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Abstract 

Purpose: A methodology was developed to evaluate and mitigate the impacts of particle size 

and post-depositional diagenesis when using mineral magnetic signatures to trace the sources 

of historically deposited sediment in farm dams in the South African Karoo. 

Materials and methods: Samples from a range of potential sediment sources were sieved to 

different particle size fractions and the relationships between pairs of tracer signatures were 

established for each fraction. Non-conservatism of the magnetic signatures was determined 

by identifying whether the magnetic signatures of the farm dam sediments were within the 

range of those of the fractionated source samples. By fractionating the sediment source 

samples the core samples were able to be traced using appropriately sized sources.  

Results and discussion: It was found that strong relationships existed between the pairs of 

tracer signatures at all particle size fractions. Relationships in the < 32 µm fraction were 

significantly different to that of coarser fractions. It was also found that particle size had a 

large effect on all magnetic signatures and would prove to be a large source of uncertainty if 

not accounted for within any methodology developed for quantitative source discrimination 

and source apportionment. There was very little non-conservatism caused by diagenetic or 

biogenic processes in six of the seven dams sampled. In one dam there was evidence to 

suggest that dissolution had probably caused the loss of almost all small suparparamagnetic 

and stable single domain grains. The other signatures associated with coarser magnetic grains 

in this dam were generally unaffected by the dissolution processes. 
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Conclusions: The good preservation of magnetic signatures suggests that they can make 

reliable tracers over historical timescales (up to 164 years) in the Karoo and similar semi-arid 

catchments. However, the mitigation of particle size effects and screening for post 

depositional alteration is an essential part of their use. The methodology presented in this 

paper is a potential way of recognising tracer non-conservatism and limiting its effects in 

future studies. 

 

Keywords  Historically deposited sediment • Karoo • Mineral magnetic signatures • Non-

conservatism • Particle size 
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1. Introduction 

Mineral magnetic signatures have a well-established history of use when reconstructing 

changing sediment sources (Caitcheon 1993), pollutant dynamics (Lu et al. 2007), and 

paelaeoclimatic conditions (Peck et al. 1994). The application of magnetic signatures for 

source tracing is dependent upon their ability to discriminate between sediment sources 

(Collins and Walling 2002) and the assumption that they are not altered during sediment 

transport or long-term storage (Foster and Lees 2000; D’Haen et al. 2012; Koiter et al. 2013). 

Magnetic signatures in soils and subsurface material can be classified as either primary 

(originating from parent material before weathering) or secondary (formed through chemical 

processes and biogenic effects) (Thompson 1986). Source discrimination using primary 

signatures utilises differences in lithology (Shenggao 2000) and anthropogenic inputs of 

magnetic grains usually deposited on, and incorporated into, topsoil as a result of the fallout 

of atmospheric pollutants (Zhang et al. 2012). Secondary signatures are formed at different 

rates in different soil types (Maher 1998) and through diagenetic processes in soils and 

subsurface material, providing additional potential for the discrimination of sediment sources. 

Depositional environments such as lakes and floodplain are commonly sampled to 

reconstruct sediment yield and evaluate past sediment sources (Foster et al. 2007; Foster 

2010). Within these depositional environments, magnetic signatures can be classified as 

being detrital (originating from catchment sources) or as being secondary biogenic and 

diagenetic signatures (altered within the place of deposition through chemical or biogenic 

processes) (Wheeler et al. 1999).  The accurate use of magnetic signatures for quantitative 

source tracing is dependent upon distinguishing the detrital primary and secondary signatures 

from the noise (variability) of secondary magnetic signatures produced in the place of 

deposition. Pulley et al. (2015) showed that, without a sufficiently strong detrital tracer 
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signature in the form of large differences in tracer concentrations between sediment sources, 

uncertainty can significantly alter sediment provenance estimates. An example of the 

difficulties associated with identifying the detrital signature was shown by Wheeler et al. 

