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Abstract 

 

Purpose: Fine sediment has been shown to be a major cause of the degradation of lakes and 

rivers, and as a result research has been directed towards the understanding of fine sediment 

dynamics and the minimisation of sediment inputs. The use of tracers within a sediment 

fingerprinting framework has become a heavily used technique to investigate the sources of 

fine sediment pressures. When combined with the use of historically deposited sediment the 

technique provides the opportunity to reconstruct past changes to the environment. However, 

alterations to tracer signatures during sediment transport and storage are a major potential 

source of uncertainty associated with tracer use. At present few studies have quantified the 

uncertainties associated with tracer use.  

Materials and methods: This paper investigated uncertainty by determining the differences 

between sediment provenance predictions obtained using lithogenic radionuclide, 

geochemical, and mineral magnetic signatures when fingerprinting lake and floodplain 

sedimentary deposits. It also investigated the potential causes of the observed differences. 

Results and discussion: A reservoir core was fingerprinted with the least uncertainty, with 

tracer group predictions ~28% apart and a consistent down-core trend in changing sediment 

provenance produced. When fingerprinting an on-line lake core and four floodplain cores, 

differences between tracer group predictions were as large as 100%; the down-core trends in 

changing sediment provenance were also different. The differences between tracer group 

predictions could be attributed to the organic matter content and particle size of the sediment. 

There was also evidence of the in-growth of bacterially derived magnetite and chemical 

dissolution affecting the preservation of tracer signatures.  Simple data corrections for 

sediment organic matter content and particle size did not result in significantly greater 

agreement between the predictions of the different tracer groups. Likewise the inclusions of 

weightings for tracer discriminatory efficiency and within source variability had minimal 

effects on the fingerprinting results. 

Conclusions: This paper highlights the importance of tracer selection and the consideration of 

recognising tracer non-conservatism when using lake and floodplain sediment deposits to 

reconstruct anthropogenic changes to the environment and changing sediment dynamics. It 

was recommended that future research focus on the assessment of uncertainty using the 



artificial mixing of sediment source samples, the limitation of the fingerprinting to narrow 

particle size fractions and the development of specific particle size and organic matter 

correction factors for each tracer. 
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1. Introduction 

 

The use of tracers and sediment fingerprinting to determine sediment provenance have gained 

increasingly widespread adoption, with published papers on the subject growing at an almost 

exponential rate in recent years (Walling 2013). The principle of sediment fingerprinting is 

based upon a comparison of the properties of fine sediment transported or deposited by a river 

with the properties of the potential sediment sources present in a catchment (Klages and Hseih 

1975). It relies on the ability of sediment sources to be differentiated on the basis of their 

properties, and the assumption that the properties of the sediment still reflect those of its 

sources, after it has been delivered to a river, floodplain or lake (Collins et al. 1997a). A wide 

variety of different tracers have been employed in the published literature, which include 

mineral magnetism, (Caitcheon 1993), lithogenic radionuclides (Gruszowski et al. 2003), 

geochemistry (Collins et al. 1997a) and particle size, shape and colour (Krein et al. 2003). 

The use of tracers within a sediment fingerprinting framework has been applied in a range of 

long term depositional environments, such as lakes and reservoirs (Foster et al. 1998), 

floodplains (Collins et al. 1997b) and floodplain lakes (Winter et al. 2001). Sediment 

fingerprinting has been used to identify the impacts of anthroprogenic changes to the 

environment, such as the erosion of man-made road verges (Collins et al. 2010) or changes in 

catchment land cover (Miller et al. 2005). Tracers also have a history of use as qualitative 

indicators of historical changes in sediment provenance (e.g. Oldfield et al. 1983; Foster et al. 

2012).  

 

Despite the widespread use of tracers and sediment fingerprinting, many uncertainties exist 

regarding the accuracy and reliability of results derived from using them. Foster and Lees 

(2000) identified key assumptions associated with fingerprinting contemporary sediment 

sources. These included an ability for the tracer to distinguish between at least two potential 

sediment sources of interest; that the tracer is transported and deposited in the same way as 



the medium of interest (i.e. the sediment); that selective erosion does not change tracer 

properties (or that, if it does so, only in a way that is predictable) and that unmixing models 

can cope with the inherent variability in sediment source properties. These four assumptions 

underpin all tracer studies but Foster and Lees (2000) identified two further assumptions 

when using historically deposited sediments. These were the assumptions that post-

depositional digenesis was minimal and that differences between source properties have not 

changed over the timescale of deposition. 

The potential for tracer non-conservatism and uncertainties associated with tracer use have 

been widely discussed in the published literature. Changes to the particle size distribution of 

sediment (Thompson and Morton 1979) and the organic enrichment of sediment (Motha et al. 

2003) are the most commonly cited reasons for tracer non-conservatism. The enrichment 

(Wang et al. 2010) and depletion (Nadeu et al. 2011) of sediment with organic matter has 

been shown to occur during erosion and sediment transport. Some tracers, e.g. heavy metals, 

have also been shown to be associated with the organic fraction (Hirner et al. 1990; Wallbrink 

et al. 1997) while others, such as magnetic susceptibility and remanence signatures, are 

diluted by it (Walden et al. 1999). Likewise relationships between tracer concentrations and 

the SSA of the sediment have often been shown in published literature (Horowitz and Elrick 

1987; Foster et al. 1998; Bihari and Dezső 2008), resulting in changes to tracer concentrations 

as particle size is altered. When fingerprinting historically deposited sediment additional 

potential sources of tracer non-conservatism have been suggested to exist. These specifically 

include the in-growth of bacterially derived magnetic minerals (Oldfield 2007; Foster et al. 

2008) or the dissolution of tracers by oxido-reduction reactions (Anderson and Rippey 1988).  

At present a limited number of studies have explored tracer behaviour on the uncertainty 

associated with sediment provenance predictions when fingerprinting sedimentary deposits. 

The primary reason for this is that an independent source of sediment provenance information 

is usually not available for the validation of results, due to the absence of monitoring at the 

time of sediment deposition. This study attempts to overcome this limitation by fingerprinting 



sediment cores using different tracer groups separately, and in various combinations, so that 

the differences between their provenance predictions can be quantified.  The differences 

between predictions can then be compared to potential sources of tracer non-conservatism, 

such as organic enrichment, particle size effects or chemical alterations to determine the 

potential causes of the differences observed. On this basis the following objectives were 

produced: 

1: To determine the differences between sediment provenance predictions obtained using 

lithogenic radionuclide, geochemical, and mineral magnetic signatures when fingerprinting 

lake and floodplain sedimentary deposits. 

2: To investigate the impact of the organic enrichment of sediment, changes to its particle size 

distribution and post-depositional chemical and magnetic mineral alterations, on the observed 

differences between tracer group predictions. 

 

2. Study catchment 

 

The study was undertaken in the Nene basin; a lowland agricultural catchment of 1,634 km2, 

located in the East Midlands, UK (Figure 1A). The maximum elevation is 226 m above 

Ordnance Datum (AOD) decreasing to 40 m AOD at Stanwick. The average annual rainfall 

recorded at Athorp and calculated over 140 years is 638 mm, with a standard deviation of 

67mm. The catchment is underlain by Jurassic marine sedimentary deposits mostly 

comprising silts and clays with some outcrops of ironstone and limestone. Quaternary sand 

and gravel is found adjacent to the main river channel throughout the entire length of the 

basin, and glacial diamicton is found extensively at high altitude (Figure 1B). The 2007 UK 

Land Cover Map (Morton et al. 2011) indicates that the catchment land utilisation is 56% 

cultivated 22% pasture and 9% urban, the remaining 13% is composed of woodland, water 

and rough grassland. A comparison with the land cover of the catchment in the 1930s 

indicates that land cover at that time was approximately 50% pasture, 25% cultivated land, 

3% urban, and the remaining 22% was composed of woodland, water and rough grassland 



(Stamp, 1932). Flood defences protect the towns and villages along the main channel of the 

Nene and locks downstream of Northampton produce a navigable stretch of the river. 

 

3. Material and methods 

 

3.1. Sediment source sampling and sediment coring 

 

Sediment sources were classified as channel banks, surface agricultural land and urban street 

dusts as these have been shown to be important sediment sources in UK catchments (Carter et 

al. 2003; Walling et al. 2007). The source sampling was distributed across the entire study 

area to account for variations in tracer concentrations associated with local geology (Figure 

1B). A detailed breakdown of the distribution of source sampling is provided in the online 

supplementary material (Supplementary table 1). A total of 333 source samples were 

collected, 247 of which were from surface agricultural sources, 65 were from channel banks 

and 21 were from urban street dusts. Grassland was not used as a sediment source group as 

there was very little grassland present in the catchment which did not show evidence of 

having been cultivated in the past. As a result there was almost no ability of the tracers used 

to discriminate between cultivated and grassland. 

 

Samples of topsoil were collected from the top 2 cm of the profile using a non-metallic 

trowel. Urban street dusts were collected from the material deposited at the side of both major 

and minor roads following the methods of Charlesworth and Foster (2005). Channel bank 

samples were collected from the lower and middle horizons of visibly eroding channel banks 

using a non-metallic trowel. The outermost exposed 2 cm of material were removed prior to 

sampling in order to minimise contamination from displaced surface material or deposited 

fluvial sediments. All samples were composed of an amalgamation of five sub samples taken 

from within a 15 m radius of each sampling point, to further increase the sample size. 



