
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Model-Based Tool Support for Tactical Data Links: An Experience

Report from the Defence Domain

Suraj Ajit1, Chris Holmes2, Julian Johnson3, Dimitrios S. Kolovos4, Richard F. Paige4

1 Department of Computer Science, Northampton University, e-mail: suraj.ajit@northampton.ac.uk
2 CGI IT (UK), e-mail: chris.holmes@cgi.com
3 BAE Systems, Advanced Technology Centre, e-mail: julian.johnson@baesystems.com
4 Department of Computer Science, The University of York, e-mail: {dimitris.kolovos, richard.paige}@york.ac.uk

Received: date / Revised version: date

Abstract The Tactical Data Link (TDL) allows the
exchange of information between cooperating platforms
as part of an integrated Command and Control (C2)
system. Information exchange is facilitated by adher-
ence to a complex, message-based protocol defined by
document-centric standards. In this paper we report on
a recent body of work investigating migration from a
document-centric to a model-centric approach within
the context of the TDL domain, motivated by a desire
to achieve a positive Return on Investment (RoI). The
model-centric approach makes use of the Epsilon tech-
nology stack and provides a significant improvement to
both the level of abstraction and rigour of the network
design. It is checkable by a machine and, by virtue of
an MDA-like approach to the separation of domains and
model transformation between domains, is open to in-
tegration with other models to support more complex
workflows, such as by providing the results of interop-
erability analyses in human-readable domain-specific re-
ports conforming to an accepted standard.

Key words Tactical Data Link, Model-Based Devel-
opment, Interoperability, Metamodelling, Model Man-
agement, Eclipse Modeling Framework, Epsilon.

1 Introduction

The Advanced Technology Centre of BAE Systems has
been undertaking research relating to the modelling of
Tactical Data Links (TDLs) since mid-2005. Although
the primary focus of the work has been the Link 16
TDL (sometimes referred to as TADIL-J) as described
by MIL-STD-6016C[1] or NATO Standardization Agree-
ment (STANAG) 5516[2], we believe elements of the re-
search to be applicable to TDLs in general. Basing our

Send offprint requests to:

work on Link 16 is pragmatic insofar as it has the benefit
of being a (largely) general purpose TDL, used across a
number of air and sea-based assets developed by BAE
Systems. For the purposes of this paper we assume both
the US military standard and NATO (STANAG) docu-
ments to be equivalent. The reader is referred to Section
2 for an overview of the TDL domain and the general
nature of the overarching standards.

When we first began to investigate the TDL domain
we were struck by the highly document-centric approach.
The main document responsible for the definition of the
Link 16 was vast, in excess of 7000 pages, predominantly
prose (and growing). It seemed almost impossible to be-
gin to form a view of the correctness of a platform against
the standard, and equally challenging to determine the
correctness of the standard itself. Indeed, Zeigler refers
to Link 16 as ’the nut to crack’ [28]; in his presentation
Zeigler identifies a number of shortcomings of MIL-STD-
6016C [1] leading to labour-intensive and potentially er-
ror prone downstream activities:

– Use of natural language,
– Ambiguous semantics,
– Size,
– Potentially incomplete and inconsistent.

Somewhat ironically, the intention of the TDL is to
provide brain-to-brain connectivity using heterogeneous
equipment over the link. Clearly, given the shortcom-
ings identified by Zeigler (above), we must appeal for a
migration from the current document-centric approach
to something that is scalable, checkable by machine and
understandable to TDL engineers (preferably in a more
accessible form than currently available). One possible
solution to this problem is our vision of the migration to
a model-centric approach as illustrated in Fig.1.

A major consequence of the lack of machine checkable
artefacts in the standard, a large subset of which forms

check%

generate%

Implicit%

model%

Document)centric,

• No%model,%document%is%master%info%

• Not%(easily)%checkable%

• Limited%navigability…%

Explicit%

model%

Model)centric,

• Explicit%model,%master%info%

Issue%%

invesAgaAon%

query%

Answer=…%

Fig. 1 Migrating from a Document to a Model-Centric Approach

the platform requirements and design documentation,
is that consistency and interoperability issues are diffi-
cult to identify and may not manifest themselves until
late in the life-cycle (when defects are costly to correct).
Given Zeigler’s reservations (above), adherence to the
document-centric standards is no guarantee of success.
An absence of views grounded in a rigorous definition of
the domain presents a steep learning curve to engineers
and the absence of easy to use model-based tools limits
the possibility for performing ad-hoc analyses. Further-
more, the absence of a clear set of concepts from which
part or all of a standard may be composed serves to mili-
tate against consistency and further impacts the learning
curve.

In this paper we report on the migration from a
document-centric view of platform interoperability to a
model-centric view based, primarily, on the use of meta-
modelling technology provided by the Eclipse Modelling
Framework (EMF). The aim of the project was to pro-
vide tool support for a labour-intensive and potentially
error-prone task requiring significant domain expertise;
the complex nature of the problem serves to make the
domain somewhat opaque resulting in a long learning
curve for engineers. Hence, an implicit objective was
the de-skilling of the task by raising the level of ab-
straction and underpinning the domain with an explicit
metamodel. The creation of well-focussed domain mod-
els, traceable to the underlying standard also opens-up
opportunities for reuse in more profound contexts by al-
lowing the construction of a layered set of interconnected
models, potentially spanning the TDL domain from the
abstract concepts required to construct the Information
Exchange Requirement1 (IER), to the timeslots in which

1 The IER describes the kinds of information to be ex-
changed between specific platforms to meet an operational
requirement

messages are to be exchanged between cooperating plat-
forms.

A number of peripheral tools were developed to con-
vert different types of documents and artefacts (dis-
cussed in Section 2) into a form compatible with our
chosen metamodelling technology without manual inter-
vention. We also implemented a number of algorithms
operating on our network design model to provide the
TDL engineers with a tool to perform the interoperabil-
ity analyses in a fraction of the time taken previously. An
additional benefit was the ability to present the results
using an easily understandable domain-specific graphical
notation (something the engineers did not produce when
performing the analysis manually). This demonstrates
the ability to retain specific document-based views of
the domain, however these views are now derived di-
rectly from the domain model.

Further prototyping has been undertaken to migrate
the metamodel to a Rich Client Platform (RCP) plug-in
architecture. Whilst not a feature unique to the RCP ar-
chitecture, this investigation did illustrate the ease with
which the model-based approach could be made active
in the sense that the user becomes able to interact di-
rectly with the model, selecting and browsing features of
the model, not restricted to simply selecting the objects
that are to be fed into interoperability queries. This al-
lows the user to zoom in and out of details of the model,
helping to manage potentially large quantities of data.

2 Background

In this section we provide the reader with an introduc-
tion to the TDL and describe the problem to be solved
using metamodelling and automated model management
techniques. A more detailed introduction to the Link 16
TDL is provided in [4].

2

Fig. 2 TDL Overview

2.1 An Introduction to Tactical Data Links

The TDL provides one of the backbone technologies un-
derpinning the defence community’s goal of Network
Enabled Capability (NEC)/Network Centric Warfare
(NCW) across both national and coalition forces by pro-
viding the information and infrastructure to afford users
with both an integrated picture of the battlefield and
also providing tasking orders and responses. A number of
TDLs are in service with coalition forces, and are imple-
mented on a variety of assets, such as aircraft, ships, land
vehicles, and command stations, an example of which is
illustrated in Fig.2. It is possible for TDL platforms to
operate on multiple links concurrently (e.g. in the exam-
ple shown in Fig.2 the (now withdrawn) Nimrod aircraft
is shown as communicating on both Link 11 & Link 16)
acting as (e.g.) a bridge (known as a Forwarding Unit).
Research undertaken by the ATC to date is restricted to
single link implementations only.

The Link 16 TDL is a general purpose TDL, in con-
trast to some others, e.g. Link 4A or Variable Message
Format (VMF); a list of data link characteristics is pro-
vided elsewhere[3]. Link 16 has evolved over a number
of years, stemming from a requirement identified by the
US military in the early 1970’s for a TDL offering a
broad range of functions that would be applicable for
use across multiple forces (e.g. Navy, Marines, Air Force,
Army, etc.).

2.2 Link 16 Documentation

Much of the Link 16 TDL is described by a large stan-
dard in narrative form, combined with many tables and
relatively few figures [1,2]. Fig.3 provides an outline view
of the TDL standard and its relation to the network de-
sign that implements the timeslot map for a domain-
specific requirement. We describe each of the core con-
cepts in more detail below.

A Data Dictionary exists at the lowest level of the
standard, identifying the set of types defined for use on
the link, these types are identified by a unique key pair,
the Data Field Identifier (DFI) and Data Use Identifier
(DUI) pair (referred to as simply the DFI/DUI). Each
DFI/DUI may take one of more values as defined via the
Data Item (DI); the DI may provide a list of enumeration
literals (such as platform types) or a range of values
(such as a position in latitude) that may be held by the
DI. The set of messages that may be transmitted over
the link are defined in the form of a Message Catalogue
that, in turn, makes reference to the DFI/DUIs defined
by the Data Dictionary, as illustrated in Fig.4.

Messages are tree-structured and functionally-
oriented. Once populated, our metamodels may be
validated against our defined constraints to confirm
well-formedness, e.g. confirming that no bits of a J-
Word are undefined. There also exists the possibility of

3

Network

Structure

Network

Design

Transac3ons

Transmit Rules Receive Rules

Message

Catalogue

Data Dic3onary

Min Imp Rules

realizes

invokes invokes

uses uses

implements

definedBy

requires

requires

TDL Standard

Platform View Network View

Domain
Specific

Fig. 3 TDL Standard

transforming the data to other formats, e.g. to allow
population of a DOORS database to support require-
ments capture and traceability. The reader is referred
to [16] for a description of our modelling of the Data
Dictionary and Message Catalogue.

In addition to the message structures, the Standards
define the required behaviour associated with the trans-
mission and receipt of a given message. This is described
via a combination of natural language and tables via the
Transmit and Receive Rules. Once again, we have anal-
ysed the source documentation and created a metamodel
that is linked to the underlying Message descriptions.
Hence, one can see the layered nature of the standard
and its explicit representation in our metamodels. The
standard also describes the network Time Division Mul-
tiple Access (TDMA) architecture and configuration in-
formation relating to the timeslots and the Recurrence
Rate Number (RRN). This information is provided in
narrative form with supporting tables. It is this informa-
tion that gives meaning to the data provided by the net-
work initialisation (INDE) files (discussed in more detail
in Section 2.4) and which we were able to model. Lastly,
the standard defines requirements for system participa-
tion on the link in the form of minimum implementation
(MIN IMP) rules as illustrated by the structures on the
left and right hand sides of Fig.5.

2.3 Processing the TDL Standard

It can seen from the introduction provided here that the
TDL standard is an extremely large document, it is well-
structured insofar as each major functional component

is described in a dedicated section, and there is quite
significant use of tables to try to render data clearly.
However, we concur with Zeigler’s summary of the gen-
eral nature of the shortcomings of the TDL standard
[28]. As a consequence, we have been selective in our
choice of technique when attempting to model and then
capture data from the standard, focussing on tabular
data in preference to natural language. The TDL stan-
dards do not describe an explicit model, hence this must
be inferred by analysis and validated through discussion
with TDL domain experts. However, there is scope to
make progress with a model-based approach by tackling
the sheer volume of semi-structured data, such as the
Data Dictionary, Message Catalogue, Transmit/Receive
Tables, MIN IMP rules, before attempting to tackle the
semantics of natural language specifications.

2.4 Network Design

The Link 16 TDL is a nodeless message-based network
utilising a Time-Division Multiple Access (TDMA) ar-
chitecture, hence each platform must know when to
transmit and when to receive. There is considerable vari-
ability in both message sets and update rates required by
platforms, and the network design must accommodate
such diversity. The functionally-oriented messages are
clustered into a number of Network Participation Groups
(NPGs), the network design comprises a number of con-
current TDMA architectures known as stacked nets (see
Fig.6) onto which the NPGs are mapped. Hence, a plat-
form must also know which NPG and net to use; plat-
forms will jump from one net to another at run time
as they transmit and receive messages in specific NPGs.

