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Abstract

The formation of a plaque in one or both of the internal carotid arteries poses a
serious threat to the lives of those in whom it occurs. This thesis describes a
technique designed to detect level of occlusion and provide topological information
about such plaques. In order to negate the cost of specialised hardware, only the
sound produced by blood-flow around the occlusion is used; this raises problems that
prevent the application of existing medical imaging techniques, however, these can
be overcome by the application of a nonlinear technique that takes full advantage of
the discrete nature of digital computers. Results indicate that both level of occlusion
and presence or absence of various topological features can be determined in this

way.

Beginning with a review of existing work in medical-imaging and in more general
but related techniques, the EPI process of Friden (2004) is identified as the strongest
approach to a situation where it is desirable to work with both signal and noise yet
avoid the computational cost and other pitfalls of established techniques. The
remained of the thesis discusses attempts to automate the EPI process which, in the
form given by Frieden (2004), requires a degree of human mathematical creative
problem-solving. Initially, a numerical-methods inspired approach based on genetic
algorithms was attempted but found to be both computationally costly and

insufficiently true to the nature of the EPI equations. A second approach, based on



the idea of creating a formal system allowing entropy, direction and logic to be
manipulated together proved to lack certain key properties and require an amount of
work beyond the scope of the project described in this thesis in order to be extended
into a form that was usable for the EPI process.

The approach upon which the imaging system described is ultimately built is based
on an abstracted form of constraint-logic programming resulting in a
cellular-automaton based model which is shown to produce distinct images for

different sizes and topologies of plaque in a reliable and human-interpretable way.



Chapter One

Introduction



1.0 Introduction

The formation of a plaque in one or both of the internal carotid arteries poses
a serious threat to the lives of those in whom it occurs. The usual result of such a
condition is the restriction of blood-flow to the brain, a condition which is
particularly devastating should a piece of the plaque be broken off as its arrival in the
brain may lead to a stroke. Commonly however, ischaemic attacks otherwise known
as TIAs or mini-strokes may occur. In such an event the GP may refer the patient to
hospital for examination by ultrasound (USS) which, by means of
Doppler-reconstruction can approximate the level of occlusion present in the artery.
While this information is useful from a diagnostic point of view, the surgery which
normally results from a positive identification of carotid atherosclerosis is not
without risk since the topological and geometric nature of the plaque is unknown
until the incision is made. A worst case scenario of this relative lack of information
would be the detachment of a piece of the plaque which would then travel up into the
brain potentially causing the patient to stroke whilst on the operating table. Carotid
atherosclerosis is not an uncommon condition; in seven US states during the period
1989 to 1996 almost 300,000 carotid endarterectomies were performed (Gross ef al.,

2000).

The primary motivation for this project, as described above, is longitudinal in



nature, seeking to improve an existing medical procedure, however during the
construction of the project's proposal, it became clear that a lateral motivation was
also possible — that of reducing the cost of the equipment involved for plaque
detection and imaging to the point at which it would be possible to perform
diagnoses in the GP's surgery; this would provide the benefit of early detection,
increasing the patient's chance of survival both in terms of the condition and in any

resultant surgical procedure.

The purpose of this thesis is to describe the methodology that has been
developed in order to solve the problem of carotid atherosclerotic plaque imaging
from one-dimensional acoustic data. Chapter two outlines the primary research
question and highlights those problems specific to solving it. This is followed by a
literature review covering all relevant areas of computer science, mathematics and
physics in order to put the proposed approach in context and justify a decision, made
early on in the project's time-scale, not to take the usual deterministic approach of
most medical imaging systems. Chapter four describes the general methodology used
to investigate multiple candidate approaches to solving the problem and the results of
these subsequent investigations are covered in the following chapters. The results of
the final, successful approach are described and analysed in chapters eight and nine

with chapter 10 summarising the conclusions drawn.



1.1 Aims of the study

This study forms the second phase of development of a system designed to
help prevent strokes by the early detection and analysis of atherosclerosis (the
formation of plaques in the carotid arteries which supply blood to the brain). Such
blockages can develop as a result of a fatty diet, the lipids (fatty deposits such as
cholesterol) building up over time (Robbins et a/, 2005). The chances of this
occurring are increased by smoking (a habit shared by approximately 1.3 billion
people worldwide (World Health Organisation, 2004)) as the carcinogens present in
tobacco damage the artery lining thus creating a site at which a plaque can form.
Although surgery, in the form of a Carotid Endarterectomy operation, provides a
solution in many cases, this option is high-risk and is usually only taken once clinical
symptoms present and the plaque, which is causing 75% or more occlusion by this
time, has been detected and analysed by an ultrasound scan. One way to provide
earlier detection of the condition would be to provide ultrasound scanning equipment
in GPs surgeries but the increased cost of the equipment for a condition that is not
among the most common that the average GP will see, combined with the difficulty
in extracting useful images of plaques using ultrasound means that this approach
remains unlikely to be take up by the majority of doctors. In any case, portable
ultrasound machines are usually used for abdominal scans and still require an
operator who has had training in this kind of diagnosis. The cost of such an option

would be around £3,000 not including the wages of the operator. Standard ultrasound



machines start at £10,000 and go up to as much as £125,000. Even if a machine at
the lower end of this price range were to be usable for carotid artery plaque

detection, it would still be cost prohibitive for most GPs.

During the first phase, a system was developed that, rather than using
ultrasound, scans passively by analysing the sound caused by blood flowing through
the carotid artery. Turbulence caused by the presence of a plaque shows up on a
Fourier spectrograph (which shows the component frequencies or ‘partials’ of a
waveform) and by producing a general model of the relationship between Fourier
spectrograph and level of occlusion, it is possible to provide an automated indication
of the latter for any new example presented to the system.

An additional benefit of this technique is that the task of ascertaining the position of
a plaque becomes more automated compared to ultrasound systems which rely

entirely upon the operator for this.



Figure 1.1: Sound being produced by turbulence in an occluded carotid artery
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While prior knowledge of the size and location of the plaque is extremely
useful to surgeons, it would be even more advantageous to have an idea of the

topological features of a particular blockage and the two main questions for this

project are therefore 1) How such features can be categorised and detected, providing

the surgeon with a ‘property-sheet’ relating to a particular plaque and 2) How a
three-dimensional image of the plaque can be generated in order to further assist the

surgeon in planning carotid endarterectomies. The fundamental issue that must be

overcome in order to answer either of these questions is that of the dimensionality of

the data with which the system works.



1.2 Research question

Considering that the cost of processing naturally occurring sound is the same
as that of a modern PC, is the production of three-dimensional models of carotid
artery plaques based only on the sound of turbulence caused by blood passing over
and around such occlusions feasible and, if so, to what extent? Since the sound in
question is produced entirely by the phenomenon and needs only to be recorded and
processed, the additional cost and complexity in, for instance, ultrasound systems

would be nullified if this question can be answered to a sufficiently positive extent.

1.3 Aims and objectives

Aim: Develop a deep understanding of existing medical imaging techniques

in order to ascertain which, if any, may be applicable to the problem dealt with in

this study and to identify gaps in knowledge.

Objective: Review existing medical imaging technologies and

techniques (regardless of area of physiological application) to determine

what, if anything, might be of use in answering the research question.

Objective: Review work from areas that are not specifically related to



medical imaging but may be of use in the case of this project.

Aim: Construct a developmental and experimental methodology for the
creation and practical application of a medical imaging approach to carotid artery

plaque analysis.

Objective: Design a method of producing data on which to test a
prototype system which is on-demand and can be steered toward different

variations of the problem.

Objective: Investigate a broad spectrum of approaches and determine

which is likely to be the most successful.

Aim: Produce a prototype system based upon the chosen approach and

critically examine its output with regard to providing information about plaque

topology.



Chapter Two

Literature survey and limitations of current techniques



2.0 Literature survey and limitations of current techniques

Central to the nature of the project (that of producing a low-cost imaging
device using standard PC hardware) is the way in which acoustic data will be
collected from outside of the carotid artery. A microphone will record the sound of
turbulence in the bloodstream and thus the data received by the imaging algorithm
will be a one-dimensional sequence of amplitude values. This makes the process of
topological feature identification more difficult than in other medical imaging
systems as there is no way to ‘triangulate’ in on a particular point via multiple
sensors. As the significance of this is more apparent if one has an understanding of
existing medical-imaging technology, a survey of relevant literature will now be

given.

2.1 Medical imaging

2.1.1 Magnetic Resonance Imaging

Turning first to the field of medical imaging as it is currently established, we
find that existing systems tend to have one or both of two important factors: 1) A
measure of control over or a directed external source of energy and 2) Multiple
sensors. As a first example, consider Magnetic Resonance Imaging (MRI). This

works by aligning the body’s protons in a magnetic field, then relaxing this field in

10



order to generate waves of released energy (Schempp, 1998) (see also Damadian
(1971) and Mansfield (1977)) which are then broken down into their Fourier
Spectrograms. The spectrographic information can then be used to create an image of

the area which was scanned.

MRI has been applied to the problem of 3D imaging of carotid-artery plaques
by Sakellarios et al. (2012) but the cost of the equipment necessary rules out the use

of MRI in general for this project.

2.1.2 Computed Tomography

Another established imaging system is X-Ray Computed Tomography. This
utilises a cone-shaped beam of X-rays which are projected through the body to
sensors which measure their intensity at different locations. From these intensity
measurements one usually applies the Radon transform (Radon, 1917) in order to
work out the density of the attenuating material at specific coordinates in the chosen
2D slice that contributed to the overall intensity reading. As with the Fourier
transform, computational complexity has resulted in research designed to improve
the efficiency of the Radon transform (see for example Brady (1998)) and has
perhaps been a driving force in the development of the Algebraic Reconstruction
Technique (ART) (Raparia et al., 1997) which effectively amounts to the same

concept and, in fact, serves as a gentler introduction to the principle than Radon’s

11



original paper.

So far then, two systems have been summarised. Both use external sources of
energy that they have a measure of control over. A third example demonstrates that if
this aspect is reduced, the computational complexity may go down whilst hardware

complexity goes up.

2.1.3 Electrical Impedance Tomography

Electrical Impedance Tomography (EIT) (Barber and Brown, 1984) works by
applying electrical currents to the tissue being studied and measuring the
corresponding voltages which will have been affected by the resistivity of the tissue,
that resistivity being used to diagnose certain conditions. To quote Vauhkonen et al.
(1996): “EIT image reconstruction is a nonlinear ill-posed inverse problem for which

reason we have to use regularization techniques to obtain stable solutions.”

The most popular approach to this regularization seems to be that of
Tikhonov (1963) in which a regularization matrix and parameter are used to provide
a numerical kernel against which the potential differences based upon tissue density
are minimised. From the point of view of this project, it is very reassuring that, given
the complexity of the problem which is close to that to be dealt with in this project, a

relatively simple mathematical technique can make the data usable for diagnosis.

12



2.1.4 Ultrasound

The current standard way of identifying Carotid Atherosclerosis in patients
who have presented to their GP with appropriate symptoms is by Doppler
Ultrasound. This is effectively a second-order measurement in that occlusion is
identified by the variance in velocity of the blood flowing through the artery
achieved by detecting Doppler Shift by a method which will now be summarised
from the form in which it is given in (Hedrick ez al., 1995). An ultrasound transmitter
and receiver are paired in a surface probe which is placed on the side of the neck.
The frequency of the soundwaves returning from inside the artery is altered by the
Doppler effect inferred by the movement of the blood. The altered wave is combined
with the original soundwave, the differing frequencies introducing ‘beats’ or pulses
of significant amplitude. The metrics of the beats can then be used to calculate the
speed at which the blood is flowing. An occlusion in the carotid artery causes several
stages of distortion to the otherwise transverse flow of the blood; these cause
variations in the velocity of said blood and the position and size of the occlusion can

thus be computed.

Work specifically targeting the problem of imaging carotid-artery plaques

using ultrasound has been undertaken by various authors but the requirement of a

13



directed energy source and the specialised hardware needed in order to produce it
makes their techniques inapplicable to the context of this project. It is, however,
worth noting that Dahl ef al. (2009) obtained high-resolution two-dimensional
images of both homogeneous and heterogeneous plaques but their approach uses
Acoustic Radiation Force Impulse (ARFI) imaging which requires directed energy,
1.e. special hardware. The images produced by their system also require
interpretation by an expert in order to provide clear information about plaque
topology. Fenster et al. focus on characterizing plaque morphology but, again, used

directed energy in order to do so.

The principles of Doppler Ultrasound and, in fact, Ultrasound in general are
of no major use to this project as they require specialist hardware (transmitter and
receiver) and in any case are not ideally suited to the degrees of freedom required of
a 3D model of something as small as an arterial plaque in such a way that a surgeon
can rotate and translate the model on the screen. This project’s approach is to work
with what information is inferred by the smallest number of variables possible;
currently just one variable: acoustic pressure. In Doppler-based systems, the sound
from inside the artery is reproduced from the beats and could therefore be used as
input to the system but this would invalidate the project’s requirements of

affordability and minimal dependency on specialist hardware.

14



2.2 Acoustic detection

As has been discussed in the preceding sections, the applicability of existing
medical imaging techniques to the problem of atherosclerotic plaque imaging based
upon one-dimensional data is minimal. Because of this, a broad survey of acoustic
data analysis has been carried out in order to provide a picture of the general
approaches being taken. As before, these approaches often involve controlled or
generated energy, multiple sensors, or both but the mathematical and computational

techniques used are sometimes of interest.

An obvious avenue to explore is that of Fourier Spectrogram analysis but it is
felt that the fundamental research question of this project (that of producing an image
based upon turbulent vortex sound) would be better addressed by an emphasis on
discrete computation rather than mathematical analysis which is continuous in
nature. This is borne out by work such as that of Dellandrea ef al. (2002) where the
detection of gastro-oesophageal reflux is approached not by analysing raw data from
Fourier analysis, but from the reduction of the raw data into a metric based on Zipf’s
law (Zipf, 1949) which is rationalised for the phenomena being measured. Zipf’s law
1s in many respects a comforting reassertion of the old idea that there is innate order
in the Universe. As it is applied in Dellandrea ef al’s work, it is related to the Golden
Section of the Ancient Greeks, providing an anchor point in the n-space of acoustic

metrics, their combinations and permutations against which to compare our physical

15



examples. An approach such as this may be useful if it provides a way of identifying
general topological features of atherosclerotic plaques. Such an approach would have
a possible advantage over techniques such as Principle Component Analysis
(discussed below) in that computing log-log graphs in order to perform a

‘Zipfian’-analysis is far less computationally expensive than such techniques.

In other work on acoustic data analysis, we find that more use of stochastic
and Artificial Intelligence (Al) techniques is made. This places the responsibility of
finding an appropriate representation of the data to the computer and, as a side effect
of the approximate nature of such techniques, also takes away the need to deal
explicitly with noise and other metric errors present in the recorded sound. An
excellent demonstration of such a fusion of techniques is provided by Wang & Qi
(2002) who supplement Spectrogram and Wavelet -based techniques with Principle
Component Analysis, Minimum Distance and k-Nearest Neighbour algorithms in
order to classify military targets from distributed acoustic sensors. These techniques
are all, basically, designed to organise data into meaningful categories without the
intervention of the user although in the case of Principle Component Analysis it is
perhaps more correct to say that the data stays as it is and the axes on which it is

plotted are altered so that they represent the dominant ‘features’.

The more traditional approach of Venkatesen et al. (1997) combines Fourier

analysis with classification based upon eigenvectors and is purported to be

16



sufficiently accurate to allow automatic monitoring of faults in helicopter rotors — a
problem hampered by considerable ambient noise. The eigenvector approach is not
dissimilar to Principle Component Analysis in that eigenvectors tell us the direction
in which the matrices from which they are derived ‘lean’, i.e. what their most
‘natural’ direction is. All of this lends weight to the argument that will form a large
part of the basis for this project: That if there is order in a data-set then stochastic and
Al techniques combined with attention to the level of entropy in the data as these

techniques are applied is highly likely to find it.