A total of two lake cores and four floodplain cores were collected from the sites shown in 

Figure 1. Cores were retrieved from Sywell reservoir and an on-line (sensu Foster 2006) 

floodplain lake at Stanwick, using a ‘mini-Mackereth’ pneumatic corer (Mackereth 1969). 

Cores were collected in transparent Perspex tubes of ~5 cm internal diameter and 1 m length 

using the methods described by Foster and Walling (1994) and were maintained in a vertical 

position during transport to the laboratory. 

A core was retrieved from each of the floodplain sampling sites shown in Fig. 1 using a steel 

percussion corer of ~6 cm internal diameter and 75 cm length. The core tube was manually 

driven into the floodplain surface using a sledge hammer and was retrieved using a tripod and 

chain hoist.  On retrieval, the cores were retained in the corer during transport to the 

laboratory.  

Down-core plots of 137Cs activity were produced for each core (Figure 2). Peaks in activity in 

each core occur at a depth of 14 to 34 cm, these peaks are commonly attributed to the peak in 

fallout occurring at 1963 (Foster 2006).  Provided that sediment accumulation rates did not 

significantly change due to changes in land use prior to 1963, the sediment contained within 

each core  will have accumulated over the last ~ 50 – 150 years.  

 

3.2. Laboratory analyses 

 

On return to the laboratory the lake cores were extruded vertically and sectioned using a 

slicing plate into 1 cm slices.  Floodplain cores were sectioned into 2 cm slices. The sediment 

and source samples were oven dried at 40 °C and manually dis-aggregated with a pestle and 

mortar. The source samples were sieved to <63 µm to achieve a particle size distribution 

roughly comparable to that of the deposited sediment (Collins et al. 1997a).  

The soil and sediment samples were analysed for a range of mineral magnetic, radionuclide 

and geochemical signatures providing three independent groups of tracer properties. 

Additionally, organic matter content and particle size analysis were undertaken on all sources 

and deposits. 



Mineral magnetic signatures were measured using approximately 10 g of the source and 

sediment samples packed to a depth of ~2 cm in 10 ml sample pots. The following mineral 

magnetic signatures were measured: Low frequency susceptibility (lf), frequency dependent 

susceptibility (fd), susceptibility of ARM (arm), soft Isothermal remanent magnetisation 

(IRM-100), saturation isothermal remanent magnetisation, (SIRM), and hard isothermal 

remanent magnetisation (HIRM) using a Bartington Instruments (Witney, UK) MS2b sensor, 

Molspin® anhysteretic remanent magnetiser, Molspin® pulse magnetiser, and a Molspin® 

(Witney, UK) slow-speed spinner magnetometer following the methods of Foster et al. 

(2008). 

To measure radionuclide activity 3 g of source and sediment sample was packed to a depth of 

4 cm in PTFE sample pots and sealed with a turnover cap and paraffin wax. All samples were 

left to equilibrate for a period of 21 days to allow for ingrowth of 222Ra. Sediment samples 

were measured for a minimum of two days (>172,800s) and source samples for a minimum of 

one day (>86,400s) using Ortec EG&G (Tennessee, USA) hyper-pure Ge gamma detectors in 

a well configuration. Activities of 226 Ra, 234Th, 235U, 214Pb, 228Ac, 212Pb, 40K and 137Cs were 

then determined using the methods of Wallbrink et al. (2003) and Foster et al. (2007).  

Geochemical element concentrations were determined using 0.8 g +/- 0.05g of each sample 

which was microwave digested at 180°C using aqua regia. Concentrations of Al, As, Ba, Ca, 

Co, Cr, Cu, Fe, Ga, Gd, K, La, Mg, Mn, Na, Nd, Ni, P, Pb, Ti, V, Y, Yb, Zn and Zr  were 

determined using a Thermo Scientific (Waltham, USA) iCAP 6500 Duo View ICP-OES. 

Sample particle size was determined using ca. 0.1 g sub-samples of sediment which were pre-

treated with 10 ml of 30% hydrogen peroxide to remove organic matter. Each sample was 

placed into 5 ml of hydrogen peroxide for 24 hours at room temperature before being heated 

at 70 °C for four hours. The samples were then dispersed with 5 ml of 3% sodium 

hexametaphosphate solution combined with two minutes of ultrasonic treatment (Gray et al. 

2010). A Malvern Instruments (Worcestershire, UK) laser granulometer with Hydro-2000 

sample injection unit was used to determine the specific surface area (SSA) of each sample.  



The organic content of 1-2 g sub-samples of sediment were determined using low temperature 

loss on ignition (LOI) in a Carbolite muffle furnace set at 450 °C for 4 hours. LOI was 

calculated using the pre combustion dry sample mass and the post combustion mass. 

 

3.2.1.  Statistical determination of composite fingerprints 

 

The lithogenic radionuclides, geochemistry, and mineral magnetic tracer groups were used to 

fingerprint the sediment cores alone, in combinations of two groups, and as a final single 

group consisting of all tracers. The combinations of groups used are shown in Table 1, along 

with the abbreviation for each group used in future figures and tables.  

A mass conservation test based upon that used by Collins et al. (1997) was firstly used to 

identify any tracers falling outside of the median +/- one median absolute deviation of the 

source groups shown in Table 2, the tracers failing this test are shown in Table 3. In addition it 

was found that a large number of tracers failed the mass conservation test in the Stanwick lake 

core above 19 cm depth, and the Upton floodplain core below 28 cm depth. For this reason 

the fingerprinting was only conducted on the sections above and below these depths. 

A two-step statistical procedure based upon that used by Collins et al. (2012) was then used to 

select the optimum composite fingerprint for each tracer group at each coring location. Firstly 

a Kruskal–Wallis H test was used to remove any tracers which did not show a significant 

difference in concentration between at least two of the sediment sources (Table 4).  

The selection of the optimum composite fingerprint was performed using the tracers passing 

the mass conservation test and Kruskal–Wallis H test. A Genetic Algorithm based Linear 

Discriminant Analysis (GA-LDA) was used to identify the optimum composite fingerprint for 

each tracer group in each core. Any composite fingerprint which failed to correctly 

discriminate between 80% of source samples was removed from further analysis, with the aim 

of minimising the uncertainty introduced by source discrimination, rather than tracer 

behaviour. A value of 80% was selected, as a review of published historically deposited 



sediment fingerprinting studies (Collins et al 1997b; Owens et al. 1999; Miller et al. 2005; 

Collins et al. 2010) found that composite fingerprints were rarely used which failed to achieve 

at least this amount of discrimination. The composite fingerprints which were formed for each 

tracer group for each core are provided in Table 5. 

 

3.2.2.  Unmixing modelling 

 

An unmixing model based upon that of Collins et al. (2010a) was used to apportion 

contributions from the sediment source groups (Equation 1). The model operates by 

minimising the sum of squares of the relative errors in the objective function (f) by changing 

the relative source proportions (Ps). Constraints were included in the model so that 

proportional source contributions were between 0 and 1 and the proportional source 

contributions summed to 1. 

(1) 

 

Where, Ci = concentration of fingerprint property (i) in time-integrated suspended sediment 

sample  

Ps = the optimised percentage contribution from source category (s) 

Ssi = median concentration of fingerprint property (i) in source category (s) 

Z = particle size correction factor for source category (s) 

Os = organic matter content correction factor for source category (s) 

SVsi = weighting representing the within-source variation of fingerprint property (i) in source 

category (s) 

 Wi = tracer discriminatory  weighting;  

n = number of fingerprint properties comprising the optimum composite fingerprint  

m = number of sediment source categories.  

 



Model uncertainty was determined using 3000 random tracer concentrations from within the 

median +/- one median absolute deviation of each source group, in a Monte Carlo uncertainty 

analysis. 

 

 The tracer discriminatory and within source variability weightings were applied to the model 

based on the methods used by Collins et al. (2010b) (Equations 2 and 3). 

 

(2) 

ܵ �ܸ� = ͳ − ሺΣn ቀ MADMedianቁn ሻ 

Where, SVsi = Within source tracer variability weighting 

MAD = Median absolute deviation. 

 

(3) 

ܹ� = ���� 

Where, Wi = tracer discriminatory weighting 

Et = Discriminatory efficiency of tracer  

Ea= minimum discriminatory efficiency of any used tracer.  

 

Laceby and Olley (2014) showed that the SvSi correction could heavily impact model 

performance. To account for this potential uncertainty, cores found to have large differences 

between tracer group predictions were fingerprinted a second time without the use of either 

the SVsi or Wi correction to determine the impacts of the weightings.  

 

The average difference between tracer group fingerprint predictions in each core slice was 

quantified by subtracting the predicted contribution of one tracer group from the predicted 

contribution of the second tracer group, between the 5th and 95thpercentiles of the 3000 ranked 



Monte Carlo results. The average difference between these 2700 Monte Carlo results for each 

slice of core was then taken as a quantitative expression of the differences between tracer 

group predictions. These differences were correlated in a Pearson Correlation analysis with 

LOI, SSA, and selected magnetic ratios which indicate the likely alteration of mineral 

magnetic signatures in the sediment. These ratios are described with the results. 

 

 

3.2.3.  Particle size and Organic content corrections 

 

The fingerprinting was initially conducted without corrections for sediment organic matter 

content and particle size, so that the impacts of these potential causes of tracer non-

conservatism could be identified. When the results suggested that organic matter and particle 

size were potentially responsible for differences between tracer group predictions, the 

unmixing modelling was repeated and incorporated these corrections. The corrections were 

applied from the beginning for the fingerprinting procedure, with the mass conservation test 

and determination of the optimum composite fingerprint repeated with the corrected tracer 

signatures. The corrected results were compared to the uncorrected results and the results 

produced by other tracer groups. 