4

Catalogue

Message

contains 1..*

Word

contains 1..*

Ini-al

Field
comprises

1..*

Data Dic-onary

DFI

DUI

Value

ofType

1

contains 1..*

comprises 1..*

constrainedTo 1..*

A number of message types

exist, in this instance we are

modelling J‐Messages.

Different types of Word are

supported by the Catalogue.

This is a general concept,

such as ‘Time Slot’.

This is a more specific form

of the general concept, e.g.

‘Time Slot Voice’.

A value that may be

assumed by the DFI/DUI

‘type’, e.g. 0..5.

Message Catalogue: Message J0, Word I (J0.I)

DFI DUI Name Field Size Descrip-on

441 032 Timeslot Number, Voice Bits X..Y Z bits …

…

Fig. 4 TDL Message Catalogue

Func%on

Message

Word

DFI

DUI

DI

Platform A

requires 0..*

implementedBy 1..*

contains 1..*

field 1..*

contains 1..*

1..* takesValueOf

Func%on

Message

Word

DFI

DUI

DI

Platform B

requires 0..*

implementedBy 1..*

contains 1..*

field 1..*

contains 1..*

1..* takesValueOf

Network

D
e
sig

n
‐T
im

e
 In
te
ro
p
e
ra
b
ility

R
u
n
‐T
im

e
 In
te
ro
p
e
ra
b
ility

R
u
n
‐T
im

e
 In
te
ro
p
e
ra
b
ility

Fig. 5 Basic Hierarchy

5

Network

Model

Network

Ini/alisa/on

Descrip/on

Network Ini/alisa/on

Data Catalogue

NETMAN

(INDE format)

XYZ format

<<generates>>

<<generates>>

<<generates>>

<<reads>>

Implicit Understanding

<<reads>>

Network Design Authority

Fig. 7 TDL Network Design and Publication

Func%on

Message

requires 0..*

implementedBy 1..*

NPG

<<exchangedVia>>

1..*

<<supports>> 0..*

Word

contains 1..*

1..*

Network

<<organisedVia>>

<<organises>>

Fig. 6 Functionally Oriented Message Structure

The template for this information is provided via the
TDL standard, e.g. [1]. The TDL network design activity
for the UK is performed by the Joint Data Links Man-
agement Organisation (JDLMO) and published in the
form of a human-readable Network Initialisation Data
Catalogue (released in PDF); the network design cata-
logue may be in excess of several hundred pages [5]. In
addition to the Network Initialisation Data Catalogue a
number of machine-readable formats are also published
appropriate to the platform implementation technology;
of relevance to this activity is the NETMAN format [6]
required for use by a particular air platform to program
the TDL terminal with the network design (see Fig.7).
This is referred to as the INDE file. Hence, the INDE file

provides an instantiation of the network design, and the
network design conforms with the description of the net-
work structure provided by the TDL standard [1], e.g.
allocating messages to the relevant NPG, using the de-
fined number of timeslots per epoch, etc. One can view
the network design as providing the run-time platform
interoperability supporting they design-time interoper-
ability required by the IERs and realised by specific plat-
form implementations as illustrated in Fig.5.

The INDE file is a terse, ASCII file describing
(amongst other aspects) the timeslots allocated to each
platform for transmission and reception. The network
design comprises a number of communities, each con-
taining a set of participants - a participant is an object
such as a type of aircraft that may communicate over the
link. Each participant is allocated a number of initiali-
sation data sets, each containing a set of timeslot blocks.
Each timeslot block belongs to one of a number of sets
and identifies the NPG, timeslot and, hence, the band-
width allocated by the network design. In order for one
platform to exchange information with another, the re-
ceiving platform must be programmed to receive within
the timeslot in which the transmitter is transmitting,
the receiver must be receiving within the NPG contain-
ing the transmitted information, and the receiver must
be receiving on the same net number as the transmitter2.
Whilst this provides a flexible and efficient (in terms of

2 in some circumstances a platform may be able to receive
on multiple NPGs concurrently

6

bandwidth) approach it adds complexity to both net-
work design and analysis as platforms jump between
NPGs and nets at run-time.

Timeslots are arranged in the form of a carousel com-
prising a fixed number of slots (one carousel for each
of the sets of timeslots), different participants may have
differing numbers of timeslots allocated however these
are distributed in accordance with specific rules. The
bandwidth (number of timeslots) allocated to a specific
participant is identified via the Recurrence Rate Number
(RRN). Timeslot allocations are presented graphically in
the form of a timeslot map, see Fig.8. The timeslot map
is a form of Domain Specific Language (DSL) for the
TDL network design, note that the ordering of timeslots
in the timeslot map has the effect of aligning related
timeslot blocks into sequential blocks.

The NETMAN format INDE file suffers from a num-
ber of drawbacks that serve to militate against its acces-
sibility to the TDL engineer:

1. It conforms to a terse text-based format (see Fig.9).
2. It contains implicit information:
(a) Timeslots are identified explicitly as either trans-

mit or receive, however implicit rules allow plat-
forms to receive via the default net and also via
a number of special case NPGs;

(b) Participants may be collected into groups of arbi-
trary size; however the INDE file does not identify
the notion of groups and also does not identify in-
dividual members of each group explicitly;

3. It requires skill to read and understand;
4. It cannot be fully understood without recourse to the

Network Initialisation Data Catalogue, which may
be a sizeable document comprising several hundred
pages.

2.5 Motivation

Discussions with the TDL engineers of the customer
project identified that they are required to analyse the
network design information to ascertain interoperabil-
ity between platforms at the timeslot level on a fairly
regular basis. Such analyses are required to confirm the
fitness for purpose of the network design for specific op-
erations, such as platform data link testing. Unexpected
interoperability issues can result in wasted test flying
hours, at considerable cost. Initial discussions identified
two candidate queries that were performed manually to
identify timeslot interoperability issues between any two
platforms A and B:

1. Identify all timeslot blocks transmitted by Platform
A that may be received by Platform B.

2. Identify all timeslot blocks transmitted by Platform
A that may not be received by Platform B.

Fig. 9 Network Initialisation File

Whilst the network initialisation file identifies all times-
lot blocks transmitted and received explicitly by each
platform there are additional implicit rules of which the
TDL engineer must be aware, such as the receiver can
see all timeslots transmitted in its default net.

It has been demonstrated above that the network de-
sign information used is somewhat opaque, and there is
anecdotal evidence to suggest that a significant learning
curve is faced by engineers performing timeslot interop-
erability investigations. Hence, tool support to execute
commonly encountered queries over the network initial-
isation data set will both reduce the time taken and
improve the accuracy when performing typical timeslot-
based interoperability assessments, and this serves to re-
duce the likelihood of wasting valuable flight tests. Rais-
ing the level of abstraction of the source material as may
be achieved by migrating to a model-based view will
make the domain more accessible to engineers and re-
duce the learning curve; an additional benefit perceived
is the possibility of integrating the network initialisation
model with existing TDL models developed by the ATC
over the past few years.

3 Metamodelling Technology

In this section we provide a brief introduction to the
model-driven technologies used in the context of this
work: EMF for (meta-)modelling and Epsilon for au-
tomated model management. In principle, other model
management languages such as OCL, ATL or QVT could
have been used towards the same end.

7

128 384

TS RRN

7 8 9 10

0

256

128

384

64

320

192

448

32

…

0

256

64

192 320

448 1

2

3

4

5

6

7

Network Design

Timeslot Map

<<mapsTo>>

Fig. 8 Timeslot Map

Fig. 10 A Typical Metamodeling Architecture

3.1 The Eclipse Modeling Framework

Ametamodelling architecture enables engineers to define
the abstract syntax of modelling languages and models
that conform to these languages. To achieve this, a meta-
modelling framework typically provides a three-layered
(M1-M3) hierarchical architecture as seen in Fig.10. M3
contains the core metamodelling language which is used
to define modelling languages, M2 contains modelling
languages defined using the metamodelling language of
M3, and M1 contains models conforming to languages
contained in the M2.

The Eclipse Modelling Framework (EMF) [20] is a
modelling framework built atop Eclipse in an effort to
provide a practical approach to modelling and model
management for Java developers. EMF provides an inte-
grated graphical editor for specifying metamodels, using
its Ecore M3 language, and a framework (EMF.Edit) for

generating graphical editors for new modelling languages
from their Ecore metamodel. Moreover, EMF provides
tools for extracting models from Java annotated source
files and XML Schema documents. While EMF started
as an independent modelling framework, in its latest ver-
sions it has been aligned with the MOF 2.0 featuring
model validation with OCL and storage capabilities us-
ing XMI.

3.2 Epsilon

Epsilon3 is a mature family of interoperable languages
for model management. Languages in Epsilon can be
used to manage models of diverse metamodels and tech-
nologies (detailed below). The core of Epsilon is the
Epsilon Object Language (EOL) [21], an OCL-based
imperative language that provides additional features
including model modification, multiple model access,
conventional programming constructs (variables, loops,
branches etc.), user interaction, profiling, and support
for transactions. EOL can and has been used as a
general-purpose model management language (e.g. for
operational model transformation). It is primarily in-
tended to be reused in task-specific model management
languages. A number of task-specific languages have
been implemented atop EOL, including: model transfor-
mation (ETL), model comparison (ECL), model merg-
ing (EML), model validation (EVL), model refactoring
(EWL) and model-to-text transformation (EGL), see
Fig.11. These languages reuse EOL in different ways, e.g.
by acting as a preprocessor, or by using EOL to define
behaviour of rules.

Epsilon is designed to be technology agnostic - that
is, the same Epsilon program can be used to manage
models from different technologies: the concepts and
tasks of model management are independent of how

3 http://www.eclipse.org/epsilon

8

Epsilon Object Language (EOL)

Epsilon Model Connectivity (EMC)

EMF
(XMI 2.x)

MDR
(XMI 1.x)

Z (CZT)

Pattern
Language (EPL)

Transformation
Language (ETL)

Validation
Language (EVL)

Migration
Language(Flock)

Model-to-Text
Language (EGL)

Refactoring
Language (EWL)

Comparison
Language (ECL)

Merging
Language (EML)

Unit Testing Framework (EUnit)

XML

Fig. 11 Overview of the architecture of Epsilon

models are represented and stored. To support this, Ep-
silon provides the Epsilon Model Connectivity (EMC)
layer, which offers a uniform interface for interacting
with models of different modelling technologies. New
technologies are supported by adding a driver to EMC.
Currently, EMC drivers have been implemented to sup-
port EMF (XMI 2.x), MDR (XMI 1.x), pure XML, and Z
specifications in LaTeX using CZT. Also, to enable users
to compose complex workflows that involve a number of
individual model management tasks, Epsilon provides
ANT4 tasks and an inter-task communication framework
discussed in detail in [22].

4 Technical Approach

Source material is provided by an external agency in
the form of documents, some items of which are in-
tended for consumption by software systems. This ma-
terial may be seen as instantiating a specific instance of
certain elements of the informal model defined by the
TDL standards [1,2]. A DSL (the timeslot map) is asso-
ciated with this particular aspect of the TDL. Analysis
of the source data informs the design of an overarching
metamodel (the domain model), whilst the DSL pro-
vides an example of the format required by domain ex-
perts for presentation of reports generated from queries
executed over instances of the metamodel (the report
model). As source material is provided in multiple doc-
uments parsers must be provided to allow the popula-
tion of models from source material in its native format.
Data contained in the populated models needs to be both
consistent and reconciled into a single, coherent model.
Hence, there is a need for model transformations and,
potentially, model merging. There is also a requirement
for validation of the populated models resulting from
this process against well-formedness rules. Finally, there
must be a workflow to orchestrate the various strands
of work, resulting in a system that may be used by the
domain experts. This is illustrated in Fig.12.