(1999) who found that biogenic and diagenetic signatures overprinted and degraded the 

detrital signatures in salt marsh sediments.  

The dissolution of magnetic grains under anoxic / reducing conditions has been shown to 

cause a coarsening of magnetic grain size due to the preferential dissolution of fine-grained 

magnetite (Anderson and Rippey 1988; Roberts and Turner 1993; Foster et al. 1998). The 

coarsening grain size results in a higher proportion of high coercivity haematite-type minerals 

in relation to soft magnetite type grains within the sediment. Under anoxic / reducing 

conditions, the in-growth of magnetic iron sulphides has also been shown to significantly 

alter magnetic signatures. Anoxic ingrowth is characterised by the presence of 

superparamagnetic (SP) Pyrite and ferrimagnetic Greigite (Snowball and Thompson 1988; 

Liu 2004; Rowan 2009). Greigite can be identified by a high ratio (>>30) of saturation 

isothermal remanent magnetisation to low frequency magnetic susceptibility (Roberts 1995). 

The decomposition of organic matter within sediments has been identified as a causal factor 

in dissolution and iron sulphide formation processes (Williams 1992). Biogenic alterations to 

magnetic signatures are often characterised by the in-growth of stable single-domain 

magnetite formed intracellularly by magnetotactic bacteria in lake sediments (Li et al. 2009). 

Their presence at significant concentrations can usually be identified when the ratio of 

susceptibility of anhysteretic remanence magnetisation (χarm) to saturation isothermal 

remanence magnetisation (SIRM) >>2) (Foster et al. 2008). 

Magnetic signatures have been shown to be strongly affected by sediment particle size, 

introducing additional uncertainty to their use (Maher 1998; Blake et al. 2006). Therefore, 

there is a requirement to separate biogenic, diagenetic and particle size effects for the correct 
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interpretation of the stability of signatures in deposited sediment. It has proven difficult to 

mitigate particle size effects on magnetic signatures due to the often non-linear relationships 

that exist between magnetic properties and particle size (Foster et al. 1998; Oldfield et al. 

2009). 

The aim of this study was to develop a methodology to identify the particle size dependant, 

biogenic and diagenetic mineral magnetic signatures and understand their impacts on the 

interpretation of the detrital (originating from within the catchment) sediment provenance 

signal present in historically deposited sediment.  

 

2. Site description 

The study was undertaken in the central Karoo region of the Eastern Cape of South Africa 

(Fig. 1). This semi-arid environment has an annual rainfall of 423 mm (1908 – 2002 

measured at Gordonville farm, Graaff-Reinet, South Africa) (Grenfell et al. 2014). The 

lithology of the region is primarily sedimentary deposits of Upper Permian shale in lowland 

areas, Quaternary colluvium and fluvially deposited sediments in valley bottoms and Triassic 

sandstones and Jurassic dolerites at high altitude. Soils are generally shallow and poorly 

developed, often lacking an A and sometimes a B horizon (Boardman 2003). The land in the 

catchment is primarily utilised for stock grazing, however valley floors have historically been 

cultivated for wheat and lucerne. The area is characterised by high sediment yields of up to 

1096 t km-2 y-1, which have been attributed to a number of factors including grazing 

pressures, cultivation and increased connectivity caused by the development of gullies and 

badlands after European colonisation in the second half of the 18th century (Fox 2000; Foster 

et al. 2007; 2012). The characteristics of the study catchments are summarised in Table 1 and 

in greater detail by Foster et al. (2012). 
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3. Materials and methods 

 

3.1. Field and Laboratory methods 

 

Samples of potential sediment sources were classified as topsoils (the top of the existing soil 

profile) on different rock types and subsurface material. Nineteen samples were obtained 

from shale topsoils, 14 from dolerite, 10 from sandstone, and 20 samples were collected from 

subsurface valley floor colluvium. Each sample was collected using a non-metallic trowel 

and consisted of an amalgamation of 10 subsamples from within a 10 m radius of the 

sampling point. Topsoil samples were collected from a depth of 0 to 10 cm which usually 

represented most of the depth of the upper soil horizon. Subsurface samples were collected 

from the lower and middle horizons of visibly eroding channel banks, excluding the upper 20 

cm which is likely to represent surface material.  