As it was found that the sediment cores were affected by down-core trends in organic matter 

and particle size distribution (Fig. 2), single number correction factors were considered 

unsuitable to represent the entire core. For this reason all sediment and source samples were 

given an individual correction factors, calculated using Equations 4 and 5, which were based 

upon the methods of Collins et al. (1997).  

(4) 

Os =  T ቌ ͳͳ − ቀLOIͳͲͲቁቍ        



Where, Os = organic matter content correction factor for source category (s) 

T= measured tracer concentration  

LOI= loss on ignition (%). 

 

 

(5) 

� = ܶܵܵ� 

Where, Z = particle size correction factor for source category (s)  

T= measured concentration value  

SSA= specific surface area. 

 

4. Results and discussion 

 

4.1. Sediment, organic matter content and particle size distribution 

 

Prior to fingerprinting the sediment, down-core plots of LOI and SSA were constructed to 

provide an indication of changes to the organic matter content and particle size distribution of 

sediment during transport and post-depositional storage. LOI (Figure 3A) is enriched above 

the median LOI of surface agricultural and channel bank source samples in all cores other 

than Sywell reservoir and most of the Kingsthorpe floodplain core (Table 2). All cores show 

an up-core increase in LOI, with the core at Earls Barton showing a particularly large 

increase, and being composed predominantly of organic matter in the uppermost 6 cm of the 

core.  



SSA (Figure 3B) is higher than the maximum sediment source group median of 1.18 m2 g-1 in 

all cores except for the Kingsthorpe floodplain core, indicating a fining of sediment particle 

size. Most cores have a ~50% increase in SSA over the source group medians, although 

between a depth of 20 and 54 cm the Earls Barton core has over double the SSA of the source 

groups. It is therefore clear that LOI and SSA is significantly different from the source 

material in most of the cores. 

In the semi-arid Karoo in South Africa Foster et al. (2005) found that a sediment core taken 

from a farm dam had a mean SSA of 0.89 m2 g-1 and LOI of 3.22%. In comparison to the lake 

cores sampled from the Nene basin both the SSA and LOI are far lower. In lake Qarun in 

Egypt the LOI of the core is a mean of 9.09% and the SSA is a mean of 2.21 m2 g-1 (Foster et 

al 2008) which are values comparable to many of the cores analysed in this study. In a lake 

core taken from Aqualate Mere, Central England the LOI exceeded 60%, reaching a value 

close to the Earls Barton floodplain core, whereas the SSA was between 0.8 and 1 being more 

comparable to the Kingsthorpe core (Pittam et al. 2008). It can therefore be established that 

the SSA and LOI values found in the Nene are not a-typical of cores sampled in other 

catchments worldwide however, in many other catchments SSA and LOI are often likely to be 

more representative of source samples sieved to <63µm. 

 

 

4.2. Quantifying differences between the sediment provenance predictions of different 

tracer groups 

 

To simplify the analysis only the predicted contributions from channel banks were compared, 

as this was suggested to be the dominant sediment source and its prediction was considered to 

be representative of the overall modelling results. The predicted contributions of sediment 

originating from urban street dusts made by the different tracer groups are provided in the 

online supplementary material (Supplementary figure 1). Predicted contributions from street 

dusts were negligible for most tracer groups in most cores, especially prior to the 1963 137Cs 



peaks. Differences between the tracer group predictions were smallest in the Sywell reservoir 

core. The median predicted contributions from channel banks at the base of the core ranged 

from 31% made by ‘All’ tracer group up to 100% made by mineral magnetic signatures alone 

(Fig. 4A). In the middle and upper sections of the core, this difference decreased to between a 

45% and 95% predicted contribution made by the different tracer groups. Most tracer groups 

show little change in predicted sediment provenance through the down-core profile, indicating 

a consistent trend in their predictions, although individual peaks and troughs do not 

consistently occur in the predictions made by all of the tracer groups. 

In the other cores the differences between the predictions of the different tracer groups were 

larger than at Sywell. The Stanwick lake core (Fig.4B) had a difference in predictions of up to 

100% between tracer groups containing mineral magnetic signatures and those containing 

geochemical tracers. All of the tracer groups in the Kingsthorpe floodplain core (Fig 4.C) 

predict widely different contributions of sediment from channel banks, ranging from between 

a 0% to a 95% median contribution. In this core two additional tracer groups were used (Mag 

fallout and Geochem fallout), these contained the fallout radionuclide 137Cs. 137Cs was able to 

be used because there was no indication of additional 137Cs fallout after the peak centered 

upon 1963 (Figure 2). The fingerprints which used fallout radionuclides predicted a 

contribution most similar to mineral magnetic signatures, although differences of up to 23% 

were observed between the predictions of these two groups. The two fingerprint predictions 

for the Earls Barton core (Fig.4 D) showed a very similar down-core trend, however the 

predictions were up to up to 38% different. In the Upton floodplain core (Fig. 4E) the ‘All’ 

tracer group and Mag litho group predict that almost all sediment originated from channel 

banks. However, the Geochem fingerprint predicted a contribution 89% differently. Between 

a 22% to a 38% difference between predictions were found in the bottom two thirds of the 

Stanwick floodplain core (Fig. 4F), this difference increased to a maximum of a 64 % at the 

top of the core.  Most tracer groups in the floodplain and floodplain lake cores predicted 



different down-core trends. A summary table of all differences is provided in the online 

supplementary material (Supplementary table 3). 

 

It was observed that the different tracer groups predicted contributions from urban street dusts 

far more similarly than from channel banks. It is likely that this results from the large 

contrasts in tracer concentrations between the street dust and other source groups, as was also 

found by Pulley et al. (2015) in relation to actively transported and recently deposited 

sediment in the Nene catchment. As a result large changes to tracer signatures through non-

conservatism would be required to mask the sediment provenance signal of the street dust 

source group. 

 

4.3. The impacts of weightings 

The inclusion of the discriminatory and within source variability weightings had little impact 

on the predictions of most tracer groups in most cores (Table 6). Exceptions were the 

Geochem litho and Geochem tracer groups in the Kingsthorpe floodplain core. The 

uncertainty of the Geochem litho group increased but the median prediction was bought 

closer to that of the mineral magnetic and fallout radionuclide tracers. The Geochem group 

was significantly changed by the omission of weightings; uncertainty was reduced and the 

predictions were much more comparable to that of most other tracer groups. In the Stanwick 

floodplain core the application of weightings to the ‘All’ tracer group prediction, resulted in a 

smaller uncertainty and large change in sediment provenance prediction. However, the 

prediction does not come closer to that of the Geochem litho group. A general observation 

could also be made that the application of weightings does not reduce uncertainty in most of 

the unmixing models run. 

 



4.4. The effects of changes to the sediment organic content, particle size distribution 

and chemical alterations of sediment on the tracer group provenance predictions 

 

As changing sediment provenance is represented by the tracer fingerprint predictions, 

comparing individual tracer groups’ provenance predictions to factors which can potentially 

cause tracer non-conservatism such as LOI, would likely provide some indication of the LOI 

of the changing sources of the sediment.  Instead of this, the differences between the predicted 

contributions of sediment from channel banks made by two tracer groups were compared to 

potential causes of tracer non conservatism, as they were considered to be more representative 

of the error caused by tracer behaviour. 

 

4.4.1.  The organic enrichment of sediment 

 

The Pearson correlation analysis (Table 7) showed that the differences between most tracer 

group predictions in the Kingsthorpe, Upton, and Stanwick floodplain cores and in the Sywell 

reservoir core are significantly correlated with the LOI of the sediment.  In the Upton 

floodplain core and Sywell reservoir core, as LOI increases the predicted contribution of 

sediment from channel banks made by groups containing mineral magnetic signatures 

increases in relation to groups containing geochemical tracers. In the Kingsthorpe core, as 

LOI increases, mineral magnetic signatures predict lower contributions from channel banks 

than geochemical tracers, showing the opposite trend to Upton and Sywell. Table 2 shows that 

mineral magnetic signatures are lowest in concentration in channel banks, so a dilution of 

magnetic signatures by organic matter would be expected to cause an increase in the predicted 

contribution of sediment from channel banks. On this basis, it is suggested that the increased 

predicted contribution of sediment from channel banks made by mineral magnetic containing 

tracer groups in Upton and Sywell, when sediment LOI increases, could be due to the dilution 

of mineral magnetic signatures by organic matter as magnetic signatures are not associated 

with the organic fraction of the sediment (Lees 1999). Therefore this result is what would be 



expected from mineral magnetic theory. The fact that a similar result was not encountered in 

the other cores analysed suggests that other causes of tracer non-conservatism are of more 

importance and are likely masking the impacts of organic matter dilution. Organic matter data 

corrections were applied to the Mag litho group in the Sywell, Stanwick lake, Kingsthorpe 

and Upton cores (see online supplementary figure 2 and supplementary table 4). It was found 

that the correction had very little impact on the predictions made in any core, suggesting that 

the dilution of magnetic signatures by organic matter had little effect on the fingerprinting 

results.  

