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Abstract 

Pollination of crops by animals is an essential part of global food production, but evidence 

suggests that wild pollinator populations may be declining while a number of problems are 

besetting managed honey bee colonies. Animal-pollinated crops grown today, bred in an 

environment where pollination was less likely to limit fruit set, are often suboptimal in 

attracting and sustaining their pollinator populations. Research into plant-pollinator 

interactions is often conducted in a curiosity-driven, ecological framework, but may inform 

breeding and biotechnological approaches to enhance pollinator attraction and crop yield. In 

this article we review key topics in current plant-pollinator research that have potential roles 

in future crop breeding for enhanced global food security. 



1. Introduction 

Pollination of crops by insects and vertebrates is an essential part of global food production. 

Recent reports have estimated that 35% of global crop yield depends on the activity of 

animal pollinators [1]. Yet, at the same time, evidence has started to accumulate that wild 

pollinator populations may be declining, while a number of different biotic and abiotic 

problems are besetting managed honey bee colonies [2]. In light of these two statements it 

is clear that pollination biology has a large, and increasingly urgent, role to play in protecting 

and maintaining global food supply. Crop breeding programmes select for agronomic traits 

such as yield or disease resistance [3]. Therefore, it is highly likely that insect-pollinated 

crops grown today, bred in an environment where pollinators were more abundant and 

pollination was less likely to limit fruit set, are suboptimal in terms of their floral traits with 

respect to attracting and sustaining their pollinator populations. Our aim in this article is to 

review a range of aspects of plant-pollinator research that have potential utility for crop 

breeders, and to highlight areas of the field where increased research effort might yield 

important agronomic improvements.    

2. Pollinators and crop production 

While wind-pollinated cereals still account for the majority of calories produced worldwide for 

human consumption, crop dependence on animal pollinators is increasing, and at a greater 

rate than honey bee colony production [4]. Around 75 % of the 115 highest producing crops 

worldwide benefit from greater yields when pollinated by animals, mainly bees [1] (Figure 1), 

with brazil nut, watermelon, cantaloupe, Cucurbita spp., cocoa, and vanilla the most 

pollinator-dependent of these [5]. Pollinators can also improve the quality of crops [6] and 

the nutritional value of pollinator dependent crops is perhaps even more important than their 

economic value. Pollinator-dependent crop production of vital micronutrients accounts for a 

large proportion of total production in many areas; for example the reliance on pollinators for 

vitamin A is close to 50% in Thailand [7].  

Research over the past few decades has documented declines in both wild pollinator 

populations and the abundance and health of managed honey bee hives. These two issues 

are largely separate, though have become conflated in the popular media [8]. “Colony 

collapse disorder”, parasites such as varroa, and, more recently, neonicotinoid pesticides 

have all been implicated in the reduction of the number of honey bee hives at a regional 

level, particularly in Europe and North America [9-11]. In contrast, the loss of diversity and 

abundance of wild pollinators such as social bumblebees, solitary bees, hoverflies, wasps 

and butterflies has mainly been attributed to changes in land use and reduction in the area 



of habitat available for foraging and life cycle completion, [12-14] a process, which in the UK 

at least, has deep historical roots [15**].  

The relative importance of honey bees and wild pollinators for agriculture depends upon 

both the crop and local management practices; in the UK and parts of the USA it is thought 

that wild pollinators are responsible for the large majority of crop pollination [16,17]. Wild 

bees have also been shown to improve fruit set in a wide variety of crop systems,   

independent of the abundance of honey bees [18**]. This implies that future habitat 

conservation efforts, particularly at a landscape scale, could provide both immediate and 

long-term benefits to agriculture in the form of locally enhanced crop production and 

insurance against fluctuations in wild pollinator abundance. Examples of such efforts are 

enhanced agri-environmental schemes on farms and appropriate restoration of post-

industrial areas, including landfill sites [19,20]. There is some evidence that conservation 

programmes in northern Europe may have slowed the rate of decline of some pollinators, 

but more research is required to substantiate this trend [15**,21**]. 

