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Abstract

AIDS, caused by the retrovirus HIV, remains the largest cause of morbidity in sub-Saharan Africa yet almost all
genetic studies have focused on cohorts from Western countries. HIV shows high co-morbidity with tuberculosis (TB),
as HIV stimulates the reactivation of latent tuberculosis (TB). Recent clinical trials suggest that an effective anti-HIV
response correlates with non-neutralising antibodies. Given that Fcγ receptors are critical in mediating the non-
neutralising effects of antibodies, analysis of the extensive variation at Fcγ receptor genes is important. Single
nucleotide variation and copy number variation (CNV) of Fcγ receptor genes affects the expression profile, activatory/
inhibitory balance, and IgG affinity of the Fcγ receptor repertoire of each individual. In this study we investigated
whether CNV of FCGR2C, FCGR3A and FCGR3B as well as the HNA1 allotype of FCGR3B is associated with HIV
load, response to highly-active antiretroviral therapy (HAART) and co-infection with TB. We confirmed an effect of
TB-co-infection status on HIV load and response to HAART, but no conclusive effect of the genetic variants we
tested. We observed a small effect, in Ethiopians, of FCGR3B copy number, where deletion was more frequent in
HIV-TB co-infected patients than those infected with HIV alone.
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Introduction

AIDS, caused by the T-lymphotropic retrovirus HIV, remains
the largest cause of morbidity in sub-Saharan Africa [1]. African
countries currently have the highest disease burden of HIV,
with 9.2% prevalence in Addis Ababa in Ethiopia and over 10%
in Dar-es-Salaam in Tanzania, yet almost all genetic studies
have focused on cohorts from Western countries [2]. In Africa,
HIV shows high co-morbidity with tuberculosis (TB), as HIV

stimulates the reactivation of latent TB, and we and others
have shown that TB co-infection is associated with a higher
viral load (VL) prior to treatment and a poorer response to
treatment [3-5] . This presents challenges to the standard
treatment regimens of both HIV and TB [6,7].

The most effective treatment for HIV and TB would be an
effective vaccine; several are currently in clinical trials for HIV
(e.g., STEP trial, RV144), and for TB, the vaccine Bacillus
Calmette-Guérin (BCG) remains ineffective against pulmonary
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TB in adults. An effective vaccine is likely to stimulate the
production of potent broadly neutralising antibodies that are
able to neutralise the pathogen. However, in the recent RV144
trial, when looking for correlates of protection from HIV-1
infection, it was found that neutralising antibodies and cytotoxic
T lymphocyte (CTL) responses were absent in protected
patients [8]. In contrast, HIV -1 infection inversely correlated
with gp120 V1V2-specific and antibody-dependent cell
cytotoxicity (ADCC)- and antibody-dependent cell-mediated
viral inhibition (ADCVI)-mediating non-neutralising antibodies.
Given that Fcγ receptors are critical in mediating the non-
neutralising effects of antibodies, this suggests an important
role for Fcγ receptors in recruiting innate immune cells to sites
of HIV infection. The interaction between the Fc region of IgG
and Fcγ receptors is critical for mediating the biological effects
of the humoral immune response, such as ADCC and ADCVI.
The ratio of activatory/inhibitory signals generated by
engagement of different Fcγ receptors by IgG determines the
threshold for induction of IgG-mediated responses. In addition,
it has been shown that Fcγ receptor function is critical in
mounting an effective response to HIV infection in experimental
animals [9].

Fcγ receptor genetic variation has been associated with
infectious and inflammatory disease in both genomewide [10]
and candidate gene studies [11,12], and it is known that at
least some of this variation affects function, both in terms of
subcellular localisation, cell type expression and IgG subtype
affinity binding [13,14]. Two studies have suggested that
genetic variation of host Fcγ receptors may affect various
aspects of HIV infection and progression. The FCGR2A gene
encodes an activating receptor expressed on macrophages
and neutrophils, and a coding polymorphism (rs1801274 c.
497AG [p.His131Arg]) has been associated with susceptibility
to perinatal HIV infection [15] and variation in HIV progression
to AIDS [16], with His131 homozygotes showing increased
perinatal transmission and more rapid progression to AIDS. It is
known that the two different alleles differ markedly in their
affinity for IgG2 [13,17], and it was shown not only that anti-
gp120 IgG2 complexes were present in individuals chronically
infected with HIV, but that HIV-1 immune complexes were
internalised more efficiently by monocytes from donors who
were homozygous for the His131 allele.