 

In the Kingsthorpe floodplain core there is an increase in the predicted contribution of 

sediment made by geochemical and lithogenic radionuclide tracers, in relation to mineral 

magnetic signatures, when LOI increases. An explanation for this may be a result of the 

association of geochemical or radionuclide tracers with the organic fraction. For example, 

calcium is used in most composite fingerprints in this core and is found in high concentrations 

in the channel bank source group in relation to the surface agriculture source group. 

Therefore, an increase in the concentration of Ca, caused by the enrichment of organic matter 

(Figure 3), would result in an increased predicted contribution from channel banks when the 

LOI of the sediment increases. Although it cannot be shown which tracers are associated with 

organic matter in the Nene using the available data, it has been shown in published literature 

that organic matter can concentrate between 1-10% of dry weight of Co, Cu, Fe, Pb, Mn, Mo, 

Ni, Ag, V, and Zn (Swanson et al. 1966). Charlesworth et al. (2003) showed that between 

7.7% and 90.6% of Cd, Cu, Ni, Zn and Pb present in urban street dusts in Coventry, (a town 

close to Northampton in the English Midlands, UK) were concentrated within the organic 

fraction of urban street dusts. There exists therefore a large potential for the enrichment of 

geochemical tracers in the cores caused by the increased organic matter content of the 

sediment.  

 



When the Geochem group was organic corrected in the Sywell, Kingsthorpe and Upton cores 

its prediction did not become significantly closer to those predictions made by the other tracer 

groups. In the Stanwick floodplain core the down-core trends predicted by the Geochem litho 

and ‘All’ groups were reversed by the correction. While it is unclear which result best 

represents the sediment provenance the correction clearly has a large impact on the 

fingerprinting results from this core. The lack of a clear improvement caused by the correction 

suggests that relationships between geochemical tracers and organic matter are not linear, as 

the corrections assume. The previously discussed association of tracers with the organic 

fraction of sediments is an example of such a non-linear relationship. 

 

4.4.2.  Changes to sediment particle size 

 

The SSA of the sediment is highly correlated with most differences between the tracer 

groups’ sediment provenance predictions in the Earls Barton, Stanwick and Upton floodplain 

cores (Table 7). In the Earls Barton floodplain core, as the SSA of the sediment increases, the 

prediction of the ‘All’ tracer group (containing geochemical tracers and 40K decreases in 

relation to the prediction of the Geochem tracer group (Table 7E). 40K has low activities in 

urban street dusts compared to the other sediment sources (Table 2). It can therefore be 

identified that any reduction in sediment 40K activity caused by a change in sediment SSA 

would result in a greater predicted contribution from urban street dusts and a reduced 

contribution from the other sediment sources. However, published literature has shown 40K to 

be concentrated within small clay minerals (Tsabaris et al. 2007), suggesting an inconsistency 

between the results found in the Nene and prior knowledge of tracer behaviour. An alternative 

explanation for this result is that Pb and Zn are present in the geochemistry fingerprint and not 

in the ‘All’ tracer fingerprint. Both of these elements were shown to be present in high 

concentrations in urban street dusts (Table 2), and have also been shown to be typically 

associated with larger particle size fractions in urban soils and sediment (Horowitz and Elrick 

1987). Therefore, the selective deposition of only fine particles on the floodplain (as was 



shown to occur in Figure 3), would cause the loss of large particles. The loss of Pb and Zn 

with these large particles would decrease the predicted contributions from urban street dusts 

made by the geochemistry tracer group, which would increase the predicted contributed from 

channel banks.  

 

The opposite trend to that found in the Earls Barton core was seen in the Stanwick floodplain 

core (Table 7F); as SSA increases so does the predicted contribution made by the Geochem 

litho tracer group in relation to the ‘All’ tracer group. Likewise, in the Upton floodplain core 

the geochemistry group predicts increased contributions from channel banks in comparison to 

the ‘All’ tracer group as sediment SSA increases. In both of these cores the ‘All’ tracer group 

contains mineral magnetic signatures while the other tracer groups do not. In the published 

literature a positive relationship between geochemical tracers and SSA has been shown to 

commonly occur (Koiter et al. 2013) while the relationships with mineral magnetic signatures 

have been shown to be far more complex (Foster et al. 1998; Oldfield et al. 2009). Therefore, 

a potential interpretation of this result is that an increase in sediment SSA is resulting in a 

linear increase in geochemical tracer concentration in the core, changing the sediment 

provenance prediction. As shown by Foster et al. (1998) and Oldfield et al. (2009) magnetic 

signatures are likely not to follow the same positive linear relationship, resulting in a 

discrepancy in the predictions made by magnetic minerals and other tracers. However, it has 

been shown by Russell et al. (2001) that many tracers other than mineral magnetism can 

exhibit non-linear relationships with SSA; so tracer behaviour in reality is likely to be more 

complex than this generalisation.  

 

The complexity of the relationships between tracers and SSA are demonstrated by the 

ineffectiveness of the particle size correction (see online supplementary table 4). The 

correction was used on the Earls Barton core with both tracer groups. A loss of tracer 

discriminatory efficiency occurred when the particle size correction was applied to the 



Geochem litho group, which meant the correction could not be tested. However, the 

correction could be applied to the ‘All’ group. The correction resulted in a similar downcore 

trend to the uncorrected fingerprint but had less uncertainty associated with its prediction. The 

correction reduced the uncertainty produced by the Geochem and Geochem litho group in the 

Upton and Stanwick cores respectively, but did not change their down-core trends. The 

correction does however reverse the down-core trend of the ‘All’ tracer group in the Stanwick 

floodplain core. 

 

4.4.3.  Alterations to geochemical and mineral magnetic signatures 

 

Mineral magnetic signatures have been shown to be affected by numerous processes which 

can cause the loss or alteration of specific sized magnetic grains. For example, smaller 

magnetic grains are preferentially dissolved before larger grains (Karlin and Levi 1983) 

causing a reduction in the concentration of magnetic signatures which account for small 

grains (χlf, χfd and χarm), in relation to signatures which also account for larger grains (SIRM 

and HIRM) (Anderson and Rippey 1988). The opposite trend of disproportionally low SIRM 

and HIRM concentrations in relation to χlf and χarm would be indicative of the loss of larger 

grains, through a process of selective transport. Only the non-conservatism of mineral 

magnetic signatures was directly investigated, due to their potential to indicate the loss of 

specific grain sizes; however the diagenesis of geochemical tracers has been shown to occur 

(Mayer et al. 1982). Therefore, the processes causing the dissolution of magnetic iron oxides 

would also be expected to impact geochemical and radionuclide tracers. 

 

In the source samples there is a strong relationship between χlf and SIRM (Spearman rank p = 

0.000, r = 0.913) (Figure 5A). Therefore, a change in sediment source is unlikely to alter the 

ratio between these two signatures and this ratio can be confidently used as an indicator of the 

non-conservatism of magnetic signatures. The relationship between χarm and SIRM is also 



strongly linear for channel bank and surface agricultural source samples; however the urban 

street dust samples do not follow this relationship. Therefore, the results derived using this 

ratio should be carefully interpreted where a large proportion of urban sediment is likely to be 

present.  

The χarm/ SIRM ratio in the Sywell reservoir core exceeded a value of 2 in the majority of 

core slices, indicating the likely in-growth of bacterial magnetite (Foster et al. 2008) (Table 

6A). χarm is sensitive to the presence of bacterially produced stable single domain magnetite 

(Oldfield 2007), explaining why this tracer failed the mass conservation test (Table 3). The 

impact of this in-growth in Sywell reservoir is seen in the form of a positive correlation 

between χarm / SIRM and four of the differences between tracer group predictions (Table 

6A).   

In the Kingsthorpe and Stanwick floodplain cores (Table 6C; F), most differences between 

tracer group predictions were significantly correlated with χarm / SIRM, and with  SIRM / χlf. 

Correlation coefficients ranged from 0.46 to 0.8 and 0.43 to 0.9 respectively, indicating that 

alterations to magnetic minerals are potentially an important process affecting tracers in this 

core. When χarm / SIRM increased and SIRM / χlf decreased, the predicted contribution from 

channel banks made by mineral magnetic signatures decreased. These results indicate that 

when a greater proportion of large remanence carrying magnetic grains were present in 

relation to small grains, mineral magnetic tracers predicted a greater contribution from 

channel banks. Channel banks are characterised by low magnetic signatures (Table 1), 

therefore the loss of magnetic grains through non-conservatism would cause an increased 

predicted contribution from this source. It is therefore possible that the dissolution of small 

magnetic grains in the deposited sediment is increasing the predicted contributions from 

channel banks made by magnetic signatures. The gleying of waterlogged floodplain sediments 

would result in such a loss of the mineral magnetic signatures and geochemical and lithogenic 

radionuclide tracers associated with iron oxides, and may be occurring in the Kingsthorpe 

core (Dearing et al. 1985) 



As the sediments SSA in the Stanwick core is ~50% higher than the sediment source samples 

(Figure 3), the process of selective deposition of only fine magnetic grains is the most 

probable explanation for the discrepancy between tracer group predictions in this core.  

The magnetic ratios were not significantly correlated with the large differences in tracer group 

predictions in the Upton floodplain core (Table 6D). However, all magnetic mineral tracers 

failed the range test in the Earls Barton core and the bottom half of the Upton core (which was 

not included in this section of the analysis). The floodplain in both of these coring locations 

was observed to be waterlogged, with much of each core having a blue tinted gleyed 

appearance, suggesting that the magnetic minerals were significantly affected by dissolution. 