4 http://ant.apache.org

Fig. 12 Technology Independent View

4.1 The Role of Models

In the context of the work described in this paper, mod-
els serve the dual purpose of (a) increasing rigour by
making explicit the concepts, relationships and well-
formedness rules inherent in the network design source
information, and (b) raising the level of abstraction of
this material such that it is more accessible to the TDL
engineers. However, when we talk about models in this
context we really mean processable models; i.e. having
described and populated an instance of the Network Ini-
tialisation Data Catalogue model we can perform oper-
ations on the model instance to achieve some goal, such
as:

– Transforming it into another form (vertical or hori-
zontal transformation).

– Establishing its validity against an explicitly mod-
elled set of well-formedness rules.

– Query over the model structure to provide some re-
sult.

– Render the result in a domain-specific format.

The problem was broken down into a number of smaller
steps.

1. Identification and prototyping of a model of the TDL
network design domain, based on an analysis of the
source information, such that we could confirm user
requirements and provide confidence to both our-
selves and the users that a model-based approach
would provide the capability required in order to
achieve the positive Return on Investment goal.

2. Selection of appropriate metamodelling and model
management technologies.

3. Transformation of source material (which was pro-
vided in different formats) into the defined model-
based structures.

4. Definition of well-formedness rules to confirm that
the model has been instantiated correctly from source
material against the metamodel.

9

5. Assembly of a workflow that automates steps 3 and
4 for extracting and validating models from source
material.

6. Prototyping of the queries that had been described
to us by the TDL domain experts over a well-formed
model; at this point we could compare the output of
our model-based approach to expected results.

7. Implementation of a prototype a tool that would be
usable by the TDL community.

Each of the steps is described in the following sections.

4.2 Defining the Model

As stated above and illustrated in Fig.7, the network de-
sign is provided by an external agency (JDLMO) in a va-
riety of formats, of which the NETMAN format is used
by our customer. The general rules governing the net-
work design are provided by the underlying TDL stan-
dard, e.g. [1]. This describes core concepts, such as the
Time Division Multiple Access (TDMA) architecture,
Network Participation Group (NPG), and stacked net
structure. Therefore, the network design can be seen to
exist within the context of the TDL standard.

We were provided with an example network design
and the NETMAN Interface Control Document (ICD)
[6] as source material. The NETMAN ICD provided both
the grammar for the textual concrete syntax in BNF
and also defined the ranges of legal values expected for
all fields. We used the major terms in the BNF gram-
mar to inform the structure of the underlying abstract
syntax model whilst the specified ranges of legal values
provided the initial constraints over the model, although
a model-based approach allows for more profound con-
straints than simply checking values of individual at-
tributes. However, the resulting model was not simply
an object model of the BNF grammar as it was also nec-
essary to accommodate information identified from the
standard. The initial model development was undertaken
guided by the source material mentioned above: TDL
standard [1], Network Initialisation Data Catalogue [5],
and NETMAN ICD [6]. Fragments of the evolving model
were validated by populating with exemplar data via the
abstract syntax and via discussion with the TDL do-
main experts, although it became apparent that there
were a number of aspects of the network design with
which the domain experts were not familiar. As a gen-
eral approach we validate the structure of our metamod-
els through simple examples populated via the abstract
syntax, using (e.g.) the Human-Usable Textual Notation
(HUTN) [7] before investing effort in the development
of parsers and model transformations. Development of
an INDE file parser was found to inform the design of
the metamodel by suggesting refactoring opportunities.
Having completed the prototype of the model and asso-
ciated parser we were able to populate the model and ex-
ecute the constraint checks derived from the NETMAN

ICD. An outline of the process followed is illustrated
in Fig.13. Discussions with project TDL engineers re-
garding the two queries the prototype was to provide
over the populated model revealed that the model was
incomplete; thus, although the model captured the se-
mantics of the INDE file faithfully it had exposed the
need for additional concepts relating to the structure
of the network: Communities, Participants, and Groups
of Participants (see Fig.14). Whilst the INDE file con-
tained sufficient information to allow a TDL terminal to
be programmed with transmit and receive network infor-
mation, further information was required to establish in-
teroperability between multiple platforms within a given
network design. The source for the missing information
was the Network Initialisation Data Catalogue [5]. The
necessary information was provided in a fairly compact
tabular form within two subsections of the document,
and we were able to extend the metamodel design and
demonstrate a complete example using the process il-
lustrated in Fig.13. Demonstration of the proposed tool
via a simple command-line interface and textual output
confirmed the validity of the metamodel and prototyped
queries, however it also revealed an additional customer
requirement for a third query over the model.

TDL timeslot information is rendered via a domain-
specific format known as the timeslot map, hence the
users added a further requirement that the results of
the queries to be executed over the model should be
presented in the form of a timeslot map. At this point we
had a clear understanding of the customer requirements
and had the task of maturing the prototype to a point
that it could be deployed to the user community.

4.3 Selecting Supporting Technologies

We chose to describe our metamodels using the Emfatic
concrete (textual) syntax [10] for Ecore as we found it to
be quite compact and easily accessible to the engineers
involved. Metamodels expressed using Emfatic may be
used to generate Ecore metamodels (the reverse gen-
eration is also supported), and these may be rendered
graphically in the form of a class diagram. Epsilon, which
was discussed in Section 3, was selected to support the
model management activities we required (object lan-
guage, validation and transformation). The motivation
for selecting the Epsilon platform was based primarily
upon the availability of technical expertise – other lan-
guages that provide similar capabilities (e.g. OCL for
querying and validation and QVT for transformation)
could have been used instead.

At the time of the migration Epsilon did not natively
support parsing of schema-less XML files. Hence, it was
necessary to convert the INDE file into XML and un-
derpin this with an XSD. We undertook this task using

10

D
e
v
e
lo
p
 M

e
ta
m
o
d
e
l

Instan0ate Simple

Model using AS

Develop Parser

Instan0ate Model via

Parser (bulk populate)

Execute Constraints

over Model

Instan0ate Simple

Model using AS

Fig. 13 Outline Development Process

Fig. 14 TDL Network Structure

ANTLR [9] which was found to be a relatively simple
task with the added benefit of allowing us to check the
source document against the schema before attempting
to instantiate our metamodels.

4.4 Transforming the Models

An Ecore metamodel was auto-generated from the XSD
underpinning the XML version of the INDE file, however
the structure of the metamodel generated from the INDE
(XML) file differed somewhat from the target domain
metamodel, e.g. it lacked the concepts relating to the
structure of the network mentioned above, and it did
not make use of class hierarchies. Hence, we were left
with the task of transforming the source model into the
domain model.

We achieved this using the Epsilon Transformation
Language (ETL). As the file (a large PDF document)
provided the additional network structure concepts in
a compact and simple tabular form we chose to parse
this information directly into XML via a simple bespoke
parser written in Java; once again this XML document
was underpinned with an XSD and an Ecore metamodel
was auto-generated from the schema. The relationship
between metamodels and transformations is illustrated
in Fig.15. It should be noted that Epsilon has subse-
quently evolved to allow parsing of schema-less XML

documents directly, hence the transformations shown as
IndeFile2NetInit and NetDsgn2NetInit could be elim-
inated, although at the cost of a potentially complex
parser - i.e. the complexity of the transformation must
go somewhere, either in the parser or in an explicit model
transformation.

The model transformations IndeFile2NetInit and Net-
Desgn2NetInit each handle a separate aspect of the tar-
get metamodel, the result of running both transforma-
tions is a completely instantiated metamodel of the Net-
work Initialisation domain model. Once instantiated the
domain model may be checked for well-formedness (via
rules expressed in EVL), and queried for some result (via
operations expressed in EOL).

4.5 Validating the Models

The introduction of the intermediate translation of
source material into XML underpinned by XML schema
was primarily a requirement driven by the adoption
of Epsilon as the most pragmatic route to populating
models from source data. It also provided a point at
which the source data could be checked by a validat-
ing XML parser, providing confidence of the validity of
the source data prior to transformation into an instance

11

<<antlr>>

Parser

<<ascii>>

INDE File

<<xml>>

INDE File
<<xsd>>

INDE Schema

<<conformsTo>>

<<pdf>>

NetInitDataCat

<<java>>

Parser

<<xml>>

NetDsgn File
<<xsd>>

NetDsgn Schema

<<emf>>

genmodel
<<emf>>

genmodel

<<conformsTo>>

INDE MetaModel NetDsgn MetaModel
<<generates>>

<<populates>>

<<generates>>

<<populates>>

NetInit MetaModel

<<source>>

<<target>>

<<source>>

<<target>>

<<source>>
<<source>>

<<evl>>

ConstraintChecks

<<eol>>

Queries

<<etl>>

IndeFile2NetInit

<<etl>>

NetDsgn2NetInit

<<text>>

Error Report

<<generates>>

<<Emeslot>>

Interop Report

<<generates>>

Fig. 15 Metamodels and Transformations

of the domain metamodel. The next step was to vali-
date instances of the domain metamodel against a set of
domain-specific constraints/invariants.

This was achieved using Epsilon’s OCL-based con-
straint language, EVL, with constraints being drawn pri-
marily from the NETMAN ICD [6]. An example con-
straint to confirm that the blockId slot value of an In-
dexedBlock object is within the range 1..64 is illustrated
below.

1 import "../Operations/IndexedBlock.eol";

2 context IndexedBlock {

3

4 constraint BlockIdInRange {

5 check {

6 var lower : Integer := 1;

7 var upper : Integer := 64;

8 var id : Integer := self.blockId;

9 return id >= lower and id <= upper;

10 }

11 message:

12 self.asString() +

13 ": must have a Block Id in the range " +

14 lower + ".." + upper +

15 " but has " + id + "."

16 }

17 }

Whilst the initial set of constraints over the model are
relatively simple, discussion with the users and increas-
ing experience in the domain leads us to believe that

there is scope for more profound constraints over the
model, such as reconciling the Recurrence Rate Number
(RRN) against the actual number of timeslots allocated,
confirming that all timeslot sets are distributed correctly
within the carousel, etc. Furthermore, complex process-
ing may be deferred to operations written in EOL and
invoked via EVL. The example above provides a simple
demonstration of the approach via the import statement
(line 1) which provides the constraint with access to the
asString() operation on the class IndexedBlock (line 12).
In our opinion, the use of EVL offers some advantages
over the XML schema; firstly constraints expressed in
EVL are somewhat more accessible to the non-specialist
and, secondly, implementation of more profound con-
straints over the model would be somewhat more chal-
lenging to represent in XSD.

Each of the constraints was captured in EVL. The id-
iom adopted was to create an EVL file for each class for
which one or more constraints were required, an overar-
ching EVL file importing all class-level constraints was
then created - note that this approach is not mandated
by Epsilon, however it was found to be beneficial when

12

Proper&es Import

Proper&es

Echo Proper&es

Parse Source

Model

Source2Target

Transforma&on

Done?

Validate Target

Model

Begin

End

yes

no

Fig. 16 Generic Structure of an Ant Workflow

integrating constraint checking within Ant workflows as
discussed below.

4.6 Prototyping the Workflow

The next step was to compose the model parsing, trans-
formation and validation steps into an automated work-
flow that would enable us to re-populate and validate the
model quickly in response to the incremental enhance-
ments.

We chose to prototype this using the Java-based Ant
[11] framework. Ant workflows are expressed using an
XML-based syntax and provide support for modularity
of the workflow, whilst Epsilon provides a number of
extensions to Ant to support model management oper-
ations [12]. The general structure adopted by this and
other Epsilon-based projects is to define one or more
property files to identify source and target components
(i.e. metamodels, models, transformations, constraints)
and a potentially nested set of Ant files; this allows the
rapid reconfiguration and extension of the workflow as
development of model structures progresses. The gen-
eral structure of an Ant workflow is illustrated in Fig.16.
Following completion of the prototyping we were able to
confirm correct behaviour of the system with the do-
main experts. This paved the way for development of
a fully-fledged Java-based application using the model-

based approach with the Ant-based workflow being mi-
grated to native Java code.