3. Plant-pollinator interaction research with implications for food security 

a. Crops as a resource for pollinators 

Insect-pollinated crops can provide a substantial nutritional resource to pollinator 

communities, which may help maintain their populations over generations. Mass flowering 

crops such as oilseed rape/canola (Brassica napus) are of particular interest in this respect 

as they provide a bonanza of food for pollinators [22]. However, because this reward is 

transient, the benefits to pollinators have been found to be species specific and dependent 

on timing [23-26*]. Phenological matching of crop flowering and pollinator activity could 

result in a two-fold benefit, improving the reproductive potential of pollinators and promoting 

more efficient pollination of crops both in current and subsequent years.   

In the example of oilseed rape, key lifecycle stages of the red mason bee Osmia bicornis (a 

solitary bee) occur concurrently with flowering, leading to increased reproductive success for 

the bees [25,26*]. Contrastingly, for bumblebees (Bombus spp.), while the temporary 

increase in resources that early flowering oilseed rape provides may help colony founding 

[22,24,27], a lack of food later in the season can lead to this not translating into an increase 

in the number of queens and males [24]. This can be resolved by complementing early 

flowering crops with late flowering crops in adjacent fields, or strips of semi-natural flower-

rich vegetation, ensuring a stable foraging supply over a longer period [28,29]. An alternative 

approach would be to coordinate crop flowering with key life cycle stages for pollinators, by 

breeding for different flowering times as appropriate. In crops such as oilseed rape and the 



field bean (Vicia faba) QTLs for both flowering time and duration have been identified and 

the molecular basis of these traits is well defined [30-32].   

b. Exploiting multiple pollinators 

The ability of flowering plants to utilize multiple pollinators can be beneficial in ensuring fruit 

set. The majority of flowering plants engage in flexible relationships with their pollinators that 

are variable within populations, and over both time and space [33]. This variability can be at 

the level of species within broad taxonomic/functional groups (e.g. use of different large bee 

species) or use of pollinators from very different groups (e.g. bees and birds, or butterflies 

and bees). Much of this flexibility depends upon the local ecological context in which a plant 

finds itself [33-35]. 

This also applies to most crop plants, where the effective pollinators will be determined by 

the plant's floral biology and the locality, season and year in which it is planted. For example, 

in manipulative caged plant experiments it was shown that various bumblebees are the main 

pollinators of field beans, with honey bees (Apis mellifera) and red mason bees playing a 

secondary role; in contrast the same groups plus hoverflies (Episyrphus balteatus) are 

equally good at pollinating oilseed rape [36]. Under field conditions, the importance of these 

different groups will depend upon their visitation rate to flowers, which is largely determined 

by their abundance, which will fluctuate over time and space. These findings probably apply 

to the majority of crops grown worldwide as most are relatively generalised in their 

interactions with local and managed pollinators.  

Looking at which floral traits change in response to different groups of pollinators over the 

course of evolution may provide insights into which traits would be useful to target in 

breeding programmes to improve pollinator visitation. If a floral trait changes repeatedly in a 

phylogenetic context it is available for selection to target. However, if a floral trait is fixed, 

either no genetic variability is present, or else the trait is constrained by its developmental or 

functional basis. For example, flower colour is a trait with astonishing lability over 

evolutionary time and the potential to discriminate between pollinator types. Multiple 

evolutionary shifts from hummingbird to moth pollination in Aquilegia have been associated 

with independent losses of anthocyanin production [37]. The molecular basis of many such 

shifts is attributable to changes in the transcription factors that regulate the pigment 

synthetic pathway (reviewed by [38]), and similar changes can cause variations in the 

pattern of floral pigment, generating spots, veins and other nectar guides that are 

differentially used by different pollinators [39,40*,41]. However changing a single trait such 

as flower colour alone is unlikely to affect the type and diversity of pollinators to a crop 



because it must be backed up by a change in the quality or quantity of the reward being 

offered, and its accessibility to particular pollinators. 

c. Attracting more of whatever pollinators there are  

From the pollinator’s perspective, it may be a floral trait’s utility as an indicator of reward 

rather than its inherent attractiveness that is most important (e.g. [42,43**]). The importance 

of honest signals for foraging decisions of bees was recently demonstrated by Knauer and 

Schiestl [43**] who showed that bumblebees specifically selected for a volatile signal which 

correlated with floral reward in Brassica rapa. Floral scent may be particularly useful for 

pollinators as an honest trait [44], although the most honest traits are those physically linked 

to the reward itself [45].  

