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Abstract: 

 

This commentary discusses the role of long-term climate change in driving increases 

in soil erosion. Assuming that land use and management remain effectively constant, 

we discuss changes in the ability of rainfall to cause erosion (erosivity), using long 

daily rainfall data sets from south east England. An upward trend in mean rainfall per 

rain day is detected at the century-plus time scale. Implications for soil erosion and 

sediment delivery are discussed and evidence from other regions reviewed. We 

conclude that rates of soil erosion may well increase in a warmer, wetter world. 

 

Commentary: 

 

The erosive power of rainfall can be expected to change as climate changes (Nearing, 

2001). The importance of a ‘trend toward more precipitation occurring in more 

extreme events and shorter return periods for heavy precipitation’ has been recognised 
in the U.S. climate record (Soil and Water Conservation Society, 2003) and similar 

observations have been made in the UK (Maraun et al., 2008).  Whilst climate, 

vegetation, and soil can be coupled in a variety of complex ways, here we start to 

address the role of climate change on soil erosion by isolating changes in the ability of 

rainfall to cause erosion (erosivity), setting aside the impacts of other changes, in 

particular, land use and management. In the latter half of the 20
th

 century, the most 

important influence on soil erosion in south-east England was the shift from grassland 

to arable, associated with mechanisation and the intensification of agricultural 

production (Boardman, 2013; Howden et al., 2013). Nowadays, an arable 

monoculture dominates, although some further changes, in particular the recent 

introduction of the highly erodible crop maize, may still be of significance in terms of 

changing erodibility. However, assuming constant land use and management, we are 

able to examine the influence of climate change on soil erosion. Are we able to detect 

significant changes in rainfall erosivity over the long term? 

 

mailto:t.p.burt@durham.ac.uk


We examined a number of very long daily rainfall records for selected meteorological 

stations in south-east England (Figure 1). It is important to examine very long time 

series because, when viewed over shorter time periods, such records can show a 

variety of trends, increasing or decreasing, because of natural, long-term oscillations 

(Hirsch and Archfield, 2015). Using very long records allows us to detect subtle, 

underlying trends within noisy records (Burt, 1994). Where gaps were present, data 

from nearby stations (usually within a few kilometres) were inserted (Table 1); note 

that the Kew Gardens gauge closed in 1980 but fortunately there were many stations 

nearby in SW London recording daily rainfall totals. Petworth and Cambridge have 

the most complete records at a single site. No attempt was made to adjust infill data 

given the proximity of stations; correlations between adjacent site records is very high 

(e.g. for Falmer and House Dean Farm: R
2
 = 0.95, n = 3652). 

 

Records were compiled for total seasonal and annual rainfall (mm), numbers of rain 

days (daily total of at least 0.25 mm), mean rainfall per rain day, and the number of 

heavy falls of rain (2-day totals of at least 30mm, an index known to relate to 

incidences of soil erosion in the region: Boardman and Favis-Mortlock, 1993). 

Pearson correlation coefficients were calculated for each time series (Table 1). In all 

cases, there is a general decrease in the number of rain days and a consequent increase 

in the mean rainfall per rain day. There are fewer significant trends in total rainfall or 

for heavy falls of rain. Figure 2 shows annual results for Falmer, near Brighton, on the 

south coast. Whilst the long-term increase in annual rainfall total is only just 

statistically significant (p = 0.011), there are highly significant trends for number of 

rain days, for mean rainfall per rain day and for number of 2-day totals above 30mm. 

Although results do differ locally, there is a strong suggestion that, for these stations, 

which lie close to the European mainland, mean rainfall per rain day has increased 

over the last century. Why might this be significant in terms of Earth surface 

processes and might we expect to see similar results elsewhere? 

 

The results for the Falmer gauge are of especial interest as it is at the centre of the 

eastern South Downs, an area intensively studied in terms of erosion and off-site 

effects (e.g. Boardman, 2003).  Rainfall per rain day has been increasing for all 

seasons including autumn and winter when a very high proportion of the erosion 

occurs on winter cereal fields (Table 1). In the Petworth area, for example, severe 

erosion occurred in 2000 and 2006, associated with exceptionally high rainfall totals 

for autumn and early winter months (Boardman et al., 2009). Of course, intense 

rainfall can cause erosion at other times of the year, for example, convectional storms 

in early summer on recently cultivated maize fields (Boardman et al., 1996).   

 

In regions where observational coverage is sufficient for assessment, the latest 

Intergovernmental Panel on Climate Change Report (IPCC 2014) concluded that there 

is medium confidence that anthropogenic forcing has contributed to a global-scale 

intensification of heavy precipitation over the second half of the 20th century. It is 

very likely that global near-surface and tropospheric air specific humidity has 

increased since the 1970s. There are likely more land regions where the number of 

heavy precipitation events has increased than where it has decreased. Averaged over 

the mid-latitude land areas of the Northern Hemisphere, precipitation has increased 

since 1901 (medium confidence before and high confidence after 1951). For other 

latitudes, area-averaged long-term positive or negative trends have low confidence. 

