (Anderson and Rippey, 1988; 

Roberts and Turner, 1993), or highly different tracer concentrations in different geological 

units (Collins et al., 1998; Owens et al. 1999; Pulley et al. 2015c) or spatially variable 

anthroprogenic tracer inputs (Devereux et al. 2010; Rossini et al. 2010; Guieu et al. 2010). 

These factors are likely to result in land use classified source groups with a very large amount 

of within-group variability. The effect of a large within-source group variability is to 

significantly increase uncertainty associated with source apportionment results (Small et al. 

2002; Collins et al., 2010; Pulley et al. 2010a).  

The impacts of tracer non-conservatism caused by factors such as organic matter (Wang et al. 

2010; Carr et al. 2010; Nadeu et al. 2011) and particle size (Elrick 1987; Motha et al. 2003; 

Pye et al. 2007; Pulley et al. 2015c) may also be increased when a small difference in tracer 

concentration exists between source groups. For example, if there is only a 10% difference in 

the mean tracer concentration of two source groups and non-conservatism causes a 5% 

change to a tracer during sediment transport, very large errors will be present in the final 

outputs. Alternatively, if a 100% difference exists between tracer signatures in the source 

groups, a 5% change caused by non-conservatism during sediment mobilisation, intermediate 

storage and delivery will only have a minor impact on source fingerprinting estimates.  

A method which could potentially reduce within-source group variability and increase intra- 

group variability was developed by Walling et al. (1993) who used pre-selected tracers in a 

cluster analysis to classify sediment source groups. It was found that land use was the 

primary controlling factor on tracer signatures and classified 4 to 6 source groups. Walling 

and Woodward (1995) also used this method and geology was identified as the major 

controlling factor controlling source group classification. Using this method of source 

classification provides the benefit that the natural variability in tracer concentrations within a 

catchment is used to define the source groups; therefore, each source group should have a low 
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within-group variability in tracer concentrations and be substantially different to other 

groups. Despite these clear advantages, this method of source group classification has largely 

been neglected in recent literature. It is likely that catchment management goals such as 

identifying sediment inputs from a specific source such as eroding farm tracks (Collins et al. 

2010b) have necessitated the prior selection of source groups without regard to the natural 

variability in tracers within a catchment. 

The overall question this paper aims to answer is: can the objective classification of sediment 

source groups using an updated cluster analysis based method reduce gross uncertainty in 

fingerprinting outputs? Additionally, can we modify the cluster analysis derived source 

groups to suit management goals; in this example discriminating between surface and 

subsurface sources, while maintaining the benefits of the cluster analysis method.  

This study uses artificial mixtures of sediment source samples, some of which are 

deliberately corrupted by numerous means to test the accuracy of unmixing model results 

when the different source group classification methods are used. Error evaluation using 

artificial mixtures has been increasingly adopted as a routine component of sediment source 

tracing studies (e.g. Palazón et al. (2015). 

2. Study area

The sediment source samples were retrieved from the largest tributary sub-catchment (4.3 

km2) of Sywell Reservoir, which is located in the Nene river basin in the East Midlands of the 

UK. The catchment is composed of Jurassic age mudstones and sand and ironstones in the 

lower catchment as well as Quaternary diamicton in the upper catchment (Figure 1). Soils in 

the catchment are a combination of freely draining brown earths in the lower catchment over 
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the ironstone geology and poorly draining clayey soils in the upper catchment. The land use 

is predominantly cultivated land (54.4%) used for wheat production with some areas of 

improved grassland (22.7%) which are used for sheep grazing, as well as woodland (22.7%) 

(Figure 1; Morton et al. 2011). The River Nene basin has an average annual rainfall of 638 

mm recorded at Althorp over the last 140 years according to records transcribed by the 

authors from the UK Met Office archives. Construction of Sywell reservoir was completed in 

1906, and an area of wetland has developed in alluvial deposits where the river enters the 

reservoir close to sampling points 1 and 1b (Figure 1).  Very little erosion of toposils was 

observed in the study catchment, with a single small area of cultivated land appearing to have 

undergone some minor rill erosion. Channel banks were observed to have slumped and be 

exposed to fluvial entrainment in many areas. A previously published fingerprinting 

investigation in the River Nene basin by Pulley et al. (2015a) identified that there were large 

differences (24%) between the provenance predictions made by different sediment tracer 

groups when tracing using land use source categories. Therefore, the Nene basin represents a 

challenging environment for the successful application of robust sediment source 

fingerprinting. 
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Figure 1: The geology and land use in the study catchment (after Morton et al 2011; 

British Geological Survey 2011) and the locations of sediment source sampling points. 