The unrealistic 100% contribution of sediment from channel banks predicted by magnetic 

signatures in the Upton core probably reflects this process (Fig. 4E). Chemical processes such 

as gleying has been shown to alter magnetic signatures and to have similar effects on other 

tracer types. For example, wetting and drying cycles were shown to lead to elevated 

phosphorus release from floodplain sediments, which was related to enhanced reduction of 

iron hydroxides (Schönbrunner et al. 2012), supporting the relative stability of the sediments 

in the constantly wet Sywell reservoir in comparison to the floodplain cores. The rate at which 

different chemical elements are leached has also been shown to vary with Ca2+, Na+, K+, 

Fe2+and Mg2+ being selectively leached relative to relatively immobile hydrolysate 

constituents Al3+ and Ti4+ (Roy et al., 2006) 

The elements which can be present as radionuclides, such as K and U, have been shown to 

have a high mobility in the environment when compared to the largely immobile elements 

such as Th, Ac, Ra and Pb (Balonov et al (2010). For example, 226Ra has been shown to be 

mobilised by groundwater resulting in an enrichment in lake and wetland sediment (Brenner 

et al. 2004). Plant uptake and the biogeochemical cycling of chemical elements is also a key 

process which can alter tracers, especially when utilising tracers in sediment on a floodplain 

where vegetation grows on deposited sediment. For example Papastefanou et al. (2005) 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422535/


showed that half of the 137Cs Chernobyl fallout was being cycled through plants 40 months 

after its fallout. 

 

In addition to dissolution and in-growth effects Lees (1997) showed that errors of up to 2% 

could occur with susceptibility measurements, and up to 16% with remanence measurements 

due to a lack of linear additivity. In the Nene, contrasts in median mineral magnetic signatures 

in the source groups ranged from 30% (HIRM) up to 214% (χfd) (Table 2). Therefore 

significant errors to predictions made using HIRM could be caused through non-linear 

additivity effects.  

 

4.5. Limitations 

Differences in catchment lithology could potentially be driving the differences between tracer 

group predictions found in the Nene basin. The soils on ironstone and limestone contained 

significantly different tracer concentrations to the diamicton, clays and silts. Therefore, 

variation in inputs from different lithologies could be increasing the discussed spatial 

variability effects. Discrimination between subsurface and surface sediment sources may also 

be a result of differences in lithology, therefore, unless an amount of sediment was 

contributed from each lithology in proportion to its representation in the source samples the 

basis for source discrimination may be lost for many tracers. 

Alterations to tracer signatures over historical timescales may also represent an unaccounted 

for source of uncertainty. For example, changes in traffic density and industrial pollutant 

emissions are likely to have changed tracer concentrations in road dusts, and in surface soils 

due to atmospheric fallout. Therefore, the composite signatures derived using present day 

source samples may not be able to discriminate between sediment sources over historical 

timescales. 

Land use on the floodplain samples could also have altered the tracer signatures. While it was 

established that the sites had not been cultivated, the sites were observed to have been grazed 



by livestock, which may have altered tracer signatures by the removal of tracers with 

consumed vegetation, inputs of excrement containing tracers or the mechanical disturbance of 

the deposited sediment.  

 

4.6. Recommendations 

The findings of this study have highlighted the importance of accounting for particle size, 

organic matter and diagenetic related changes to tracer signatures. Developing specific 

relationships between tracer signatures, particle size and organic matter may be a potential 

way to accurately determine sediment provenance in the Nene and similar catchments 

elsewhere. Methodologies such as that used by Motha et al (2003) have successfully 

incorporated such an approach, yet subsequent research has rarely implemented it. The 

fractionation of sediment and sources into narrower particle size bands than the <63 µm 

fraction present less labour intensive potential methods to mitigate particle size effects. Such a 

method has been used by Laceby and Olley, (2014) who limited analysis to the <10 µm 

fraction and particle size specific tracing has been used by Hatfield and Maher (2009). 

 

Additional methodological improvements which may improve the accuracy of future research 

include the use of artificially generated mixtures of tracer signatures, which have been 

previously used by Haddadchi et al. (2014) and Lees (1997). Such approaches could be used 

to assess the potential impacts of spatial variability or changing sediment particle size and 

organic matter content. The robust basis for source discrimination provided by differences in 

lithology could also be more extensively utilised to assess geological inputs, minimise the 

potential for tracer signatures to have changed over historical timescales and potentially 

maximise the contrasts in tracer signatures of the source groups. 

 

5. Conclusions 

 



The successful use of fingerprinting in Sywell reservoir shows the potential for the 

fingerprinting of historically deposited lake sediments to reconstruct past changes to the 

fluvial environment. For the other cores had any of the tracer groups been used in isolation, a 

prediction of sediment provenance would have been derived using a composite fingerprint 

able to differentiate between the source groups, and an acceptable goodness of fit would have 

been established, indicating that the fingerprinting had been successful. However, the 

different provenance predictions and down-core trends produced when using the different 

tracer groups suggests that the fingerprints are not consistently reflecting sediment 

provenance. 

The implication of this result is that when fingerprinting is undertaken in environments 

similar to Nene basin, where the preservation of signatures is poor, alterations to tracer 

signatures must be investigated and mitigated for within the fingerprinting methodology. It 

must be concluded that for many of the cores investigated the fingerprinting method used did 

not determine the sediment provenance within an acceptable degree of uncertainty and that an 

improved methodology would be required to obtain this data. 

 

When considering alterations to tracer signatures it was found that the organic content of the 

sediment was significantly correlated with an increase in the differences between tracer group 

predictions in the Sywell reservoir, as well as the Kingsthorpe, Upton and Stanwick 

floodplain cores. The particle size of the sediment was significantly correlated with the 

differences between most tracer group predictions in the Upton, Earls Barton and Stanwick 

floodplain cores. The findings of this paper therefore indicate that these commonly cited 

reasons for tracer non-conservatism are likely to be major factors causing uncertainty when 

fingerprinting sediment with a highly different organic matter content or particle size to the 

potential source samples.  The simple corrections for particle size and organic matter were 

generally ineffective at reducing the differences between tracer group predictions, suggesting 

that relationships between tracers, organic matter and particle size are more complex than the 



corrections assume. Consideration should also be directed to the findings of Pulley et al. 

(2015) who showed that uncertainties could originate from an insufficient contrast between 

tracer groups before tracer conservatism is even considered. The close agreement between 

tracer groups when fingerprinting the highly distinctive urban road dust source in this study 

supports this finding, and further suggests that the effects of tracer non-conservatism are 

reduced when large contrasts in tracer signatures exist between sediment sources.  
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Figure 1: River Nene catchment with sampling locations (A) and catchment geology 
(B), Northampton located at 52°13'47.84"N 0°54'26.12"W, The white area represents 



the area of the Nene basin and the grey shading shows the extent of major urban areas 
in the Nene catchment 

  



 

 

 

Figure 2: Down-core plots of 137Cs activity in the lake and floodplain cores.  

  



 

 

 



Figure 3: Down-core profiles of the LOI (A) and SSA (B) of the sediment cores. 

  

 

 



 

 

 



 

 



 

Figure 4: Down core plots of the median predicted contributions from channel banks derived using the 

different uncorrected tracer fingerprints and historically deposited sediment, the grey area represents the 

range between the 25th and 75th percentile predicted contributions. 



 

 

 

 

 

Figure 5: The relationships between χlf and SIRM (A), and χarm and SIRM (B) in sediment source samples.  

 

 

Table 1: The tracer groups used to fingerprint historically deposited sediment and their abbreviations. 

Tracer group fingerprint Abbreviation 

Mineral magnetic signatures  Mag 

Mineral magnetics and lithogenic radionuclides Mag litho 

Mineral magnetics and geochemistry Mag geochem 

Geochemistry and lithogenic radionuclides Geochem litho 

Geochemistry Geochem 

All tracer groups combined. All 

 

  



 

 

Table 2: Median tracer concentrations in sediment source groups reported with median absolute deviations. 

 
Surface Sources Chanel Banks Urban Street dusts 

Source property 
Median 

Median 

absolute 

deviation 

Median 

Median 

absolute 

deviation 

Median 

Median 

absolute 

deviation 

       
LOI (%) 10.44 1.23 7.47 1.03 21.34 2.57 

SSA (m2 g-1) 1.18 0.10 1.16 0.08 0.90 0.07 

χlf (10-6 m3 kg-1) 
0.38 0.18 0.22 0.05 3.73 0.45 

χfd (10-9 m3 kg-1) 
21.41 14.19 6.81 3.39 124.75 20.12 

χarm (10-6 m3 kg-1) 
3.67 2.36 1.46 0.66 9.44 0.91 

IRM1T (10-5 m3 kg-1) 4.50 2.18 2.53 0.96 34.11 2.62 

IRM-100 (10-5 m3 kg-1) -3.49 1.85 -1.68 0.74 -25.98 3.08 

HIRM (10-5 m3 kg-1) 0.52 0.18 0.40 0.09 4.57 0.59 

       
226Ra (mBq g-1) 31.25 8.30 34.54 9.94 10.31 2.80 
137Cs (mBq g-1) 2.89 1.24 0.16 0.16 0.75 0.39 
228Ac (mBq g-1) 32.86 6.17 36.89 6.19 15.91 4.71 
40K (mBq g-1) 612.58 84.17 645.74 91.08 388.96 51.66 
234Th (mBq g-1) 20.27 5.55 18.16 4.90 6.79 1.28 
235U (mBq g-1) 2.28 0.96 2.23 0.95 0.93 0.28 
212Pb (mBq g-1) 34.25 6.05 38.40 5.33 19.89 2.18 