4.7 Querying the Models

Initial discussions with the TDL engineers identified two
queries to be executed over the Network Initialisation
domain model to help establish the timeslot-level inter-
operability between two platforms in the network design.
The queries required were:

– Identify all timeslots transmitted by platform A that
may be received by platform B

– Identify all timeslots transmitted by platform A that
cannot be received by platform B

We chose to express these queries using Epsilon’s OCL-
based expression language (EOL). The idiom adopted to
express queries was to create an EOL file for each class
of the metamodel – note that Epsilon does not man-
date this approach. Operations in EOL may have side-
effects and have a simple syntax similar to Java. Each
of the above queries had already been prototyped using
XMF (a metamodelling tool associated with a previous
metamodelling project) and validated by the TDL do-
main experts, it was found to be a relatively simple mat-
ter to re-write the operations in EOL (XOCL and EOL
share many similarities although they are not formally
grounded in the same underpinning metamodel). The re-
sult of each query is a set of TimeslotBlock objects. A
TimeslotBlock contains many attributes, including the
RRN, timeslot set, index slot number, net number, and
Network Participation Group (NPG); these attributes
provide the information required to render the result of
the query in the form of the Timeslot Map. The textual
representation of a timeslot block is:

– Set + ’-’ + TimeslotNumber + ’-’ + RRN + ’[’ +
NPG + ’]’

e.g. a timeslot block in Set A with an index slot number
of 127, a recurrence rate number of 6, transmitted in
network participation group 7 would appear as:

– A-00127-6[7]

An example of one of the queries requested by the do-
main experts is presented below. In this example we wish
to identify all timeslot blocks transmitted by one partic-
ipant that are receivable by another (possibly even the
same) participant:

1 timeslotBlocks := self.getAllTimeslotsTransmittableTo(

other);

The body of the getAllTimeslotsTransmittableTo()
query is described below. The decomposition of the
operation illustrates that calculation of the result is
based upon the union of a number of rules combining:
(i) timeslots explicitly transmitted by participant A to
participant B, (ii) special cases, and (iii) default cases
capturing the notion of (e.g.) implicit data exchange
over a default net number.

13

1 getAllTimeslotsTransmittableTo(other) : Set(

TimeslotBlock)

2 explicitlyTransmitted := self.

GetTimeslotsTransmittableTo(other);

3 specialCaseTransmits := self.

getSpecialCaseTimeslotsTransmittableTo(other);

4 defaultTransmits := self.

getTimeslotsTransmittableByDefaultTo(other);

5 allTransmittable := explicitlyTransmitted +

specialCaseTransmits + defaultTransmits;

6 return allTransmittable.sortBy(b | b.blockId);

At this point we were able to demonstrate to the do-
main experts a model-based capability linked directly to
the formal source material provided by the network de-
sign authority. Although the results generated were text-
based, domain experts were easily able to verify our re-
sults and the project then turned its focus to deployment
of a tool that would be able to provide an intuitive user
interface and render results using the domain-specific
language of the timeslot map.

4.8 Rendering Results

As stated in the sections above, timeslot allocations are
generally rendered using the domain-specific notation
of the timeslot map. The timeslot map provides an in-
formation rich, graphical rendering of timeslots, times-
lot numbers, NPGs, and RRNs; it also accommodates
the even distribution of multiple timeslots across the
carousel such that related timeslots appear as a contigu-
ous group (see Fig.8). Source information provided by
the network design authority is summarised in the form
of a number of timeslot maps; one for each of the times-
lot Sets. Hence use of the timeslot map as a vehicle by
which the results of the model-based network analyses
were to be presented was a natural choice for the domain
experts. It was found to be possible to capture and pop-
ulate the full structure of the timeslot map as intended
by its original designers, giving confidence that we could
migrate from XSLT to a contemporary template-based
model-to-text transformation language.

The language of choice for this step was EGL
[12], Epsilon’s model-to-text transformation language,
which we have used successfully on another model-based
project as illustrated in Fig.17. Example results were
presented to the domain experts, rendered in the form
of HTML timeslot maps. Although our example times-
lot maps were semantically and syntactically correct, it
transpired that the network design authority publishes
timeslot data using a more compact but syntactically
incorrect rendering. We were requested to adopt an ap-
proach similar to network design authority, e.g. each
timeslot map split into two parts, with the exception
that only those RRNs presented in the vertical plane
should be used. This requirement was instrumental in
causing us to implement the timeslot map rendering
using the Java Standard Widget Toolkit (SWT), see
Fig.18.

5 Discussion

In this section we reflect on the approach adopted and
decisions made in order to illustrate the lessons learned
from this project. The discussion focuses on the method
and technologies used.

5.1 Development Method

The body of work reported above comprised one strand
of a larger programme of work funded by BAE Systems.
An issue that emerged early on in the process was that
whilst there were a number of TDL-related projects run-
ning concurrently, each was at a different stage in its
life-cycle and saw the issues associated with the devel-
opment programme differently. At the instigation of our
research in 2005 we interviewed staff from six projects
to capture their major areas of difficulty, our expecta-
tion was that there would be one or two hot spots that
would become the focus of our work, however this wasn’t
found to be the case. It appeared that no two projects
were the same; this was partly a consequence of where
they were in the life-cycle and also a consequence of the
project itself: one project might be tasked with integrat-
ing a TDL terminal, whilst another may be using a TDL
terminal integrated by a third party. Clearly, this results
in a differing view of both issues and priorities [15]. This
particular project was selected for the following reasons:

– it was largely within the scope of one programme,
– relevant source material was available, or could be

made available relatively easily,
– a domain expert was available (although access was

limited),
– there was potential for future exploitation on other

projects,
– we believed the problem to be amendable to a model-

based approach,
– the project predicted that the work would realise an

attractive ROI.

Over the period of development of the tool, the in-
teraction with the end-user domain experts was charac-
terised by a series of meetings, each addressing further
issues, in parallel with elaboration and corrections of the
metamodels and prototype tool (which are one and the
same). Such dialogue focused around the vision of the
tool that could automate the previously manually in-
tensive activities, and so provide a positive RoI, once
the tool achieved an appropriate level of maturity. This
was found to be a valuable activity that served to elicit
requirements leveraging from development that, in the
authors’ opinion, are unlikely to have been articulated
without the stimulus provided by the engineers seeing
‘something’ working in, what at first may have appeared
to be, an unrelated domain. Examples are:

14

<<queries>>

<<etl>>

Transforma/on

<<emf>>

Domain

Metamodel

<<emf>>

Results

Metamodel

<<emf>>

Document

Metamodel

<<eol>>

Queries

<<evl>>

Well

Formedness

Rules

<<evl>>

Well

Formedness

Rules

<<evl>>

Well

Formedness

Rules

<<html>>

Document

<<egl>>

Transforma/on

User

<<views>>

<<queries>> <<populates>>

<<validates>> <<validates>> <<validates>>

<<domain>> <<range>> <<queries>> <<generates>>

Web Browser

<<renders>>

Fig. 17 Example Family of Metamodels

Fig. 18 Generated Timeslot Map

15

– extension of the timeslot interoperability analysis
tool to provide hardware support,

– extension of models of the TDL message structure to
reconstitute captured binary TDL traffic into mes-
sages, DFI/DUIs, etc.,

– integration of models with a commercial require-
ments management tool.

The adoption of a model-based architecture provided a
powerful vehicle for both requirements capture and de-
velopment. The model-based approach allowed the de-
velopers to describe their understanding of the prob-
lem domain in a domain-specific but largely technology-
independent way, based on the (static) graphical view
provided by models structured in terms of the easily ac-
cessible concepts of packages and classes. More detailed
discussions could be supported by the executable nature
of the models. Domain experts could view the output
generated by the models which could then be used to
drive discussion of the semantics of classes via the asso-
ciated operations. Model-based tooling facilitated such
discussions by providing a tightly integrated solution
that was structured clearly and easy to navigate. Fur-
thermore, this allowed us to present an interconnected
view of large-grained functionality, indicating existing
capability and showing how future capability could lever-
age from this to meet specific requirements, e.g. integra-
tion of static and dynamic views of the TDL, extension
via new models, execution of queries, and rendering of
results.

In most cases working closely with the TDL engineers
for short periods of time was possible. This strategy al-
lowed us to understand the nature of their requirements
in detail and allowed us to demonstrate early prototypes
of models and tools developed. In the case of the Times-
lot Interoperability tool we first demonstrated a simple
command-line driven prototype generating text-based
results, this enabled us to refine and validate the model
and also provided the TDL engineers with confidence
that we had understood the requirement and developed a
sound basis for a solution. A result of this demonstration
was the emergence of a requirement to render the textual
results in a graphical form; the domain-specific nota-
tion used to display timeslot information is the Timeslot
Map. Example renderings of results using XSLT to gen-
erate HTML were developed using example data. Devel-
opment of the network initialisation analysis domain and
the rendering of results progressed in parallel, the inten-
tion being that the two would ultimately be connected
via a horizontal model transformation (e.g. see 20). A
small number of subsequent meetings were required to
clarify the requirements for the formatting of the graph-
ical output to be generated (the timeslot map); it was at
this point that the requirement for an additional query
was identified by the TDL engineers. The model-based
approach allowed this requirement to be accommodated

with ease as no changes were required to the model(s),
transformations or constraints.

Towards the end of the development phase there was a
change to the network design published by the JDLMO.
Somewhat to our surprise, the Network Initialisation
Data Catalogue for the new network design failed to
parse successfully (see Fig.15). Investigation revealed
that the network design authority does not make use
of standard platform names across network designs, e.g.
one network design may refer to (say) a Harrier as
’HAR’, whilst another design may refer to the same plat-
form as ’GR9’. Unfortunately, our parser did not allow
for such variability of token names, hence the parser was
extended to capture the list of tokens from the catalogue
before parsing the network design section of the cata-
logue. Once again, however, there were no changes to
the underlying model(s). A more significant issue arose
some months following delivery of the tool with the iden-
tification of an implicit requirement relating to the sup-
port of an additional type of network design (referred to
as a closed network). Closed networks are developed on
an ad hoc basis to facilitate local testing of a platform
and differ slightly in structure, e.g. there is no explicit
definition of a community. It was found to be possible
to accommodate the subtle differences of the closed net-
work via a simple relaxation of one of the grammar rules
of the ANTLR parser in Fig.15 and an associated con-
straint in the schema for the generated XML document.
Once again, no changes were required to the underlying
model(s) because they were successfully shielded by the
supporting document parsers.

5.2 Implementation Technology

The deployed timeslot interoperability analysis tool fol-
lowed the Model-View-Controller pattern, comprising
a Java front end, providing the user interface, and a
model with a Java interface generated from a number
of Eclipse-based Epsilon components as illustrated in
Fig.19. Having developed and tested the metamodel it
was a simple process to generate the relevant Java inter-
face classes from EMF to allow the Java View-Controller
components to bind with the metamodel, this allows the
model to be populated via the parsed documents and
to be queried based on user-defined criteria; the results
of each query being rendered in the form of a times-
lot map as illustrated in Fig.18. The strict separation
of the Model from the View-Controller had the benefit
of keeping the View-Controller clean, avoiding pollution
with unnecessary concepts from the model. The work-
flows developed in Ant for the prototyping and initial
testing were manually transcribed into the Java View-
Controller components. Automated transformation of
the Ant workflows would be a potentially useful feature,
hence it is suggested that a workflow metamodel could

16

Fig. 19 Tool Architecture

be developed and EGL scripts written to support multi-
target generation. A majority of the issues encountered
with faulty workflows during prototyping were a result
of the rather terse form of Ant and the relatively poor
level of error reporting; we would have some reservations
regarding the deployment of Ant workflows to the end
user’s desktop, although Ant was extremely useful dur-
ing prototyping activities.