3. Methods

3.1.Sediment source sampling and laboratory analyses 
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Sediment source samples were collected from 11 locations along the rivers channel banks 

(Figure 1). Samples were only collected from the bank material and topsoils directly above it 

as this study aimed to investigate different source classification methods comprising two 

fundamental source categories (surface and subsurface) to simplify the interpretation of 

results. 

At each sampling point, 2 to 10 samples of the channel bank material were collected at 10 to 

15 cm intervals down the exposed channel bank face according to vertical stratigraphy; using 

a non-metallic knife after 5 to 10 cm of superficial material had been removed in order to 

minimise contamination by mass failure surface drapes and flood deposits. The sampling 

locations were selected primarily on the basis of the presence of exposed banks with a lack of 

vegetation and accessibility and to be roughly evenly spaced along the entire channel network 

length. An additional sample of topsoil was collected using a non-metallic trowel to a depth 

of 5 cm from each sampling location in the cultivated or grass fields located past the riparian 

zone and outside of the limits of any floodplain (~10 m from the river channel). Each sample 

was an individual sample and not a composite of multiple samples. A total of 58 subsurface 

channel bank samples and 20 surface samples (the top 5 cm of the banks and nearby field 

topsoils) were collected.  Each sample was oven dried at 40°C for 24 hours before being 

sieved to < 63 µm to conform to common practice in published fingerprinting studies (e.g. 

Walling et al., 1993; Walling and Woodward, 1995; Collins et al., 1997, 2010a). 

Mineral magnetic (Walden et al. 1997), geochemical (Collins et al. 2010a) and colour 

signatures (Pulley and Rowntree, 2016) were measured as potential sediment source tracers. 

Mineral magnetic signatures were measured using 8 to 10 g of each sample tightly packed 

into 5 ml polystyrene sample pots. The properties shown in Table 1A were measured using 

the methods described by Lees (1999). The repeat measurement of six samples for five 
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repetitions identified that a mean error (coefficient of variation; %) of 5.3% was associated 

with the measurement of magnetic tracers. 

Geochemical tracers were measured using 0.8 g of each sample digested in 10 ml of aqua 

regia at 180°C for 20 minutes in a CEM Mars 6 digestion unit. The concentrations of Al, B, 

Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Mo, Ni, P, Pb, S, Sr, V, Y, Zn and Zr were determined using 

a Thermo Scientific iCAP 6500 dual view ICP-OES. The repeat measurement of samples 

identified that a mean error (coefficient of variation; %) of 11.6% was associated with the 

measurement of geochemical tracers. 

Colour signatures were measured using the prepared samples packed into polythene bags. 

Images of the source material were captured using a Lexmark x2650 colour scanner and were 

imported into Gimp 2 open source image editing software.  The mean intensity of reflected 

red, green and blue light was recorded on the 0-255 scale of the RGB colour model. The 

colouration indices shown in Table 1B were then calculated using the extracted RGB values. 

The methods used for measurement are discussed in more detail by Pulley and Rowntree 

(2016). The repeat measurement of samples identified that a mean error (coefficient of 

variation; %) of 4.1% was associated with the measurement of colour signatures. 

Table 1. The magnetic properties (Maher, 1988 Walden, 1999; Yang et al. 2010; Wang 

et al. 2012) and colour signatures (Ray et al. 2004; Viscarra Rossel et al. 2006) used, 

their calculation and the property they represent. All measurements were initially 

performed on the <63 µm fraction. 

Name Calculation Property Instrument 

(A) Magnetic signatures

Low frequency susceptibility 

(χlf) 
Raw data All magnetic minerals 

Bartington Instruments 

MS2b sensor 



11 

Frequency dependent 

susceptibility (χfd) 
((lf - hf)/m)x100  

(m = sample mass) 

Ultrafine super 

paramagnetic grains (< 

0.03 μm) 

Bartington Instruments 

MS2b sensor 

Susceptibility of anhysteretic 

(χarm) remanance 

magnetisation 

ARM x 3.14 x 10 

stable single domain 

ferrimagnetic grains in the 

0.02 to 0.4µm range 

Molspin® anhysteretic 

remanent magnetiser; 

Molspin® slow-speed 

spinner magnetometer 

Saturation isothermal 

remanence magnetisation (1T) 

(SIRM) 

Raw data 
Almost all remanence 

carrying minerals 

Molspin® pulse 

magnetiser, Molspin® 

slow-speed spinner 

magnetometer 

Back isothermal remanence 

magnetisation (-100mT) (IRM-

100) 

Raw data 
The majority of single 

domain ferromagnetic 

grains 

Molspin® pulse 

magnetiser Molspin® 

slow-speed spinner 

magnetometer 

Hard isothermal remanence 

magnetisation (HIRM) 