2.3 Numerical methods

2.3.1 Review of use in medical imaging

Having decided upon a combination of traditional mathematical and more
approximating techniques, the next logical step was to survey the use of such
techniques in the practical implementation of various medical imaging techniques.
Fortunately an excellent survey of this area is provided by Natterer (1999) who
covers the techniques currently in use in the fields of X-ray Tomography (discussed
above), Nuclear Medicine (based upon the detection of, for instance, photons
generated by the injection of a radioactive isotope into the bloodstream), MRI and
electron microscopy. What Natterer does not cover is the area of Ultrasound imaging

which would, on the surface, appear far more relevant to the subject of this project.

17



However, image reconstruction in ultrasound systems is based upon the Doppler
effect, making the hardware and reconstructive algorithms very different from what
we require. The integral-transform based approach taken by the systems reviewed so

far are therefore more relevant.

2.3.2 Kalman Filters

For problems where something is known about the physical process being
modeled and where one is working with noisy data, the Kalman Filter (Kalman,
1960) is a well established technique. The known mathematical relationship(s) of the
phenomenon are combined with actual measurements to produce a best guess of the
underlying system at a particular point in time. While the original version of the filter
suffers from high computational cost (Lopes and Piedade, 2000) for multivariate
problems and is known to have problems modelling nonlinear phenomena (Julier and
Uhlmann, 1997), variations of the technique such as the Ensemble Kalman Filter

(Evensen, 1994) have been developed to overcome these limitations.

For the problem being dealt with by this project, a Kalman Filter-based
technique would involve the relevant equations for vortex-sound being used as an
ideal model. The filter would then be supplied with measurements of the sound
recorded from a physical plaque simulation, with the mathematical model
recalculated at each time-interval to keep the two sources of data synchronized. The

Kalman Filter is designed to take these two sources of data about a phenomenon and

18



produce an estimate of the system’s state that is better than either on its own.

2.3.3 Other relevant

At the root of the field of numerical methods is a technique known as
Lagrange Interpolation. This has been expanded using Geometric Algebra (see 3.5
below) to create a multivariate interpolation algorithm that allows us to produce
approximating equations that are more easily invertible than their vector-algebra

equivalents.

Whilst the ‘core’ physics of sound generated by the motion of a fluid were
introduced by Lighthill (1952) and surveyed by Howe (2003), the relationship
between fluid turbulence and acoustic pressure variation is given in a directly
computable form as a vector-algebra equation by Dobashi et al. (2004). This formula
(and the algorithm which makes use of it) is intended to simulate vortex-sound in
computer games based upon the turbulence at a specific point (called a voxel) in the
flow. We require the opposite but face two obstacles: 1) The equations described by
Dobashi et al.(2004) are formulated using vector-algebra operators which are not
invertible due to the nature of the vector dot-product and 2) They are only an
approximation to vortex-sound in any case since the measure of success is their
ability to produce sound that gamers find realistic; using them for this project, even

in inverted form could therefore potentially lead us astray.
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2.3.4 Extreme Physical Information

The principle of Extreme Physical Information (also known as the
Frieden-Soffer principle) is effectively a method of deriving Lagrangians using
elements of information theory and the calculus of variations. Described fully with
example applications in the book “Science from Fisher Information” (Frieden, 2004),
it hinges upon the concept of measurement resulting in a loss of information. The
measure of information used is that proposed by geneticist Ronald Fisher and, while
similar in form to Shannon’s form of entropy (Brillouin, 2004) (which itself can in
some cases be the Boltzmann Entropy of thermodynamics (Frieden, 2004)), it has the
property of being locally dependent upon the phenomenon being measured. This
means that the order of data-points in a data-set affects the amount of Fisher
Information that that data-set has but not the amount of Shannon Entropy (compare

equations 2.1 and 2.2 below).

I'= [ dxp™@)/p) 2.1)

H = [ dx.p(x)ln p(x) 2.2)

Frieden postulated that by using the calculus of variations to minimise the

information lost during measurement, it could be possible to derive the Probability

Density Function (PDF) of the phenomenon in question. His book (cited above)

20



contains numerous applications of this technique; these include both EPI derivations

of existing physical laws as well as new ones.

The EPI principle has been criticised (Lavis and Streater, 2002) on, the
grounds that the applications cited by Frieden require a degree of mathematical
creativity that suggests that the principle only works if one has more advance
knowledge of the phenomenon being measured than would normally be the case. On
the other hand, this could also be said of Classical Measurement Theory (the theory
that EPI is intended to replace) it often being the case that “It usually happens that
the differential equations for a given phenomenon are known first, and only later I
the Lagrange function found, from which the differential equations can be obtained.”

(Morse and Feshbach, 1953).

While Frieden’s book serves as the only introduction to the subject, the
examples of it’s application are almost all in the area of Physics and therefore
somewhat inaccessible to those who want to cement their understanding of the
principle. There are, however, two applications that have been made since the book’s
publication that provide more accessible applications to the concept. The first of
these is that of Menard and Eboueya (2002) who use the EPI equation [ —J =
extremum as an objective function in the problem of fuzzy clustering (in which the
data-points given to the system are organised into groups based on a user-defined

measure of their similarity). This work is actually very close to that proposed by this
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project with the exception that a formula for the bound information J is available in
the clustering application whereas in this project it is not. Nevertheless, Menard and
Eboueya’s work takes the continuous mathematics of Frieden’s book and provides
discrete equivalents to the concepts involved or at least more easily discretisable

continuous versions.

A second application is that of Frieden and Gatenby (2005) in which the EPI
principle is used to derive allometric laws of the form y = Yx.. These laws are
obeyed by many living and non-living systems for a small range of values for a. This
paper is considerably clearer on the distinction between information measures [ and J
than that of Menard and Eboueya and the mathematics involved is less specific to the

science of Physics than that required in order to understand earlier applications.

2.4 Genetic algorithms

A Genetic Algorithm (GA) is an artificial intelligence technique which
attempts to solve problems by simulating biological evolution to some degree. A
basic genetic algorithm will have a pool of chromosomes which represent solutions
to the problem, a fitness function which is used to evaluate those chromosomes and
the ability to cause mutation and crossover (where two chromosomes exchange a
sub-set of their genes). There is a myriad of variations on this basic design and it is

often the case that specific variation will be designed to improve the efficiency of a
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genetic algorithm in solving a particular problem or class of problems, the biggest
obstacle often being premature convergence (convergence on a local-maximum of
the search-space). A thorough introduction to GAs is given by Mitchell (1996) who
covers the most commonly used techniques of solution-encoding, selection methods
and genetic operators as well as their parameters such as mutation and crossover
rates. It may well be the case that a particular GA implementation can be ‘fine-tuned’
by adjusting any one aspect of the basic algorithm or a combination of several. For
this reason, it is felt that a detailed investigation of more unusual GA components

should be driven by knowledge of the specific needs of the system being developed.

2.5 Geometric algebra

It is widely known that working with vectors, or simply multivariate data-sets
often requires at some level that the individual coordinates (or data-values) are
treated as individual entities. This can result in an increase in the complexity of
data-processing systems, especially at design-time resulting in longer development
times an increased risk of bugs. In the latter half of the twentieth century, an
alternative to vector-algebra began to gain in popularity; Geometric Algebra (or
Gal) is Hestenes and Sobczyk’s (1984) interpretation of an anti-commutative
algebra developed by the noted mathematicians William Kingdom Clifford and
Hermann Grassman. Whilst Geometric Algebra is of interest in a number of areas of

pure mathematics, from the point of view of this project, potential benefits resulting
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from the unification of scalars, vectors, complex numbers and quaternions were

apparent.

We will restrict ourselves to that instance of the algebra best pertaining to
physical space: Gs,, that is to say a geometric algebra with a three-dimensional basis
over the real numbers. The first thing to note is that this results in eight linear

dimensions:

Figure 2.1: Illustration of linear dimensions.

el e2 e3
el e2 e27e3 el el

el ~e2Ne3

so that a variable x in Gs 1 has eight ‘coordinates’, each of which can be set
independent of the others. The relationships between the linear dimensions are
provided by the algebra’s operators. Addition and subtraction work in exactly the
same way as they do in vector-algebra, multiplication does not. Geometric Algebra
defines the Geometric Product as uv =u - v+ u” v. That is, for pseudoscalars (the
term given to values from a geometric algebra) u and v, the geometric product is the
sum of their dot-product and their wedge-product. The dot-product is the same as

that defined in vector-algebra. The wedge product is similar to the cross-product of
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vector-algebra except that the result is not a vector, but an oriented area known as a

multivector (see Fig. 2.2).

Figure 2.2: Illustration of and equation for magnitude of wedge-product.
\
v u'v
u

Therefore, the wedge product of vectors u and v having geometric coordinates (1,2,3)

|u A r| - |rr||r|>‘.inﬂ

and (1,3,5)is (1 * ees, 2 * €763, 1 * &1 " &).

As was stated above, GaL is an anticommutative algebra; this means that for
two pseudoscalars a and b, ab = -ba. It is this property that provides the two
important crossovers that make GaL applicable to a wide range of physical problems:
Firstly, the anticommutative product models the behaviour of vectors and secondly,
the area of the wedge product will always be an imaginary number because (e«¢;). =
-1; this property means that the geometric product effectively produces a
hyper-complex number and we can therefore treat scalars, complex numbers,
quaternions and octonians as identical objects (at least for the purposes of algebraic
manipulation). A good illustration of how this works is provided by the expressions

for the dot and cross-product operators of vector-algebra:
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a-b=(ab+ba)*0.5 2.1

axb=(ab-Dba)*0.5 2.2)

Naturally, the individual Euclidean coordinates of a and b must be dealt with
individually at some level for actual numerical evaluation but this can be dealt with

by computer-software.

2.5.1 A review of Geometric Algebra implementations

There are currently two reasonably mature implementations of geometric
algebra available: The first allows the programmer to treat pseudoscalars as primitive

data-types whereas the second takes a pure, monadic object-oriented approach.

25.1.1 C++

One of the most flexible implementations of geometric algebra is the nklein
library (nklein software, 2000). Written in the C++ programming language, the
library was able to utilise template metaprogramming at a time when it was not

supported in Java (the language of the other implementation). This approach to
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implementing GaL in a programming language allows GaL ‘objects’ to be treated in

the same way as one would treat integers or floating-point numbers.

Figure 2.3: Example nklein code.
/I Store the wedge-product of pseudoscalars x and y in a new
// variable z

nklein::GeometricAlgebra<double, 3> z=x"y;

A denary indexing scheme is used to provide access to the underlying
coordinates such that z[0] is the scalar part of the pseudoscalar, z[1], z[2] and z[4]
store the X, y and z coordinates and the remaining linear coordinates are stored at

indices which are combinations of these (i.e. the value for e, * e, is stored in z[3]).

This library is the most flexible and highly integrated discovered by the

author to date but would be rather difficult to map to most other languages due to it’s

reliance on both template classes and operator overloading.
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2.5.1.2 Java

In addition to not using template metaprogramming, Java does not support
operator-overloading and subsequently the Java implementation of GaL cannot
provide the same seamlessness as the nklein library. Nevertheless, a full-featured
implementation is available in the form of Clados (Differ, 2002). This
implementation seems to be aimed at the area of computer-graphics being restricted
to three-linear dimensions but, within this space, still provides most of the benefits of
GaL with the added advantage of being platform independent. The equivalent of the
code given above is shown in Fig. 2.4.

Figure 2.4: Example Clados code

/I x becomes the wedge-product of itself and y

x.Wedge(y);

The indexing scheme used by Clados will be more comfortable to Fortran

programmers than that of nklein, the linear dimensions simply being index by the

numbers 1 to 8.
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2.6 Dimensional and configurational-analysis

A common approach to problem-solving and solution-verification in
engineering and physics is the use of dimensional-analysis. In short, the technique
involves working not with variables as indicators of quantity but with the dimensions
of those quantities. A simple example would be the situation in which, given the
velocity of an object in meters per second and a travelling time in seconds, we want
to calculate how far the object will have travelled in that time. We decide to multiply
the velocity by the travelling time but how do we know that that is the correct
operation? Formal proof via algebra would of course be one way but another is to

verify that the result of the calculation will be a quantity in meters:

(%)s=m 2.3)

This example is of course too simple to warrant such attention in reality but
the technique of dimensional-analysis has been used to quickly provide insight and
verify solutions for very complex physical phenomena and, as a result, has become a
field of study in itself with an extension of the theory being used to calculate the

expansion of the explosions created by the first atomic bombs (Barenblatt, 1996).

In terms of increasing the level of abstraction involved in

dimensional-analysis whilst still retaining usefulness and mathematical rigour, the
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work of Becker (1976) defines the concepts of eigenratio and configuration. An
eigenratio is, simply a pair of quantities which can be identified as coupled in some
way such that their pairing is informative when examining a physical phenomenon.
A configuration is a set of eigenratios and, with these highly abstract concepts,
Becker shows that it is possible to reason in useful, in-depth ways about various

physical phenomena. This technique is known as configurational-analysis.

2.7 Cellular automata

The concept of a cellular automaton is effectively an expression of the
minimum structural and algorithmic requirements of computation but also challenges
the idea of processor and memory being separate entities. The computer pioneer
Konrad Zuse may not have had this precise interpretation in mind in his seminal
1969 book (Zuse, 1969) as his thesis was that such mechanisms might in fact
underlie all of time and space but this is still a reductionist approach and, having
effectively given birth to a new sub-field of computer science, it has then certainly
been a reverse perspective (i.e. that complex computation can arise through the
simulation of cellular automata) that has become the starting point for a wide variety

of applications.

A concise definition of what constitutes a cellular automaton is not hard at
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this point in history since so many variations exist and have given rise to a very
general fundamental description, comprising a declarative part and an imperative

part:

Declarative: A data-structure consisting of an array (of any dimension) of cells with

each cell able to be in one of a number of states at any given time.

Imperative: A set of rules as to what state a single cell will change to given its
current state and the state of it’s neighbours (there are several variations as to what
constitutes a neighbour but the concept of Higher Order Time Dependence
(Ilachinski, 2002) tells us that the one common factor will always be that a neighbour
is immediate rather than one or more cells away). These rules are applied to every

cell in the array simultaneously at each iteration of the system.

Probably the most famous example of a cellular automaton is Conway’s
(1970) “Game of Life” which provides a contrived example of cell-colony
behaviour. It uses a Moore neighbourhood which simply refers to the fact that all
cells around the center-cell are considered neighbours (as opposed to the von
Neumann neighbourhood which considers only north, south, west and east cells to be
neighbours) and the following rules:

Birth: replace a previously dead cell with a live one if exactly 3 of its

neighbors are alive.
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Death: replace a previously live cell with a dead one if either (1) the living
cell

has no more than one live neighbor (i.e. it dies of isolation), or (2) the living
cell has more than three neighbors (i.e. it dies of overcrowding).

Survival: retain living cells if they have either 2 or 3 neighbors.

(ITachinski, 2002b)

Repeated iteration of these rules on a grid with some arbitrary initial
configuration results in non-linear behaviour (i.e. behaviour that cannot be modelled
by a system of linear equations) and will reliably produce specific patterns which

effectively provide the model with its own signature.

Of more relevance to work involving sound is the cellular automaton known
as the Greenberg-Hastings model. Originally created to model oscillating chemical
reactions, it was adopted in this study as an abstract representation of the propagation
of sound-waves and forms the fundamental mathematical core of the work. Its rules

consist of two boolean equations representing refraction (R) and diffusion (D):

R(o)={2ifo=1, 2.4)
{0 else
D(o6 ,,0,,0,,05,0,)={lif(0,=1lorc,=1loro,=10rc,=1) (2.5)
and 6, =0

{0 else
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Combined with the initial state shown, these rules quickly produce patterns of

oscillation:

Figure 2.5: Evolution of Greenberg-Hastings cellular automaton

2.8 Microsound

Computer Science is discrete by nature and so it immediately makes sense to
look at possible discrete representations of any phenomenon on which one intends to
work within the digital domain. Sound waves are continuous in nature and simply
choosing an arbitrary way of dividing them up does not take full advantage of what
the discrete world has to offer. Of great importance to anyone working with sound
using computers is the notion of a sound ‘granule’. This concept can be both a
physical quantum and a psychoacoustic concept since it represents the minimum
length of a piece of a sound wave that can be perceived by the human auditory
system as sound. Given the ability of many surgeons to identify the existence of an
atherometous plaque in the carotid artery merely by listening to the turbulent blood

flow with a stethoscope, it is appropriate to attempt to provide the computer with a
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more human means of understanding the physical phenomenon.