We investigated the rendering of the timeslot map
via a document-based XSLT approach and demonstrated
an HTML rendering based on hand-transcribed source
(XML) data. This demonstration provided a strict im-
plementation of the timeslot map and drove out the
non-standard use of the timeslot map structure adopted
by the TDL community that would be easier to adopt
via Java and SWT; this decision was also supported
by the practicalities of the skills available at the time.
We are confident that we could develop a metamodel
of the timeslot map and adapt our XSLT or migrate to
EGL such that results of the timeslot interoperability
queries could be transformed into timeslot map mod-
els and further transformed into HTML for rendering
via a web browser following the idiomatic presentation
style adopted by the TDL community. We have used
such horizontal transformations between domains suc-
cessfully elsewhere in our TDL modelling work, and out-
put is not restricted to HTML, e.g. we have generated
code for Graphviz5 and Promela for use with the SPIN
model checker6 for other projects. Ultimately, our deci-
sion to render the results directly in Java via SWT was
driven by three factors:

5 http://www.graphviz.org
6 http://spinroot.com/spin/whatispin.html

– lack of a suitably skilled metamodelling engineer to
undertake the work within the window of opportu-
nity,

– lack of a compelling business case to reuse the times-
lot map metamodel in future work,

– non-standard rendering of timeslot map data compli-
cating the document transformation.

This raises an additional observation: the learning curve
required for an experienced software engineer to be-
come productive with the Epsilon/EMF metamodelling
technologies versus the availability of software engineers
skilled in the ubiquitous, and mature, technology of Java
and, in particular, SWT. At the time of development of
the timeslot interoperability tool Epsilon was still under
active development, whilst there were surprisingly few
compatibility issues as development of the toolset pro-
gressed, there were some issues regarding the support for
debugging and error reporting; as Epsilon has matured
so these observations have been addressed. However, our
development of Epsilon-based metamodels became, to
some extent, a victim of their own success, resulting in a
skills shortfall that, in turn, gave rise to business oppor-
tunities that could not be exploited fully. It should be
noted that such opportunities have not been restricted
to the TDL domain and have encompassed a broad range
of domains, including, for example, the development of
metamodels to support the modelling of business pro-
cesses. Hence, whilst Epsilon/EMF provides a stable
foundation for the development of robust and extensi-
ble solutions, one must balance this against the effort
required to develop a critical mass of skilled metamodel
developers; clearly, a background in Java technologies
(particularly under Eclipse) would be a major advan-
tage, however we believe that metamodelling requires a
different mind-set to that required for more traditional
technologies. The major advantages we have observed
in the migration to a model-based approach in this and
other related projects are:

1. abstraction
2. validation
3. modularity and reuse

5.2.1 Raising the Level of Abstraction Although the
project described in this paper comprised a number of
complex, low-level aspects it was relatively easy to iden-
tify the major domains of relevance and begin articulat-
ing our understanding via a textual and graphical mod-
elling language. We found the Emfatic textual modelling
language [10] to be easily accessible to programmers and
this allowed the rapid creation of metamodels, while the
graphical rendering of such models allowed the TDL do-
main experts to confirm our understanding of the prob-
lem domain. This allowed us to progress quickly to ex-
ample models, partially populated via hand-transcribed
data, e.g. as is supported by HUTN [7].

17

A

B

C

D

E

F

G

H

I

Fig. 20 MDA View

5.2.2 Validation Following feedback from the TDL do-
main experts we were then sufficiently confident in our
manually-populated models to develop the necessary
parsers to transform actual source data files into a ubiq-
uitous machine processable format (XML). Use of XML
also provided the benefit of allowing us to confirm the
validity of documents generated via a relevant XML
schema, this schema also provided a vehicle by which
the document could be parsed into EMF with ease. The
ability to confirm the validity of output at each stage of
the process was believed to be useful in order to prevent
errors propagating that would, potentially, be difficult
to identify as a result of the volume of source data and
its very terse format. The definition of constraints over
the metamodels further allowed us to identify errors in-
troduced via the model transformations.

5.2.3 Modularity and Reuse We have found that the
model-based approach when applied in a disciplined
manner tends to result in a number of relatively small
metamodels (less than 40 classes), indeed most of our
metamodels are somewhat smaller than this. Clearly,
the advantage of building small, domain-specific mod-
els is that the model is easy to understand in isolation,
however the complexity comes when one wishes to reuse
one metamodel with another, or transform an instance of
one into an instance of another. This underlines both the
flexibility and opportunities for model reuse but also em-
phasises the importance of developing constraints over
metamodels to catch errors at the point of introduction.
Modularity and reuse are themes within Model Driven
Architecture (MDA) that one sees as being associated
strongly with the evolutionary approach [14]. However,
whilst the typical view of MDA appears to comprise a
vertically integrated collection of models organised in
terms of the Computation Independent Model (CIM),
Platform Independent Model (PIM), and Platform Spe-
cific Model (PSM), we see a more general and loosely
coupled suite of metamodels as illustrated in Fig.20.

The Epsilon toolkit provides a collection of languages
(based on a common core) to operate on metamodels

in the EMF. The user has considerable freedom of use
of the languages with regards to structure. At one ex-
treme one may package all operations on all classes in the
metamodel in a single EOL file, at the other extreme one
may package individual operations in their own EOL file.
Following experience with more conventional modelling
tools and programming languages we created a separate
EOL file for each class for which one or more operations
were required. Similarly, we created an EVL file for each
class for which one or more constraints were required. We
developed a library of operations via files of class-based
EOL operations, this allowed the complexity of the bod-
ies of EVL constraints to be simplified greatly. One could
define helper operations within the EVL files however
we felt that the library-based approach to be more ef-
fective as it also allowed for re-use by other components,
e.g. queries over the model. This approach proved to be
highly maintainable, one might otherwise find the same
or similar operations occurring in multiple files. Trans-
formations tend to span the model hierarchy, hence we
created a single ETL file for each source-to-target trans-
formation required. Having control over the design of the
source document parsers allowed us to define a document
schema (XSD) that was sympathetic to our intended tar-
get metamodel. This helped to constrain the complexity
of the source to target transformation rules, although de-
sign of the XSD to EMF model transformations requires
some care. Again, the use of EOL operations helped to
constrain the size of the transformations, and the use
of EVL helped to ensure that such transformations re-
sulted in the generation of valid models. Separate folders
were created for the metamodel definition (Emfatic used
to generate ecore), generated models, operations (EOL),
constraints (EVL) and transformations (ETL); this is a
general idiom we have used and is illustrated in Fig.21.
A common structure was adopted for the Ant workflows
dealing with the various model management activities as
illustrated in Fig.22. Using a common structure helped
to reduce errors and enforced a degree of discipline. Such
workflows are the leaves of what can sometimes extend
to a tree, with the higher-level workflows providing or-
chestration. One of the disadvantages we have observed
with the model transformations offered by ETL is that
they are programmatic, there is no higher-level view il-
lustrating (e.g.) the relationship between source and tar-
get metamodels. Whilst such a view might not capture
the complexity of certain transformations, it may be pos-
sible to use such a view to auto-generate the basic struc-
ture of the transformation, e.g. the skeletal transforma-
tion rules.

5.3 Metamodel Instantiation

At the time of development of the metamodels, the only
route by which we could instantiate our metamodels
with source data (bulk population) was via XML. The

18

TargetMetamodel

Source2Target

SourceMetamodel

model

SourceData

Documents

Schemas

Metamodel

Constraints

Operations

Models

AntBuildFiles

Operations

Transformations

Ecore metamodel

generated from XML

schema

Source XML document(s)

from which model will be

instan;ated

Ecore metamodel

generated from Emfa;c

EVL constraints over the

target metamodel

EOL opera;ons on the

target metamodel

Target models generated

via mode transforma;on(s)

Ant files to script the model

genera;on and

transforma;on process

EOL helper opera;ons for

the model transforma;on

ETL model transforma;ons

Fig. 21 Example Directory Structure

<?xml version="1.0" encoding="UTF-8"?>
<project name=”GenericWorkflow" default="Main">

 <!-- Ant Taskdefs for ant-contrib -->
 <!-- Import common properties -->
 <!-- Import Source model properties -->
 <!-- Import Target model properties -->

 <!-- Print out the property definitions for diagnostics -->
 <target name=“PrintProperties”/>

 <!-- Load the models required for the transformation -->
 <target name=“RegisterModels”/>

 <!-- Generate the target model -->
 <target name=“GenerateTargetModel”/>
 <!– Transform the Source model into the Target model -->
 <runtarget target=“LoadSourceModel”/>
 <runtarget target=“LoadTargetModel”/>
 <epsilon.etl src=“${EtlFile}”/>
 </target>

 <!-- Provide referenced model components to ETL transformation -->
 <target name=“LoadSourceModel”/>
 <target name=“LoadTargetModel”/>

 <!-- Run constraint checks on the generated Target model -->
 <target name=“ValidateTargetModel”/>

 <!-- Delete those models we no longer require -->
 <target name=“TidyingUp”/>

 <!-- Run the workflow -->
 <target name=“Main” depends=“RegisterModels”>
 <runtarget target=“PrintProperties”/>
 <runtarget target=“GenerateTargetModel”/>
 <runtarget target=“ValidateTargetModel”/>
 <runtarget target=“TidyingUp”/>
 </target>

</project>

Fig. 22 Generic Ant Workflow

main source document (the INDE file) is an ASCII file,
although rather terse it was a simple task to create a
parser under ANTLR to convert the file into XML. Since
we wished to validate all work products at the earli-
est opportunity an associated XML schema was writ-
ten; again, this was a simple task. The availability of
an XML schema allowed us to auto-generate an EMF
metamodel in Eclipse, and this, in turn, facilitated the
writing of a transformation in ETL to instantiate our
Network Initialisation domain model. However, we have
encountered a situation on another (unrelated) project
where an XML schema could not be written for the rele-
vant XML source document. In such instances we would
parse the source XML document directly from Epsilon
via EOL, although the absence of an XML schema makes
debugging more challenging as one discovers the scope of
variability of the source document. Therefore, we would
tend to advocate the XSD-based auto-generation of a
source metamodel followed by a transformation into the
target metamodel and subsequent validation via con-
straints. We would also encourage the reader to validate
the source XML document before parsing into the model
to guard against propagation of errors.

5.4 Deploying to the Users’ Desktops

The tool is developed under Eclipse and deployed to the
user community in the form of a JAR file packaged with
a small number of support files. Deployment was very
simple, requiring only that the user’s desktop machine
provide a suitable Java Virtual Machine (JVM). The tool
was delivered on a single CD-ROM containing all data
required for its use; the user had only to unzip to a folder
on the files system. Whilst the customer’s target envi-
ronment was Windows-based, the tool could be deployed
onto a Unix-based environment with ease. Although we
envisage that there would be productivity advantages in
migrating to an Eclipse plug-in based RCP architecture,
we do not anticipate that we would be able to leverage
deployment benefits via the use of update sites as a result
of the nature of the deployments because these tend to
be on classified standalone networks. Although this in-
troduces a maintenance overhead (manual deployment),
the highly modular nature of the models is expected to
provide some mitigation.

The tool deployed to users’ desktops comprises a
Graphical User Interface (GUI) through which the user
is able to select and load Network Initialisation Data
Catalogue models, once loaded the user may then in-
teract with the model. For the sake of expediency, we
chose to implement the tool’s workflow in Java, and,
for reasons given earlier, we also chose to implement
the GUI in Java. The tool’s architectural model is il-
lustrated in Fig.19, and follows the well-known Model-
View-Controller pattern [13]. The Java GUI code inter-

19

faces with the underpinning metamodel via simple calls
to the Epsilon system.

The user interface was kept very simple, providing a
set of combo-boxes from which the user could drill into
the model to identify the relevant Community, Partici-
pant, and Data Set to be used for the queries. Each of
the three queries over the model is provided via a but-
ton and a text window is provided to give feedback to
the user, for example constraint violations would be pre-
sented here. An example of the tool’s GUI is provided in
Fig.23. Graphical results of the queries are presented in
the form of a DSL, the timeslot map.