       

Al (mg kg-1) 9488 1463 8841 1974 11868 693 

As (mg kg-1) 22.62 9.23 24.95 9.44 17.68 1.64 

Ba (mg kg-1) 59.02 12.61 64.29 15.81 195.50 19.56 

Ca (mg kg-1) 5570 1877 8284 4270 35837 10581 

Co (mg kg-1) 9.46 2.80 10.82 2.52 8.51 1.03 

Cr (mg kg-1) 42.62 17.36 37.49 9.20 74.19 14.51 

Cu (mg kg-1) 21.62 4.20 20.75 4.52 222.47 49.74 

Fe (mg kg-1) 34929 11191 42631 12194 40927 4052 

Ga (mg kg-1) 4.77 2.55 3.13 1.97 5.08 0.74 

Gd (mg kg-1) 2.60 1.15 2.94 1.42 1.12 1.10 

K (mg kg-1) 1343 323 947 229 1271 197 

La (mg kg-1) 15.33 3.85 15.75 4.22 14.95 1.73 

Mg (mg kg-1)) 1708 403 1776 493 8917 1402 

Mn (mg kg-1) 647 244 608 208 1765 242 

Na (mg kg-1) 61.04 22.72 94.92 36.56 299.17 87.08 

Nd (mg kg-1) 28.76 8.12 38.30 6.73 24.95 2.05 

Ni (mg kg-1) 25.93 9.86 24.84 4.00 37.36 4.95 

P (mg kg-1) 1354 374 1018 249 1319 160 

Pb (mg kg-1) 30.98 7.83 26.47 7.18 107.45 17.62 

Ti (mg kg-1) 23.98 10.63 21.61 8.39 79.26 20.57 

V (mg kg-1) 52.19 18.60 53.18 15.06 59.75 3.84 

Y (mg kg-1) 14.15 4.09 17.62 3.99 12.93 1.07 

Yb (mg kg-1) 1.78 0.56 2.29 0.52 1.88 0.14 

Zn (mg kg-1) 85.27 23.06 85.82 12.68 853.82 290.51 

Zr (mg kg-1) 5.84 1.51 7.43 1.54 9.32 1.33 

 

 



Table 3: Tracers failing the mass conservation test for each core and each correction. 

 

Sywell reservoir Stanwick Lake 
Kingsthorpe 

floodplain 

Stanwick 

floodplain 

Upton 

floodplain 
Earls Barton floodplain 

Uncorrected 
χarm, 234Th, 235U, Ca, Gd, 

K, Ni, Ti 

HIRM, 234Th, 235U, As, 

Ca, Co, Cr, Fe, Ga, 

La, Mn, Nd, P, Ti, V 

HIRM, Cu, Ga, Gd, K, Nd, P 

HIRM, 226Ra, 228Ac, 235U, 
212Pb, Al, Cr, Cu, Fe, Gd, 

K, La, Mg, P, Ti 

χarm, 226Ra, 228Ac, 
235U, 212Pb, Al, As, Ga, 

Gd, K, La, Mg, P, V, 

Y, Yb, Zr 

χlf, χfd, χarm, SIRM, IRM-100, 

HIRM, 228Ac, 234Th, 235U, 212Pb, Al, 

Co, Cu, Fe, Ga, Gd, La, Mn, Na, 

Nd, P, Ti, V, Y, Yb, Zr 

Organic 

corrected 
χarm, 235U, Ca, Gd, Ni, Ti 

IRM-100, HIRM, 
226Ra, 228Ac, 234Th, 
235U, 212Pb, As, Ca, 

Co, Cr, La, Mn, Na, 

P, Ti 

HIRM, 40K, 234Th, 235U, Cu, 

Ga, Gd, K, Nd, P, Pb 

IRM-100, 226Ra, 228Ac, 
235U, 212Pb, Cr, Cu, Gd, K, 

La, Mg, Yb 

χAarm, 226Ra, 228Ac, 
235U, 212Pb, Al, As, Co, 

Gd, K, La, Mg, Nd, P, 

V, Y, Yb, Zr 

χlf, χfd, χarm, SIRM, IRM-100, 

HIRM, 226Ra, 228Ac, 234Th, 235U, 
212Pb, Al, As, Co, Fe, Ga, Gd, K, 

La, Mn, Na, Nd, P, Ti, V, Y, Yb, 

Zr 

Particle size 

corrected 

χarm, HIRM, 40K, Ba, Ca, 

Co, Cr, Ga, Gd, Mn, Nd, Ni, 

P, Ti, Y, Yb, Zn, Zr 

χlf, IRM-100, HIRM, 
40K, 212Pb, Al, As, Co, 

Cr, Fe, Ga, Gd, La, 

Mg, Mn, Nd, Ni, P, Ti, 

V, Y, Yb 

HIRM, 234Th, 235U, Cu, Ga, 

Gd, Nd, P 

SIRM, IRM-100, HIRM, 
40K, Al, Co, Cr, Cu, Fe, 

Gd, K, La, Mg, Na, Ni, P, 

Ti 

χarm, 226Ra, 228Ac, 40K, 
235U, Al, Ca, Fe, Gd, K, 

La, Mg, P 

χlf, χfd, χarm, SIRM, IRM-100, 

HIRM, 40K, 234Th, 235U, As, Co, Cr, 

Cu, Ga, K, La, Mn, Nd, P, Pb, Ti, 

V, Zn 

  



 

 

Table 4: Tracers failing the Kruskal–Wallis H test (p=0.05) for each core and each correction. 

  

Uncorrected 
Organic 

corrected 

Particle size 

corrected 

Upton Floodplain - - As 

Kingsthorpe Floodplain Co, La, V Co, Fe, La, V, Yb Co, Fe, Y, Yb 

Earls Barton Floodplain 
  

Fe 

Stanwick Floodplain Ga, V As, Co 
 

Sywell Reservoir - Co, Fe, La - 

Stanwick Lake - Fe - 

 



Table 5: The composite fingerprints, fingerprint discriminatory power and average goodness of fit of unmixing 

model outcomes. 

Sywell reservoir 
   

Uncorrected 

Correctly 

classified 

(%) 

Average 

Goodness 

of Fit 
 

Mag 81 0.74 χlf, χfd, SIRM, IRM-100, HIRM 

Mag litho 81 0.95 χlf, χfd, 226Ra, 40K, 212Pb 

Mag geochem 94 0.92 χfd, Co, Fe, La, Mg, P, V, Yb, Zn 

Geochem litho 91 0.94 226Ra, Fe, La, Mg, P, V, Yb, Zr 

Geochem 93 0.92 Cr, La, Mg, P, V, Yb, Zn 

All 95 0.91 226Ra, χfd, Fe, La, Mg, V, Yb, Zr 

Organic corrected 
   

Geochem 91 0.55 Al, Gd, Mg, Nd, P, V, Yb 

    Stanwick lake 
   

Uncorrected 

Correctly 

classified 

(%) 

Average 

Goodness 

of Fit 
 

Mag <80 
  

Mag litho 81 0.75 χfd, χARM, SIRM, IRM-100, 212Pb 

Mag geochem As ‘All’ 
  

Geochem litho 88 0.89 40K, Al, Cu, K, Mg, Y 

Geochem 88 0.94 Al, Ba, K, Yb, Zr 

All 89 0.68 χfd, Al, K, Mg, Y, Zr 

  

 
 

 
Kingsthorpe 

floodplain    

Uncorrected 

Correctly 

classified 

(%) 

Average 

Goodness 

of Fit 
 

Mag 80 0.95 χlf, χfd, χarm, ,  

Mag litho 81 0.63 χfd, Xarm, 228Ac, 40K,  

Mag geochem 92 0.9 χarm, IRM-100, Ca, Mn, Y 

Geochem litho 83 0.71 228Ac, Ba, Ca, Cr, Ti 

Geochem 86 0.91 Ba, Ca, Cr, Mg, Y, Zn 

All 90 0.77 χlf, 212Pb, Ca, Cr, Ti, Yb 

Mag fallout* 87 0.93 137Cs, Ca, Cr, Mg, Y 

Geochem fallout* 83 0.88 137Cs, χlf, χfd, χarm, SIRM 

Organic corrected 
   

All 90 0.82 χlf, 212Pb, Ca, Cr, Na, Ti, Y 

Mag litho 82 0.71 χarm, IRM-100, 228Ac, 212Pb,  

Geochem 83 0.91 Ba, Ca, Cr, Y, Zn 

  
  

 
  

Earls Barton 

floodplain    



Uncorrected 

Correctly 

classified 

(%) 

Average 

Goodness 

of Fit 
 

Mag <80 
  

Mag litho <80 
  

Mag geochem <80 
  

Geochem litho 
As 
"Geochem"   

Geochem 88 0.91 Ba, Ca, K, Mg, Pb, Zn 

All 89 0.88 40K, Ba, Ca, K, Mg 

Particle size corrected 
   

All 83 0.9 228Ac, 212Pb, Al, Ba, Ca, Mg, Y 

    

   
Upton floodplain 

   

Uncorrected 

Correctly 

classified 

(%) 

Average 

Goodness 

of Fit 
 

Mag <80 
  

Mag litho 82 0.75 χlf, χfd, SIRM, IRM-100, HIRM, 234Th 

Mag geochem As ‘All’ 
  

Geochem litho 
As 
"Geochem"   