2.9 Semiotics

The short definition of semiotics is given by Chandler (2013) as “the study of
signs”; the key to understanding the starting point for this branch of philosophy is,
however, the definition of ‘sign’ in that statement. That definition is actually very
broad, effectively encompassing any phenomenon that provides us with information.
This may be something as intuitively expected as a road-sign or as ethereal as a
thought (since having the thought leads us to other thoughts). In the context of
medicine, a ‘classical’ approach is provided by Baer (1988) who discusses the
subject from its historical route of symptomatology, the basic premise being that,
prior to the existence of diagnostic equipment (in ancient Greece for example),
physicians were trained to recognize signs in order to make diagnoses. Baer surveys
various semiotics models (formalisations of the process of sign formation and
interpretation) that have been developed and then moves on to advocate a
reintegration of the psychosocial aspects of medicine into what he considers to be a
highly materialist field, modern medicine. This discussion has little benefit to the
project described in this thesis however since we are interested in the pragmatics of
sign-interpretation in medical imaging. A direct application of semiotic principles to
medical-imaging is, however, provided by Cantor (2000) within the field of x-ray

interpretation creating a sub-discipline that he has named ‘Roentgen Semiotics’. It is
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the principles on which this discipline is founded that are of direct relevance to this

project.

Despite the absence of X-rays or even of a similar technology in this project,
Cantor’s work is very useful for the simple reason that it provides a formalisation of
the separation of ‘visual-absolute’ present in a medical image and the diagnosis
resulting from examination of that image. In informal terms, Roentgen Semiotics
represents all phases of diagnosis by medical imaging in terms of signs and shows
how they relate to each. It then becomes possible to replace X-rays with any other
kind of medical imaging technology and still find that the sign-relations which were
built on top of them apply to the substitution. What makes this possible is the use of

the semeiotic of Charles S. Peirce.

The perhaps better known philosophy of signs is that of one of the
founding-fathers of semiotics, Ferdinand de Saussure, who breaks them down into
two components: the sign and the signified. Peirce, however, uses three-components:
The referand (roughly equivalent to Saussure’s sign), the object (roughly equivalent
to Saussure’s signified) and the interpretant (no direct equivalent in Saussure’s
formalism although present in the relationship between sign and signified). The
interpretant, as the name suggests, encapsulates the interpretation of the sign by the
person observing it and, combined with the inclusion of thoughts themselves as

signs, Peirce’s system comfortably incorporates the concept of infinite-semiosis
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where an initial sign, upon being observed, gives rise to the creation of numerous
others. It is through this mechanism that Cantor is able to separate the signs of
medical diagnosis based upon a medical image from the signs (geometric,

topological, etc.) present in the image itself.

It is not useful to this project to go into detail about those aspects of Roentgen
Semiotics that are inexorably linked to X-ray images but it is useful to cover the
hierarchy of signs that arises from its Peircean analysis.

We will refer to the level of said hierarchy in which the signs discussed are
most closely tied to X-ray images as the ‘bottom’, to whit that this level is based
upon the concept of ‘Radiographic Boundaries’. These include ‘Visual Separation’
and ‘Visual Contrast’. At the next level up, Cantor abstracts the concept of Visual
Separation into either ‘Line Separation’ or ‘Edge Separation’ - the former is where a
distinct line is perceived, the latter is where the line comes from the existence of an
edge (the anatomical equivalent of, for example, the line made by the coast of a
land-mass). Visual Contrast is broken up, similarly, into sign-types such as ‘Gradient
Signs’ and ‘Density Signs’. Moving up a level we start to talk about the direction of
gradients (light-to-dark vs. dark-to-light, etc.) and the appearance and disappearance
of signs in general. One level further up finds the inclusion of personal experience
and consultation with colleagues in the formation of the interpretant sign during a
diagnosis and the new signs (complete with their own interpretants) that arise from

this (the infinite-semiosis discussed above). From the point of view of this project,

36



the usefulness of Cantor’s work is that it allows us to say that the output from the
system produced to tackle the problem of imaging atherosclerotic plaques is valid in
a medical context if it can be placed in substitution for the actual X-rays upon which

Roentgen semiotics is based.

2.10 Physical simulation

The collection of data from a real occluded carotid artery is neither practical
nor desirable for this project since the aim is to construct a system that can correctly
indicate certain distinct topological features. Attempting to do this with a real-life
example would introduce difficult ethical requirements and produce data that would
be of little use since no control over the plaque topologies involve would be possible.
As aresult, it is necessary to construct a physical analogue of an occluded carotid

artery based upon established material equivalents.

2.10.1 Artificial substitutes for the carotid artery

The use of rubber-tubing to simulate the arterial vessel itself is a long
established technique with urethane-rubber being included in a recent review of
tissue substitutes for ultrasound imaging (Culjat et al., 2010) and silicone-rubber
being demonstrated as a viable substitute by Fatemi (2003) for a detailed study of the

vibrational properties of arterial walls with specific reference to non-contact
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ultrasound. Whilst this thesis does not deal with ultrasound, Tsangaris and Drikakis
(1989) showed that a mathematical model of pulsating blood flow could be created
using an anisotropic elastic tube and it therefore seems reasonable to infer that such a
material (of which rubber is an example) would be suitable for other acoustic-based
work relating to arteries. Since the Young’s Moduli and densities of urethane,
silicone and natural rubber are close to each other (see table below), we may assume
that their acoustic attenuation properties are also similar and that rubber in general is

an appropriate material to represent the carotid artery for the problem addressed here.

Type of rubber Young’s modulus Density

Urethane 2 to 10 MPa 1250 kg/m"3
Silicone 1 to 5 MPa 1250 kg/m”3
Natural 1 to 5 MPa 910 to 930 kg/m"3

Table 2.1: Comparison of young’s moduli and densities for different kinds of rubber

(Matbase, 2014)

2.10.2 Artificial substitutes for carotid plaques

Exact physical simulation of the physical properties of a carotid artery plaque

is neither required or desirable for this stage of development of an imaging system.

Kingstone et al. (2013) have demonstrated the use of pieces of Frankfurter sausage to

provide something approaching plaque material from soft-plaque up to

calcified-plaque, it is only the latter that is relevant to this thesis since until we know
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how sensitive the system being developed is to minor variations in topology, we need
both the topology and geometry of the simulated plaques to remain constant. It is
therefore pointless to take something with a degree of elasticity and strengthen it as
opposed to using something that is hard when placed into the simulated artery but
can be molded outside of that into whatever form is needed for each experimental
run targeting a specific topology. This facility is provided by polymorph
thermoplastic which can be formed into any shape once heated to 60 degrees celsius

but becomes hard and stable below that.

2.10.3 Artificial substitute for blood

Tsangaris and Drikakis (1989) confirm that blood can be treated as an
incompressible fluid for the purposes of physical simulation related to pressure
waves. That incompressibility is the most important property to have equivalent
between human blood and the chosen substitute is shown in Vendantham and Hunter
(1997) who confirm the intuitively correct idea that sound-wave propagation in an
incompressible flow will experience advection. The most freely-available
incompressible fluid is water: its selection as a substitute for blood here eradicates
the need for additional laboratory apparatus (for recirculation of a more specialist
fluid) while retaining those characteristics of blood which are significant to the

problem of imaging a carotid artery plaque based upon passive acoustic energy.

39



2.11 Key findings

It is evident from inspection of the phenomenon of sound produced by fluid
turbulence and the physical laws that govern it, that the data with which any medical
imaging system must work will be nonlinear in nature, not to mention highly prone
to noise. The areas of existing knowledge that are therefore most relevant from the
review above are those that work with data of a similar nature. Given the very
specific form of the phenomenon of turbulent sound it was decided that these would
in fact be the two criteria for determining whether or not previous work is worthy of
examination in the context of this project. Using these criteria, we can analyse some
of the work surveyed from the point of view of how problems similar to those

addressed here have been dealt with by others.

2.11.1 MRI and computed tomography

Whilst both of these techniques leverage analytical mathematics in order to
perform imaging of the inside the human body, they are both reliant on specialised
hardware and directed energy (which the sound emitted from an artery by turbulent
blood-flow is not). The Algebraic Reconstruction Technique effectively provides a
high-level abstraction of these techniques and might provide a starting point if
perhaps combined with some form of regularization (see below) but the matrix used

by such a technique would be highly sensitive to changes in the background noise in
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its operating environment (a doctors surgery, for instance), nor would the approach
be able to deal with the loss of information which Dobashi et al’s work (2004)

indicates is unavoidable.

2.11.2 EIT

From the point of view of this project, it is very reassuring that, given the
complexity of the problem, which is close to that to be dealt with in this project, a
relatively simple mathematical technique can make the data usable for diagnosis. The
technique of Tikhonov Regularization also has mathematical roots of a linear nature
which suggests that when working with data of this kind, it may be possible to apply
some useful smoothing technique to make it possible to work with less complicated

mathematical formulae.

2.11.3 Ultrasound

The principles of Doppler Ultrasound and, in fact, Ultrasound in general are
of no major use to this project as they require specialist hardware (transmitter and
receiver) and in any case are not ideally suited to the degrees of freedom required of
a 3D model of something as small as an arterial plaque in such a way that a surgeon
can rotate and translate the model on the screen. This project’s approach is to work

with what information is inferred by the smallest number of variables possible;
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currently just one variable: acoustic pressure. In Doppler-based systems, the sound
from inside the artery is reproduced from the beats and could therefore be used as
input to the system but this would invalidate the project’s requirements of

affordability and minimal dependency on specialist hardware.

2.11.4 Kalman filters

There are two distinct problems with the idea of applying a Kalman Filter or
variant to the phenomenon of sound produced by fluid-turbulence: Firstly, the
technique relies heavily on the probability density functions being Gaussian (Lei et
al.,2010), and there is significant research indicating that this is not the case for
fluid-turbulence, particularly at a small-scale (Srineevasan and Antonia, 1997). This
would result in a lack of stability of the generated matrix during successive update
phases of the algorithm. This problem would, in practice, be compounded by the
resultant requirement to distribute software relying upon a supplied covariance
matrices (which represent information about the errors present) to different
environments (GP’s surgeries) with different kinds of background noise. The likely
effect would be a requirement to have new covariance matrices generated for
environments sufficiently divergent from that in which the system was originally
calibrated. This would require the presence of the physical artery simulation and a
skilled operator. Combined with the non-Gaussianity problem, the practical

applicability of such a technique would be severely reduced.
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Another variant, the Particle Filter (Gorden et al., 1993) seeks to avoid the
problem of non-Gaussianity by adopting a Monte Carlo approach where by multiple
model-runs are propagated forward in time until they ‘hit’ system states produced by
the ideal model. In order to properly represent the system state for the phenomenon
of turbulent sound generated by an irregular shape (such as a carotid artery plaque), it
would, however, be necessary to represent the relationship between the amplitude at
a particular point in time and the occupied status of each voxel explicitly thus
increasing the dimensionality of the problem. The efficiency of this process is poor,
particularly (van Leeuwen, 2011) since multiple model-runs are required for realistic
simulation. While van Leeuwen (2011) proposes directing the model-runs towards
the measurements for the specific case of geophysical fluid-dynamics, this requires
that errors are Gaussian in nature - the very problem that led us to consider Particle

Filters in the first place.

2.11.5 Higher-level techniques

Having found no existing medical-imaging work that provides a solid
starting-point for this project, a series of higher-level techniques in the form of
general approaches to computation and problem solving were surveyed covering
areas such as numerical methods, cellular automata and semiotics that provide

various abstract perspectives on the different facets of the problem addressed.
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2.11.6 Physical simulation

Existing work validates the use of freely available materials for the
construction of a physical simulation of an occluded carotid artery. Were more
elastic plaque-simulations of interest for this study, it would be necessary to
investigate the Frankfurter-based approach described by Kingstone et al. (2013) but
since that would actually be detrimental to the initial topological investigation being

undertaken, polymorph thermoplastic is the best choice.
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Chapter Three

Preliminary approaches considered

45



3.0 Preliminary approaches considered

A lateral-thinking approach permeates this work, driven both by the state of
non-linear physics at the project's inception and by a desire to accomplish two,
seemingly mutually exclusive benefits to those suffering from carotid
atherosclerosis. The result of this is a methodology based upon two levels of
abstraction from the specifics of the physical problem. Firstly, regardless of the
method(s) eventually used to process the data taken from an artery, it was necessary
to be able to create such data in a controlled fashion — specifically in terms of
topological and geometric features of the plaques; these are not regular in the real
world and thus create a problem for the testing and calibration of any medical

imaging system.

In order to maintain as many realistic environmental factors (which is to say,
factors that would commonly be present in the device's normal operating
environment) whilst retaining practical control of the topological features of the
plaques being studied, an apparatus was created for physical simulation of the
phenomenon of arterial occlusion. This consisted of a allowing water to flow through
a rubber tube at the approximate velocity at which blood flows through a human
carotid artery. Occlusions were created by forming polymorph plastic into shapes
with distinct topological features and the inserting these 'mock-plaques' into the

tubing. The sound of turbulent flow around the occlusion was then recorded via a
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microphone inserted into the head of a stethoscope, an arrangement that was proven
pragmatically to produce clean and consistent sound whilst not completely damping
background noise (thus allowing errors in the data to be dealt with from the outset of

the system design).

Figure 3.1a: Physical simulation of occluded artery with stethoscope/microphone

assembly to record sound produced by turbulence
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To drain Flow of water
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Figure 3.1b: Physical simulation in clamp
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From the point of view of data-processing and the resultant algorithms of the
imaging system, our lateral approach called for a three-fold investigation, derived
from the semiotic spectrum which results from a digital treatment of non-linear

physical data.

In its raw form, the data is a time-series: amplitude values for samples taken
at regular intervals in time. The natural assumption then is that an approach designed
to work with purely numerical data is the correct one. It rapidly becomes apparent
however, that while one might be able to justify with equations the theoretical
correctness of a purely numerical approach, the practicalities of implementing it may

well turn out to be insurmountable with current technology.

A less obvious but equally pure approach is to attempt to deal with the data
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symbolically. This approach is inspired by the dichotomy just described in which it is
possible to symbolically prove the theoretical correctness of a technique which is
impossible in practical terms. The challenge for this project specifically was how to
convert the numerical data coming into a computer into a symbolic form such that
strings of numbers became terms of equations. Progress was made towards this end
but it quickly became apparent that the amount of work required to mature the
technique to a point at which it would be usable was just as prohibitive as the

practical obstacles presented by a purely numerical approach.

Given this emergent symmetry of frustration, it then seemed appropriate to
attempt a hybrid approach between the two extremes of number and symbol and it is
this approach that ultimately resulted in a workable system for extracting and
visualising topological information about carotid artery plaques. In taking this
‘triangulatory’ approach, a spectrum of semiotic reasoning has emerged running
from the purely numerical to the purely symbolic, with our solution in the middle and
the interaction of these two opposing forces that provided a means to move forward

is worthy of elaboration.

Being representable either by mathematical fluid-dynamics or an EPI
functional, it can immediately be seen that the problem can be tackled either by
calculation or by abstract reasoning, at least theoretically. As far as the actual

practicability of these two approaches however, much context can be gained by an
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examination of the EPI principle in action in the form in which it is normally used.