5.5 Summary of Experience

Development of the network initialisation analysis tool
proceeded well, and it has proved to be a successful
project, providing benefits to the customer and also
prompting the identification of new model-based oppor-
tunities in other projects in a diverse set of domains,
such as business process modelling. At the beginning of
the project the customer requirements were not imme-
diately clear, the TDL domain experts required a tool
to perform the analysis task based on user-defined crite-
ria for two complex queries. Also, the form in which the
results should be presented was not clear, initially it ap-
peared that a textual report would be adequate. Working
closely with the TDL domain experts in the initial phase
of the project served to de-risk the project by providing
the customers with confidence of our model-based ap-
proach, demonstrating the art of the possible whilst also
clarifying the requirements and confirming our under-
standing. As this was our first model-based project to
adopt use of the Epsilon toolkit we also worked closely
with the relevant domain experts at the University of
York, this helped to answer many questions and also en-
sured that we made best use of the components provided
by the toolkit. There have been two updates to the tool
since its initial deployment in 2010, the first was a mi-
nor correction to the Java View-Controller component,
the second was a more significant extension to the Java
View-Controller component and a minor extension to the
ANTLR INDE file parser and associated schema to sup-
port the requirement to accommodate standalone net-
works. Neither of these changes required any revision to
the underlying metamodel of the network initialisation
domain, we feel this illustrates the benefit of enforcing
strong separation between the View-Controller and the
Model components. Applying constraint checks at each
stage in the process also serves to improve the robustness
of the solution, this has been achieved via a combination
of the XML schema and constraints over the models.
This approach also simplifies fault finding greatly. For
example, the tool was able to identify the use of unex-
pected platform names by the network design authority

when the network design was up-issued; the architecture
helped to pinpoint the location of the error and prevent
propagation to downstream components.

User feedback confirms that the tool has fulfilled the
customer’s requirement and the customer has indicated
that he would be willing to place further work with us
in the future, although this is clearly dependent upon
identifying a suitable business opportunity with an at-
tractive ROI. As has been described above, the tool has
seen the incorporation of a new requirement to sup-
port an alternative network structure (the closed net-
work) and now supports all forms of network architec-
ture used by the customer’s programme. Demonstration
of the tool as part of an end of year presentation to TDL-
related projects elicited further opportunities for addi-
tional model-based tool development within the TDL
domain and department reports have resulted in meta-
modelling opportunities in other domains, such as ontol-
ogy and business process modelling.

We did not observe any issues regarding performance
throughput or model size. Generation of the network ini-
tialisation data catalogue model from the source data
takes in the region of 5 minutes and is performed via
the user navigating to the relevant source files and click-
ing a button to parse the data into the tool. Models are
parsed from source data only once, thereafter the models
are serialised as XMI files. The EOL queries, whilst quite
complex, run in a matter of seconds, including render-
ing of results by Java/SWT, representing a significant
improvement over the manual process that appeared to
require in the region of 30 minutes by a domain expert
(the manual approach did not include rendering of re-
sults as a timeslot map). Hence, the tool provides both
a considerable saving of effort and makes a skilled task
accessible to less experienced engineers; an added ben-
efit is that timeslot analyses are more likely to be per-
formed as a matter of course because it is now a simple
task. We also report that we are using the same meta-
modelling tooling with models more complex and several
times larger than that reported here, again with no sig-
nificant performance issues, in fact model transformation
generally appears to perform better than XSLT and is
also arguably more readable.

Notwithstanding the difficulties associated with the
integration of Ant workflows with the Epsilon toolkit,
there was a general lack of state of the art support for de-
bugging model management programs7. This was most
evident when developing model transformations using
ETL (and is similarly the case when merging models
using EML and when performing model to text trans-
formations via EGL). We found it necessary to eject text

7 Since this work was carried out, Epsilon has been aug-
mented with Eclipse-based debugging tools.

20

Fig. 23 Graphical User Interface

from each transformation rule to provide a bread crumb
trail of execution to aid debugging, since failure of an
ETL script generally does not result in the saving of a
partial/erroneous model and much of the debugging in-
formation relates to the exception trace of the internals
of Epsilon. Whilst an admittedly primitive approach to
debugging, we defined a ’debug flag’ in the Ant workflow
such that we could choose to run the transformation in a
debug mode when diagnostic information was required.
It would have been preferable to be able to set break-
points in the ETL rules and to be able to inspect the
source and target trees as is possible in some XSLT en-
gines. ETL, EML, and EGL components tended to be
developed in a top-down style as a result of the limited
support for debugging.

The provision of pre and post-condition processing
blocks in ETL transformations was found to be a use-
ful feature. We generally use the pre-condition process-
ing block to eject diagnostic information regarding the
models to be processed and generated, such as a count
of the number of elements of a certain type; again, this is
guarded by the debug flag mentioned above. The post-
processing block is used for finalising of the generated
model, for example traversing the model to ensure all
appropriate slots have been populated, or ejecting diag-
nostic information such as the number of elements cre-
ated, which may assist with debugging. The basing of

the Epsilon languages on a common core provides the
ability not only of importing EOL operations in an ETL
transformation, but also the ability to declare helper op-
erations directly within the ETL file itself; this we found
to be useful for operations of relevance only to the trans-
formation.

In Table 1 we summarise the general characteristics
of the EOL operations provided to support the Net-
work Initialisation Data Catalogue model. In Table 2
we present a similar view of the EVL constraints de-
fined over the model. Finally, in Table 3 we present the
characteristics of the ETL transformations developed to
populate the target metamodel from the two source doc-
uments. It should be noted that the operations in the

Table 1 Class metrics - EOL

Number of Classes 35
Number of EOL files 35
Number of EOL helper classes 3
Average LOC for EOL file 25.03
Average no. Operations per class 3.23
Average LOC per Operation 7.75

three helper classes were ultimately embodied into Ep-
silon EOL as primitive operations, such as the operations

21

pad() and trim() on class String. We also adopted an id-
iom of providing a toString() operation on each class as
an aid to debugging - this was subsequently integrated
with exeed [19] to provide a more readable model edi-
tor output whilst working in Eclipse. Hence, the number
of operations per class could actually be somewhat re-
duced.

Table 2 Class metrics - EVL

Number of Classes 35
Number of EVL files 26
Average LOC for EVL file 39.00
Average no. Constraints per class 2.66
Average LOC per Constraint 14.68

Table 3 Class metrics - ETL

Number of ETL files 2
Average LOC for ETL file 204.50
Average no. transformation rules per file 16.50
Average LOC per transformation rule 12.39

It can be seen form the metrics presented above
that the Epsilon language components serve to provide
a parsimonious implementation of a complex domain.
The completed application comprised a total of approx-
imately 675 lines of Java to provide the GUI and source
document parser interface, in addition to approximately
2450 lines of EOL/ETL/EVL; hence, a fully-featured
graphical application required approximately 3KLOC.
Initial prototyping leads us to believe that migration
to an Eclipse plugin-based RCP architecture would re-
duce the Java LOC count quite considerably as much of
the GUI processing is sported directly by the Eclipse
plug-in framework. Not only is the solution believed
to be highly modular, enforced by the strict separa-
tion of the model from the view-controller, but there
are clearly opportunities to reuse the domain-specific
metamodels as we seek to build more profound and in-
tegrated TDL domain capabilities. Horizontal transfor-
mations into domain-independent metamodels, such as
document metamodels, graph metamodels, etc. support
the reuse of such metamodels. A majority of the effort
expended in metamodel reuse generally lies in the de-
velopment of the transformations, and is related to the
semantic distance between the models concerned.

Whilst the model-based network initialisation analy-
sis tool has been well received by the customer there are
believed to be some areas where an alternative approach
might be followed in subsequent work. The approach
followed was largely pragmatic, based on de-risking the

programme by demonstrating components of the overall
solution to the customer to validate our understanding
of the problem domain and to drive out and, where nec-
essary, firm up the customer’s requirements. As a result
of this approach, and the migration to the Epsilon tech-
nology we have a technologically fragmented solution:
document parsing via ANTLR, GUI development using
Java and SWT, and model management using Epsilon.
A more coherent approach would be adopt a more native
Eclipse-based approach, such as migrating the document
parsers to using the Xtext technology [17]. Another area
where we believe there is room for improvement is the
GUI layout. Whilst functional, a more graphically rich
approach has been investigated using the Eclipse plug-in
architecture leading to development of an RCP applica-
tion. This prototype tool allows more user interaction
with the model, allowing the user to explore the network
design model for the source and target platforms using
a tree viewer ([18]) rather than via context-dependent
combo-boxes. The user may select one item in each of
the two trees and click a button to perform the required
interoperability analysis function, or click on some item
to browse via a properties view. This prototype tool has
the advantage of being both more user-friendly and open
to adaptation via its plug-in based architecture.

5.6 Comparing the Approach

We cannot offer a direct comparison between application
development following a model-based approach and that
following a more typical object-oriented software devel-
opment paradigm because this was not one of the goals
of the project (we did not develop an equivalent system
using more typical technologies), hence this section is il-
lustrative. We have developed software intensive systems
using typical object-oriented paradigms, such as that de-
scribed by Texel & Williams [42], using the UML and
various popular languages, e.g. Python, Ada95, C++.
One of the characteristics of the project reported here
is its tactical nature. Prior to this project we had been
modelling various aspects of the TDL domain, such as
the message structure (e.g. see Fig.4). However, net-
work initialisation was a new theme (to us), and our
experience of TDL was not directly applicable. Hence,
none of our existing models were immediately relevant
to undertaking the project, rather it was the expectation
that, leveraging from our metamodelling experience, we
would be able to bring powerful new tools to bear on the
problem domain and provide an attractive ROI. Another
characteristic of the project was the lack of a detailed set
of requirements, the general end goal of the project was
understood by all parties, but the strategy to achieve
this goal wasn’t clear at the outset. Consequently, we
adopted a prototyping approach to de-risk and clarify
requirements.

22

One of the first activities to be undertaken was for us
to try to identify and understand the source data to be
used to support the analysis of the timeslots. As Fig.15
shows, two distinct, but related documents were iden-
tified, for which parsers were required in order to make
the source data available to the analysis tool. The output
of the parsers were XML documents for each of which
an XML schema (XSD file) was created; this allowed
machine validation of the documents generated by the
parsers.

Given that we are able to parse and validate the
source material and hold it in a machine processable
form (XML and an associated schema), we were able
to realise an immediate benefit from the EMF tooling
via the auto-generation of the necessary XML parsers.
It takes only a few minutes to generate an EMF model
from an XML schema (XSD), complete with source doc-
ument (XML) parser from which the model may be pop-
ulated. This has two benefits: (1) it is much more rapid
than writing a parser by hand in a conventional XML-
aware language such as Java or Python, and (2) it forces
the developer to create an XSD, thereby providing the
opportunity to validate source data prior to population
of the model. Clearly, there is a benefit associated with
identifying errors closer to the point of origin as this
reduces the scope of the debugging task.

Development of the Network Initialisation metamodel
was performed largely in isolation from the domain ex-
perts. It was apparent that the modelling activity re-
quired a finer level of detail than the domain experts had
considered relevant, this was particularly the case when
dealing with inheritance hierarchies and the introduc-
tion of abstract classes, but less so when discussing as-
sociations between entities. As a consequence, the meta-
model was ‘written’ by the modeller using Emfatic [10]
and class diagrams were generated from the Ecore meta-
model for discussion with the domain experts, where
necessary. The choice between generating Ecore meta-
models from Emfatic versus class diagrams is one of
personal preference, at least one member of the team
preferred the graphical view, whilst the modeller pre-
ferred the textual view; however the EMF tooling al-
lows the generation of one view from the other, hence
maintaining consistency between views is trivial. How-
ever, we see little difference in terms of productivity.
In contrast with more conventional approaches a ma-
jor benefit provided by the Eclipse tooling is that the
(meta)model is the code; there’s no clear distinction be-
tween modelling and software development. Hence, both
(meta)model and code (both operations and constraints)
appear indivisible. Eclipse provides users with the abil-
ity to auto-generate simple editors that may be used to
create and validate example models. Additionally, Ep-
silon supports the use of HUTN [7] where models may
be written in terms of the Abstract Syntax and instan-

tiated against the metamodel. Our development process
is illustrated in Fig.13. Again, the choice of HUTN over
the use of a graphical editor is a result of personal pref-
erence. However, we feel either approach to be generally
quicker than hand-crafted code as the Eclipse tooling
provides the model parser for free, with the added ben-
efit of remaining within the same development environ-
ment. Hence, changes to the metamodel may be tested
very quickly and easily. Again, we would suggest that
the model-based approach is superior to the more clas-
sical code-based approach by adapting to changes more
easily.