Geochem 83 0.77 Co, Cu, Ni, Pb, Ti 

All 90 0.55 χfd, Ba, Co, Cu, Pb 

Organic corrected 
   

Mag litho 83 0.75 χlf, χfd, SIRM, IRM-100, HIRM, 234Th 

Geochem 81 0.77 Ba, Ca, Co, Cu, Pb, Ti 

Particle size corrected 
   

Geochem  83 0.77 As, Co, Cu, Ti, Y 

    
Stanwick floodplain 

   

Uncorrected 

Correctly 

classified 

(%) 

Average 

Goodness 

of Fit 
 

Mag <80 
  

Mag litho <80 
  

Mag geochem As ‘All’ 
  

Geochem litho 82 0.92 234Th, As, Ba, Co, Ni, V, Yb, Zr 

Geochem <80 
  

All 84 0.84 χfd, IRM-100, Ba, Ca, Co, Ni, Yb 

Organic Corrected 
   

Geochem litho 82 0.76 Al, As, Ba, Ca, Co, Ni, Ti, Y 

All  79 0.51 χlf, SIRM, IRM-100, Al, Ca, Na, Y 

Particle size corrected 
   

Geochem litho 83 0.76 226Ra, 228Ac, 234Th, As, Ba, Mn, V, Yb, Zr 

All 85 0.51 χlf, χarm, IRM-100, 226Ra, Ca, Y, Zr 

*Two additional Cs-137 containing tracer groups were included in the top 10 cm of the Kingsthorpe core, the use of this 

group is discussed in the following section. 



Table 6: Mean percentage point differences between median tracer group predictions, with and without within 

source variability and discriminatory weightings. 

  

Mean difference 

between  predictions 

(%) 

Sywell Reservoir 

 Mag litho (Weighted - Unweighted) 0.95 

Geochem litho  (Weighted - Unweighted) 1.22 

  Stanwick lake 

 Mag litho  (Weighted - Unweighted) 0.55 

Geochem litho  (Weighted - Unweighted) 5.64 

  Upton Floodplain 

 Mag litho  (Weighted - Unweighted) 0.14 

Geochem litho  (Weighted - Unweighted) 1.64 

  Stanwick floodplain 

 Geochem litho  (Weighted - Unweighted) 32.56 

All  (Weighted - Unweighted) 82.57 

  Geochem litho - All (Weighted - Weighted) 25.09 

Geochem litho - All (Weighted - Unweighted) 62.21 

All - Geochem litho (Weighted - Unweighted) 52.55 

  Kingsthorpe floodplain 

 Mag  (Weighted - Unweighted) 1.06 

Mag litho  (Weighted - Unweighted) 1.54 

Mag Geochem  (Weighted - Unweighted) 2.87 

Geochem litho  (Weighted - Unweighted) 7.75 

Geochem  (Weighted - Unweighted) 39.32 

All  (Weighted - Unweighted) 6.05 

  Geochem - Mag (Weighted - Weighted) 52.95 

Geochem  - Mag (Unweighted - Weighted) 13.63 

 

 

Table 7: Pearson correlation coefficients (r) and associated p values for correlations between differences 

between tracer group predictions and LOI, SSA, and the χarm/Sirm and Sirm/χlf ratios. Statistically 

significant (p<0.05) values are highlighted in grey. 

(A) Sywell Reservoir 

    LOI SSA χarm/Sirm Sirm/χlf 
Mag -  Mag litho Correlation Coefficient -.640 -.269 .009 -.592 

Sig. (2-tailed) .000 .093 .956 .000 
N 40 40 40 40 

Mag - Mag geochem Correlation Coefficient -.441 -.170 .189 -.491 
Sig. (2-tailed) .004 .295 .244 .001 



N 40 40 40 40 
Mag -  Geochem litho Correlation Coefficient -.087 -.117 -.109 .232 

Sig. (2-tailed) .593 .474 .502 .149 
N 40 40 40 40 

Mag - Geochem Correlation Coefficient .753 .184 -.118 .305 
Sig. (2-tailed) .000 .255 .468 .056 
N 40 40 40 40 

Mag -  All Correlation Coefficient -.594 -.200 .341 -.421 
Sig. (2-tailed) .000 .215 .031 .007 
N 40 40 40 40 

 Mag litho - Mag geochem Correlation Coefficient .209 -.175 .033 -.176 
Sig. (2-tailed) .196 .279 .838 .277 
N 40 40 40 40 

 Mag litho -  Litho geochem Correlation Coefficient -.090 -.389 .132 -.234 
Sig. (2-tailed) .579 .013 .417 .147 
N 40 40 40 40 

 Mag litho - Geochem Correlation Coefficient -.402 -.153 -.075 -.598 
Sig. (2-tailed) .010 .346 .644 .000 
N 40 40 40 40 

 Mag litho -  All Correlation Coefficient .486 .098 -.219 .089 
Sig. (2-tailed) .001 .546 .174 .587 
N 40 40 40 40 

Mag geochem -  Litho geochem Correlation Coefficient .167 -.272 .449 .210 
Sig. (2-tailed) .304 .090 .004 .193 
N 40 40 40 40 

Mag geochem - Geochem Correlation Coefficient -.692 -.219 .002 -.578 
Sig. (2-tailed) .000 .174 .988 .000 
N 40 40 40 40 

Mag geochem -  All Correlation Coefficient -.546 -.261 .360 -.270 
Sig. (2-tailed) .000 .104 .023 .092 
N 40 40 40 40 

 Litho geochem - Geochem Correlation Coefficient .472 -.024 .223 .367 
Sig. (2-tailed) .002 .886 .166 .020 
N 40 40 40 40 

 Litho geochem -  All Correlation Coefficient -.070 -.364 .515 .010 
Sig. (2-tailed) .667 .021 .001 .950 
N 40 40 40 40 

Geochem-  All Correlation Coefficient -.753 -.178 .059 -.519 
Sig. (2-tailed) .000 .272 .716 .001 
N 40 40 40 40 

 

(B) Stanwick lake  

    LOI SSA χarm/Sirm Sirm/χlf 
Mag litho - Geochem litho  Correlation Coefficient .389 .358 .309 -.323 
 Sig. (2-tailed) .111 .145 .213 .191 
 N 18 18 18 18 
Mag litho - Geochem  Correlation Coefficient .352 .376 .354 -.337 
 Sig. (2-tailed) .152 .124 .150 .171 
 N 18 18 18 18 
Mag litho - All  Correlation Coefficient .030 -.332 -.024 .399 
 Sig. (2-tailed) .906 .179 .926 .101 
 N 18 18 18 18 
Geochem litho - Geochem  Correlation Coefficient -.247 -.487 -.692 .298 
 Sig. (2-tailed) .324 .040 .001 .229 
 N 18 18 18 18 
Geochem litho - All  Correlation Coefficient .352 .153 -.003 -.162 
 Sig. (2-tailed) .152 .543 .990 .521 
 N 18 18 18 18 
Geochem - All  Correlation Coefficient .265 .371 .207 -.311 
 Sig. (2-tailed) .287 .130 .409 .210 
  N 18 18 18 18 

 

(C) Kingsthorpe floodplain 

    LOI SSA χarm/Sirm Sirm/χlf 
Mag - Mag litho Correlation Coefficient .571 -.156 -.648 .797 
 Sig. (2-tailed) .002 .447 .000 .000 
 N 26 26 26 26 
Mag - Mag geochem Correlation Coefficient .545 -.087 -.796 .940 
 Sig. (2-tailed) .004 .673 .000 .000 
 N 26 26 26 26 
Mag - Geochem litho Correlation Coefficient -.062 -.082 .227 -.298 
 Sig. (2-tailed) .764 .690 .264 .139 
 N 26 26 26 26 
Mag - Geochem Correlation Coefficient -.354 -.097 .350 -.559 



 Sig. (2-tailed) .076 .636 .080 .003 
 N 26 26 26 26 
Mag - All Correlation Coefficient -.582 .264 .468 -.657 
 Sig. (2-tailed) .002 .192 .016 .000 
 N 26 26 26 26 
Mag litho - Mag geochem Correlation Coefficient .289 -.028 -.620 .783 
 Sig. (2-tailed) .152 .892 .001 .000 
 N 26 26 26 26 
Mag litho - Geochem litho Correlation Coefficient -.247 -.022 .460 -.567 
 Sig. (2-tailed) .223 .917 .018 .003 
 N 26 26 26 26 
Mag litho - Geochem Correlation Coefficient -.447 .027 .515 -.723 
 Sig. (2-tailed) .022 .897 .007 .000 
 N 26 26 26 26 
Mag litho - All Correlation Coefficient -.564 .250 .529 -.718 
 Sig. (2-tailed) .003 .218 .005 .000 
 N 26 26 26 26 
Mag geochem - Geochem litho Correlation Coefficient -.446 .083 .715 -.887 
 Sig. (2-tailed) .022 .685 .000 .000 
 N 26 26 26 26 
Mag geochem - Geochem Correlation Coefficient -.574 .074 .718 -.895 
 Sig. (2-tailed) .002 .721 .000 .000 
 N 26 26 26 26 
Mag geochem - All Correlation Coefficient -.531 .191 .648 -.851 
 Sig. (2-tailed) .005 .349 .000 .000 
 N 26 26 26 26 
Geochem litho - Geochem Correlation Coefficient -.591 .066 .252 -.432 
 Sig. (2-tailed) .001 .750 .214 .027 
 N 26 26 26 26 
Geochem litho - All Correlation Coefficient -.637 .321 .405 -.559 
 Sig. (2-tailed) .000 .110 .040 .003 
 N 26 26 26 26 
Geochem - All Correlation Coefficient -.652 .354 .468 -.602 
 Sig. (2-tailed) .000 .076 .016 .001 
  N 26 26 26 26 