Initial studies have focused on two alleles of one gene, but
the genetic variation of the FCGR region is extensive and
complex. In particular, the FCGR3A and FCGR3B genes are
97% identical and the product of an 80kb duplication that
occurred after the divergence between macaque and human-
chimpanzee lineages (~25 million years ago) [18]. They encode
two different Fcγ receptors, with FCGR3A being expressed on
natural killer (NK) cells, monocytes, dendritic cells, and
macrophages and FCGR3B being expressed on neutrophils,
mast cells, and eosinophils. Both genes exhibit copy number
variation, deletion of the FCGR3B gene is associated with both
SLE and RA, and is likely to cause ectopic expression of the
FCGR2B inhibitory receptor on NK cells [19,20]. The FCGR2C
gene is an activating receptor, formed as a fusion gene of
FCGR2A and FCGR2B during the duplication of the ancestral
FCGR3 gene and is expressed on NK cells. FCGR2C shows

copy number variation related to the copy number variation of
FCGR3A and FCGR3B, such that deletion or duplication of
FCGR3A or FCGR3B results in concomitant deletion or
duplication of FCGR2C. There is also the additional
complication of a variant (rs10917661; c.169CT) which
converts a glutamine to a stop codon, rendering FCGR2C non-
functional [21]. FCGR3B also carries two major alleles that
produce isoforms differing by 4 amino acids called human
neutrophil antigen 1a and 1b (HNA1a and HNA1b ;
rs76714703)[22] . These alleles affect binding to IgG1 and
IgG3 and phagocytosis of opsonized particles.

In this study we investigated whether copy number variation
of FCGR2C, FCGR3A and FCGR3B as well as HNA1 allelic
variation of FCGR3B is associated with HIV load, response to
HAART and co-infection with TB in two African populations.

Methods

Samples and ethics statement
Patient sample and clinical data collection was as previously

described [5,23]. DNA extraction was performed using QIAamp
DNA Maxi kit in a single laboratory. The study protocol was
approved by the Institutional Review Board at the Faculty of
Medicine, Addis Ababa University and Ethiopian Science and
Technology Ministry; the regional ethical review board in
Stockholm at the Karolinska Institutet and the ethical review
committee of Muhimbili University of Health and Allied
Sciences. Written informed consent was obtained from each
subject before the start of this study. All samples had
previously been shown to be homozygous for the CCR5 32bp
insertion allele [5], where the deletion allele is known to be
protective against HIV progression. The breakdown of samples
analysed is shown in Table 1.

Copy number analysis
Copy number analysis was performed as described

previously [18]. Briefly, duplicate calls from a paralogue ratio
test (PRT, [24]) are combined with three independent assays
measuring restriction enzyme digestion ratios using a
maximum-likelihood framework, which calls the most-likely
integer copy number given the results from the five assays.
Raw data from the duplicate PRTs show very strong
concordance with limited clustering and a small number of
outliers (Figure 1a), showing that duplicate PRT by itself is not
sufficient to reliably call copy number in all samples, and the
extra information provided by restriction enzyme variant ratios
(REDVR) is needed. The raw results for two REDVR assays
are shown in Figure 1b. The two assays distinguish FCGR3A
from FCGR3B using the arginine to stop change (C733T, y
axis) and distinguish HNA1a and HNA1b on FCGR3B using the
C147T nonsynonymous change [22,25,26]. Clear clustering of
samples is observed, and the samples are classified according
to the number of FCGR3A and FCGR3B copies observed.
Note that, for clarity, only samples with four copies of FCGR3
(FCGR3A and FCGR3B) are shown.