Development of model transformations is provided via
ETL. Transformation rules must be coded via a set of
rules using EOL plus ETL extensions, there is no graph-
ical alternative. When writing transformations it is often
necessary to write helper operations using EOL directly.
EOL is a powerful high-level language deriving from the
OCL [8]. ETL is a rule-based pattern matching language
that builds on EOL. For a separate project we had rea-
son to transform a number of XML documents using
XSLT and Python. Although the two projects are not
directly comparable, we believe the creation of model
transformations in ETL to be more rapid and the re-
sulting transformations far more compact than achieved
via a more conventional approach. However, ETL suf-
fered from a lack of debugging tools.

Checking of the well-formedness of models is provided
by the EVL; again this is an extension to the EOL and
is similar to the OCL [8]. Many modern programming
languages provide built-in support for run-time checking
of types and also user-defined exception blocks. Hence,
one may argue that EVL does not offer any development
advantages over and above the abstraction provided by
its high-level, and in terms of development effort this
may be true. The benefit of EVL over more conven-
tional approaches is, rather, the separation of all ex-
ception handling concerns into one or more components
such that the other language components (ETL, EML,
EGL, etc.) are not littered with exception handling code
that can compromise their readability. However, we are
aware that Aspect Oriented Programming (AOP) takes
the idea of separation of cross-cutting concerns much
further [43].

Reflecting on the productivity benefits we perceive as
being offered by a model-based approach over a more
conventional approach, and as summarised above, we
would venture to suggest that the model-based approach
offers a productivity benefit in the region of an order of
magnitude, given similar skilled levels of practitioners
in conventional or model-based approaches. We would
suggest further that benefits are also realised during the
maintenance phase of a project as a result of the ex-
plicit linkage between model and code (the model is

23

the code). The introduction of a new requirement (a
new query over the model) was accommodated easily,
and changes to accommodate closed networks served
to highlight the ease with which changes could be ac-
commodated in the ANTLR grammar (itself a model)
compared to changes to a document parser written in a
conventional programming language (in this case Java).
Finally, the well-focussed nature of the domain-specific
metamodels makes the opportunity for reuse possible.
For example, horizontal transformations provide the op-
portunity to reuse metamodels from different domains,
such as the document metamodel. Vertical transforma-
tions support the reuse of other TDL metamodels, such
as the Data Dictionary and Message Catalogue meta-
models, to provide more profound capabilities within the
TDL domain; for example checking the correctness of the
standard itself.

Ultimately, the success of this project may be deter-
mined by the realisation of the ROI predicted at its out-
set. However, its success may also be measured by the
interest garnered by the model-based approach within
BAE Systems. Achievement of the ROI is largely out-
side our control, the figure for ROI was based on figures
provided by the sponsoring project based on expected
utilisation of the tool which was, in turn, driven by their
development plan. The tool has been well-received by
the project and, if they make the expected level of use
of the tool, the predicted ROI will be achieved. Whilst
this is not the only model-based project to have been
undertaken on behalf of BAE Systems, it has helped to
generate significant interest across various strands of the
business and the model-based approach continues to be
pursued.

5.7 Future Work

We embarked on a modelling programme to address
some of the shortcomings identified in the TDL domain,
with a focus on Link 16/TADIL-J due to its general ap-
plicability to BAE Systems’ air platforms. A majority
of our modelling activities related to the standard it-
self, working bottom-up: Data Dictionary, Message Cat-
alogue, and behavioural specifications, with the aim of
adding rigour (e.g. see [15]). Hence, modelling of the net-
work initialisation domain was initially felt to be a tac-
tical decision to pursue a clear opportunity to deploy
a model-based tool within a relatively short timeframe
(less than 12 months from the opportunity being identi-
fied to fielding of the solution), although with no explicit
connection to our emerging metamodels of the Link 16
standard itself. The tool has been in regular use since
it’s initial deployment in 2010 and has been subject to
one significant upgrade to accommodate closed networks,
although we see little opportunity for further significant
enhancements with this customer. There are other TDL-
related programmes running within the air sector of the

business, however use of the INDE file format is currently
unique to one project. Thus there is limited opportunity
for deployment of additional copies of the existing tool,
although there does exist the possibility of extending
the tool to support additional file formats as the under-
lying metamodel of timeslots is expected to be common
to all TDL projects. We have also discussed the possi-
bility of performing additional queries over the network
design model, such as calculation and analysis of the
electromagnetic spectrum for a given platform or con-
figuration of platforms. This is believed to be a useful
addition to support ’quick look’ queries because there
are legal restrictions imposed by the Civil Aviation Au-
thority (CAA) via the Frequency Clearance Agreement
(FCA); infringements are monitored centrally.

Subsequent prototyping was performed to migrate the
solution to an Eclipse plugin architecture supporting de-
ployment in the form of a configured Rich Client Plat-
form (RCP). The strict separation of the Model from the
View-Controller components provided a relatively sim-
ple migration to the Eclipse plugin architecture, requir-
ing very little application code, considerably less than
was required to write the initial tool. No changes were
required to the metamodels, document parsers or Ep-
silon components. Use of expandable/collapsable tree
browsers provided an improvement to the user inter-
face, allowing us to make the query definitions more
easily understandable to the novice and also supporting
the browsing of model properties, e.g. as one navigates
the model from a Community to Groups and/or Par-
ticipants, to the Initialisation Data Sets, down to the
individual Timeslot instances.

One of the major benefits we see in pursuing a model-
based approach is the possible integration of the net-
work initialisation metamodel with our existing Link 16
metamodels to provide more profound capabilities by
linking the static message structures with the run-time
blueprint provided by the network design authority (see
Fig.5), this would provide a significant level of insight
into the platform implementation. Also the observation
that a number of TDL-related programmes adopt simi-
lar, rather than identical technologies suggests that there
may be scope for the development of a Product Line Ar-
chitecture (PLA) of tools based on a common framework
of metamodels. Such a PLA may be achieved more eas-
ily via migration to the Eclipse plug-in model, which we
have prototyped successfully by migrating the Network
Initialisation Data Catalogue metamodel into a plugin-
based RCP architecture. In this way tools could be cus-
tomised for specific programmes, thereby providing only
the functionality required, as opposed to tools provid-
ing the superset of functionality, some of which may be
irrelevant to a particular programme.

24

6 Related Work

This section discusses related work in the areas of TDL
modelling and the use of Model-Driven Engineering
(MDE) in industry.

6.1 TDL Modelling

Sorroche [23] discusses modelling of Tactical Data links
and identifies its importance in combat modelling. Moon
et al. [24] identify modelling of a discrete event system
as a key component of combat modelling. There is rel-
atively little work reported in the literature regarding
the formalism or application of model based approaches
(i.e. use of executable models) to Tactical data Links.
A notable body of work is that of the identification
and application of the Discrete Event System Specifica-
tion (DEVS) formalism, introduced by Zeigler [25–27].
DEVS is a formal specification of a discrete event system
that enables a large discrete event system to be specified
by hierarchically decomposing the system into modules.
The decomposition results in two types of specifications:
the hierarchical structure of the system modules and the
internal structure, or the state transition, of the system
modules. Mak et al. [29] discuss an automated testing
framework based on DEVS modelling and simulation for-
malism, XML and System Entity Structure (SES). This
framework is part of the Automated Test Case Gener-
ator (ATC-Gen) funded by the United States Depart-
ment of Defense Joint Interoperability Test Command
(JITC) to support the mission of standards compliance
and certification. ATC-Gen development is composed of
four stages:

1. Rule Capturing
2. Rule Set Analysis
3. Rule Formalisation
4. Test Generation

The rule capturing stage captures and formalises the
MIL-STD-6016C [1] in XML format. A rule set analyser
determines useful relationships among rules. Rule for-
malisation consists of selecting and formulating the test
sequences. Finally, tests are generated as DEVS C++
test models, these are executed against the System Un-
der Test (SUT) using a Test Driver. The Test Driver per-
forms SUT conformance testing by inducing the testable
behaviour expressed in the models into SUT and check-
ing the responses for accuracy [29]. This work is inter-
esting because it seeks to formalise the Link 16 standard
such that it is processable by a machine. It is noted,
however, that the underlying philosophy of the applica-
tion of the DEVS approach differs from that discussed
by this paper insofar as the DEVS approach provides a
testing oracle built around a reference implementation
of the Link 16 standard, candidate terminals are sub-
jected to testing against this oracle in order to evaluate

conformance against the standard. Although the authors
identify a number of issues against the Link 16 standard
[28] they do not accommodate the evaluation of interop-
erability between two terminals, rather interoperability
is assumed given conformance with the standard. Also,
the approach is intended to confirm (or refute) interoper-
ability of an actual terminal; clearly there are significant
costs involved in developing a terminal to the required
state, hence the identification of any significant issues
are likely to be quite expensive to rectify. In contrast
our approach supports the investigation of interoperabil-
ity criteria from models that could be developed much
earlier in the life-cycle.

6.2 MDE in Industry

Mohagheghi et al. [30] report that there is little em-
pirical evidence of the acceptance of MDE in industry
and that there are very few reports on industry expe-
rience with MDE [31]. They discuss the findings of an
empirical study undertaken by the authors, using devel-
opers from four large industries participating in a re-
search project. Their findings suggest that model-based
approaches were useful for investigating some problems
of complex systems, although the methodology and tools
were immature and not generally perceived as easy to
use. MDE experiences within Telefonica [34] and SAP
are described in [32]. The common challenges faced by
both companies are the skill set or training in MDE
(meta-modelling, domain specific languages) required by
developers (domain experts) and the lack of tool sup-
port. In our case, the software engineers with MDE ex-
pertise were heavily involved in the project, the issue was
gaining sufficient TDL domain expertise required to un-
dertake the modelling work. We were able to obtain this
expertise by consulting with the TDL domain experts,
particularly in the earlier phases of the project.

Kirstan et al. [35] describe the results of an initial
qualitative case study evaluating costs and benefits of
MDE of embedded software systems in the car indus-
try. Results of the qualitative case study led to a global
study by Broy et al. [44] that concluded that MBD can
bring significant cost savings in the car industry which is
driven by functional evolution and hardware revolutions.
Experiences from three industrial cases (SAP, Telefon-
ica and WesternGeco) are summarised by Mohagheghi
et al. in [33]. The four major benefits of MDE are listed
as follows:

1. Abstraction and hiding details of complexity
2. Communication with non-technical staff
3. Simulation and model-based execution
4. Model-based testing

We concur with the benefits regarding abstraction, com-
munication and testing based on our experience dis-
cussed in this article. However, we would add to this

25

the opportunities for model reuse via model transforma-
tions.

Hutchinson’s thesis [36] provides an empirical assess-
ment of MDE in industry that includes the analysis of
several case studies. The thesis concludes that many dif-
ferent MDE approaches are being actively used in in-
dustry and delivering significant benefits. All variants of
MBD were covered in his thesis, including both domain-
specific modelling languages and UML-based methods.
Four papers arising from his thesis are [45–47] and [48]
that point to important social, organizational and man-
agerial factors affecting MBD success or failure. The au-
thors in [45] report that the success or failure of MBD is
affected as much by cultural considerations as by purely
technical ones. Whittle et al. point out in [48] that do-
main knowledge is crucial in MBD and the chances of
MBD being successful increase when team members have
domain knowledge, modeling as well as coding skills. We
concur with this as domain expertise could have resulted
in faster progress of our project with fewer clarifications
and misunderstandings. Whittle et al. also report on key
findings relevant to education, that is, on how MBD
needs to be taught [48,49]. According to their findings,
industry success is more likely when MBD is applied
bottom-up while MBD is generally taught top-down.