A ca. 200 g subsample of each source sample was ultrasonically dispersed using a Labotec 

(Midrand, South Africa) LC130H unit (35 kHz) for 10 minutes in 400 ml of deionised water 

before being wet sieved through stainless steel sieves to seven particle size fractions: 2000 – 

1000µm, 1000 – 500 µm, 500 – 250 µm, 250 – 125 µm, 125 – 63 µm 63 – 32 µm and < 32 

µm. The duration of the ultrasonic treatment was determined to be sufficient to fully disperse 

the samples through repeat testing. 

Sediment cores from seven dams that had been sampled previously provided data that could 

be compared to the potential source samples. Cranemere Dam, Compassberg Dams 7, and 10 

and the Ganora Dam had been previously analysed for magnetism, dated and discussed in 

detail by Foster et al. (2007; 2012). The analysis of Compassberg dams 37, 53 and 94 used 

previously unpublished data. The cores were retrieved from dams 37 and 94 using a 50 cm 

long, 5 cm diameter Russian corer following the methods of Foster et al (2012). Dam 53 was 

breached by a major flood in 1974 and sediment had been excavated from the dam by a 
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rapidly down-cutting river. Here, samples were taken from a cleaned exposed section 

approximately 50 m upstream of the dam wall. Each core was horizontally sliced into 41 – 73 

sections with the median section thickness being 3 cm. The sediment core and source samples 

were oven dried at 40°C and manually disaggregated using a pestle and mortar prior to 

analysis. The core samples were not sieved prior to analysis due to the limited quantities of 

material available for analysis. 

The organic matter content of the cores was measured using loss on ignition (LOI) at 450 °C 

following the methods of Grimshaw et al. (1989) and their magnetic signatures were 

corrected for the effects of organic matter accordingly using the methods of Lees (1999). 

During the sieving of the source samples organic matter was removed by allowing the 

minerogenic particles to settle for 24 hours before pouring off excess water and suspended 

organic matter. Loss on ignition was not analysed on the source samples due to the limited 

quantities of sample available for analysis. However, the LOI of the unsieved source samples 

was found to be low (mean 2.7%) and was judged not to represent a significant source of 

uncertainty. The particle size of the source and sediment samples was measured using a 

Malvern Instruments (Malvern, UK) Mastersizer 3000 laser granulometer using the methods 

previously published by Foster et al. (2007; 2012). 

The magnetic signatures for all samples were measured following the procedures laid out by 

Lees (1997) using ~ 10 g of each source and core sample packed tightly into 10 ml 

polystyrene sample containers. Low Frequency Susceptibility (χlf) and Frequency Dependant 

Susceptibility (χfd) were measured using a Bartington Instruments (Witney, UK) MS2b 

sensor. Anhysteretic Remanent Magnetisation (ARM(40µT)) was measured using a 

Molspin® anhysteretic remanent magnetiser and Molspin® (Witney, UK) slow-speed spinner 

magnetometer and was normalised to field strength to produce Susceptibility of ARM (χarm). 

Saturation Isothermal Remanent Magnetisation ((SIRM) 1T), Soft Isothermal Remanent 



8 

 

Magnetisation (Soft IRM(-100mT)) and Hard Isothermal Remanent Magnetisation (HIRM) 

were measured using a Molspin®  pulse magnetiser and Molspin® slow-speed spinner 

magnetometer. Parameter values and ratios were calculated following the procedure detailed 

by Foster et al. (2008). 