The problem with the first approach is the sheer complexity and volume of
calculations that must be performed. As will be demonstrated, even a numerical
approach based upon a computationally simpler numerical reification of the EPI
equation fails to perform adequately for even a simple mathematical problem and it
cannot therefore even be hoped that it would handle searching in the far more
complex space defined by the mathematics of fluid-turbulence. In the second
approach, it quickly becomes apparent that while increased abstraction reduces
computational complexity, it does so only from a mechanical standpoint - a payoff is
required and, unfortunately, this comes in the form of a greatly increased need for
mathematical intuition and creativity - something that no computer currently
possesses; artificial intelligence therefore becomes the natural mediating force and a
viable approach positions itself in the aforementioned spectrum of semiotic
reasoning based upon the balance between how much intuition and creativity
artificial intelligence can provide and how much concrete, mechanical computation it
must still rely upon. This thesis will therefore define the ends of this spectrum by
detailing the two approaches that identified them and then demonstrate the natural
emergence of the resultant compromise approach as well as detailing its subsequent

development and success.
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3.1 Numerical approach

The specific problem addressed by this project can be abstracted to the
mathematically equivalent problem of producing a sufficiently accurate
approximating polynomial between a vector x and a scalar f(x). An initial polynomial
which will serve as the basis on which to build has been created by evaluating the
Lagrange Interpolation formulae within a Geometric Algebra framework thus
eliminating the need for the derivation of multivariate versions of the formulae such
as those described by Sauer and Xu (1995). The use of Geometric Algebra as a tool
for multivariate modelling has since been published by the author (Burley et al,

2006).

Having created a mapping between x and f(x), the next problem addressed is
that of improving its accuracy. This seems to be an obvious area of application for
the the Frieden-Soffer principle of Extreme Physical Information (Frieden, 2004).
This principle involves the minimisation of the differential equation where I is the
Fisher Information present in the observation of a physical phenomena and J is the
total Fisher Information available about that phenomena (which in real terms can
never actually be obtained). The normal approach to applying the EPI principle is an
algebraic one: The equation for I is of a fixed form while that for J is determined by
the known properties of the phenomena being measured along with an “Invariance

Principle” (Frieden, 2004) such as, for example, the continuity of charge and
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current-flow in classical electrodynamics . Solving the EPI equation given above
then (with a degree of skill) results in the Lagrangian for the phenomena. This is
often achieved using the calculus of variations as the formula for Fisher Information

is a functional rather than a function:

L(0) = E{[£Inf(X.0)] °|0} 3.1)

where f is the likelihood function of X given some parameter 0 and E is the
expectation of the formula in curly brackets. In statistical terms, this is the variance

of the score.

In Frieden’s work however, the following form of the formula is used:

I=[dxp?x)/p(x) where p’ = dp/dx and p is the probability of x occurring.
(.2)

There are two problems with applying this principle in numerical terms: 1)
The direct calculation of Fisher information requires knowledge of the probability
density function of the phenomena in question — in our case this is difficult to acquire
without further approximation and is thus to be avoided if at all possible and 2) We
do not have a polynomial representing the total amount of information in the

phenomena — if we did, we would not need to further refine our approximating
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polynomial in the first place. To illustrate the level of creative problem-solving
required to use the EPI principle in the form in which Frieden conceived it, an

expanded version of one of his example derivations is provided in Appendix A.

The first problem can be settled by a special case of the Cramer-Rao

inequality that relates the Fisher Information to the Squared Error of the phenomena:

2l > 1 (3.3)

In the case of an efficient measurement, this inequality becomes an equality
and we can thus define the Fisher Information as the reciprocal of the square error.
This approach works for Lagrangian Polynomials being computed and evaluated in a
computer because the efficiency of measurement (i.e. of evaluation) is sufficiently

near to perfection (with the right programming).

The closest that we can come to the bound-information function from a
numerical-analysis perspective is what will be referred to here as a virtual abstract
function (VAF). The concept is original to this project and consists of defining a
function that, while related to the function being optimised (in this case, a Lagrange

Polynomial) always has more Fisher information (i.e. a lower squared error).
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In order to work with functions and functionals in a concise and efficient
form, a survey of geometric algebra techniques and technologies has been conducted

to determine whether or not this mathematical structure would give an advantage.

It is widely known that working with vectors, or simply multivariate data sets
often requires at some level that the individual coordinates (or data-values) are
treated as individual entities. This can result in an increase in the complexity of
data-processing systems, especially at design-time resulting in longer development
times an increased risk of bugs. In the latter half of the twentieth century, an
alternative to vector-algebra began to gain in popularity; Geometric Algebra (or
Gal) is Hestenes and Sobczyk’s (1984) interpretation of an anti-commutative
algebra developed by the noted mathematicians William Kingdom Clifford and
Hermann Grassman. Whilst Geometric Algebra is of interest in a number of areas of
pure mathematics, from the point of view of this project, the potential benefits
resulting from the unification of scalars, vectors, complex numbers and quaternions

are apparent.

3.1.1 A Genetic Algorithm over Geometric Algebra

It is at this point that the advantage of using Geometric Algebra within the

theory of vortex sound becomes apparent: In many cases, the virtual abstract function
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may be defined as the magnitude of x mapped to f(x) (which is scalar already for the
vortex sound formula which the system to approximate). Geometric Algebra allows
us to express both the virtual abstract function and the polynomial being optimised
using the same entities (called pseudoscalars) thus making minimisation of the Fisher
Information differential a straightforward problem that can be solved using a simple
genetic algorithm or any other algorithm that can search through a given domain
(Hooke-Jeeves, Nelder-Meade, etc.). The solution of the differential equation is a
function g(y) (the system does not actually give us the values of y but it seems
sensible to refer to g as a function as continuity is implied by the simple fact that our
choice of data points in G, is arbitrary) which it is hoped can be used to optimise the

approximating polynomial.
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Figure 3.2: Graph of solution function g(y).
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A genetic-algorithm based implementation of this technique has been tested

for the problem of computing vector-magnitudes. This problem is simpler than the
main aim of the project but has an identical functional definition (i.e. mapping a
three-dimensional vector to a scalar). The results of the genetic algorithm suggest
that the solution function g(y) is always significantly non-linear (graph 5.1). This
may hold a clue as to the form of the more accurate approximating function as the
condition required for computing the original Lagrangian Polynomial is that the input
values must be equally space and therefore must lie along a single vector. The
solutions to the Fisher Information differential for the vector-magnitude problem are,
so far, always non-linear. This suggests that the next stage of the process would be to

use another genetic algorithm to alter the coefficients of the polynomial in order to
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allow the solution of the differential equation to meet the linearity condition of the
Lagrange formula when re-expressed using Geometric Algebra. A corollary of this is
that we can now define the accuracy of a Lagrangian interpolating polynomial as the
curl of the solution function, i.e.: although this is not directly computable at the

present time.

In effect then, what this initial work suggests is that a numerical
implementation of the EPI principle can be created and geared towards the derivation
of a Lagrangian that relates the space occupied by an atherosclerotic plaque with the
change in sound pressure at time t caused by the turbulence of blood flowing over

and around the said plaque

3.1.1.1 Architecture of Genetic Algorithm

The genetic algorithm has been implemented as an object-oriented program
in the Java programming language. The classes (modules from which any number of

usable instances can be created) are as follows:

Monad,
MonadPatch,

DataPoint,
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LagrangePolynomial,
FisherInformationDifferential,
SolutionFunction,

MainAlgorithm.

Monad provides an implementation of Geometric Algebra for three geometric
dimensions (resulting in eight linear dimensions). This is part of the Clados library.
A Monad can be thought of as a pseudoscalar although in implementational terms it

also contains methods for performing arithmetic on pseudoscalars.

MonadPatch corrects a fault in the .clone() method of the Monad class.

DataPoint represents a pair of Monads.

LagrangePolynomial represents a Lagrangian Interpolating Polynomial. Supplied
with an array of DataPoints at instantiation, LagrangePolynomial objects
automatically compute their coefficients based upon this array. They can be

instructed to differentiate themselves as well as clone.

FisherInformationDifferential stores two LagrangePolynomial objects (one
representing the VAF and the other representing the polynomial to be optimised). A

FisherInformationDifferential object can be asked to evaluate itself and this is in fact
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exactly how the MainAlgorithm class implements population-evaluation.

SolutionFunction represents an array of Monads that can be asked to mutate itself as
well as undertake crossover with another SolutionFunction. It is the programs

implementation of the chromosome concept.

MainAlgorithm is the program’s entry-point. The methods in this class handle
loading of data and output of solution-functions along with displaying the majority of
console messages used by the program. It initialises the pool of SolutionFunctions
and performs the evaluation (by calling a method in the
FisherInformationDifferential class) of that pool (the population in genetic algorithm
terminology). The fitness function for an individual chromosome is simply the result
of evaluating the FisherInformationDifferential for that chromosome. Two
approaches to minimisation of the differential have been tried, the most obvious
being to solve it for the value 0. In reality, the number of calculations that have to be
performed in order to do this result in unacceptable inaccuracies arising in the

results. This is in part due to the tendency of the VAF to have only slightly more

Fisher Information than the polynomial being optimised. This is acceptable
for this project and will only need to be improved upon if using the approach of
solving the derivative for f’(x) = 0 becomes vital. To avoid this problem at the

moment, the algorithm simply searches for a solution that makes I - J as close to 0 as
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possible. This is justified by the fact that the extremum of I - J being anything other
than 0 would mean that the measuring instrument (the approximating polynomial)
was either necessarily inaccurate, an absurd statement, or that it could in fact acquire
more information about the phenomenon being studied than the phenomenon itself
contained, suggesting that either the phenomenon or the approximating polynomial
were counterfactual. The selection technique currently being used is Tournament
Selection which tries to ensure that selection pressure is kept constant (Mitchell,

1998) thus avoiding premature convergence on a sub-optimal solution.

3.1.1.2 Issues with the approach

3.1.2.2.1 Conceptual

As has already been stated, the definition of Fisher Information used in this
project will be based upon the Cramer-Rao inequality which specifies a lower bound
for the relationship between Fisher Information and Squared Error. This means that,
because of the Root Mean Square calculation used to compute ¢, the dependency of
the Fisher Information upon the order of data-points seems to be lost (as addition is
associative). The fact is however that the Cramer-Rao inequality can be used in this
way (and is in fact used like this in Frieden’s EPI derviation of the law of 1/f noise);

it simply specifies that the lower-bound for the efficiency of measurement/estimation
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has been achieved. This raises an interesting question about the use of Fisher
Information (in the form used by Frieden) over Shannon Entropy in situations where

efficiency is 100% (or a negligible distance from 100%).

3.1.2.2.2 Regarding current implementation

In applying the numerical EPI technique as it currently is to the problem of
producing a Lagrange Polynomial for approximating vector-magnitude, it will be
apparent that the virtual abstract function (which maps the magnitude of the input
pseudoscalar to the magnitude of the output pseudoscalar) is actually of the form
r(x]) = |x|. This meets the condition that the VAF has more Fisher Information than
the initial approximating polynomial but a question arises as to whether or not it’s
form is a suitable ‘scalar analogue’ to that polynomial. Reassurance can be found on
this by an application of the symbolic EPI technique to the problem of price
fluctuation in Econophysics (Hawkins and Frieden, 2004). In this application, the
bound information J is actually defined as O resulting in the EPI equation reducing to
simple minimisation of I. The approach successfully derives the Lagrangian sought
and so the argument used in this project for equivalent cases (such as
vector-magnitude approximation) will be that the validity of such a choice is
context-dependent. It would however be necessary to demonstrate this with

applications to different kinds of problem. These would range from simple, abstract
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problems such as the vector-magnitude calculation described above, through the
production of Lagrangians for actual physical phenomena. As well as helping to
fine-tune the technique, this would result in publishable work in the fields to which
the technique is applied and the act of fine-tuning would therefore have numerous

corollaries for those fields.

3.1.2.2.3 Exacerbation of premature convergence

Unfortunately, the VAF concept doesn’t take the search in the same direction
within the vector space of possible solutions that the bound-information would (if it
were possible to numerically express the bound-information). Speaking in terms of
Peircean semiotics, the problem stems from switching from object to referand and
thereby producing a subjective result for an objective problem. Even infinite

semiosis will not work as the process will go further and further into the interpretant.

One way around this might be to create several different VAFs with the hope
of identifying the centroid of the range described by the different outputs from the
algorithm. This might prove a hard problem in itself, since each VAF could
potentially introduce new ways for the algorithm to converge on a sub-optimal
solution (also known as ‘premature convergence’ (Mitchell, 1998)). Even after these

difficulties were overcome (assuming they could be), it is still possible that the
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centroid would not be of use as a solution to the EPI equation.

Given that there is a potential to expend a great deal of time and effort on this
approach with no guarantee of a usable result, it was decided at this point to pursue a

more abstract approach.

3.2 Symbolic approach

3.2.1 Computational approach

Given that the EPI problem appears to implicitly require a symbolic algebraic
or, impossibly as it turns out, a numerical solution it seems at first glance that any
methodology attempting to address a phenomenon via Fisher’s approach in a
computational (‘computational’ having a strong synergy with ‘concrete’ in this
context) way must ultimately hit a dead end. This is because physics, mathematics
and most other sciences make an absolute delineation between symbolic (as in
algebraic manipulation) and numeric (as in calculation). This delineation is in fact an
illusion but the work which illustrates this is not widely known about; the reasons for
this are speculative and are therefore not appropriate for discussion in this thesis; we
will instead simply proceed to demonstrate a symbolic/numeric fusion through the

construction of a formal system interpretable from either viewpoint.
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The starting point for the construction is the concept of a Virtual Abstract
Function (VAF) developed in the previous, purely numerical approach. The VAF is
intended to satisfy the requirement of bound-information function, J, by numerically
modelling as much macroscopic behaviour of the information associated with the
phenomenon in question. This approach is justifiable if we consider the
bound-information to be a preliminary experiment in determining the overall
physical behaviour of the phenomenon. We can express this mathematically using

Jumarie’s (1990) notion of conditional entropy.

3.2.2 Using conditional entropy to investigate a definition of the

bound-information J

The validity of the VAF concept can be investigated in part by the techniques
of Jumarie (1990) who provides a formal derivation of the conditions that must be
met by a supplementary experiment in order to completely define the primary
experiment. In the case of the EPI method as applied to the research question, the
primary experiment is the derivation of a physical law relating features of a carotid
artery plaque to the sound produced by turbulence in the blood-flow around it
(represented in the numerical system by an initial approximation in the form of a

Lagrangian interpolating polynomial), and the supplementary experiment is the
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Virtual Abstract Function. Using Jumarie’s notation, we have the primary as § and
the supplementary as a. In order for a to completely define 3, the conditional entropy
H(p/a) of B given a must be zero. It is possible to show that this results in the
following inequality regarding the individual entropies of the two experiments
(Jumarie, 1990): H(a) > H(B). In our case, it is therefore necessary that that VAF
brings at least as much information as the initial approximation. It seems reasonable
that this should be the case as the Lagrangian interpolating polynomial will contain
features that are not present in the phenomenon being measured whereas the VAF

will contain only a subset of those features.

3.2.3 Results of the entropic investigation

The conditional entropy function effectively acts as a conduit through which
information can flow between the primary and supplementary experiments. It is
worth bearing in mind, however, that as well as having a mathematical definition, a
complete definition of the information of any part of a system is still subject to

relativity. This can be illustrated by taking another of Jumarie’s approaches:

If B/a. is the amount of information brought by a about B, then /a/R is the
amount of information brought by a about B from the point of view of an observer R.

In the numerical EPI solver, R would be the computer program that performs the
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minimisation of the EPI functional. The conditional entropy can be extended in the
other direction by defining B’/(B/a)/R as the amount of information brought by
experiment 3 about the ‘universe’ in which it exists when supported by experiment o
and from the point of view of the observer R. This poses a problem in that in our
case, R cannot have knowledge of B’ as this would assume that we already have an
exact, objective physical law representing the phenomenon being measured,
something that we do not have and that it is most likely not possible to have due to
the observer effect. What this means for the numerical approach to the EPI process is
that the system can only be guaranteed to minimise the information loss between the
initial approximation and the VAF and that there will come a point in the
minimisation of the EPI functional where the solution functions generated are being
optimised to describe the structure of B rather than ’. This point is not identifiable as
it would require the amount of knowledge about B’ that is actually being sought by

the EPI process and so the numerical approach is infeasible in this form.