Integer copy numbers were inferred from all assays
combined using the maximum-likelihood approach described
previously [25], which generates an associated quality score for
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each copy number call. As previously, copy number estimates
with a quality score of p<0.05 (equivalent to an odds ratio of
20:1 of this copy number being correct against any other copy
number being correct). Positive control samples from the
Human Random Control collection (Health Protection Agency,
Salisbury, UK) were run with every experiment and provided a
measure of the reproducibility of the assay (Figure 2). Of 190
repeat tests, 183 (96%) passed the quality score threshold. Of
these 183, 2 (1%) gave the incorrect copy number score,
suggesting an error rate for total copy number of 1-2%.
Individual gene copy numbers were inferred using the total
copy number score and the observed ratio value of the
particular assay. For example, from a 1:1 ratio of the
FCGR3A:FCGR3B REDVR with a total copy number of 4, we
would infer a copy number of 2 for FCGR3A and 2 for
FCGR3B.

Statistical analysis
To analyse the effect of genotype on HIV load at initiation of

HAART, we initially constructed a generalised linear model
using SPSS 20.0 (IBM) and a gamma-log link, using Type III
sum of squares and Wald estimation. Initial VL was used as the
dependent variable, with population and disease status as fixed
predictor factors, CD4 count and genotype as scalar predictor
variables.

To examine the effect of genotype on CD4+ count following
initiation of HAART, we constructed a generalised linear mixed

Table 1. Summary of samples analysed.

  Ethiopian Tanzanian
Samples analysed n 720 347
Samples analysed with
detailed clinical data

n 618 347

FCGR3 copy number
genotypes and detailed
clinical data

n 607 344

CD4<200 with baseline
VL data and genotypes

n 517 167

 males 201 72
 females 316 95

 
CD4 (mean +/-
sd)

92.30 +/-52.978 93.33 +/- 61.274

 
VL x 105 (mean
+/- sd)

3.32 +/- 6.78 4.87 +/- 10.66

CD4<200 with at least
one CD4 follow-up
datapoint for response
analysis

n 373 137

 males 128 59
 females 256 78

 
CD4 (mean +/-
sd)

97.89 +/-52.835 97.05 +/- 60.252

 
VL x105 (mean
+/- sd)

2.98 +/-5.43 4.58 +/- 8.44

doi: 10.1371/journal.pone.0078165.t001

model, using STATA, where the dependent variable (CD4+
count) was modelled as a Gaussian distribution. In this model,
we assigned population and disease status as fixed factors,
initial CD4 count and time since HAART initiation as scalar
covariates and integer copy number as an ordinal covariate.
The model was calculated using Type III sum of squares, with
a variance correction to allow for multiple CD4+ timepoint
readings from a single patient.

Two-tailed t-tests were performed in Microsoft Excel,
assuming unequal variances of the two samples.

Results and Discussion

Distribution of copy number alleles
Previous studies have shown that the deletion and

duplication alleles for both FCGR3A and FCGR2B are
relatively rare in the population [18,25]. Our data support this:
in both Tanzanian and Ethiopian populations the frequency of
heterozygotes for deletions and duplications is approximately
5%, and the frequency of homozygous deletions or duplications
is less than 1% (table 2).

Both the FCGR3B deletion allele and the FCGR2C active
allele have a functional effect. For carriers of the FCGR3B
deletion allele, not only is there a gene dosage effect resulting
in a lower expression of FCGR3B on the surface of neutrophils
[27], but a change in the expression pattern of the adjacent
FCGR2B gene, which is not copy number variable itself. The
FCGR2B gene encodes the only known inhibitory Fc gamma
receptor, and deletion of FCGR3B results in ectopic expression
of FCGR2B on NK cells, possibly as a result of a NK-specific
regulatory element being brought into closer physical proximity
to the FCGR2B gene [19,20]. Again, as observed previously,
the frequency of deletions and duplications of the FCGR3B
gene is higher than for the FCGR3A gene (table 3),