 

3.2.The assessment of conservatism of magnetic tracers 

 

The procedure used to assess the conservatism of the magnetic signatures is summarised in 

Fig.2. This method was preceded by the use of a linear discriminant analysis in SPSS 20 to 

determine if the tracers used were able to successfully discriminate between the sediment 

source groups. The potential sediment sources were analysed to firstly identify the 

relationships between the different magnetic signatures and secondly to examine the impact 

of particle size on these relationships. The data from the sediment cores were then examined 

to determine if these observed relationships were maintained in the sediments of the 

appropriate particle size or if they had been altered by biogenic and / or diagenetic effects. 

Pairs of magnetic signatures were included in bi-plots to identify the potential non-

conservatism of the six magnetic signatures measured (χlf, χfd, χarm, SIRM, Soft IRM and 

HIRM).  

The plot of χfd against χlf was used to identify the loss or gain of small SP grains (<0.02 µm 

diameter) in relation to the overall magnetic susceptibility. Dissolution of minerals has been 

shown to start with smaller grains (Anderson and Rippey 1988) and an increase in χfd has 

been shown to indicate an early phase of sulphide formation (Rowan 2009).   

χarm was plotted against SIRM to identify the in-growth or dissolution of χarm carrying 

stable single domain grains (SSD) in relation to the total magnetic remanence (SIRM). SSD 

grains have been shown to be formed by the in-growth of bacterial magnetites and therefore 
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this process can be identified in this bi-plot (Li et al. 2009). SSD grains are also small (0.02 - 

0.4 µm diameter) and therefore would be expected to be dissolved preferentially before other 

remanence carrying grains (SIRM).  

Soft IRM was plotted against SIRM to represent the S – Ratio in order to identify the 

dissolution or ingrowth of ‘soft’ magnetite type minerals in relation to ‘hard’ haematite type 

minerals.  

Finally SIRM was plotted against χlf to indicate a gain or loss of remanence carrying 

minerals in relation to the overall magnetic mineralology of the sediment. A high χlf / SIRM 

ratio is also indicative of the ingrowth of iron sulphides such as greigite (Roberts 1995). 

Where potential non-conservatism was identified in the bi-plots down the core profiles of the 

magnetic signatures were constructed using a regression analysis in SPSS 20. It was then 

determined if there was down-core loss of the signatures which may indicate the dissolution 

of minerals over time or at the depth of the local water table.  

 

 

4. Results 

 

 

4.1 Potential source samples 

Preliminary analysis showed that mineral magnetic signatures were unable to reliably 

discriminate between sedimentary sources (shale and sandstone topsoils and colluvium). The 

linear discriminant analysis using all of the magnetic signatures was only able to correctly 

classify a maximum of 64.6 % of the source samples into their respective groups at any 

particle size fraction. The signatures were, however, able to discriminate reliably between 
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almost all dolerite and sedimentary source samples (93.8 %), and for this reason sediment 

sources were only divided into these two groups for the purposes of this analysis. 

Figs 3A and 3C show that in each bi-plot strong relationships exist between the magnetic 

tracers in the sediment source samples. However, in the χfd / χlf and χarm / SIRM plots the 

relationships are substantially different for particles smaller than 32 µm and those larger than 

32 µm. The Soft IRM and SIRM relationships fall along a single line for all particle size 

fractions (Fig. 3B). However, smaller particle sizes have greater SIRM and Soft IRM values 

in dolerite topsoils. A linear relationship is found between SIRM and χlf in all particle size 

fractions (Fig. 3D). However, there is a reduction in SIRM in relation to χlf in the < 32 µm 

fraction. There appears to be little effect of particle size on the relationships between the 

tracers in any bi-plot once particle size exceeds 32 µm.  

As a result of the different relationships observed between the < 32 µm fraction and all other 

fractions, the provenance of small particles (< 32 µm) within the cores must be interpreted 

separately to that of larger particles. The ranges of the < 32 and >32 µm source samples 

intersect in all graphs when magnetic signatures are low, indicating particle size has less 

impact on tracing samples with low concentrations of magnetic minerals. 