3.2.4 Combinators as a bridge between the symbolic and numerical domains

Attempting to use automatic algebraic solvers is out of the question due to the
amount of mathematical creativity displayed in most EPI derivations; this represents
an absolute boundary (henceforth to be referred to as the symbolic boundary). It has

also been shown that a purely numerical approach is not feasible due to the effects of
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relativity and the observer effect. The key to solving this problem is to find a VAF
that can be evaluated implicitly, i.e. in the way such a function is ‘evaluated’ by
being incorporated into the EPI process as it is currently established but that will
allow a symbolic solution to be computed easily using numerical-method/Al

algorithms.

The theory of combinators provides a solution in this respect as combinators
are simple enough to be processed by machine with minimal computational expense
and yet can represent complex mathematical entities if sufficient memory is
available. In this approach, there are generally a small number of operators (often no
more than three) that are applied to each other and can thus also represent values and
the need for variables. The initial work of Schoenfinkel (1924), Curry (1958) and,
later, Church (1941) all demonstrate ways in which such forms can be defined and
manipulated, however the somewhat controversial “Calculus of Indications” of
Spencer-Brown (1972) and the following calculus of “Spatial Forms” of James
(1993) (see Fig. 5) is more directly relevant to this project as they combine semantic
richness with minimal theory. In particular, the calculus created by the latter defines
logarithms, exponentials and derivatives which could serve to define a

boundary-notation-equivalent of the Fisher Information.
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Table 3.1: Some examples of James’ boundary notation.

Standard

1+1=2

21+11=32

Using this approach, all of the entities required for the EPI process can be

defined thus allowing the minimisation to be performed symbolically but with

Boundary

00 = 00

([bl[ooDo([b][o])o = ([b][0oo])o

(Ix][o]) =x
(IxID =
(([[x][e])) =x
(([xND ) =o

(<[x]>) = (([[x]][<0>]))

symbols that also represent values in a nominal way (as opposed to variables where

there is no innate connection between symbol and value except that defined by the
user). The only remaining task will be to extend such a representation so that it is

able to represent pseudoscalars, something that can most likely be achieved by

modifying the ‘base’ combinator used to represent numbers above 9 (see the second

example in Fig. 6.5).
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3.2.5 Choice of VAF

Given a pseudo-discrete representation, it should then be possible to choose a
VAF that is innately continuous. For a research question rooted in the field of
fluid-dynamics, the appropriate construct is a cellular automaton (CA). Put simply, it
is possible to model a fluid using discrete, logical rules to generate behaviour at the
microscopic level and to then extrapolate macroscopic behaviour from this that
agrees with the Navier-Stokes equations as long as we obey the condition that we
work within a symmetry group of order 6 (i.e. a the model must operate on a
hexagonal grid). The resultant model is known as a Lattice Gas and there are many
variations on the basic square-grid model of Hardy et al. (1973) which started the
research in this area. It turns out that even with a ‘traditionally’ numerical approach
to the EPI process such a model could still have been used but would have then led to
an application of the Inverse Ultradiscretization method of Nobe et a/ (2001). This
would have introduced a degree of ‘smearing’ between cells, something avoided by
the combinatory-based approach discussed here which merely requires that we

re-express the CA’s logical rules in a different notation.

Given the functional nature of such a representation, it makes sense to
perform the initial implementation of the CA model in a functional language and,
given that there is also a need for array-processing, the APL language is most

suitable for this purpose. Figure 6.2 shows the terseness introduced; this property of
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APL is often considered a bad thing in the programming community but for the
purposes of this project, it provides expressions that are closer to being in

boundary-form than their equivalents in a less-terse language.

Figure 3.4: APL code for processing particle-collisions for every cell in the lattice (
note the lack of explicitly coded loops).
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The last issue that must be resolved within the new representational
framework is that of the data information I. This takes a fixed form in Frieden’s
symbolic EPI process and has been given the form of an initial approximation in our
original numerical implementation. In the combinator-based representation, it can in
fact take either and the best choice from these two possibilities would require
experimentation to identify. The polynomial representation has, however, already
been shown to have advantages over the ‘fixed integral’ representation as, having
been initialised using the data for which the derivation of a physical law is required,
it may reduce the computation time required to solve the EPI equations when

compared to the alternative. The question thus arises as to whether or not this
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approach really differs from a numerical approach using the normal place-value
number system as a representation. The answer to this is subtle but important: with a
combinator-based representation, it would be possible to examine the evolving
structure of the numerical solution to the EPI equation in a way which would require

detailed number-theoretic investigation otherwise.

3.2.6 A formal system for representing and solving the EPI process

3.2.6.1 Clifford Algebras

It has been shown (Burley et al. 2006) that the Geometric Algebra of
Hestenes and Sobczyk (1987) can be used to extend univariate numerical techniques
to multivariate domains. The construction of a formal system can therefore begin
with the derivation of a qualitative value-system based upon the geometric product
so that qualitative analogues of numerical techniques can be created. The linear
basis-elements generated by the geometric product of the basis-vectors ' and e?
provide a useful direction for when combined with a holistic approach to science in
general. Such an approach that, conveniently, is well rooted in scientific information

theory is the generalised Mendelevian Periodic Table.
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3.2.6.2 Generalised Mendelevian Periodic Table

Haskell et al. (1972) generalised the well-known periodic table of the
elements using General Systems Theory (Bertallanfty, 1969) such that a
non-Cartesian coordinate system representing the cybernetic feedback loop between
work-factors and controller was developed. This coordinate system allows particular
instances of this cybernetic concept to be assigned to one of three categories of order:
Entropic, Ectropic and Atropic. By associating each of these categories with the
qualitative results of the geometric product, it can be treated as a feedback system
between two qualitative vectors resulting in either an increase or decrease in
ectropy/entropy or an atropic situation (neither ectropic nor entropic). Rotating the
periodic coordinate system through 45 degrees and applying a similar approach to
these three possible products then results in a seven-valued logic (although
derivations involving the value Z (see below) are trivial) which allows spatial
direction and information (i.e. ectropy, entropy or atropy) to interact with each other
as well as providing a useful combinatorial syntax for expressing qualitative vectorial

calculations.

We have based our system on a geometric algebra in two geometric

dimensions. This results in four linear dimensions and provides the following useful

mapping:
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Table 3.2: Qualitative multi-vectors and their entropic associations.

Four-dimensional tuple Entropic association

(0,0,0,0) Z

(*,0,0,0) Entropic (N)
(0,0,0,%) Ectropic (K)
(*,0,0,%) Atropic (A)
(*, %, %, %) Atropic (A)
(*,0,%*,%) Atropic (A)
(*,*,0,%) Atropic (A)

Tuples containing only non-zero values in the second and third positions are

not categorised as they represent the initial values of the system.

3.2.6.3 A qualitative evaluation of the geometric product

Table 3.3 shows the result of calculating the geometric product when the
coefficients of the three geometric basis vectors are taken from the set of possible
values provided by the Qualitative Physics of de Kleer and Brown (1984), namely (-,
0, +). This provides an expanded set of values in which there are, in addition to

signed initial values, the hyper-complex values that result.
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Our previous work with Lagrange Interpolation over the geometric algebra
G, (the geometric algebra in three geometric dimensions over the reals) has
suggested that in computations involving this algebra, the coefficients of the
hyper-complex basis-vectors can provide information about the internal workings of
the calculation not available in any of the traditional algebras used for similar
purposes. This induces the hypothesis that such values can be sensibly categorised by
a periodic coordinate system such that those values containing non-zero coefficients
for one or more hyper-complex basis-vectors can be considered to be ectropic in
relation to those that do not. The current logical system derived from these ideas is
based on G, | and therefore there is only one higher-ranking basis-element. This

provides the neat categorisation given above.

In order to ascertain whether or not the required formal system (which will
henceforth be referred to as GEL for Geo-entropic Logic) is constructible, the set of
qualitative initial vectors is reduced to the set (0, *) where ‘*’ represents a non-zero
value, i.e. if Q represents the set of values (-, 0, +) used by de Kleer and Brown, GEL
is built upon the distinct values of the set |Q|. Negative values are not included and
any negative values that result in either the rank-0 or rank-3 elements of tuples
resulting from the geometric product of the initial vectors are made positive. This is
justified on the grounds that, for our interpretation of the three categories of order
given above, the tuples (0, 0, 0, -1) and (0, 0, 0, 1) should both be considered

ectropic as they both contain a non-zero value in their rank-3 elements and the
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difference in sign is a relative issue caused by the anti-commutativity of the

geometric product.

Table 3.3: Qualitative Geometric Product Results.
Equation
(0, %) (0,)
(0, %) (*, 0)
0, %) (*, %)
(*,0) (*, %)
(*, *) (*, %)

3.2.6.4 Derivation of combinators

Result
(*,0,0,0)
0,*) (*,0)
(*,0,0,*)
(*,0,0, %)

(*,0,0,0)

3.2.6.4.1 Projection, Union and Perpendicular Projection Combinators

We can derive a graphical representation of Table.2 by using the periodic

coordinate system. T represents (0, *), C represents (*, 0) and B represents (*, *). We

can reduce the geometric product involving any combination of these initial vectors

to a sequence of combinators. The first four of these map a vector from one axis to

any axis perpendicular to it. They operate as follows:
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Projection ([]): Maps a vector to its complement so T maps to C and C maps to T. B

maps to (0, 0) but that result prevents any further operations and is therefore

disallowed in this system.

Projection over the Axis of Atropy ([]): Maps a vector to one which will result in an
a

atropic geometric product. In practice, this means that T and C map to B and B maps
to. This last mapping is ambiguous; in some cases, a choice of either T or C will need
to be made in order to continue with any further operations, in other cases a choice is
not necessary and in fact one can work with a superposition/undefined-state. In
practice however, it is not desirable to have such a level of vagueness and in the next
section, we describe a derivation calculus which resolves such ambiguities in a

paraconsistent way.

Union (|J): Maps a vector to the same vector so T maps to T, C maps to C and B

maps to B.

Union over the Axis of Atropy (|J): Same behaviour as Projection over Atropy.
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Figure 3.5: Projection and Union combinators.

The use of any of these fours operators results in a line begin drawn from one
axis to another that is perpendicular to it. Despite the appearance of the diagram in
Figure 6.3, the order in which the initial values T, C and B appear on the axes is
irrelevant; the coordinate system is non-Cartesian and it is helpful (but not vital) to
assume that any line drawn by the application of one of the above combinators will,
in reality, have acute angles with its axes of 45 degrees. This assumption is

particularly useful in visualising the operation of the next combinatory.

Perpendicular projection (it ): Maps one of the values T, C or B to one of the values

N, K or A. Behaves the same in each of the four quadrants.

The easiest way to visualise the Perpendicular project combinatory is to

visualise the drawing of a line from the point resulting from a projection or union to

7



the point given by taking the values on whichever of the two axes concerned as

coordinates the refer to a specific point in the quadrant demarcated by those axes.

Examples:

1. Beginning with T on the right-hand horizontal axis, is applied. This produces

C on the upper vertical axis. is then applied, giving K as a result.

2. Beginning with T on the lower vertical axis of the second diagram, is applied.
This produces T on the left-hand horizontal axis. is then applied, giving N as a

result.

3.2.6.4.2 Rotated combinators

The irrelevance of the distance along an axis at which an initial value is
placed allows us to provide a means of applying the combinators described above to
the values which they generate. If the periodic coordinate system is rotated clockwise
through 45 degrees and the angle of viewing is then adjusted by the same amount
anti-clockwise, we will see an axis-system such as that in Figure 6.4. In this diagram
the K on the upward pointing axis represents the K value assigned to the first

quadrant of diagram 1. Similar mappings apply for the other axes and quadrants.
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Figure 3.6: Rotated periodic-coordinate system.

i

Having created this second axis-system, it is then necessary to define the
operations of the combinators for it as producing a new set of combinators would
move GEL(|Q|) as a whole towards triviality. This is done in the same way as for the
first diagram and results in the relationships shown on the second with the slight
difference in that the definition of A as being any tuple that is not (1, 0, 0, 0) or (0, 0,
0, 1) results in ambiguous behaviour for the three combinators that deal with it.
Given that there are also ambiguous mappings between T, C and B on the first
diagram, it is necessary to adjust the system to deal with these. In fact, GEL(|Q|)
itself is left intact and instead a calculus is defined with which to generate

derivations/proofs in the system.
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3.2.6.5 A calculus for GEL(|Q))

In order to make derivations/proofs in GEL(|Q)|) it is occasionally necessary
to express combinations of values (such as ) and also to state when something is not
the case. It will eventually be shown here that GEL(|Q|) can express Boolean-style
equations in the form of if-then-else structures and so it is possible to use the system
to define its own calculus. This is unnecessary however since the manner by which a
derivation or proof is produced in GEL(|Q)|) is irrelevant as long as it can be
produced. It is therefore easier to define the calculus using elements of Classical
Logic. There is however the issue of the ambiguities that can occur in GEL(|Q))
derivations; to solve this problem ideas are adopted from the field of Paraconistent
Logic. A modified Fitch-style approach to displaying our derivations/proofs is
adopted in order to be able to indicate ‘events’ that affect the direction taken through

GEL(]Q])’s axis-systems.

3.3.6.5.1 Paraconsistent Logic

The issue of creating a formal system which can deal with inconsistency has
been tackled before by numerous authors. The approaches range from using multiple
truth values (da Costa et al. 2007) to disallowing certain axioms from Classical
Logic (Henceforth to be referred to as CL). Given however the specific tendency of

some operations in GEL(|Q|) to produce several possible results, the work of
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(Vanackere 2000) on adaptive logic seemed most applicable and is in fact the source
of the ideas used to resolve such ambiguous behaviour in the system we described
here. The mechanism resulting from the adoption of these ideas is best illustrated

with an example.

3.3.6.5.2 Some “laws” derived from the system

GEL(]Q)) is intended to unify information along with direction and logic; an
argument in support of its ability to do this is the fact that the informational aspect of
the system has certain properties in common with Fisher information which is a
unifying concept throughout this thesis. This commonality can be shown by
following the derivations from an ordered state (K) to a disordered state (N) and

vice-versa:
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3.3.6.5.3 Transition from K to N

The transition from K to N proceeds as illustrated in Fig. 3.7 (The annotation

CDN stands for ConDitioN).

Figure 3.7: Transition from K to N

CDN T

CDN 7V ()

AT viAL ALY ﬁ:lbﬁ'

In this transition, we make two contractions and in doing so introduce the
possibility that the value we contract to may not actually be the correct one. To
indicate this, we make an entry in the second column stating that the value produced
by the contraction is only correct if it doesn’t turn out to be one of the other
possibilities. In this particular case, we find that the conditions hold and thus the

result (N) is said to be finally derivable.
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3.3.6.5.4 Transition from N to K

Figure 3.8: Transition from N to K (The additional annotations stand for

(Cannot Proceed and CHoose)).
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At this point in the derivation it can be seen that, regardless of corrections
made based upon conditions becoming negative, it is not in fact possible to find a

way of proceeding from N to K. This seems intuitively correct: It is not possible to



proceed from a disordered state to an ordered one without some kind of outside
interference which GEL(|Q)|) is quite rightly closed to given that it is intended for
application to a physical problem. As far as the calculus itself is concerned, if a CP
situation is encountered, a backtrack is performed to the condition that has been
negated and one of the other values from that condition is chosen as an alternative
(assuming there are any available). Derivation/proof then proceeds with the new
value once all lines derived based upon the choice that resulted in the CP situation

are marked so that they are no longer considered part of the process.

3.2.6.6 Relation to existing information metrics

The last remark in the previous section might seem strange when considered
from the point of view of the better-known Shannon Entropy metric used in scientific
information theory, given that the amount of Shannon Entropy increases with time. It
is thus clear that the information dealt with by GEL(|Q|) cannot be Shannon Entropy
given the ‘laws’ discovered above. Fisher Information, like Shannon Entropy is
additive but differs both in the temporal way already described and in that it is
locally dependent on the structure of the probability density function for the
phenomenon to which it is being described as it contains a squared gradient term.

Given the conceptual similarities between the information present in
GEL(|Q|) and Fisher Information, it seems reasonable to now define an information

metric for the system. This metric is discrete in nature given the high-level of
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discretisation in the system and appears to be able to facilitate the architecture for an

symbolic/numeric hybrid automated EPI process already described.