IRM1T/(1—(1 x 

(IRM-100mT / IRM 

1T)))/2 

High coercivity canted 

antiferromagnetic 

minerals or coarse multi-

domain ferromagnetic 

grains 

Calculated 

(B) Colour signatures

Red Raw data Reflected red light Lexmark x2650 

Green Raw data Reflected green light Lexmark x2650 

Blue Raw data Reflected blue light Lexmark x2650 

HRGB (2xG)-R –B 4 Hue Calculated 

IRGB 
R+G+B 

3 

Light 
Calculated 

intensity 

SRGB 
R-B

2 
Chromatic information Calculated 

Saturation 

Index 
(R-B) (R+B) Spectra slope Calculated 

Hue Index (2xR-G-B) (G-B) Primary colours Calculated 

Coloration Index (R-G) (R+G) Soil colour Calculated 

Redness Index 
R2 

(BxG3) 
Hematite content Calculated 

3.2. Sediment source group classification methods 
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The source samples collected were classified into different sediment source groups for tracing 

in the following three ways:  

1: The simple method of classification into two fundamental groups; surface (topsoils 0-5 cm 

depth) and subsurface (i.e. channel banks) sources.  

2: A two-step cluster analysis based upon the methods of Walling et al. (1993) and Walling 

and Woodward (1995) was used in SPSS 20 to determine the sediment source groups which 

best fitted the measured tracer signatures. Prior to the cluster analysis, the tracer signatures 

were included in a principal component analysis with varimax rotation in SPSS 20 to identify 

the tracers most strongly correlated with each principal component in the source samples. 

This was undertaken to simplify the variables input into the cluster analysis. The two-step 

cluster analysis was repeated with between 2 and 6 clusters and the solution with the best 

silhouette coefficient (the smallest mean between-cluster distance minus the mean within-

cluster distance, divided by the larger of the two distances) was used to define the catchment 

source groups. This measure represents how well separated each cluster is from other clusters 

and how closely related the data points in any individual cluster are.  

3: The third method of source classification was to reclassify the surface and subsurface 

sources of each cluster group (from method 2) into separate source groups. This classification 

method was aimed at retaining the naturally present cluster groups while fully 

accommodating the catchment management goal of discriminating between surface and 

subsurface sources for the purpose of targeting sediment control strategies. 

3.3. Creation of the artificial mixtures of sediment sources 
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The effectiveness of each of the three source group classification methods at reducing 

uncertainty in the unmixing outputs was tested using artificial mixtures of the channel bank 

and topsoil samples. Each mixture was created with known proportions of each sediment 

source group derived using the three classification methods, these were generated only after 

applying the cluster analyses and discriminant analysis. An equal mass of sediment from each 

source sample collected which was in each group was used unless otherwise specified. Some 

mixtures were deliberately corrupted in the ways shown in Table 2 in an attempt to replicate 

potential ways in which the non-conservatism of tracers might occur in the natural 

environment. Three repetitions for each mixture were unmixed, composed of the following 

proportions of surface and subsurface sources: 0.25:0.75, 0.50:0.50 and 0.75:0.25 (these were 

converted into the proportions in the source groups derived using methods 2 and 3 by 

knowing which group the individual source samples added to the mixtures were classified 

into). The overall question asked when fingerprinting each mixture is “how close to the actual 

proportions of sediment in the artificial mixtures are the fingerprinting results derived using 

the different classification methods?”.  

For the deliberately corrupted mixtures, the prepared mixtures were wet sieved through a 38 

µm stainless steel mesh using ultrapure distilled water and the 63-38 µm and <38 µm 

fractions retained for tracing. When organic matter was added, cotton wool (as organic matter 

of a uniform composition) was reduced to a powder using a blender and the appropriate mass 

added to each mixture.  

Table 2: The artificial sediment source mixtures created and their purpose. 

Mixture Purpose 

All channel bank and surface sources 

with no corruption 

How does source group classification change the 5th to 95th range of 

uncertainty produced by the Monte Carlo based unmixing model as well 

as the error resulting from measurement accuracy and the modelling 

procedure? (i.e. how close to the actual mixture composition are the 

results derived using the three classification methods?) 
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Only cluster 3 subsurface sources and 

all surface sources (this mixture was 

decided upon only after the use of the 

cluster analysis) 
These three alterations to the mixtures investigate how much error can be 

caused by regional variability in sediment source inputs with each source 

group classification method. For example, if only a small part of channel 

bank composed of an unusual tracer signature undergoes mass failure 

contributing a disproportionally large amount of sediment. 

Only cluster1 surface sources and all 

subsurface sources (this mixture was 

decided upon only after the use of the 

cluster analysis) 

Only a random 10% of samples from 

each source group 

All source samples with 10 - 30% of 

the sample mass added as organic 

matter (cotton wool) 

How does the classification of source groups affect the error resulting 

from the enrichment in sediment-associated organic matter during its 

erosion, transport and storage? 