In order to successfully utilise floral traits for crop improvement, it is important to understand 

how they attract pollinators. Recent experiments with volatile cues have highlighted the 

complexity of their function. Experimentally augmenting floral scent increased pollinator 

attraction for Hesperis matronalis [46], but only with specific components of its floral 

bouquet. In contrast, a similar experiment with Curcurbita pepo had no effect on pollinators 

but increased visits from florivores [47]. Similar dynamics can occur with visual cues [48,49] 

for example the showy bracts of Dalechampia scandens are attractive to both pollinators and 

seed predators [48]. Balancing these potential costs of trade-offs from traits with multiple 

effects will be necessary for selecting appropriate crop breeding strategies [49]. 

d. Manipulating floral reward 

Since pollinators often visit flowers to harvest nectar and pollen, breeding programmes that 

improve reward production, nutritive value or availability perhaps have the most potential to 

enhance pollination and fruit set of crops reliant on both wild and managed pollinator 

populations. The mean reward value of nectar encountered by a pollinator has been shown 

to be positively correlated with the proportion of flowers visited on a plant, the time spent on 

a flower, flower constancy, and the number of unrewarding flowers that will be visited before 

moving to a new patch [50-52]. These factors should enhance overall pollination rates of a 

crop but may also increase the proportion of self pollen received [52]. For crop systems such 

as the field bean, which benefit from both self and non-self pollen [53], this will not 

necessarily have a negative impact, but for others the optimum size of the reward to deliver 

maximum yields may need to be more carefully assessed. 

 

Nectar is rarely just a simple sugar solution. Beside sugars, nectar can contain amino acids, 

nectarin proteins, volatile compounds, minerals, and secondary metabolites such as 



phenolics and alkaloids [54,55**,56 and references within]. The additives to the nectar listed 

above may have nutritive value, but some also have the potential to modify pollinator 

behaviour, or defend against microbes and nectar thieves. For example, the amino acids 

proline and phenylalanine act as phagostimulants, causing insects to visit more flowers than 

they would usually. Other compounds such as non-protein amino acids (reviewed by [57]) 

and caffeine [55**] also have the capability to increase the number of visits a flower 

receives. 

Recent studies have identified transcription factors from the MYB family as regulators of 

nectar production in Arabidopsis (AtMYB57) and Nicotiana (NtMYB305) [58,59]. MYB305 

has been shown to regulate nectarin production through NECTARIN genes [60] and starch 

accumulation during nectary development and thus the amount of nectar secreted [59]. 

Nectar secretion is also under the control of plant growth regulators jasmonic acid and auxin 

[58,61,62]. Downstream, the sugar transporter AtSWEET9 is involved in the export of sugars 

into the nectary [63**]. This export is coupled with the hydrolysis of sucrose into glucose and 

fructose by CELL WALL INVERTASE 4, providing a sink for sucrose export and allowing 

sugars to accumulate [64]. One area worthy of more attention is how the ratio of 

sucrose:hexose in nectar is controlled and what consequences this has for the 

attractiveness of a crop to different pollinators. 

For pollinators that obtain their nutrition solely from flowers, pollen is a vital source of 

nitrogen from which to rear offspring. As well as proteins and amino acids, pollen contains 

lipids, vitamins, and sometimes starch [65,66]. As the chemical composition of pollen varies 

between plant species [66], its nutritional value to pollinators will also differ. Experienced 

pollen foragers are able to determine the nutritional quality of pollen and preferentially 

choose those containing a greater content of essential amino acids leucine, isoleucine and 

valine [66,67]. Therefore, a potential route to increase pollinator visitation to crops could be 

to manipulate pollen quantity by altering the expression of pollen-specific nutrient 

transporters, such as amino acid transporters (eg. AtLHT genes, NsAAP1, LeProT1; 

reviewed by [68]) which have been identified in Arabidopsis, tobacco and tomato. 