 

4.2 Core samples 

The particle size of the cores was examined initially to determine differences between the 

cores and to identify which particle size range of the source samples the cores should fall 

within. The majority of the Cranemere, Dam 7 and Ganora cores have a D50 particle size 

below 32 µm throughout most of their down-core profiles (Fig. 4). Dam 10 and Dam 37 have 

coarser particle size distributions and most of the sediment lies between < 32 µm and 220 

µm. Dam 53 has a coarse particle size distribution ranging from 200 to 1850 µm. With few 

exceptions, the LOI of the cores indicate that very little organic matter is present in any of 
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them. There is some variability in LOI between the cores with Dam 53 having almost no LOI, 

whereas Dam 37 has a peak LOI of 15% at 130 cm depth (see Electronic Supplementary 

Material).  The following analysis of tracer conservatism is separated into three sections; each 

discusses cores with different patterns of conservatism and non-conservatism of the magnetic 

signatures. 

 

4.3 Particle size related non-conservatism 

All parts of the Cranemere core have a D50 below 32 µm indicating that all samples should 

fall within the < 32 µm range of source samples. The majority of samples in the Cranemere 

core follow the trend of the χfd / χlf graph (Fig. 5A) on the < 32 µm line and appear mostly in 

a tight group. χarm is higher in relation to SIRM in the core than in the source samples (Fig. 

5C), suggesting the possible in-growth of bacterially produced SSD grains. However, Fig. 6 

indicates that the relationship between the χarm / SIRM ratio and particle size is maintained, 

indicating that this is most likely a particle size effect rather than an in-growth of SSD grains. 

Soft IRM and χlf are also elevated in relation to SIRM, which is also likely also to represent a 

particle size effect.  

 

4.4 Identifying the dissolution of magnetic grains in lake sediments 

The D50 particle size of most samples in the dam 7 core (88%) lies below 32 µm, indicating 

that most of the core should fall within the range of the < 32 µm source samples. However, 

the majority of samples from the core do not fall within this range in the bi-plots of Fig. 7. 

There is a reduction of χfd in relation to χlf (Fig. 7A) and a reduction in χarm in relationship 

to SIRM (Fig. 7C). Soft IRM is not elevated or reduced in relationship to SIRM (Fig. 7B), 

neither is SIRM in relation to χlf (Fig. 7D). Therefore, there appears to be some loss of small 

SP grains (χfd) and SSD grains (χarm) within this core.  
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There are strong down-core trends in χfd and χarm, which coupled with their indicated loss in 

Fig. 7 suggests  the dissolution of these grains over time (Fig. 8). Only χfd and χarm are 

significantly correlated with depth in the cores in a logarithmic relationship (log10 χfd vs log10 

depth p <0.001 r2 = 0.771; log10 χarm vs log10 depth p <0.001, r2 = 0.80), indicating that the 

other signatures are probably resistant to the effects of the dissolution. The total loss of χfd 

occurs at 125 cm depth and the loss of χarm at 120 cm depth. Chronologies previously 

established for this core by Foster et al. (2007) place these depths at 43 and 38 years before 

the core was sampled in 2003 suggesting a fast loss of these grains after the sediment is 

depostied. The rate of loss of χfd in the core is therefore an average of 2.33% (of the χfd 

present at the top of the core) per year and 2.44% of χarm per year. The almost complete 

dissolution of χfd at 125 cm and χarm at 120 cm may also represent the level of the local 

water table, with seasonal variability in its level causing varying amounts of dissolution in the 

upper layers of the core.  

 

4.5 Identifying particle size effects with predominantly stable magnetic signatures  

In this section all plots for the cores are provided in the Electronic Supplementary Material. 