All source samples sieved to <38µm How does the classification of source groups affect the error that can 

result from particle size changes during sediment erosion, transport, 

deposition and delivery. All source samples sieved to 63 -

38µm 

3.4. Source group fingerprinting procedure 

The key theory behind this paper is that the cluster analysis source group classification 

method will reduce the within-source group variability and increase the inter-source group 

variability. To test if the classification methods achieve this aim, tracer variability ratios of 

the percentage difference in median tracer concentration between source groups divided by 

the mean within-source group variability (coefficient of variation; %) were used (Pulley et al. 

2015a).  Prior to the identification of the composite fingerprints for tracing, any tracer with a 

maximum variability ratio lower than 1 in any pair of source groups was removed from 

further analysis to help reduce the uncertainty present in the final results.  

A genetic algorithm driven linear discriminant analysis (GA-LDA; cf. Collins et al. 2012, 

2013, 2014) was then used to identify the composite fingerprint of tracers best able to 

discriminate between the sediment source groups. The GA-LDA was repeated for each of the 

three sediment source group classification methods, to produce a unique composite 
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fingerprint for each. The percentage of source samples correctly classified into their 

respective group with the optimum fingerprint for each classification method was compared. 

An unmixing model (Equation 1) was used to apportion the contributions of sediment in each 

of the artificial mixtures (Table 2). Before inclusion in the model, all tracers were rescaled to 

range between 0 and 1 by dividing each model value by the maximum value found in any 

source group. The unmixing model incorporated Monte Carlo uncertainty analysis (Rowan et 

al. 2000) which repeated the model for 3000 iterations, each iteration with a random tracer 

value from within the range of the median +/- one median absolute deviation (MAD) of each 

source group. The model outputs were presented as the average median Monte Carlo result 

with 5th and 95th percentile uncertainty error bars. No correction factors for organic matter or 

particle size were used, and no weightings for within-source variability and discriminatory 

efficiency were applied, as these may introduce additional uncertainty into the fingerprinting 

process (Smith and Blake 2014; Laceby and Olley, 2014). The results of the modelling were 

compared to the known proportions of each source group present in the artificial mixtures. 

The mean absolute difference (cf. Collins et al., 1997) between the median Monte Carlo 

source estimations and the known proportions of each source was calculated for the 3 

repetitions of each mixture (Table 2). Using this method, the error present when unmixing the 

uncorrupted and deliberately corrupted mixtures was quantified to find how source 

classification affects the accuracy of a hypothetical fingerprinting study. 

Equation 1. The structure of the sediment source unmixing model.
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Where Ci = concentration of fingerprint property (i) in sediment sample; Ps = the optimised 

percentage contribution from source category (s); Ssi = median concentration of fingerprint 

property (i) in source category (s) n = number of fingerprint properties comprising the 

optimum composite fingerprint; m = number of sediment source categories.  

4. Results and discussion

4.1.Source group classification 

The first classification scheme separated samples into simple surface and subsurface sources 

(two source groups used in most published studies). The second source group classification 

used the tracer signatures in a two-step cluster analysis. A total of 7 Principal Components 

were identified in the tracer signatures accounting for 82.3% of the variance in the total data 

set. The tracer most strongly correlated with each Principal Component was identified (and 

are those shown in Table 3) and included in the two-step cluster analysis. The cluster analysis 

identified that a 3 cluster solution was optimal. The results presented in Table 3 suggest that 

these clusters are based on catchment geology (Figure 1) with cluster 1 representing 

ironstone-derived topsoils and channel banks (rich in vanadium and iron), cluster 2 

representing mudstone and diamicton (rich in lithium) and the third component representing 

limestone-derived channel bank material (rich in strontium and calcium). It is of note that 

limestone is not marked on the geology map (Figure 1) highlighting a potential shortcoming 

of a source classification schemes based only upon a geology or soil map as opposed to one 

which uses the tracer signatures for classification. Therefore, in the case of this study, the 

tracer signatures are likely to be more naturally defined according to local geology rather than 

as simple surface and subsurface sources. In other catchments this may be different, 
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reflecting land use (Walling et al., 1993) or soil type. These groupings were used to form the 

artificial mixtures used for testing in this paper. 

Table 3: The locations of cluster centres in the two-step cluster analysis (group 

classification method 2 only). The cluster with the highest value for each tracer is 

highlighted in bold (See Table 1 for a description of colour signatures). 