 

(D) Upton floodplain 

    LOI SSA χarm/Sirm Sirm/χlf 
Mag  - Mag litho Correlation Coefficient .019 -.019 -.101 -.002 
 Sig. (2-tailed) .949 .949 .730 .994 
 N 14 14 14 14 
Mag  - Geochem Correlation Coefficient .871 -.571 -.240 -.081 
 Sig. (2-tailed) .000 .033 .409 .782 
 N 14 14 14 14 
Mag  - All Correlation Coefficient .415 -.355 -.198 .141 
 Sig. (2-tailed) .140 .212 .497 .631 
 N 14 14 14 14 
Mag litho  - Geochem Correlation Coefficient .871 -.571 -.240 -.081 
 Sig. (2-tailed) .000 .033 .409 .782 
 N 14 14 14 14 
Mag litho  - All Correlation Coefficient .362 -.358 -.277 .198 
 Sig. (2-tailed) .203 .209 .337 .497 
 N 14 14 14 14 
Geochem  - All Correlation Coefficient -.878 .573 .253 .068 
 Sig. (2-tailed) .000 .032 .383 .817 
  N 14 14 14 14 

 

(E) Earls Barton floodplain (an χarm measurement was unavailable for this core due to equipment failure) 

    LOI SSA 
All - Geochem Correlation Coefficient .239 -.809 
 Sig. (2-tailed) .173 .000 
  N 34 34 

 

(F) Stanwick floodplain 

    LOI SSA χarm/Sirm Sirm/χlf 
Geochem litho - All  Correlation Coefficient -.790 .876 .783 -.812 

 Sig. (2-tailed) .000 .000 .000 .000 

  N 31 31 31 31 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ONLINE SUPPLIMENTARY MATERIAL 



 



 

 



 

 

 



 

Supplementary figure 1: Predicted contributions of sediment originating from urban street dusts made by the 

different tracer groups, the grey area represents the range between the 25th and 75th percentile predicted 

contributions. 

 



 



 



 



 



 



 

Supplementary figure 2: The impacts of organic matter and particle size corrections on modelling results, 

the grey area represents the range between the 25th and 75th percentile predicted contributions. 

 

 

 

 

 

 

 

 



 



 



 



 



 

Supplementary figure 3: The impacts of weightings for tracer discriminatory and within source 

variability on modelling results, the grey area represents the range between the 25th and 75th percentile 

predicted contributions. 

 

Supplementary table 1: Distribution of sediment source sampling across the different land uses and 

geologies of the Nene basin. 
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Surface agricultural  

sources (total) 
247 21 43 5 2 12 15 53 22 39 1 26 3 5 

Surface agricultural 

sources  

(Cultivated land) 

173 14 34 5 1 10 14 37 12 25 1 18 2 0 

Surface agricultural  

sources  

(Grassland) 

74 7 9 0 1 2 1 16 10 14 0 8 1 5 

Channel Banks 65              

Urban street dusts 21              

 

 

Supplementary table 2: Wi and SVsi correction factors for the Stanwick floodplain core, factors did not vary 

significantly in the other cores fingerprinted. 

Tracer Uncorrected Organic correted Particle size corrected 

 Wi  SVsi Wi  SVsi Wi  SVsi 

χlf  2.91 0.74 3.61 0.75 3.06 0.70 

χfd  2.57 0.56 3.23 0.56 2.74 0.54 

χarm  2.37 0.61 2.80 0.61 2.60 0.58 

IRM1T  2.80 0.68 3.31 0.68 2.93 0.68 

IRM-100  2.82 0.64 3.32 0.65 3.17 0.51 

HIRM  2.69 0.77 3.34 0.77 2.72 0.77 

       
226Ra 2.47 0.72 2.72 0.74 1.92 0.71 

137Cs 2.91 0.33 3.54 0.44 2.76 0.57 

228Ac 2.84 0.78 3.12 0.81 2.19 0.77 

40K 2.44 0.86 2.69 0.87 1.46 0.84 

234Th 3.00 0.75 3.76 0.75 2.67 0.76 

235U 1.79 0.61 2.05 0.61 1.62 0.62 

212Pb 2.55 0.86 2.72 0.84 1.65 0.84 

       
Al  1.75 0.85 2.76 0.84 2.47 0.85 

As  2.02 0.72 2.43 0.72 1.73 0.73 

Ba  3.62 0.81 4.34 0.79 3.56 0.78 

Ca  4.01 0.62 4.85 0.60 3.95 0.62 

Co  3.47 0.78 1.05 0.79 2.76 0.76 

Cr  2.04 0.72 2.78 0.73 2.35 0.70 

Cu  2.67 0.79 3.36 0.78 2.61 0.78 

Fe  1.80 0.77 2.67 0.76 1.25 0.75 

Ga  2.77 0.57 1.38 0.56 1.47 0.56 

Gd  2.11 0.38 2.48 0.36 2.04 0.46 

K  2.93 0.79 3.52 0.79 2.28 0.79 



La  2.05 0.79 2.67 0.80 1.42 0.79 

Mg 3.41 0.78 4.06 0.80 3.40 0.76 

Mn  2.07 0.71 2.80 0.71 2.51 0.71 

Na  3.78 0.65 4.68 0.64 3.86 0.63 

Nd  1.27 0.82 1.41 0.81 1.00 0.80 

Ni  1.38 0.78 1.96 0.77 1.80 0.77 

P  2.69 0.78 3.18 0.77 1.96 0.79 

Pb  2.53 0.77 3.12 0.78 2.45 0.72 

Ti  2.62 0.64 3.41 0.64 2.69 0.59 

V  2.26 0.77 1.52 0.76 1.19 0.78 

Y  1.31 0.81 1.27 0.81 3.38 0.80 

Yb  1.00 0.79 1.00 0.79 2.92 0.79 

Zn  2.66 0.75 3.23 0.72 2.61 0.67 

Zr  3.57 0.81 4.36 0.80 3.49 0.79 

 

Supplementary table 3: Mean percentage point differences between the median predictions of the 

different tracer groups. 

Sywell 

Reservoir  

Mag 

litho 

Mag 

Geochem 

Geochem 

litho Geochem All 

 Mag 24.65 19.00 16.10 16.34 23.64 

 Mag litho 

 

14.92 20.24 33.49 10.40 

 Mag Geochem 

  
14.75 21.82 8.09 

 Geochem litho 

   
22.50 18.83 

 Geochem 

    
27.55 

 

       Kingsthorpe 

Floodplain 

Mag 

litho 

Mag 

Geochem 

Geochem 

litho Geochem All 

 Mag 14.85 31.30 53.66 39.57 33.96 

 Mag litho 
 

17.11 39.81 28.47 22.58 

 Mag Geochem 
  

27.91 24.65 24.79 

 Geochem litho 
   

15.30 21.51 

 Geochem 
    

15.06 

 

       Earls Barton 

Floodplain Geochem 

     All 17.33 

     

       Upton 

Floodplain 

Mag 

litho Geochem All 

   Mag 1.09 37.67 1.94 

   Mag litho 

 

36.81 1.64 

   



Geochem 

  
37.89 

   

       Stanwick 

Floodplain All 

     Geochem litho 34.03           

 



Supplementary table 4: Mean percentage point differences between the median predictions of the different tracer groups with and without organic matter and 

particle size corrections. 

Sywell Reservoir Mag Geochem Geochem (Organic corrected)       

Mag 

 

16.34 29.99 

   Mag  (Organic corrected) 1.19 14.75 30.48 

   Geochem 16.34 

 

23.82 

   

       Stanwick lake Mag litho Geochem All 

   Mag litho 

 

64.58 5.60 

   Mag litho  (Organic corrected) 5.79 59.24 4.67 

   

       

Earls Barton Floodplain All 

Geochem 

litho 

    All 

 

17.33 

    All  (Particle size corrected) 18.87 23.41 

    

       Upton floodplain Mag litho Geochem Geochem  (Organic corrected) Geochem  (Particle size corrected) 

  Mag litho 

 

36.81 24.52 40.49 

  Mag litho  (Organic corrected) 0.14 37.48 24.38 40.35 

  

       

Stanwick floodplain 

Geochem 

litho All All (Organic corrected) All (Particle size corrected) 

  Geochem litho 

 

25.09 14.57 27.96 

  Geochem litho (Organic corrected) 28.30 39.35 41.12 29.03 

  Geochem litho (Particle size corrected) 11.03 19.61 17.60 32.74 

  All 25.09 

 

30.34 42.51 

  All (Organic corrected) 14.57 30.34 

 

41.75 

  All (Particle size corrected) 27.96 42.51 41.75 

   



       
Kingsthorpe Floodplain Mag litho Geochem All Mag litho (Organic corrected) Geochem (Organic corrected) 

All (Organic 

corrected) 

Mag litho 

 

33.49 10.40 6.61 25.20 14.93 

Geochem 33.49 

 

27.55 39.46 17.08 28.11 

All 10.40 27.55 

 

22.11 14.05 15.11 

Mag litho (Organic corrected) 6.61 39.46 22.11 

 

22.98 14.19 

Geochem (Organic corrected) 25.20 17.08 14.05 22.98   12.15 

 