In the Dam 53 and Ganora cores the sediment falls within one particle size fraction (either < 

32 µm or >32 µm) throughout the entire down-core profiles (Fig. 4). The D50 of the sediment 

within the Dam 10, 37 and 94 cores varied between being coarser or finer than 32 µm at 

different depths (Fig. 4). Laboratory-based particle size information was unavailable for the 

Dam 94 core, however the texture of the core was described in the field as being composed of 

organic silty-clay in the top 40 cm of the core before becoming a combination of silts sands 

and gravels below this depth. 

The magnetic signatures of the cores generally fall within the range of the appropriately sized 

source samples with few exceptions. In Dam 10 at depths of 50, 185, 195 and 225 cm, χarm, 
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χlf and χfd appear low (Fig. S2). Χfd also appears slightly elevated in relation to χlf. 

However, values are not clearly outside the range of the potential source samples, suggesting 

that the tracers are conservative. 

 In Dam 37 four samples at depths of 98, 158, 162 and 262 cm have almost no frequency 

dependant susceptibility and fall slightly outside of the range of the source samples (Fig. S3). 

These samples are not associated with a significant increase or decrease of the LOI, or D50 of 

the sediment and therefore appears to be an unexplained loss of SP grains in parts of this 

core. This may however represent inputs of sediment from poorly weathered shale bedrock in 

the region which was found to be low in χfd.   χfd is slightly elevated in relation to χlf in the 

Dam 53 sediment indicating enrichment in SP grains and χarm is high in 4 samples at depths 

of 385, 367, 423 and 448 cm (Fig. S4). However, these samples do not clearly fall outside of 

the range of the source samples.  

Despite these small changes to the magnetic signatures in a small number of samples, in three 

of the cores there was no evidence of large biogenic or diagenetic alterations to the magnetic 

signatures which would be likely to impact sediment provenance interpretation.   

 

 

5. Discussion 

It has been shown that particle size has significant impacts on all of the magnetic signatures 

measured as part of this project.  However, the use of bi-plots was able to account for these 

effects and allow for qualitative source apportionment. The very fine particle size in the 

Cranemere dam fell outside of the range of that measured for source samples suggesting that 

the χfd and χarm signatures would be unsuitable for source tracing, due to their concentration 

within fine soil particles. Therefore, further fractionation of the < 32 µm particles may be 

required for future research on source tracing in this catchment. In addition, these results 
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suggest that the common practice of sieving to < 63 µm is likely to be unsuitable in regions 

such as the Karoo due to the very different relationships between tracers in the < 32 µm and 

32 – 63 µm fractions of soils and sediment. These findings support the findings of Maher 

(1998) and Blake et al. (2006) who also showed that the ingrowth of secondary minerals 

during soil formation occurs primarily in fine soil particle sizes. To date we do not know the 

rate at which such in-growth occurs and whether significant changes occur over relatively 

short periods of time. Particle size specific source tracing was also explored by Hatfield and 

Maher (2009) who demonstrated the ability of specific particle size fractions to achieve good 

discrimination between sediment sources even in homogeneous catchments. 

Dam 7 is the only site in this study of seven Karoo farm dams significantly affected by the 

dissolution of magnetic signatures. The dissolution affects the parameters χarm and χfd, 

which are controlled by the concentrations of small SP and SSD grains. These grains are 

commonly formed as secondary minerals during soil formation (Maher 1998) suggesting that 

much of the discrimination provided by the formation of these secondary minerals could be 

lost through the dissolution process. Dissolution appears to have little effect on the other 

magnetic signatures in Dam 7, suggesting that primary magnetic minerals derived from 

bedrock type are likely to be relatively unaffected. Field based observation of the Dams 

suggest that Cranemere, Dam 37 and Ganora are almost always flooded or wet, whereas Dam 

10 is almost full of sediment and is now dry for the majority of the time. Even though the 

main dam wall is now breached, Dam 7 has been observed to have a highly variable and 

fluctuating water table providing a potential explanation for the dissolution of magnetic 

signatures in the core. χfd and χarm were most significantly affected by dissolution, while 

other signatures were not. This suggests that future research could focus upon searching for 

down-core reductions in these signatures that might be indicative of post-depositional 

dissolution. The results also suggest that using χlf, SIRM, Soft IRM and HIRM in cores may 
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produce a result less susceptible to the effects of dissolution. The coarser multidomain grains 

(MD) which contribute to these signatures have previously been shown to be less susceptible 

to dissolution than smaller SP and SSD grains (Anderson and Rippey 1988). However, their 

use may lose the added discrimination provided by secondary minerals produced during soil 

formation. 