Cluster 

1 2 3 

Interpretation 

Oordial Ironstone and 

Sand and ironstone 

Mudstone 

and 

diamicton Limestone 

Percentage of total 

samples (78) in group 
9.0 70.5 20.5 

Green (intensity) 90.67 107.05 127.94 

SIRM (10-3 Am3 kg-1) 9.65 2.06 0.91 

Sr (mg kg-1) 58.48 36.65 109.2 

V (mg kg-1) 114.75 50.31 61.28 

Li (mg kg-1) 11.12 15.07 9.81 

Mo (mg kg-1) 0.75 0.56 0.55 

The third source group classification method used the three cluster groups as a starting point 

and split the surface and subsurface samples in each cluster group into their own separate 

groups. After doing this it was found that there was only one subsurface sample left in the 

ironstone subsurface cluster; as a result the subsurface ironstone source group was removed 

from further analysis. The source groups identified with scheme 3 can be seen in (Figure 2, 3) 

The source groups derived using each classification scheme were mapped on a diagram 

representing the down bank profiles at each sampling point (Figure 2). The location of each 

sampling point in the study catchment is shown in Figure 1. Mapping the two-step cluster 

analysis source groups (classification scheme 2) shows that the majority of ironstone 

classified samples are located in the centre of the catchment and on the surface (Figure 2). 

The limestone group classified samples are all located in subsurface material at sampling 



18 

sites 3, 4, 7 and 8. In contrast, clay and diamicton derived material is present throughout the 

entire study area.  

 From the viewpoint of a catchment manager wanting to know where to target mitigation 

measures, classification scheme 2, using only the cluster analysis, is perhaps the least useful 

since it could only identify how much sediment originated from some of the small outcrops 

of limestone and ironstone in the centre of the study catchment. The most useful 

classification scheme is number 3 with the greatest number of source groups.  

Figure 2: A simplified map of the source samples derived using the different source 

group classification schemes; each diagram represents the down bank profile with 

samples over the 0 m line originating from adjacent agricultural fields and samples 

immediately below the line being topsoil overlying the channel bank. 
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4.1. Within- and between-source group variability 

This section compares the percentage difference in median tracer signatures between the 

source groups and within-source group variability (mean coefficient of variability as a %) for 

the three source group classification schemes, using a tracer variability ratio (intra / inter 

group variability). 
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The cluster analysis derived source groups (classification scheme 2) greatly increased (by up 

to 2122%, median 194%) the variability ratios over the simple surface and subsurface source 

groups (scheme 1), indicating a greater difference in tracer signatures between the source 

groups and lower within-source group variability (Table 4). The variability ratios remained 

substantially higher than the simple surface and subsurface source groupings (scheme 1) 

when the cluster analysis based groups were split into a surface and subsurface component 

(scheme 3). These results thereby indicate that the lowest uncertainty would be propagated 

through to the unmixing model outputs with classification schemes 2 and 3 compared to 

scheme 1.  

Table 4: Source group median tracer concentrations, median absolute deviations 

(MAD) and tracer variability ratios for the different classification methods (the tracers 

shown are those selected in the PCA as representing 82.2% of variance in the total 

tracer dataset, not necessarily those used in the composite fingerprints).

1: Surface and subsurface source groups 

Group Name 

Number 

of 

samples 

SIRM Li Mo Sr V Green 

1 Surface Median 20 3.05 13.39 0.56 39.81 55.84 99.8 

MAD 0.87 2.96 0.13 13.45 14.19 3.2 

2 
Channel 

banks 
Median 58 1.42 12.27 0.52 38.55 51.88 111.5 

MAD 0.61 2.54 0.12 13.68 12.15 7.4 

Surface and channel 

banks 
Variability Ratio 1.50 0.39 0.29 0.09 0.29 2.15 

2: Two - step cluster source groups 

1 Ironstone Median 7 10.20 11.89 0.79 51.50 113.20 94.6 

MAD 5.69 3.22 0.20 5.90 41.65 3.3 

2 Clay Median 55 1.88 13.43 0.53 32.83 47.76 105.6 

MAD 0.58 2.96 0.10 7.93 9.79 4.2 

3 
Limestone 

subsurface 
Median 16 0.86 9.81 0.49 107.48 50.51 126.3 

MAD 0.23 2.50 0.12 46.58 16.04 6.2 

Ironstone and mudstone 

+ diamicton
Variability Ratio 1.89 0.47 1.51 2.04 2.02 2.79 
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Ironstone and limestone 