I, = (sum(values in ectropic quadrant) — sum(values in entropic quadrant)) /

sum(values in atropic quadrants) + 1 34

Thus the information value of a particular derivation is acquired by counting
the number of occurrences of N, K and A in that derivation and then using the

formula above.

This metric is not an exact discrete equivalent of Fisher’s information, but it
shares the properties of additivity and negative first derivative, the latter property
being effectively built into the system. It is interesting to note that this property arises
from the structure of the qualitative geometric algebra. Whilst not a proof, this does
suggest that our assignment of ectropy, atropy and entropy to the qualitative

geometric product results is appropriate.

In the derivations between N and K given above, the first has [, =-0.25

whilst the second has I, =-0.67 (because we cannot count N, K and A occurrences

resulting from lines which were marked as a result of a condition not holding).
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3.2.7 Arithmetic in GEL(|Q|)

Given that all of the values that can possibly occur when using GEL(|Q|) are
already present in its definition, it is found that the operations of arithmetic can be
reduced purely to sequences of the existing combinators. The general approach is to
choose a combinator that maps the first value to the second value and then to proceed
from there using one of the following formulae dependent upon which operation is
required. In each formula, ‘x’ represents any value in GEL(|Q|) and the formulas

themselves are given as right-associative strings of combinators to save space.

3.2.7.1 Multiplication

The assigning of K to the tuple (0, 0, 0, *) and N to the tuple (*, 0, 0, 0)
effectively split the two terms of the geometric product into two separate products:
the dot-product and the wedge-product. These can be represented by GEL(|Q)|) as

follows:

Dot-product giving non-zero result: | Jx 3.5)

Wedge-product giving non-zero result: w[]x 3.6)
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3.2.7.2 Addition

Add a value to itself: |Jx 3.7

Add a value to its complement: []x or|Jx 3.9)

3.2.7.3 Division

In GEL(|Q|) the modulus-qualitative value set makes division identical to

multiplication.

3.2.7.4 Subtraction

The relationship between multiplication and division also applies to addition

and subtraction.

3.3.7.5 Boolean logic operators in GEL(|Q|)

It is desirable for GELs to have the ability to express Boolean logic
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operations as this would allow the reasoning performed by computer programs to be
implemented and thus unified in such a way that it could then be intermixed with
reasoning about vectors and/or entropy. This provides an extremely powerful system
in which the EPI process could utilise computer programs as bound-information
representations rather than discretised mathematical equations. In GEL(|Q|) however
there is an obstacle to this in that it has no direct equivalent of True and False. In
attempting to overcome this problem, various approaches were tried. A complete
interpretation, largely inspired by Kleene’s Ternary Logic, of all of the possible
combinations of GEL(]|Q]) values under the operations of AND and OR was
produced and then rendered in GEL(|Q|) combinators to try to identify any general
approaches to these operations in the system but, unsurprisingly, the only generality
that emerged was that based on homogeneity versus heterogeneity and did not allow
the prediction of, for example, any Boolean operation with GEL(|Q|) values in terms

of what the correct combinatorial expression would be.

The second approach was to investigate the system to see if it contained one
of the sole sufficient operators from which all other logical operations can be
constructed. Unfortunately, the only operation that the system came close to
modelling convincingly was XNOR and even this required the introduction of a new
value, Z, located at the origin of the periodic coordinate system and mapping to itself

under all GEL operations.
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The third approach (and the one since adopted) was to define the
sole-sufficient operator NAND in terms of an if-then-else structure. This can be done
as long as the input values come from the set (T, C, B) (such that T v C represents
True and B represents false) and the output values come from the set (N, K) such that
N represents a negative outcome (intuitive analogy of falsehood with an increase in
disorder) and K represents a positive outcome (intuitive analogy of truth with an

increase in order). This allows the expression of the AND operation as follows:

n[]x (3.9)

mJx (3.10)

Where x is the first parameter of the AND operator, and the second is
determined by location of a transition from one axis to another, as with arithmetic
operations. The rule as to which expression must be chosen is built into the system:
If x = B, then the Projection operation is not possible and so one defaults to Union. If

x =T v C then Projection can proceed.

Negation of the result of either of the above operations can be accomplished
by means of the transition laws between N and K already described. The only
undesirable side-effect of this is the requirement to resolve ambiguity by choice

when proceeding from N to K but as this is effectively forced by the structure of the
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system (thus providing the law in the first place), it was not considered to be

sufficient reason not to adopt this approach.

3.2.8 Reasons for abandoning a symbolic approach

The two obvious approaches to expanding GEL were to work on GEL(Q)
which would have negative and positive initial vectors and GEL(|R|) which would be
an expansion of GEL(|Q|) by finer discretisation. It was hoped that one or both of
these approaches would show a reduction in ambiguity, in particular such that a
delineation between the Union and Union over Atropy combinators would emerge.
From the point of view of applicability to physical problems, it may also have been
worth re-expressing the GEL concept to G, ;, the geometric algebra over three
geometric dimensions. This would have resulted in multiple levels of ectropy which
may have provided the basis for a hierarchy of GEL systems in the same way that
Haskell ef al. were able to generate a hierarchy for biology, with one periodic

coordinate system becoming the foundation of the next.

The decision was made not to pursue this hybrid numeric/symbolic approach
for a number of reasons: Firstly, the amount of work to expand the system to include
a greater resolution of magnitudes is beyond the scope of a project of this nature but,

more importantly, the question as to whether or not it would be worth developing the
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approach further is not definitely answered and would itself require a detailed
investigation into the functional completeness and, consequently, the existence of an
interpolation theorem for the system. The problems highlighted with implementing
Boolean operations in GEL(|Q|) certainly do not bode well from this point of view

and so the required time cannot be justified within the timescale of this project.

In order for GEL(|Q)) to be used in application to the problem addressed in
this thesis, it is immediately necessary to expand it into three-dimensional space.
This would require three-dimensional analogues of the qualitative value system and
of the different operators that have been defined (projection, union, etc.); it would
also most likely be necessary to define new operators for transformations between
some of the new three-dimensional qualitative values. The resultant system would
necessarily be geometrically more complex than the two-dimensional version
discussed here (i.e. adding one spatial dimension would result in a many new
qualitative values and operators). It would also need to be studied and analysed in the
same way that GEL(|Q|) has been: verification of correctness of equivalences
between the different domains on which the system is built, verification that existing

laws still hold and/or identification of new laws, etc.

To determine if the additional work described above is worthwhile, it is
important to analyse GEL(|Q|) from the point of view of internal completeness: If it

does not possess the property of Functional Completeness (Post, 1941) then it is
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likely that many equations will not be expressible in GEL(|Q|) since the system
possesses no set of operators which can express all possible truth-tables.
Unfortunately, it can be seen immediately from figures 3.5 and 3.6 that this is so; if it
were not the case, there would be, on each figure, a line from each marked position
on each axis to every other marked position on each axis. Since the system lacks
functional completeness then it cannot possess an Interpolation Theorem (Hodges,
2005) meaning that there are derivations between equations expressed in GEL(|Q))
that will not be possible. The absence of these properties would require a very careful
pre-emptive investigation of both GEL(]Q|) and its three-dimensional equivalent in
order to ensure that the process of solving the EPI equation, once re-expressed in the
system, would not be inhibited. Since the heuristic direction such problem-solving
might take cannot be determined in advance, the decision to proceed with this
symbolic approach would carry a very high risk, potentially exhausting a great deal
of time only to produce an insurmountable structural obstacle. The decision was

therefore made to look for an alternative approach.
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Chapter Four

Constraint-logic programming: an alternative approach to

the Kalman filter
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4.0 Constraint-logic programming: an alternative approach to the

Kalman filter

The purely symbolic approach detailed in the previous section is untenable
due to the amount of depth to which it must be investigated. This parallels the
standard approach to problem-solving of most humans. In order to imbue a computer
with the ability to solve the EPI problem, a form of expression must be chosen that is
both sufficiently abstract to allow automatic manipulation according to a clearly
defined set of rules (i.e. requiring no interpretation or creativity) while retaining
sufficient structure of the phenomenon being modelled to still make the resultant
solution useful. Becker’s (1976) work on dimensionless numbers turns out to be

appropriate for this task.

It was originally intended to utilise Becker’s (1976) work in order to
automate the EPI process in a way that was both numerical and symbolic in nature
(the hybridisation arising from the fact that the variables in an eigenratio represent
magnitudes but are only worked with in terms of their abstract-meaning to the
phenomenon in question). Since the goal in configurational-analysis is to acquire a
configuration (a collection of eigenratios) for the phenomenon, a plan was
constructed and partially implemented whereby a multi-agent system, with each
agent implemented in the constraint-logic-programming paradigm, would ‘argue out’

the correct configuration for the expression of the EPI-equation for the turbulent
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sound produced by blood flowing around an occlusion in the carotid artery. It turned
out that this system did not need to be fully implemented since merely expressing the
problem in a form that it could work with produced a single eigenratio configuration
that provided the solution. Since the crux of the problem is the relationship between a
macroscopic phenomenon of underlying microscopic activity (sound waves produced
by the interaction of the molecules that compose human blood) and the error present
in measurements of that phenomenon, the eigenratio is, necessarily, that composed of
those two factors. The error-part of that eigenratio can easily be extracted from
recordings of sound and a well known way of modelling macroscopic behaviour
extrapolated from an underlying microscopic model, especially in the area of
fluid-dynamics, is the cellular-automaton thus the solution of the EPI-equation is a

cellular-automaton that is ‘driven’ by the error present in real-world data.

Having identified the correct representation of the problem in abstract terms,
it is then possible to proceed with the development of a hybrid system, the first step
being to find a cellular-automaton which is an appropriate model of the domain of
said problem and whose accuracy can be varied automatically during the system’s

operation.

As a result of the multi-agent system already referred to, an abstract solution
of the problem of imaging from one-dimensional acoustic data based around the

Greenberg-Hastings cellular automaton (Fig. 7.1) can be acquired. This automaton
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was originally developed to model oscillating chemical reactions but is appropriate to
this project due to the obvious relation between this behaviour and that of
sound-waves.

Figure 4.1: Evolution of Greenberg-Hastings rule.

The question that arises once an appropriate cellular automaton model has
been identified is then how to provide the algorithm with input in such a way that
that input will control the accuracy of the simulation rather than serving as, for
instance, the pattern to which the rules are applied. Complex and varying data make
it unlikely that any such encoding could be developed that would work 100% of the
time: testing the encoding method for every possible fluctuation in the input would
take an unacceptably large amount of time. The alternative can be implemented by

applying the work of Bagnoli (2008) which provides a method for the computation of
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Maclaurin power series for totalistic cellular automata of which the
Greenberg-Hastings rule is one. Using the definition of the boolean derivative
(Vichniac, 1990) the Ring Sum Expansion (RSE) of the totalistic Greenberg-Hastings
rule is produced. Its derivatives can then be computed and from this, a Maclaurin
power series is formed. In practice, this is only done for part of the Diffusion
function. The derivation proceeds as follows with ¢ representing the central cell of a
given von Neumann neighbourhood and the o1 representing the north, west, east and

south cells relative to that cell:

The Greenberg-Hastings rule is given in terms of a reaction function R and a

diffusion function D:

Ro)={2ifo=1, @.1)

{0 else

D(o6 ,,0,,0,,0,,0,)={lif(0,=1oro,=1oro,=10ro0,=1)4.2)

and 6, =0

{ 0 else.

The complete rule can thus be expressed as R + D 4.3)

Conversion of partial diffusion rule (f) into RSE form:
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f(0,,0,,04,0,) = lif (one or more of 5, through 6, =1) = f(T @y 4.4)

4
AT Py = > r Ay where the y , are the totalistic characteristic polynomials:
k=1

(4.5)
%, P =0,8C, (4.6)
X2(4)=C2@C3 4.7
3P =0, (4.8)
%a D=0, (4.9)

and the T ; are homogeneous polynomials of degree i in the variables o, through o,.

The value of r, is 1 if the rule fis 1 for k of the sites o, through 6, = 1. The resultant

ring sum expansion for fis:

%1 PPy, PV Dy DDy, @ @10

The final expression is (T ) =T , ®L, DL, DL, 4.11)
This expands to:
0, Po,Po,Do,Po, A0,

Po, Ao, Do, Ao, Do, N0,
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Po,N0,Do,N0,
®o,No,No,D0o,A0,N0,
®o,No;N0, Do, Ao;A0, Do, A0, ANO;AO0,
4.12)

Using the definition of Boolean derivative, the partial derivatives of f are computed:

. 4y
YT7) @6, @0, B0, ©(0, A0,)
do, _ ' ) .
B0, rno,)B(G, n0,)
. 4y
af_jr -6, ®1806,®0, (0, AC,)
o,
E‘{G|-‘\U4]${U.‘;h04}
. 4y
af; ) —6,®0,81®0, (0, A0,)
Blo, no,)P(0, ~0,)
aff'{rl-ll}
: =l®@0c,®0, D0, rnO
ﬂG.aG: . | { .A 4}
I praid)
ISIT) 16, @0, ®(0, AG,)
do,do ) '
a;’.f'{THI}
=1®0,P0, D0, A0,
E}G|ac-1 ) J { -A }
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oy (E]
AU =0, @180, ®(0, ArC,)
dG ,da
a:.f{THI}

dG ,do ,

=0, @1@51 EB({H AG;]

azf-(rﬁr}
do ,do

=0, ®0,@1®(0, rn0,)

2 /(1)
—_— =@,
30,00.90, O

33__."'{}'""”}

—=] ]
30,9090, |00

ai-!-{ri-ﬂ)

=g, o, DD, ~G,
J6 .06, b @nes)

(T
d6,d0,d0,

a-t_f(Tl-H)
— =] 3
d0.d0.90, 0
al_r(ri-"l}
— . =1®
06,06 ,d0 “
Tty
aﬁ|aﬁzac}|ag-¥ -

(4.12 - 4.30)
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This allows the derivation of a Maclaurin power series representation of f:

ST = f(0") &0, "‘% . o, A%.w-
Do, A {E?f‘i‘(m ®o, “ailr:, . N

G\ AC; ’“aj,:é’;_, 2o “aj,:éj;i_,];.
@“t““-‘haj:éjl;;“.. Da, Aﬁih.a;};;;.“.h
®o, A0, Aa;ji; o ®a; 10, Aé}jjaj;q oo
@6, AG, AC, “a{;;—g—faml .

©0, AO, AC, “;m];#”.,.

®06, A0, AT, ﬁﬁw

9'f
d0 ,d0 .00 ,dG |

O AG, AD; A0 A

o 4.31)

Given that the partial derivatives in the above expression each evaluate to

true given the false-neighbourhood (0,): north, west, east and south sites all false)

and f itself evaluates to false, we are left with the far simpler expression:
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[, (M"Y =0,@0,®0, Do, Do, AC,
@o, 0, B0, rn0, D0, A0, B0, AT,
@0, n0,P0, A0, A0, DO, A0, AT,
®06, n0, 10, B0, A0, AT,

B0, A0, A0, AO, 4.32)

This expression is identical to the RSE representation of f from the start of
the derivation and so it is actually a proof that has been undertaken; it is nevertheless
still important as, for a nonlinear model such as this, it is irresponsible to make

assumptions regarding the properties of the rules.

By varying the degree of truncation of the power series representation based
upon the amount of error present in the data, the Greenberg-Hastings model can be
used to create a two-dimensional profile of the one-dimensional data exposing
information that was previously obscured in the lower-dimensional representation.
For ease of reference in the following text, we will refer to this algorithm as a Driven

Cellular Automaton (DCA).

4.1 Practical considerations

In order to use the available data in a way consistent with the EPI approach, it

is necessary to perform a quantisation so that different levels of noise present in the
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data can be mapped to the number of terms to which the power series is truncated.
The automated configurational analysis performed indicates that the signal to noise
ratio (SNR) should be used for this purpose. A pair of second-order Butterworth
filters, one low-pass and one high-pass are therefore used to extract, respectively, the
signal and the noise. The power of each of these components is then computed and
used to compute the SNR. Using parameters determined pragmatically, this
computation is performed on windows of the signal 1/10th of the sample-rate in
length. The cutoff point for the filters is determined from manual examination of the

data’s spectrogram.