The χarm / SIRM plots did not show any evidence of the ingrowth of bacterially produced 

stable single domain grains in any core. This finding suggests that the ingrowth shown in 

other published studies e.g. (Snowball 1994; Li et al. 2009) was not taking place in the Dams 

of the Karoo. 

The ingrowth of iron sulphides has been shown to begin with an increase in SP grains (χfd) 

through pyrite formation (Rowan et al. 2009). χfd was observed to be slightly increased in 

relation to χlf in Dams 10 and 53 suggesting some slight in-growth of SP grains in the cores. 

However, there is no clear increase in χlf in relation to SIRM in any of the cores, which 

would be indicative of the in-growth of Greigite (Snowball and Thompson 1988; Roberts 

1995; Foster et al. 2008). The small increase in χfd is unlikely to significantly alter qualitative 

interpretations of sediment provenance. An approach to remove the effects of the ingrowth 

and dissolution of magnetic grains was presented by Maher et al. (2009), who used 

hydrochloric acid to remove all discrete magnetic particles and magnetic coatings, leaving 

only magnetic inclusions protected within silicate grains. Such approaches would allow for 

the reliable tracing of sediments such as in Dam 7 with heavily altered magnetic signatures. 

The lack of significant alterations to the magnetic signatures in six of the seven cores through 

biogenic and diagenetic processes are in contrast to the findings of many previously 

published studies (e.g. Karlin and Levi 1983; Anderson and Rippey 1988; Snowball 1994; 

Oldfield and Wu 2000; Rowan et al. 2009). The low LOI of the cores sampled (< 5% in most 

samples) is a potential explanation for the stability of tracer signatures, due to the fact that the 
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decomposition of organic matter is often a causal factor in dissolution processes and iron 

sulphide formation (Williams 1992). Cores sampled elsewhere in the world typically have far 

higher LOIs, for example, lake Qarun Egypt 9.09% (Foster et al. 2008), Aqualate Mere, 

Central England up to 60% (Pittam et al. 2009) and between 20 and 28% in a lake core from 

Pajep Njakajaure in northern Sweden (Snowball 1994).  The particle size of the sediment 

appears to have little impact on dissolution as the very fine sediment in Cranemere and 

Ganora and the coarse sediment in Dam 37 and Dam 53 all appear to be unaltered.   

 

6. Conclusions 

 

The results presented here demonstrate the need to refine tracing methods to account for 

particle size and diagenetic effects on magnetic signatures, and show the potential for the 

methodology presented in this paper to achieve this refinement. The previous interpretation 

of sediment provenance in one of the sediment cores by Foster et al. (2012)  was confounded 

by the apparent dissolution of fine grained magnetite but  the methodology presented in this 

paper enables identification of those signature that are most likely affected by this process. 

Similarly, traditional tracing methods are unlikely to account for the concentration of 

secondary magnetic grains in the < 32 µm fraction of the source samples and the 

methodology presented here overcomes this limitation by tracing different sized particles in a 

single core using appropriately size-fractionated source samples. 

The methodology presented in this paper could potentially be a precursor to un-mixing 

modelling, such as that used by Collins et al. (1997), for quantitative source apportionment. 