 
Ultimately, when looking to increase crop yields through the enhancement of floral yields, 

there is still a lot of research on the genetic basis of the quantity and quality of floral reward 

produced to be done, which will allow a more targeted approach to crop breeding. Nectar is 

a much less costly reward for plants to produce in terms of nitrogen (and also in terms of 

gametes not available for reproduction) and may therefore hold most promise for improving 

pollinator visitation. However, in the context of trying to support pollinator populations by 



providing resources for reproduction it will also be important to consider whether crops 

provide a suitable pollen source to allow reproduction to occur. 

e. Optimising efficiency of reward acquisition 

The energetic reward provided by a plant can also be increased by reducing the costs 

incurred by a pollinator in obtaining it. The symmetry of a flower influences how easily a 

pollinator can acquire the reward by specifying the presence and position of landing 

platforms and occluded palates that require force to open. In Antirrhinum majus a 

transcriptional network comprising TCP and MYB family transcription factors has been 

shown to specify zygomorphy (bilateral symmetry) [69-72]. The mutants generated during 

these studies have provided insight into how pollinators forage to optimise their energy 

return. In wild type flowers bumblebees alight on the landing platform and generate sufficient 

force to open the palate and access the nectar, whereas other insects cannot; for example 

honey bees, which can only exert around a tenth of the force of bumblebees [73]. Mutants 

with all their petals ventralised are closed and inaccessible to pollinators (BJG, unpublished 

data). In contrast, mutants with all their petals dorsalised are open and readily accessible to 

a range of pollinators, including honey bees, but experience reduced visits by long-tongued 

bumblebees, likely as a result of nectar depletion by other foragers [74]. These extreme 

variants hint at the possibility of optimising floral symmetry and pollinator visitation using less 

extreme natural variation. In alfalfa it has been shown that the force required to open a 

flower is heritable and an easier to open flower is correlated with a greater rate of flower 

opening under field conditions [75].  

At a finer scale, the shape of epidermal cells on the flower surface can influence the 

energetic efficiency of foraging. Whitney et al. [76] showed that Bombus terrestris foragers 

prefer flowers with conical epidermal cells to those with flat epidermal cells, but only when 

flowers were oriented vertically. Similarly, Alcorn et al. [77] found that flowers with conical 

epidermal cells were preferred when flowers were moving, but not when they were 

stationary. Conical epidermal cells enhance foraging efficiency by providing a surface into 

which the tarsal claws of bees can grip. Variation has been found within and between 

species in the extent and distribution of conical epidermal cells ([78]; EJB and BJG, 

unpublished), suggesting that this trait has potential as a breeding target for optimised 

pollinator attraction. 

4. Conclusions  

Although the various traits discussed above, and summarized in Figure 2, have potential as 

targets of crop breeding, there are surprisingly few published examples of research 



specifically analyzing or targeting yield through animal pollination. Perhaps the most 

extensive studies have been by Suso and colleagues, who have investigated how a number 

of floral traits affect outcrossing of the field bean (Vicia faba) [eg. 79,80*]. Traits such as 

standard petal dimensions, number of inflorescences, ovary length, and pollen content are 

all associated with changes in outcrossing level and by extension with animal pollination.  

Much more work is needed to define how pollination biology can contribute to crop 

production, and it will also be important to consider the interaction between plant and 

pollinator in the wider context of the many other factors influencing pollinator numbers.  

However, as substantial variation appears to be present in a wide range of crops and floral 

traits [54,80*,81] - from the level of floral display right down to the size of reproductive 

structures – we are confident that there is great potential for additional research in this area 

to inform the breeding of higher yielding, more insect-friendly crops.  
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Figure Legends 

Figure 1. Crops and their pollinators. The pollinator shown is not necessarily the principal 

pollinator. A Sunflower with Aglais io. B Radish with beetle and fly pollinators. C Blueberry 

with Bombus ternarius. D Tomato with Bombus terrestris. E Apple with Apis mellifera. F 

Field bean with Bombus hortorum. G Coffee with Apis mellifera. For image credits please 

refer to the Acknowledgements. 
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Figure 2. Floral traits affecting pollinator visitation. The floral traits highlighted at the 

level of the crop, plant and flower may make useful targets for crop breeding programmes to 

enhance pollination rates. 
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