Extreme precipitation events over most mid-latitude land masses will very likely 



become more intense and more frequent as global mean surface temperature 

increases. Not surprisingly, examples are accumulating from around the world, 

showing a long-term increase in rainfall erosivity. For example, in south-eastern 

Australia, the period since the late 1940s has been wetter than the first four decades of 

the 20
th

 Century (Pittock, 1975). Examination of the annual rainfall erosivity values 

for Sydney showed that, for the period since 1949, both rainfall erosivity and rainfall 

amount were significantly higher compared to the period from 1922 to 1948 (Yu, 

1995). In Belgium, Verstraeten et al (2006) showed that, whilst no significant 

monotonic trend in the annual R factor (of the Universal Soil Loss equation) could be 

observed over the entire study period (1898-2002), a standard normal homogeneity 

test showed significantly higher rainfall erosivity (+31%) for the period 1991–2002 

compared to the rest of the record. In the central United States, records of daily 

rainfall accumulations from 447 rain gauge stations were used to assess past changes 

in the frequency of heavy rainfall, using a peaks-over-threshold approach (Villarini et 

al., 2013). The results point to increasing trends in heavy rainfall over the northern 

part of the region, the area with the largest increasing trends in temperature and, 

consequently, atmospheric water vapour.  In the eastern Karoo, South Africa, average 

rain per rain day has steadily increased over the last 100 years to a value of 12 mm 

which is above the observed threshold for runoff on bare, badland areas (Boardman 

and Foster, 2008). 

 

We agree that the first-order control on soil erosion is likely to be the way in which 

land is managed. However, in many regions, arable farming now dominates, meaning 

essentially no further change in soil erodibility therefore. This means that changes in 

the erosive effect of rainfall, in many ways a second-order effect, can assume greater 

relative importance, especially in relation to future climate change in a warmer world. 

The results presented here suggest that further work on rainfall regimes and in 

particular metrics such as rain per rain day would bear fruit in relation to predicting 

likely changes in soil erosion and sediment delivery.  Previous work, which shows 

likely increases in erosion by water on arable land in south east England associated 

with modelled climate change, is based on the assumption of no change in climate 

variability (Boardman et al., 1990; Favis-Mortlock et al., 1991); current upward trends 

in rain per rain day suggest this may not be the case. It would also be interesting to 

examine sub-daily rainfall data; whilst such records (usually hourly totals) are 

relatively short, often with many short gaps, there may well be important information 

to be gleaned on changing patterns of rainfall intensity in the recent past (Blenkinsopp 

et al., submitted). Finally, we note that increases in the ability of rainfall to cause 

erosion (i.e. erosivity) are, of course, only one aspect of the way in which soils are 

responding to climate change; increasing temperature is probably very important too, 

for example, causing the decline of soil carbon content (Barraclough et al., 2015) and 

thereby increasing erodibility. 
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Station Falmer Petworth Eastbourne Cambridge Kew 

Start of record 1904 1907 1888 1900 1871 

Data infill (%) 8.7 0.1 3.4 0.3 16.0 

Total  Winter      

 Spring      

 Summer  -0.463   -0.194 

 Autumn      

 Year 0.240     

RD Winter -0.397  -0.199  -0.296 

 Spring -0.370  -0.185  -0.283 

 Summer -0.342 -0.195 -0.248  -0.365 

 Autumn -0.289    -0.408 

 Year -0.603 -0.190 -0.385 -0.242 -0.602 

R/ RD Winter 0.556  0.317 0.221 0.356 

 Spring 0.433  0.293  0.295 

 Summer 0.422     

 Autumn 0.424 0.192  0.242 0.284 

 Year 0.711  0.404 0.317 0.442 

2-day Winter 0.267  0.236   

total Spring      

>30 mm Summer 0.204     

 Autumn      

 Year 0.325     

 

Table 1. Seasonal and annual correlations over time for various rainfall metrics for 

five locations in south east England. Only significant results are shown: p < 0.05 for 

results in standard font; p < 0.01 in italics; p < 0.001 in bold. All records finish at the 

end of 2014 except Eastbourne (2012). 

 

 

  



Figure captions 

 

1. Map showing locations of the selected meteorological stations. 

 

 

 

  



2. Long-term trends in annual rainfall metrics at Falmer, Sussex, England. (a) 

total rainfall; (b) number of rain days; (c) mean rainfall per rain day; (d) 

number of days with 2-day totals of at least 30 mm. 

 

 