The nonlinear nature of the algorithm means that attention must be paid to the
number of iterations as a strong resultant pattern can be obliterated in a single cycle.
The system is therefore limited to 25 iterations as this allows the corners of the
classical Greenberg-Hastings pattern shown in Figure 1 to reach the boundaries of
the cellular space. These boundaries are actually defined to be periodic which
provides the possibility of a ‘second-order’ pass were the algorithm allowed to run
for another 25 iterations but without fully analysing the ‘first-order’ patterns, it
would be unwise to attempt to tackle the additional complexity that this would

introduce.

With a limitation of 25 iterations, combined with a pragmatically determined

window-size of 4410 samples (for a recording with a sample rate of 44.1kHz), we
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can therefore analyse 2.5 seconds of sound. Given that the pitch-perception threshold
for the frequencies involved in the kind of turbulence dealt with is at most
approximately 100ms (Roads, 2004) and taking into account that it is possible for a
human to make reasonable inferences about an artery merely from listening to it
through a stethoscope, it is reasonable to expect that this length of recording will
contain all of the information that any recording made by the same method would be

able to provide.

A typical cutoff frequency is 4000 Hz but this choice is dependent upon the
background noise present at the location in which a recording is taken and is

identified from the recording’s spectrograph.

For a given recording, the minimum and maximum SNRs are computed in

advance and the range [SNR, ., SNR ] is divided into ‘bands’ numbering the

quantity of terms present in the Maclaurin expansion of the Greenberg-Hastings
diffusion function (minus the conjunction with the central site as already discussed).
This means that for the standard Greenberg-Hastings automaton, there are 15
possible bands. While this might seem on first inspection like a very low granularity,

it will be shown (see chapters 8 and 9) that the nonlinear nature of the cellular

automaton makes the technique sufficiently sensitive even so.

The resultant algorithm adapts a non-linear model (the Greenberg-Hastings
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cellular automaton) in such a way that it is driven by fluctuations in the SNR of the
input data (the sound caused by turbulence in the simulated occluded carotid artery).
The nonlinear nature of the cellular automaton means that a slight change to its
algorithm results in a large change in the generated pattern, even within a single
iteration of the system. This change is achieved by truncating the part of the diffusion
function that has been proven equivalent to a Maclaurin power series to a number of
terms determined by the SNR. Since each iteration generates its pattern based on the
preceding one, the system therefore produces a cumulative effect resulting in distinct
final patterns based on both the magnitude and order of occurrence of SNR

fluctuations.
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Chapter Five

Results and Discussion

106



5. Results and Discussion

5.1 Quantitative results

The system was developed to create rich profiles of acoustic data. The
requirement is that carotid artery plaques can be imaged but, as a necessary part of
such a geometric representation is magnitude, the initial tests performed were
focused purely on this as a failure in this area would mean that the approach as a
whole was unsuccessful in its current form. Physical simulations were created of a
non-occluded artery along with arteries involving approximately 30%, 60%, 90%
occlusions. The resultant images after 25 iterations were as follows:

Figure 5.1a: Waveform, spectrum and final output of system after 25 iterations on
0% and 30% occlusion.

1000Hz 3000Hz 5000Hz 7000Hz 10000Hz 15000Hz 20000Hz
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0% 30%

Figure 5.1b: Waveform, spectrum and final output of system after 25 iterations on
60% and 90% occlusion.
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The images in Figures 5.1a and 5.1b are typical of the output of the system
although there are variances between runs on different recordings of the same
occlusion. At this stage however, it was felt that a potential for the system to produce
distinct signatures for different levels of occlusion had been demonstrated, making
the approach worthy of further development. The interpretation of the images in
more detail (i.e. to extract more detailed information about a plaque) was deferred at
this stage due to the lack of interest in geometric information. It seems reasonable to
say that the Greenberg-Hastings representation conveys the differences between the
different levels of occlusion more strongly than the spectrum plot but perhaps only
equalling the communicative capacities of the waveforms themselves. The extraction
of geometric/topological information was expected to be the main advantage of

processing sound in this way due to the ‘smearing’ discussed above.
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5.1.1 Notes of caution

The nonlinear nature of the algorithm makes the system extremely sensitive
to fluctuations in the data. It is this sensitivity that allows the system to generate
distinctive patterns for the different levels of occlusion but this ability comes at a
cost. Cellular automata are renowned for nonlinear behaviour and in this case, there
are effectively 15 different rules which can be applied at any given time instant
resulting in extremely unpredictable behaviour in some cases. Instances were
observed whereby a pattern evolved in a reasonably continuous way only to
completely change in a single iteration. This suggested that merely considering the
final pattern of a series of iterations may not be sufficient to extract the maximum
amount of information available from the model and that we should therefore analyse
the various intermediate patterns that appear and disappear. Ultimately, this has
seemed to be unnecessary but the point is still recorded here in case it is of relevance

to further work beyond the scope of this project.

5.2 Topological results

Having determined that the system produces distinct images for

sounds-recordings taken from arteries afflicted by different levels of occlusion, the

next stage was to test its ability to respond to differences in plaque-topology.
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The images produced from the system described in the previous chapter were
informative for the plaque-topologies tested but were not considered distinct enough
to allow quick and easy analysis by a user who is not in possession of detailed
knowledge of the underlying algorithms. For this reason, the two-dimensional
images were treated as terrain-maps for three-dimensional rendering with the
third-dimension being provided by overlaying the amplitudes values of the original
recording on this map and using them to provide the height of the peaks. This

approach increases the amount of variation between different output images.

Artificial plaques were constructed from polymorph with the following properties:

Figure 5.2: pl - A plaque consisting of an approximately hemispherical mound.
(Short-name: Blob-mound).

(scale in mm)
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Figure 5.3: p2 - A square version of the hemispherical mound. (Short-name:
Blob-square).

(scale in mm)
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Figure 5.4: p3 - A small thin ridge shape. (Short-name: Thin-ridge small).

(scale in mm)
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Figure 5.5: p4 - A more bulbous ridge shape. (Short-name: Fat-ridge small).

(scale in mm)
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Figure 5.6: p5 - A larger version of fat-ridge small.

(scale in mm)

Figure 5.7: p6 - A small plaque with stalagmite-like protrusions (Short-name:
Small-pokey).

(scale in mm)
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Figure 5.8: p7 - A larger version of small-pokey.

(scale in mm)

5.2.1 Procedure

Recordings were taken with water-flowing at the same speed as for the
quantitative tests in the previous chapter. Each recording was taken over 10 seconds

to allow the data to be broken up into 4 repeat runs of 2.5 seconds each.
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The rendered images for the different plaque-topologies look as follows:

Figure 5.9a: System output for plaque p1 (Blob-mound).

Figure 5.9b: System output for plaque p2 (Blob-square).
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Figure 5.9c: System output for plaque p3 (Thin-ridge small).

Figure 5.9d: System output for plaque p4 (Fat-ridge small).
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Figure 5.9e: System output for plaque p5 (Fat-ridge large).

Figure 5.9f: System output for plaque p6 (Small-pokey).
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Figure 5.9g: System output for plaque p7 (Large-pokey).

5.2.2 Analysis

5.2.2.1 Axiomatic basis

It is helpful to begin by defining certain criteria that one would reasonably
expect from the images produced by the system. These criteria are considered to be
axiomatic in that they are self-evident, requiring only simple logical reasoning about
the apparatus and the phenomenon under investigation in order to satisfy us as to

their appropriateness.

1. Contrast: No two plaque topologies should produce the same image
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topologies.
2. Signature: Minor variations are acceptable between runs but there should be
an indisputable

common 'essence' shared by all of the images for a given plaque-topology.
3. Scalability: The same topology in different sizes should produce similar

images, ideally with only a variance in size in the image-topology.

As to the first of these criteria, it is clear that the system responds differently
and distinctly for each of the topologies tested. The most significant point to draw
from a comparison in this context is that the crucial aspects that result in different
signatures appear to be 'base-pattern' (the tendency for certain areas of the grid to
always contain peaks for a given plaque-topology) and 'inter-peak ratio' (the

distribution of high and low peaks is close to constant for a given plaque-topology).

Regarding the criterion of signature, it would seem to be self-evident that for
a given plaque-topology, the four runs always share enough features to allow an

image from that group to be easily matched against another from the same group.

The most useful plaque-topologies for an analysis of scalability are: Fat-ridge
small vs. Fat-ridge large and Small-pokey vs. Large-pokey. These image-topologies,
while not only affected by scale, do seem to indicate that the basic signature of the

form is preserved between small and large versions. It is interesting to note that for
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the fat-ridge plaques, an increase in size corresponds to a decrease in peak-height but
for the 'pokey' topology, the opposite is almost true. Intuitively, it would seem
reasonable that the ridge shape, being far more uniform than the a plaque consisting
of several different protrusions, would result in less variance in its resultant

image-topology.

It can be seen that the images displayed are not actual pictures of the
simulated plaques. This is not however important within the context of medical
semiotics where, even in cases where a medical-imaging system produces signs
intended to represent their objects in respect of their actual existence (i.e. a
photograph of your friend is exactly that; it doesn't require interpretation to discern
what it is), diagnostic analysis is still based upon the recognition and interpretation of
abstractions (for instance, in the case of the Roentgen Semiotics of x-ray images
sharp changes in contrast and unusual distribution of light and dark areas are of far
more use than treating the image as a photograph (Cantor, 2000)). The important part
of the semiotic triangle is therefore the interpretant rather than the sign. As with the
initial axioms, the formation of interpretants must be consistent but it is also
reasonable to require the user to be trained for what to look for (as is the case with
virtually every existing medical imaging system). It is the result of the diagnosis that
is important not how we get there and in the case of the system described here it is
actually the most abstract part of the semiotic triangle that is the more practical. We

can demonstrate this relatively easily by consideration of Peirce's process of infinite
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semiosis applied to both indexical and symbolic images. To briefly recap, an
indexical sign is in some way a physical consequence of its object whereas a
symbolic sign is connected to its object by either resemblance of an abstraction or by

convention (as in the case of a WC sign).

X-rays and MRI images contain only indexical signs (‘contain’ is very
significant here since an image from either system is not really a sign in itself). When
a trained expert views such an image, they form interpretants triggered by the
presence or absence of certain more abstract indexical signs like lines, curves and
shadows (as in those dealt with by Roentgen Semiotics). The first interpretant (let's
say, the presence of a shadow where one would not normally be expected) is a sign
in itself and therefore gives rise to another interpretant which may give rise to
another and so on up to the point where the certainty of the interpretation is
considered sufficient for it to become a diagnosis (such as the presence of
tuberculosis). This diagnosis is a new sign but is symbolic in nature - it is a statement
of the existence of a phenomena but it does not represent it in terms of the nature of
its existence. The object in question (in this case the actual physical matter present in
the patient's lung) will never be fully signified by either the sign or by the resultant

interpretants.

Now consider the semiotic process involved in the interpretation of a driven

cellular-automaton image. Whilst physically caused by the phenomenon in question,
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the set of all possible images that the system can produce is not in an isomorphic
relationship with the set of all possible plaques and so we cannot say that the signs in
such an image are indexical. They are symbolic but from there the process of
semiosis is exactly the same as it is in our X-ray example. A trained user will
recognise certain features of the image and this recognition will necessarily involve
the creation of an interpretant sign which will possibly lead to the creation of more
interpretants until a diagnosis is decided upon. This diagnosis is now symbolic in

nature, just as it is in the X-ray.

To demonstrate that DCA image analysis is in fact virtually identical to X-ray
or MRI analysis, we now only need to point out that neither an indexical or symbolic
sign is the object in Peirce's triadic model and it is suddenly not so unreasonable to

refer to the DCA as a medical imaging system in the context of this work.

Having passed examination by the initial axioms then, it is necessary to
identify a concrete (i.e. dealing with specific signs within the domain being discussed
as opposed to general principles) semiotics of the output of the system. The process
of placing the topological results along with the quantitative results of the previous
chapter within a framework of interpretation derived from existing medical imaging
practice will validate this study within its domain and this forms the majority of the

remaining work.
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5.2.2.2 A semiotic formalisation of DCA image analysis

It is considered a suitably rigorous test of the Driven Cellular Automaton’s
ability to produce images that are useful in a medical-diagnosis context that it should
be possible to construct an analogue of the fundamental principles of Roentgen
Semiotics; this would mean that it is possible to study DCA image-analysis in the
same way that it is possible to study the analysis of X-rays and this must inexorably

mean that X-rays are useful to medics in the same way.

We proceed by defining analogues to the concepts used in Cantor’s semiotics
analysis of X-ray interpretation of which the fundamental sign is that of the
‘radiographic boundary’, defined as “the interface between contiguous regions of a
radiograph that are distinguished by visual contrast”. This idea is subsequently
broken down into the different kinds of visual contrast possible in an X-ray image
and, within that breakdown, the more subtle signs of ‘loss’, ‘gain’ and ‘exchange’ of
visual-contrast signs. An example might be that, for a broken bone, the X-ray gains a
line-separation. Both of the italicized terms refer to signs, the /ine-separation being
only visual (we can see that it is there simply by looking) while the gain is rooted in
the interpretant (i.e. whether or not we consider the line-separation to mean anything

is dependent upon our knowledge that it would not normally be there).

It is clear that in order to analyse DCA images in a similar way, we must first
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define the analogue of a radiographic-boundary. In our output images which are
three-dimensional in nature, we do this by considering the difference between the
image produced for blood-flow in an unoccluded artery and that for an artery
occluded in some way (that way being irrelevant at this high level of analysis). Since
the image for an unoccluded artery is simple a plane (with, perhaps a few minor
artefacts), we can consider the first level of semiotic distinction to be any projection
perpendicular to that plane. We will name this distinction the fopological-boundary
and, at the highest level of interpretation, we can state that the gain of a
topological-boundary from a flat-plane always signifies illness (most likely but not
necessarily an occlusion of the carotid-artery) and that the loss of ALL
topological-boundaries signifies a loss of illness (i.e. recovery) but note that this sign
is more focussed in the interpretant than the representamen since it is dependent upon
knowledge of the patient’s case-history. From any sign which is not the flat-plane,
loss or gain of topological boundaries is only useful in comparison to previous
images and so while the reason for all of the signs of this kind with the exception of
crude presence or absence of a topological-boundary being rooted in the interpretant
is not entirely the same as it is for X-rays (general medical knowledge is necessary to
interpret a new sign as described in the example above and knowledge of the
patient’s case-history is necessary otherwise), it is actually still a subset of that
reason (case-history is necessary to interpret gains and losses from non-flat-plane
images but the interpretation of the first DCA image every made for a patient does

NOT require general-medical knowledge since, if a topological-boundary is present,
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even a layman could immediately make a correct diagnosis (that there is a problem)

albeit a crude one.

Beyond this first level of interpretation, gain and loss are useful only in a

secondary respect which is to say that the gain or loss is only useful if we know what

was gained or lost from as well as the meaning of the current image. At this point,

the three-dimensional nature of DCA images comes to the forefront and we find that

we can define the following categories if we remember that words like ‘equal’ and

‘enclose’ are not strict mathematical terms but terms that could be used by a human

inspecting the DCA images without instrumentation (a ruler for instance) for this

support of informal, ‘at a glance’ analysis is a requirement if the system is to be

useful at the same level of diagnosis as X-rays:

Table 5.1: Semiotic categories for DCA image analysis

Altitude

The height of the peaks present in an image which has gained a

topological boundary. This sign is quantitative in nature.

Altitudinal homogeneity

Whether or not the peaks in an image are of approximately the
same height or not. This is sign is possessive in nature - an image
either has it or doesn’t as can be seen from the example images;
there is no situation where exact altitudinal homogeneity has a

different meaning to slightly less altitudinal homogeneity.

Phase regularity

Whether or not the peaks appear at equally-spaced intervals.

Planar completeness

Knowing what we do about the normal shape of the patterns
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produced by a Greenberg-Hastings cellular automaton, is there a
peak (of any altitude) for each cell? At the time of writing, this sign
would appear to be possessive in nature, at least from the point of

view of what we can diagnose from it.