Using this methodology signatures that are non-conservative will fall above or below the 

range of the source samples and changes in sediment provenance will be represented by 

changes to the signatures within the range of the source samples. The signatures determined 
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to be affected by post-depositional alteration should be removed prior to modelling, and the 

different particle size ranges of cores should be fingerprinted separately. Using this method 

much of the potential uncertainty associated with the use of historically deposited sediment 

discussed by D’Haen et al. (2012) can potentially be removed. The good preservation of 

magnetic signatures in six of the seven dams suggests that mineral magnetic signatures make 

reliable tracers over historical timescales in the Karoo and as is likely to be the case, in 

similar semi-arid catchments. 
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Figure 1: The location of the study region and sediment core sampling sites (After 

Foster et al. 2012).  
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Figure 2: Flow diagram of the analysis procedure. 
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Figure 3: The relationship between different pairs of magnetic signatures in 

sedimentary and dolerite source samples of different particle size fractions. 
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Figure 4: Down-core trends in D50 particle size. 
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Figure 5: A comparison between source samples and the Cranemere sediment core 

using bi-plots of magnetic signatures. 
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Figure 6: The relationship between the χARM / SIRM ratio and D50 particle size in the 

sediment source and Cranemere core samples. 
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Figure 7: A comparison between source samples and the Dam 7 sediment core using bi-

plots of magnetic signatures. 
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Figure 8: Down-core trends in magnetic signatures in the Dam 7 core. 
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 1 

Table 1: Characteristics of the study catchments, After Foster et al. (2012) 2 

 

Compassberg Dam 

7 

Compassberg Dam 

10 

Compassberg Dam 

37 

Compassberg Dam 

53 

Compassberg Dam 

94 Ganora Cranemere

Catchment topography 

       Catchment area (ha) 630 148 3058 244 852/813* 258 5751 

Maximum altitude 2502 2113 2502 2092 2121 1741 1507 

Maximum basin relief (m) 662 253 825 332 496 313 754 

Percentage dolerite 65 0 5 10 45 5 5 

Percentage sedimentary 35 100 95 90 55 95 95 

Reservoir metrics 

       Reservoir dam construction date ~1935 ~1935 ~1958 ~1930's ~1914 1910 1843 

Breach Date 2000 No 2010 1974 Probably 1974 No No 

Repair Date No No 2013 No 1976/7 No No 

Reservoir area (ha) 3.37 1.52 10.63 1.02 5.36/4.04* 5.23 30.22 

Catchment to reservoir area ratio 187:1 98:1 288:1 239:1 159:1 / 196:1* 53:1 190:1 

Erosion features 

       Badlands No No Yes Yes No Yes Limited

Gullies Yes Yes Yes Yes Yes Yes Discontinu

Fans and hillslope storage areas Minor Minor 

   

Yes Yes 

Land use 

       Grazing Yes Yes Yes Yes Yes Yes Yes 

Cultivation Yes No Yes No No No Limited

Sampling year 2003 2003 2013 2013 2008 2006 2007 

        

        

        * Dam and catchment area reduced after breach repaired as new dam wall was built over the existing dam sediments and excluded a small northern tributary. 

Pre and post- new dam catchment areas are given as (pre/post) in Catchment Area, Reservoir Area and Catchment to reservoir area ratio 
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 3 

 4 

 5 

Online supplementary data 6 

 7 

 8 

Figure S1: Down-core trends in loss on ignition. 9 
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 12 

Figure S2: A comparison between source samples and the Dam 10 sediment core using 13 

bi-plots of magnetic signatures. 14 
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 15 

Figure S3: A comparison between source samples and the Dam 37 sediment core using 16 

bi-plots of magnetic signatures. 17 
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 18 

Figure S4: A comparison between source samples and the Dam 53 sediment core using 19 

bi-plots of magnetic signatures. 20 
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Figure S5: A comparison between source samples and the Dam 94 sediment bi-plots of 22 

magnetic signatures. 23 
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Figure 9: A comparison between source samples and the Ganora sediment core using 25 

bi-plots of magnetic signatures. 26 
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