The FCGR2C gene encodes an activating receptor that is
normally expressed on NK cells [21]. Not only is FCGR2C copy
number variable but there is a common variant (rs10917661; p.
Q57*; c.169CT) which results in a pseudogene, so that, in
Europeans, most people do not express FCGR2C. In this
study, we combine measurement of FCGR2C copy number
together with detection of the allelic status of FCGR2C to
determine, for each individual, the number of copies of
FCGR2C that are predicted to encode a full-length functional
gene. We show there is an appreciable frequency of the active
FCGR2C allele in both African populations tested (table 4),
although we note that this may be an overestimate, as we did
not determine the “non-classical” FCGR2C null allele, likely to
be caused by a single nucleotide variant in the donor splice site
of intron 7, causing skipping of exon 7 and subsequent
frameshift causing early termination of the polypeptide chain
[19].

We initially compared the mean copy number between the
HIV-only and HIV-TB co-infected cohorts in both Tanzanians
and Ethiopians. While there was no significant difference
between FCGR3A copy number (table 2), we did find a lower
mean copy number for FCGR3B in the HIV-TB co-infected
cohort in both populations, which was significant in the
Ethiopian cohort (table 3, two-tailed t-test p=0.002). Although
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Figure 1.  Analysis of raw copy number quantification data.  a) Correlation between individual PRT copy number estimates.
Copy number typing uses duplicate PRTs combined with restriction enzyme digest ratios to infer copy number. Individual raw PRT
results from the FAM-labelled experiment (y-axis) and the HEX-labelled experiment are plotted for all samples, colour-coded
according to the estimated integer copy number of each sample.
b) Analysis of restriction enzyme digest ratios .
Raw ratios for the A/B assay and the HNA1a/1b assay are plotted for all samples with a total FCGR3 copy number estimate of 4.
Each point is coloured according to the FCGR3A:FCGR3B ratio estimate.
doi: 10.1371/journal.pone.0078165.g001
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not significant in the smaller Tanzanian cohort (two-tailed t-test
p=0.078), a striking frequency difference in FCGR3B 1 copy
individuals is observed in the Tanzanian HIV only (10%) and
HIV-TB (19%) cohorts. We also observe a lower mean active
copy number for FCGR2C in the HIV-TB co-infected cohort in
both populations (table 4), which was significant again only in
the Ethiopian cohort (two-tailed t-test p=0.004), which is
expected given the close relationship between FCGR3B and

FCGR2C copy number. Taken together, this might suggest
greater expression of inhibitory over activatory FCGR2
receptors on NK cells is associated with co-infection of TB with
HIV. Indeed, the role of Fc receptors and NK cells in TB is
unclear and under-explored, with most work focused on the
cellular T-cell-mediated response. In mice NK cells respond to
Mycobacterium tuberculosis infection yet are not critical in
protection [28], but deletion of the inhibitory Fc receptor

Figure 2.  Positive control total FCGR3 copy number estimates from repeat tests.  The nine positive control DNA samples
shown were repeated in every experiment and total FCGR3 copy number calculated. Each point represents an individual copy
number measurement (as indicated by the colour and number), plotted on the y-axis representing the quality score as a log
probability of the copy number being an alternative to the copy number shown. The dotted line shows the quality score threshold of
0.05, with samples below this threshold being accepted. The lower the point on the y-axis, the more confident we are of the copy
number. 190 tests are shown, with 183 being below the quality threshold. Of these 183, 2 show the incorrect copy number, both in
C0081 calling a 6 instead of a 4.
doi: 10.1371/journal.pone.0078165.g002
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FCGR2B expressed on B cells resulted in more effective
mycobacterial containment [29]. Although the Ethiopian cohort
is larger than the Tanzanian cohort, and therefore has more

Table 2. FCGR3A copy number frequencies.

copy
number

Ethiopian HIV
Count
(frequency)

Ethiopian HIV
+TB Count
(frequency)

Tanzanian HIV
Count
(frequency)