Enclosure Does one area of the image enclose an area composed of a different

kind of sign? This sign is possessive in nature.

Each of these signs can be gained and lost with the amount of such gain or
loss only significant in the case of altitude (although it may turn out in subsequent
work that by defining a threshold say between high and low altitude (we might
decide to name this ‘pronouncement’ or somesuch) this sign also become
possessive). The images produced via physical simulation can now be analysed

within this framework:

Table 5.2: Analysis of DCA output images by semiotic categories.

Image Altitude | Altitudinal- Phase- Planar- Enclosur
homogeneity | regularity | completeness e
P1: High No No No Yes
Blob-mound
P2: Low No No Yes No
Blob-square
P3: Low Yes Yes No No
Thin-ridge
small
P4: Fat-ridge High Yes No Yes No
small
P5: Fat-ridge Low Yes No No Yes
large
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P6: Low Yes Yes No Yes
Small-pokey

P7: High No No No No
Large-pokey

5.2.2.3 Discussion of results in the context of control data

It is important to compare the images produced by the system for the seven
polymorph plaques with those produced for a simulated artery that does not contain
an obstruction. These images form the control-data for the analysis and, equally
importantly, allow us to see how the DCA informs us that no arterial occlusion is

present.

The first point to take into account in this context is that the range of
amplitudes divided up to correspond to the terms of the Maclaurin Power Series is
itself computed from the input data, the idea being that the significance of fluctuation
in the signal is relative to the minimum and maximum amplitude values for that
particular instance of the phenomenon. For the control-recording, this range was very
small but the DCA nevertheless adapted to it and produced patterns characteristic of
the Greenberg-Hastings cellular automaton. Small amplitude ranges also occurred for

plaques p5 and p6 and so the question arises as to how one reliably tells the
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difference between these two plaque topologies and the absence of a plaque. The
answer comes from the fact that, for the control-data, there is no consistent
categorisation possible of given the criteria above. In general, the images have low
altitude and do not exhibit altitudinal homogeneity whilst consistently exhibiting
phase-regularity; this is actually not a categorisation seen in any of the seven
polymorph plaques and might suffice to indicate the system’s base-output on its own,
however, it is also the case that the presence of planar-completeness and enclosure
varies to a large extend between the base-images - something that does not occur in
repeat runs for the polymorph plaques. It is important to note that this places a
requirement on the user of the DCA imaging system to make repeat runs since it
would otherwise be possible to confuse the absence of an occlusion with the presence
of certain plaque topologies. This suggests that further work on refining the system
should begin with rendering the images continuously and in real-time as the data
comes in; this would allow the absence of a plaque to be identified by an unstable
image consisting only of low-altitude peaks, a stable image of any other kind

indicating the presence of an occlusion.
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Figure 5.10: System output showing fluctuation in base-image for absence of plaque
(note that peak-height has been automatically scaled-up - the peaks shown would all
qualify as having ‘low’ altitude).
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Chapter Six

Conclusions and Future Work
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6.0 Conclusions and Future Work

It was discovered early in the project that, due to the physics underlying the
theory of vortex-sound, there was no possibility of ‘reverse-engineering’ the sound
recorded in order to produce images (whether 2D or 3D) of the blockage responsible
for said sound (regardless of the resolution and/or overall quality of the recording).
The technique of lateral-thinking therefore took a central role, first resulting in the
idea to utilize the error present in the signal within the EPI framework of Frieden
(2004) and then, when a straightforward way of automating the process as described
by its discoverer proved unachievable, in the semio-spectral approach whereby the
EPI principle was re-expressed at a higher-level of abstraction that nevertheless
retained the essential elements necessary to acquire topological information that

would be of use to surgeons.

In specific relation to the aims and objectives defined at the start of the

project, the following conclusions can be drawn:

In terms of the state of existing medical imaging knowledge, very little is
available that is of use in a situation, such as the one addressed here, whereby
special-purpose hardware is not involved. The main prohibitive factor in this is the
reliance of most existing medical-imaging techniques on some form of directed

energy (as opposed to the ambient sound produced by turbulent blood-flow). The
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secondary survey which covered techniques that are not currently in use in
medical-imaging but might be of use to this project was able to provide a
starting-point in the form of Frieden’s EPI principle, with the subsequent utilisation
of topics such as cellular automata and semiotics arising in parallel to the
development of a workable, automated EPI process. The fields of numerical methods
and logical systems which were originally expected to be the primary driving force
behind the secondary literature-review eventually transpired to have little
applicability to the EPI-approach, the review as a whole therefore proceeding firstly
as an exhaustion of existing techniques followed by the identification of an approach
which, while applicable, could not be applied without being re-expressed at a higher
level of abstraction. This is a successful and satisfactory outcome supporting the

usefulness of a two-level literature review.

Having identified the EPI-principle as the center of whatever the solution
would turn out to be, a methodology was then constructed to determine how it could
be applied to the imaging of atherosclerotic plaques. This methodology used a lateral
approach which has subsequently been dubbed ‘semio-spectral’ in light of its
orientation along an axis of representation from a purely numerical approach to a
purely symbolic approach with the actual solution eventually being identified in

between these two semiotic extremes.

Since the hybrid approach was both the final approach tried and the first

134



approach to be applicable to data collected from physical simulations, it is the only
approach whereby this level of study was possible but it was intended, for each of the
other possible approaches, that the initial application of a prototype system to said
data would focus purely on whether or not reliable indications of magnitude were
produced since this is a related yet less-complex problem than geometric or
topological information extraction. Having demonstrated the success of the Driven
Cellular Automaton within the sphere of magnitude-indication, the approach was
then extended to topological information; in order to achieve a sufficient number of
semiotics ‘degrees of freedom’ (see the table at the end of the previous chapter) it is
important to note that it was necessary to take the two-dimensional images that
sufficed to indicate magnitude of occlusions and extend them into the
third-dimension; despite the fact that the three-dimensional images are not directly
representative of the plaques it has still turned out to be necessary to allow three

dimensions in order to answer the topological question.

In order to evaluate the success of the system, it was opted to take a highly
pragmatic approach that was nevertheless rooted in abstract theory (the development
of a parallel to Cantor’s (2000) Roentgen Semiotics). This allowed both the
formalisation of the initial axiomatisation of the system’s output and provided the
basis by which that output could be analysed by a surgeon in order to extract useful
information: the identification of the five categories of secondary topological

features (i.e. the features of the images produced by the system as opposed to the
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features of the plaques). A corollary of this approach was that, for cases where no
occlusion is present, the negative diagnosis comes not from the categorisation of the
output image but from the fact that such a categorisation is not possible on repeat
runs; this in turn suggested that further work on the system should begin with the

provision of continuous re-rendering in real-time.
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Appendix A - An example of the EPI principle at work
The following is a paraphrased version of the derivation of the physical law
governing 1/f noise given in Frieden (2004) with additional explanation from the

point of view of the author based on insights acquired during its study.

A signal is defined as change in amplitude with time and can be represented

algebraically as X(t). Assume that O <7 < T . The Fourier spectrum of this signal is:
T .
Z (@) =T "2 [diX(t).e " = (Z(w), Z,(w))
0

and the associated “periodogram” (i.e. the complex-values of the Fourier spectrum

are squared giving real numbers) is:
I (0) = |ZT(0))| 2= 72(0) + ZX(0)
where functions Z,(w), Z,(w) are the real and imaginary parts of the Z,.(w).
If, for the power spectrum S(w) = lim,_, avg(l,(w)) then an approximately constant

S(w) indicates white noise. Most phenomena exhibit a varying power spectrum, of

which the most common is S(w) = Aw ™4, A = const., a = 1. This is known as 1/f
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noise and phenomena that exhibit it include voltage fluctuations in resistors and
biological cell membranes, traffic density on a highway, economic time series and

sunspot activity.

The root problem being dealt with by the EPI approach is to determine, by
examination of the error present in a measurement of some parameter 0, the ‘ideal’
value for that parameter (0,,) which is otherwise inaccessible to us. Frieden presents

the following gedanken (thought) experiment to explain the concept:

Consider a musical composition, represented mathematically as X(7), i.e. a
signal consisting of the variation of amplitude with time. Suppose a note ® occurs in
the zeroth interval (0, T',). We want to know what this note sounds like but we
weren’t listening in during the zeroth interval. The problem is to work back from
what we have (a note at interval n and the error involved in measuring (in this case,

perhaps, hearing) these notes) to our ideal value.

We can express the ideal value as a complex number:
Zy(w) = 0(w) = (0,(w),0.(w)) . What we have would then be represented as Z,(w)

2 in such an

. Frieden asks the question “How should the mean-square error e
estimate vary with the chosen interval n or (equivalently) time duration 7', ?”. What

this boils down to is that we are treating the note Z,(w) as an inaccurate

measurement of the note we want, Z,(w) . In the context of our thought-experiment
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it is reasonable to assume that we would hear, in Z,(w), some residual part of
Z,(w) and that as n increases, this residual part gets smaller and smaller and thus 2
gets larger and larger. In fact, the squared error tends toward infinity. Frieden
explains that “It will turn out that the underlying PDF is Gaussian, so that optimum
estimate achieves efficiency.”. The point at which the nature of the PDF becomes
apparent will become apparent later in this section and so while it sounds as though
Frieden assumes a Gaussian PDF before having reason to, this is just a side-effect of
the way the derivation of 1/f noise is written up. As will be seen however, the nature
of the PDF is determined by comparison of the signal with a certain class of
functions; this kind of comparison, which is vital to the success of the EPI derivation
of the law governing 1/f spectral noise, is not something a computer can reliably
perform on its own, since it requires a combination of intuition and a vast amount of
prior knowledge, not to mention the fact that, for a different problem, the nature of
the PDF could be found via a completely different path, i.e. there is nothing about the
way in which the PDF is determined to be Gaussian that can be made generic for a
computer to apply to other, unrelated problems such as the one dealt with in this

project.

If the optimum estimate achieves efficiency, then this means that the data

information / = < is actually the Cramer-Rao inequality turned into an equality - i.e.
e

it is a special case of this inequality where the Fisher information (which is what 1 is)

is inversely proportional to the squared-error. I — 0 with time which also means that
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0 is its equilibrium value and this means that the EPI approach will gives us the PDF
attained at equilibrium. Frieden then proceeds to express the data-information 7 in
terms of the power spectrum S(w), meaning that the EPI approach can be expected

to give us that power spectrum obtained also at equilibrium.

Information I in terms of power spectrum S(w)

Information I is required to embody what is known about the phenomenon in
question without taking into account any of the physical factors which affect a
measurement of it. It it is reasonable to think of information I as the purist
representation of the phenomenon which, in reality, will never quite match what we
can measure in the physical world. For the power spectrum S(w), Frieden derives I
based upon the following known facts (or, at least, those for which he considers there

is sufficient evidence to treat them as facts):

e [/fnoise exhibits long-term memory which means that the signal at two
different times cannot be determined purely through the relative time
difference but that they instead must depend on the absolute time values. This
fits with the relationship between 1/f noise and a musical composition: It is

the time elapsed since the start of the performance that determines what the
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note currently being played is, at least, this is the only rule that works

consistenly for every piece of music. We cannot know the same thing based

upon how much time has elapsed since the note we last paid attention to.

Frieden points out that such a signal is referred to as non-stationary.

e 1/fnoise is non-stationary in its values but is stationary in its changes (i.e. a
relative time difference is all that is needed to determine the next change that
will occur). This property is shared between 1/f noise and the class of
intrinsic random functions of order zero (/RF ) and so we can treat 1/f noise
as an such a process. This in turn means that it must obey a central limit
theorem.

If 1/f noise obeys a central limit theorem, this means that the PDF is
separable normal which in turn means that we can apply the laws governing a single
random variable to every random variable involved in the phenomenon. Frieden thus
proceeds to determine the Fisher information for a single, normally distributed,

random variable:

”

I=] dxp? which is equivalent, via simple algebraic manipulation of the term inside

the integral, to I = [dxp <%> * which is itself equivalent to taking the average of

the square of the partial derivative of In p with respect to x: avg <<af%> 2)

Since we have identified the PDF for 1/f noise as separable normal, this

means that the PDF is Gaussian. This allowed Frieden to derive the Fisher
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information as the reciprocal of the squared standard deviation (/ = é ) and then use

another intuitive application of prior knowledge (which, again, can not be made

2 4 . . .
= = 5o Since this only gives

generic in a way useful to a computer) to derive [ =
us the Fisher information for a single frequency w , the last step is to use this

particular measure of information is additive to derive the Fisher information for the

signal as a whole: 1 =4 [ d(x)ﬁ . We now have the data-information 1 for 1/f
Q

noise, which is to say that we have a purist representation of what we know about the
phenomenon without taking into account any factors involved in attempting to
measure it. These factors are included in the bound-information which is derived

next.

Finding information J

The fundamental mathematical goal of the EPI process is to minimise the
difference between the data information I and the physical information J. We have
just found an expression for the former and will actually determine the latter by
finding the physical information (the difference between I and J) at the same time we
solve the EPI equation itself. To do this, we need a generic representation of J; since

we know that J must be a functional (a function of functions) of the power spectrum,

we can define it thus: J =4 [ do F[S(®), w]. This makes the physical information
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K equal to the extremum of the difference between I and J:

K=4fdo g5~ FIS©), 0] = extremum

We solve this equation by means of the Euler-Lagrange equation, the core of

what is known as the Calculus of Variations:

L in this equation is the Lagrangian, the functional that represents the

behaviour of a physical phenomenon. In our case, it is derived from the expression

for K (above) as:

L= é — F (note that this is the expression in the square brackets with the dependent

variable  removed (from the notation).

We can now use simple calculus to determine the left and right-hand sides of

the Euler-Lagrange equation:

oL = % — F = 57! = F so differentiating with respect to S gives us
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9

— %877 -9k = S—lz 8L and differentiating with respect to S’ gives us 0 (since
there are no terms in the Lagrangian that contain S’). That also means the
differentiating this last result with respect to w (as shown in the left-hand side of the

Euler-Lagrange equation) also gives us 0, since 0 is a constant. This means that the

solution of the Euler-Lagrange equation is:

1 oF _
52+as‘0

F must therefore satisfy this equation, but it must also satisfy the EPI solution:

I-KJ=4fdo[{-KF]=0

The micro level solution requires that the expression being integrated (

é — KF ) also holds on its own (i.e. for specific values of w, KF = é ). We solve

this system of simultaneous equations to get the solution:

KF /S =— dF /3S
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This is a well-known differential equation for which a general solution exists:

F[S(w),w] = G(w)S (w)_K where G(w) = 01s some unknown function. The process

of finding G(w) is what derives the power-spectrum for 1/f noise:

Invariance principle

Along with the data-information I and the bound information J, the third part
of the EPI process of deriving physical laws is the application of an invariance
principle which Frieden states as “Let the combined EPI principle remain invariant
in form under an arbitrary change of scale in w.”. This basically means that if we
multiply the frequency by some constant factor, the EPI equation must still hold.
More specifically to the case of 1/f noise, if w, = aw, o> 0 then
S (®,).dw, = S(w).dw must hold. If we substitute the definition of w, into this

equation, we get

S, (w,)=(1/a)S(w,/a). We can substitute this into the EPI equation to give:

1, =Ky =4[ do, [ 5o — KG)a S, /o) F] =0

145



If we transform this via the definition of w, , we get

I, —KJ, =402 [ do, [ﬁ — KG(am)aX 'S () —K] =0

If this equation must still hold in the same way as the original EPI equation for the
phenomenon, that means the G(w) must make the integrand of this latter equation

proportional to that of the original EPI equation, i.e.

KG(®)S(0) ¥ = KG(aw)aX1S(w) ¥

The K and S (w)fK cancel in this equation to yield G(aw) = o' X G(w) for which the

general solution is G(w) = Bw' X B = const.

From the general solution for F we found earlier ( F[S(w),w] = G(w)S ((D)_K ),
substituting this definition for G(w) gives us F = Bo' XS and substituting this

for F in the microlevel solution gives us:

S(w)=An"', A= (KB)l/(K_l) = const.which is the power-spectrum for 1/f noise.
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