subsurface 
Variability Ratio 2.21 0.67 1.54 1.90 1.62 6.01 

Mudstone + diamicton 

and limestone 

subsurface 

Variability Ratio 1.87 1.13 0.38 2.06 0.21 3.71 

Maximum ratio 1.89 1.13 1.54 2.06 1.62 3.71 

3: Two - step cluster source with only clay surface sources reclassified 

1 
Ironstone 

surface 
Median 7 10.20 11.89 0.79 51.50 113.20 94.60 

MAD 5.69 3.22 0.20 5.90 41.65 3.30 

2 
Clay 

subsurface 
Median 41 1.65 13.43 0.53 33.76 51.60 108.10 

MAD 0.65 2.96 0.10 7.30 10.44 4.20 

3 
Limestone 

subsurface 
Median 16 0.86 9.81 0.49 107.48 50.51 126.30 

MAD 0.23 2.50 0.12 46.58 16.04 6.15 

4 
Clay 

surface 
Median 14 2.33 13.39 0.54 28.53 47.37 101.15 

MAD 0.89 2.96 0.12 7.11 12.23 1.75 

Ironstone surface and 

mudstone + diamicton 

subsurface 

Variability Ratio 1.76 0.47 1.51 2.08 1.91 3.39 

Ironstone surface and 

limestone subsurface 
Variability Ratio 2.21 0.67 1.54 1.90 1.62 6.01 

Ironstone surface and 

mudstone + diamicton 

surface 

Variability Ratio 1.64 0.46 1.35 2.45 1.86 2.48 

Mudstone + diamicton 

subsurface and 

limestone subsurface 

Variability Ratio 1.45 1.13 0.38 2.11 0.08 3.29 

Mudstone + diamicton 

subsurface and clay 

surface 

Variability Ratio 0.75 0.01 0.07 0.67 0.36 2.29 

Limestone subsurface 

and mudstone + 

diamicton  surface 

Variability Ratio 1.93 1.12 0.40 2.15 0.22 6.03 

Maximum ratio 2.21 1.13 1.54 2.45 1.91 6.03 

4.2 Discriminant analysis 

The GA-LDA produced composite fingerprints able to classify 100% of the source samples 

into their correct groups for all of the source group classification schemes. On this basis, all 

three classification schemes are suitable for achieving basic discrimination using the 

available tracers. The cluster analysis grouping method (scheme 2) required fewer tracers to 

achieve this discrimination than the other groups. Recent research by Sheriff et al. (2015) has 
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suggested that larger composite fingerprints may reduce uncertainty in some fingerprinting 

methodologies. It was, however, found that including additional tracers to increase the size of 

the fingerprint for source classification scheme 2 did not result in a significant change to 

unmixing model accuracy in this study, and for this reason, the results derived using the 

original smaller number of signatures are presented.  

Table 5: The optimum composite fingerprint selected for each source group 

classification scheme. 

Discriminatory 

power 
Tracers selected 

1: Original groups 100% SIRM, Red, Green, HRGB, IRGB, Al, K, Li, Mn, P, Sr, V, Zn 

2: Cluster analysis 

groups 
100% SIRM, IRGB, Fe, P, Sr   

3: Cluster groups 

with separate surface 

and subsurface 

components 

100% 
χlf, χam, Red, Green, Blue, HRGB, Colouration Index, Ba, Fe, 

Li, Mg, Sr 

4.1.Unmixing model outputs 

The artificial mixtures of known proportions of source samples (Table 2) were run through 

the unmixing model (Equation 1) using the composite fingerprints in Table 5, to assess how 

the different source classification schemes affected the accuracy of the source apportionment 

modelling results. Six of the seven mixtures were deliberately corrupted by sieving adding 

organic matter or using only a small number of samples from each source group (Table 2). 

This was done to mimic some of the key possible sources of tracer non-conservatism in the 

natural environment. 

Figure 3 shows some examples of the actual and modelled proportions of sediment from each 

source group in the artificial mixtures derived for the different source group classification 
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schemes. By way of summary, the results are only presented for one of the three samples 

unmixed and four of the seven mixture types. The full set of graphs are provided in the online 

supplementary material and the results are summarised in Table 6.  

The error bars representing the 5th to 95th percentile range of uncertainty in model results 

were very large with the simple surface and subsurface source groups (mean for all samples 

analysed 71.31% on the 0 – 100% contribution scale, standard deviation 18.19%) (scheme 1). 

The range of uncertainty was smallest with the cluster groups (mean 31.05%, standard 

deviation 12.90%) (scheme 2) and cluster groups split into surface and subsurface 

components (mean 38.63%, standard deviation 19.93%) (scheme 3).  

Figure 3: The actual (black) and modelled (grey) median proportion of sediment in one 

of the three artificial mixtures, fingerprinted using the different source grouping 
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methods, with 5th and 95th percentile uncertainty bars. The latter represent feasible 

unmixing model solutions. 

Table 6 summarises the mean differences between the actual and modelled contributions of 

each source to the sediment mixtures for every unmixing model run. The outputs of nearly 

every model run were statistically significantly different (P <0.05) to those of other models. 

For example, the source apportionment results of the mixtures with organic matter added 

were significantly different to those without organic matter added. The simple surface and 

subsurface source groupings (scheme 1) resulted in large errors (mean 15.8%), even when no 

alterations are made to the mixtures, but the actual composition of the mixtures did, however, 

mostly fall within the large range of model uncertainty when the mixtures were unaltered 

(Table 6; Figure 3). The mean percentage differences between median tracer concentrations 

in the source groups for the composite fingerprints used were 16.75% (scheme 1), 42.11% 

(scheme 2) and 34.71% (scheme 3) (Table 4). The small difference in tracer signatures 

between source groups using scheme 1 explains its poor performance, as the errors associated 

with laboratory tracer measurement were quantified as between 4.1% and 11.6%, which 

could remove much of the discrimination provided by the tracers used. Schemes 2 and 3 

produce far lower errors with the unaltered mixtures (Mean 7.7 and 10.1%). 