Torchiano et al. [37] report on the benefits and prob-
lems of software modelling and model-driven techniques
on the basis of a survey (web-based questionnaire) with
a sample of 155 software professionals within the Ital-
ian industrial sector. The sample consisted of industries
across a number of domains such as IT (67%), Services
(9%), Telecommunications (6%), Manufacturing (4%)
and others (14%). According to the authors, simple mod-
els provided benefits such as:

– support in design definition
– improved documentation
– higher quality

Model-driven techniques played a significant role in pro-
ductivity, platform independence and standardisation.
The problems reported were a mix of technological and
human factors, i.e. a lack of supporting tools and lack of
domain competencies.

Several other case studies within industry and their
benefits are identified in the literature. Baker et al. [38]
provides a large case study describing the experience of
15 years of MDE at Motorola, demonstrating signifi-
cant benefits in quality and productivity. Krogmann’s
case study in [39] compares conventional software devel-
opment with Eclipse-based model driven development.
This case study demonstrates that a model-driven ap-
proach could be carried out in 11% of the time of the
conventional approach, while simultaneously improving
code quality. Another industrial case study [40] reported

that the application of MDE in their project resulted in
a performance (productivity) increase of 2.6 times com-
pared with a legacy project. Karna et al. in [41] show
that the benefits of Domain-Specific Modelling provide
an increase of at least 750% in developer productivity
and greatly improve quality of code and development
process.

7 Conclusions

Model-Driven Engineering (MDE) has been applied suc-
cessfully to a complex subject matter domain, military
Tactical Data Links, as a vehicle to produce end-user
support tools to fill gaps in a TDL tool suite. The capa-
bilities of the current generation of metamodelling tools,
such as Eclipse, EMF, Epsilon and XML/XSD, have suf-
ficient industry strength to be able to support this need.
They also make it easier to develop a solution that is
more open to future extension, possibly in ways that
were unforeseen at the time of their inception. In our ex-
perience, MDE can be applied successfully when skilled
engineers and subject matter experts are able to work
together closely, however, increased adoption of MDE
raises issues related to the availability of a different skill
base compared to that required for a conventional soft-
ware development project.

8 Acknowledgments

The support of BAE Systems, Military Air and Infor-
mation (MAI) business unit is gratefully acknowledged.
This body of work would not have been possible without
the support of the Tactical Data Link community within
MAI. At the time of the undertaking of this body of work
both Dr. Holmes and Dr. Ajit were employed by BAE
Systems.

The support of The University of York is gratefully ac-
knowledged. BAE Systems and The University of York
have a long history of collaboration. Staff at the Univer-
sity provided valuable guidance and support regarding
the use of the Epsilon technologies. The development of
Epsilon has been partially supported through a number
of EC co-funded FP6 and FP7 projects including Mod-
elWare, ModelPlex, MADES and INESS.

The support of CGI IT (UK) Ltd. is gratefully ac-
knowledged.

The support of The University of Northampton is also
gratefully acknowledged.

References

1. US Department of Defense, Tactical Data Link (TDL) 16
Message Standard, MIL-STD-6016C, 2004

26

2. NATO Standardization Agency, Standardization Agree-
ment, Tactical Data Link Exchange - Link 16, (STANAG)
5516, Ed. 4

3. Asenstorfer, J., Cox, T., Wilksch, D., Tactical Data Link
Systems and the Australian Defence Force (ADF) - Tech-
nology Developments and Interoperability Issues, DSTO-
TR-1470 February 2004

4. TADIL J, Introduction to Tactical Digital Informa-
tion Link J and Quick Reference Guide, June 2000,
http://www.globalsecurity.org/military/

library/policy/army/fm/6-24-8/tadilj.pdf

5. Joint Data Link Management Organisation (JDLMO),
Network UKJP0005B, Initialisation Data Catalogue, Net-
work Design Cell, Final Release Version number 1.0 Au-
gust 2008

6. Tactical Data Link Network Design Station, TNDS Inter-
face Control Document, Issue 2.9 (UK), HP Enterprise
Services Defence & Security UK Ltd. February 2011

7. OMG, Human-Usable Textual Notation (HUTN) Specifi-
cation, Version 1.0, August 2004

8. OMG, Object Constraint Language, Version 2.2, February
2010

9. Parr, T., The Definitive ANTLR Reference: Build-
ing Domain-Specific Languages, Pragmatic Programmers,
May 2007

10. Daly, C., Emfatic Language Reference, http://www.
eclipse.org/epsilon/doc/articles/emfatic/

11. Holzner, S., Ant: The Definitive Guide, O’Reilly, 2005
12. Kolovos, D., Rose, L., Paige, R., The Epsilon Book,

http://www.eclipse.org/epsilon/doc/book/

13. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,
P., Stal, M., A System of Patterns - Pattern-Oriented Soft-
ware Architecture, Wiley, 1996

14. Object Management Group, Jishnu Mukerji, Joaquin
Miller, MDA Guide, 2001, http://www.omg.org/

cgi-bin/doc?omg/03-06-01.pdf

15. Johnson, J., Holmes, C., Improving System Dependabil-
ity via a Model-Based Approach to Standards, MIT BAE
Systems Fall Conference, October 30-31, 2007

16. Johnson, J., Holmes, C., Model-based approach to
a complex requirement-design domain: TDLs, 7th An-
nual Conference on Systems Engineering Research 2009
(CSER2009), Loughborough University, April 20-23, 2009

17. Xtext 2.4 Documentation, April 2013, www.eclipse.
org/Xtext/documentation.html

18. Clayberg, E., Rubel, D., Building Commercial Quality
Plug-Ins, 2nd Ed., Addison-Wesley, 2006

19. Dimitrios S. Kolovos, Richard F. Paige, Fiona A.C. Po-
lack. Agile Model Editing in the Eclipse Modeling Frame-
work using Executable Metamodel Annotations. In Proc.
1st Towers of Models Workshop, TOOLS EUROPE 2007.

20. Dave Steinberg, Frank Budinsky, Marcelo Paternostro,
Ed Merks. EMF: Eclipse Modelling Framework. Eclipse
Series. Addison-Wesley Professional, second edition, De-
cember 2008.

21. Dimitrios S. Kolovos, Richard F.Paige and Fiona A.C.
Polack. The Epsilon Object Language. In Proc. Euro-
pean Conference in Model Driven Architecture (EC-MDA)
2006, volume 4066 of LNCS, pages 128–142, Bilbao, Spain,
July 2006.

22. Dimitrios S. Kolovos, Richard F. Paige, Fiona A.C. Po-
lack. A Framework for Composing Modular and Inter-
operable Model Management Tasks. In Proc. Workshop

on Model Driven Tool and Process Integration (MDTPI),
ECMDA, Berlin, Germany, June 2008.

23. Sorroche, J., Modeling Tactical Data Links, in Engineer-
ing Principles of Combat Modeling and Distributed Simu-
lation, pp. 537-578, Anonymous, Wiley & Sons, Inc., 2012

24. Gon Kim, T., Moon, I., Combat Modeling Using the
DEVS Formalism in Engineering Principles of Com-
bat Modeling and Distributed Simulation, pp. 479-510,
Anonymous John Wiley & Sons, Inc., 2012

25. Zeigler, B., P., Ed., Multifaceted Modeling and Discrete
Event Simulation, London: Academic press, 1984

26. Kim, T., G., Zeigler, B., P., The DEVS formalism: Hi-
erarchical modular system specification in an object ori-
ented framework, in Proceedings of the 19th Conference
on Winter Simulation - WSC ’87, pp. 559-566, New York,
1987

27. Zeigler, B., P., Tag, K., G., Praehofer, H., Theory
of Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems, San Diego,
[Calif.]: Academic, 2000

28. Zeigler, B., P., Simulation-based Test-
ing of Emerging Defense Information
Systems, 2006 http://acims.asu.edu/wp-
content/uploads/2012/02/AuburnTalk.ppt

29. Mak, E., Mittal, S., Hwang, M., Nutaro, J., J., Auto-
mated Link-16 Testing Using the Discrete Event System
Specification and Extensible Markup Language, The Jour-
nal of Defense Modeling and Simulation: Applications,
Methodology, Technology, vol. 7, pp. 39-62, 2010

30. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez,
M, A., An empirical study of the state of the practice and
acceptance of model-driven engineering in four industrial
cases, Empirical Software Engineering, vol. 18, pp. 89-116,
2013

31. Mohagheghi, P., Dehlen, V., Where Is the Proof? - A
Review of Experiences from Applying MDE in Industry,
Model Driven Architecture Foundations and Applications,
vol. 5095, pp. 432-443, 2008

32. Mohagheghi, P., Fernandez, M., Martell, J, Fritzsche, M.,
Gilani, W., MDE adoption in industry: Challenges and
success criteria, in , M. V. Chaudron, Ed. Springer Berlin
Heidelberg, 2009, pp. 54-59

33. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez,
M., A., Nordmoen, B., Fritzsche, M., Where does model-
driven engineering help? Experiences from three industrial
cases, Software & Systems Modeling, 2011

34. Evans, A, Fernandez, M., A., Mohagheghi, P., Experi-
ences of Developing a Network Modeling Tool Using the
Eclipse Environment, Model Driven Architecture - Foun-
dations and Applications, vol. 5562, pp. 301-312, 2009

35. Kirstan, S., Zimmermann, J., Evaluating costs and ben-
efits of model-based development of embedded software
systems in the car industry, Results of a qualitative case
study, in Proceedings Workshop C2M: EEMDD ”from
Code Centric to Model Centric: Evaluating the Effective-
ness of MDD (ECMFA.2010), 2010

36. Hutchinson, J., An Empirical Assessment of Model
Driven Development in Industry, 2012

37. Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., Reg-
gio, G., Relevance, benefits, and problems of software
modelling and model driven techniques, A survey in the
Italian industry, J. Syst. Software, 2013

27

38. Baker, P., Loh, S., Weil, F., Model-driven engineering
in a large industrial context - Motorola case study, in ,
Briand, L., Williams, C., Eds. Springer Berlin Heidelberg,
2005, pp. 476-491

39. Krogmann, K., Becker, S., A case study on model-driven
and conventional software development: The palladio ed-
itor, Software Engineering, pp. 169-176, 2007

40. Kapteijns, T., Jansen, S., Brinkkemper, S., Houet, H.,
Barendse, R., A comparative case study of model driven
development vs traditional development: The tortoise or
the hare, in 4th European Workshop on ”from Code Cen-
tric to Model Centric Software Engineering: Practices, Im-
plications and ROI”, Netherlands, 2009

41. Karna, J., Tolvanen, J., Kelly, S., Evaluating the use of
domain-specific modeling in practice, in Proceedings of
the 9th OOPSLA Workshop on Domain-Specific Model-
ing, DSM, Florida, USA, 2009

42. Texel, P., Williams, C., Use Cases Combined with Booch,
OMT, UML, Prentice Hall PTR, 1997

43. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Videira Lopes, C., Loingtier, J-M., Irwin, J., Aspect-
Oriented Programming, Proceedings of the European
Conference on Object-Oriented Programming (ECOOP),
Springer-Verlag LNCS 1241, Finland, June 1997

44. Broy, M., Kirstan, S., Krcmar, H., Schatz, B., What is
the benefit of a model-based design of embedded software
systems in the car industry?, In Emerging Technologies
for the Evolution and Maintenance of Software Models,
IGI Global, Hersley, 2011

45. Hutchinson, J., Whittle, J., Rouncefield, M., Kristof-
fersen, S., Empirical assessment of MDE in industry, ICSE
2011, pp. 471-480

46. Hutchinson, J., Rouncefield, M., Whittle, J., Model-
driven engineering practices in industry, ICSE 2011, pp.
633-642

47. Hutchinson, J., Whittle, J., Rouncefield, M., Model-
driven engineering practices in industry: Social, organi-
zational and managerial factors that lead to success or
failure, Sci. Comput. Program., vol. 89, pp. 144-161, 2014

48. Whittle, J., Hutchinson, J., Rouncefield, M., The State
of Practice in Model-Driven Engineering, IEEE Software,
vol. 31, pp. 79-85, 2014

49. Whittle, J., Hutchinson, J., Mismatches between Indus-
try Practice and Teaching of Model-Driven Software De-
velopment, MoDELS Workshops 2011, pp. 40-47

28