Using only part of each source group (either 10% of source samples or a samples only from 

specific cluster group in Table 3) in the mixtures to replicate sediment delivery from only a 

small part of the study catchment resulted in large errors in provenance apportionment when 

source group classification scheme 1 was used (mean 21.7%). Classification schemes 2 and 3 

had much lower errors (mean 12.9%). Therefore, where sediment delivery to a river is highly 

localised, significant errors could be introduced if source groups are classified on the basis of 
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catchment-wide generic subsurface / surface sources alone in a catchment with a 

heterogeneous geology or soil type when a composite fingerprinting approach is used. 

Sieving the artificial mixtures to <38 µm and 63 - 38 µm to replicate changes to fine 

sediment particle size during its transportation from source to river channel resulted in large 

errors (mean 28.6%) when scheme 1 was used and lower errors (mean 13%) when 

classification schemes 2 and 3 were used. The largest error resulting from any deliberate 

corruption to the artificial source mixtures was caused when the samples were sieved to 63 - 

38 µm (mean 23.8%). This large error possibly suggests that the basis for source 

discrimination may be significantly different between the < 38 µm and 63 - 38 µm fractions 

of the source samples. Previous research has reported such a finding. For example, Motha et 

al. (2003) and Pye et al. (2007) found higher concentrations of many tracers in fine, <20 µm, 

fractions of catchment source material. Alternatively, Horowitz and Elrick (1987) found 

anthropogenic pollutants such as Zn concentrated in coarser silts of stream sediments.  

When cotton wool was added to the artificial mixtures to replicate the enrichment of organic 

matter during sediment transport, this alteration counterintuitively slightly improved model 

accuracy (by a mean of 1.5%). It may be that the sediment coated the organic matter meaning 

that the sediment colour was not significantly changed by the organic addition. Alternatively, 

it is possible that measurement error (of up to 11.6%) caused the tracer concentrations 

measured in the mixtures to be too high. In this case dilution of the tracer signatures by 

organic matter may well result in the observed improvement. 

Table 6: Mean absolute differences (%) between the actual and modelled proportions of 

each sediment source in the artificial mixtures using the different sediment source 

classification schemes. The lowest difference for each mixture is highlighted in bold. 

Source classification scheme 
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1 

Surface and 

subsurface 

source groups 

2 

Two-step 

cluster 

groups 

3 

Two-step cluster 

groups with separate 

surface and subsurface 

components Mean 

No alteration 15.8 10.1n/a 7.7+ 11.2 

Cluster 3 channel 

banks samples 

only 

16.1* 12.1* 12.3* 13.5 

Random 10% of 

each source 

group 

26.8* n/a 15.5* 21.2 

Cluster 1 surface 

samples only 
22.3* 11.1* 13.7* 15.7 

10 – 30% organic 

matter added 
14.8 9.0* 5.4 9.7 

Mixtures sieved 

to 63 - 38 µm 
36.6* 15.6* 19.3* 23.8 

Mixtures sieved 

to <38 µm 
20.6 15.7* 12.7* 16.3 

Mean 21.8 12.3 12.4 

+ Significantly different model output distribution to the simple surface and subsurface

classifications (for contributions from surface sources), Kruskal Wallis test P <0.05. 

* Significantly different distribution to the unaltered mixture, Kruskal Wallis test P <0.05.

5. Conclusions

The findings of this paper demonstrate how small differences in tracer signatures between 

sediment source groups and a high within-source variability can introduce significant 

uncertainty into unmixing model results. As a result, it was found that the simple 

classification of catchment sources as generic surface and subsurface sources in a catchment 

with a heterogeneous geology resulted in large amount of error when using a composite 

fingerprinting approach. This error was significantly reduced by the cluster analysis based 

method, and was not significantly increased by splitting the cluster analysis source groups 

into surface and subsurface components to suit catchment management goals. Therefore, a 



27 

cluster analysis based classification method with the modification of cluster groups appears to 

be the optimum method within the Sywell Reservoir catchment. This is likely to be the case 

for many other river catchments.  

The effects of tracer non-conservatism were found to be substantially reduced by the high 

tracer variability ratio associated with the cluster analysis based classification methods. The 

reasoning behind this is that the source group signal of the tracers (inter-group variability) is 

larger than the noise of tracer non-conservatism with these methods. An additional advantage 

to the cluster analysis based methods is that far smaller errors are introduced by highly 

localised sediment inputs from only a small part of the catchment, which may have highly 

distinctive tracer concentrations (e.g. from the ironstone geology in the case of the Sywell 

study catchment).  

Whilst this paper found that the sediment source groups in the cluster analysis were strongly 

controlled by catchment geology it should be emphasised that this method is likely applicable 

to catchments with homogenous soil types, channel bank composition and anthropogenic 

tracer inputs. As a result, we would recommend consideration of objective source 

classification schemes in combination with the modification of source groups to suit 

management goals. On the basis of our findings here, the optimum classification scheme for 

applying sediment source fingerprinting in the Sywell catchment is presented in Figure 4).  
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Figure 4: A flow diagram of the optimum source classification scheme identified for the 

Sywell reservoir catchment. 
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6. Online supplementary data

Table S1: Loadings of the 7 largest principal components in the PCA analysis of tracer 

concentrations in the source samples. 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Rotation 

Sums of 

Squared 

Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

1 10.990 26.805 26.805 10.990 26.805 26.805 7.978 

2 7.610 18.560 45.365 7.610 18.560 45.365 4.776 

3 5.228 12.751 58.117 5.228 12.751 58.117 6.534 

4 3.676 8.967 67.083 3.676 8.967 67.083 5.886 

5 2.794 6.814 73.898 2.794 6.814 73.898 7.662 

6 2.031 4.954 78.852 2.031 4.954 78.852 2.915 

7 1.402 3.419 82.271 1.402 3.419 82.271 5.286 

Table S2. The PCA structure matrix of tracer signatures in the source samples values 

larger than 0.4 and smaller than -0.4 are highlighted. 

Structure Matrix 

Component 

1 2 3 4 5 6 7 

Green -.970 -.122 -.056 .079 -.444 .234 -.042 

IRGB -.969 -.129 -.042 .060 -.433 .228 -.029 

Red -.919 -.122 .254 -.184 -.324 .131 .064 

HRGB -.828 -.028 -.191 .262 -.485 .254 -.173 

Blue -.786 -.114 -.435 .368 -.463 .301 -.138 

Redness index .775 .176 .489 -.350 .568 -.180 .158 

LOI % .769 .468 -.302 -.160 .209 -.055 -.206 

Hue Index .755 .408 -.170 -.004 .208 .167 .053 

Mo .122 .826 .064 .007 .138 -.110 -.360 

Mn .089 .710 .348 -.233 .339 -.181 -.356 

Ba .188 .648 -.081 -.103 .003 -.558 -.443 

K .040 .643 -.078 .615 -.164 -.129 -.336 

Cu .033 .615 -.114 .445 -.299 -.014 -.480 
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Zn .320 .581 .526 -.061 .368 .081 -.176 

P .428 .493 .310 -.160 .471 .346 .112 

V .127 .137 .875 -.263 .515 .137 .129 

Fe .152 -.030 .847 -.115 .433 .283 .189 

Y .169 .079 .838 -.265 .622 .173 .125 

Ni -.170 .226 .793 .188 .061 .262 -.069 

Saturation index -.066 -.032 .771 -.597 .217 -.240 .212 

colouration index .277 .038 .720 -.618 .390 -.271 .221 

Zr -.118 -.003 .720 .450 -.051 .142 -.033 

SRGB -.446 -.051 .682 -.539 .001 -.098 .197 

Li -.116 -.086 .072 .898 -.183 -.153 -.096 

Mg -.233 .280 -.072 .864 -.381 -.102 -.347 

S -.058 -.271 -.156 .762 -.100 .326 .134 

B .088 .458 -.184 .701 -.179 -.148 -.318 

D90 .450 -.060 .135 -.642 .369 .017 .525 

SIRM .397 .086 .254 -.169 .969 -.002 .013 

Xlf .389 .114 .215 -.149 .960 .057 -.057 

Xarm .262 .057 .148 -.145 .918 .048 -.061 

Irm -100mT .416 .029 .223 -.138 .867 .053 -.054 

HIRM .245 .165 .180 -.146 .718 -.075 .091 

Pb .482 .502 -.038 -.144 .505 -.312 -.268 

Sr -.371 -.137 .248 -.106 -.029 .840 .155 

Ca -.372 -.332 .002 -.251 -.138 .740 .352 

Al .030 -.012 -.154 -.063 -.037 -.244 .176 

SSA -.093 .309 -.086 .160 .044 -.060 -.964 

D50 .079 -.333 .171 -.296 .160 .231 .943 

D10 .020 -.345 -.025 -.089 -.172 -.032 .903 

Span .189 .328 -.138 -.178 .000 -.268 -.829 
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Figure S1: Actual and modelled sediment source contributions to the artificial mixtures. 

Actual contributions are in dark grey and modelled contributions are in light grey. 
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