Tanzanian HIV
+TB Count
(frequency)

0 0 (0) 1 (<0.01) 0 (0) 0 (0)
1 13 (0.05) 24 (0.05) 4 (0.02) 20 (0.14)
2 249 (0.90) 390 (0.88) 186 (0.92) 121 (0.83)
3 15 (0.05) 23 (0.05) 12 (0.06) 3 (0.02)
4 1 (<0.01) 4 (<0.01) 0 (0) 1 (<0.01)
5 0 (0) 0 (0) 0 (0) 0 (0)
total 278 442 202 145
mean 2.01 2.01 2.04 1.91

doi: 10.1371/journal.pone.0078165.t002

Table 3. FCGR3B copy number frequencies.

copy
number

Ethiopian HIV
Count
(frequency)

Ethiopian HIV
+TB Count
(frequency)

Tanzanian HIV
Count
(frequency)

Tanzanian HIV
+TB Count
(frequency)

0 1 (<0.01) 9 (0.02) 0 (0) 0 (0)
1 38 (0.14) 69 (0.16) 20 (0.10) 28 (0.19)
2 177 (0.64) 306 (0.69) 166 (0.82) 109 (0.75)
3 57 (0.21) 54 (0.12) 16 (0.08) 6 (0.04)
4 4 (0.01) 3 (<0.01) 0 (0) 1 (<0.01)
5 0 (0) 1 (<0.01) 0 (0) 1 (<0.01)
6 1 (<0.01) 0 (0) 0 (0) 0 (0)
7 0 (0) 0 (0) 0 (0) 0 (0)
total 278 442 202 145
mean 2.10 1.95 1.98 1.88

doi: 10.1371/journal.pone.0078165.t003

Table 4. FCGR3C (active) copy number frequencies.

copy number

Ethiopian HIV
Count
(frequency)

Ethiopian HIV
+TB Count
(frequency)

Tanzanian HIV
Count
(frequency)

Tanzanian HIV
+TB Count
(frequency)

0 211 (0.76) 375 (0.86) 162 (0.81) 128 (0.88)
1 59 (0.21) 54 (0.12) 36 (0.18) 14 (0.10)
2 6 (0.02) 7 (0.02) 1 (<0.01) 3 (0.02)
total 276 436 199 145
rs10917661
Q57 allele
frequency

0.13 0.08 0.10 0.07

rs10917661
Q57 allele count

71 68 38 20

rs10917661 *57
allele count

481 804 360 270

doi: 10.1371/journal.pone.0078165.t004

power to detect a significant effect, our data should be
interpreted cautiously, as our observation was only significant
in the Ethiopian cohort, and the HIV-TB coinfected and HIV-
only cohorts were different arms of the study and quantitative
differences may be due to subtle batch effects. The observed
effect size is on the edge of the size of effect that the study is
powered to predict with the Ethiopian cohort having 80% power
to predict a difference in means of 0.14, and the Tanzanian
cohort having 80% power to predict a difference in means of
0.15. At the moment, we suggest that this is an intriguing result
that awaits further study.

Association of Fcγ receptor copy number and allelic
variation with baseline viral load and progression post
HAART administration

We then analysed the effect of the allelic variation of copy
number of the three genes, and HNA1 allelic status, on HIV
load just prior to initiation of HAART in patients whose CD4
count was less than 200. As previously published [5], we saw
an effect of population of origin and TB-co-infection status, but
no effect of the genetic variants we tested (table 5). We also
analysed the effect of allelic variation on immune reconstitution
following initiation of HAART, as measured by the response in
CD4 count over the course of 48 weeks. Again, whilst
observing an effect of time and baseline CD4 count on CD4
count during HAART, we found no effect of FCGR2C,
FCGR3A, FCGR3B copy number and HNA1 allelic status on
immune reconstitution (table 6).

It is known that the allelic sequence and copy number
variation of Fcγ receptor genes determine the expression
profile, activatory/inhibitory balance, and IgG affinity of the Fc
receptor repertoire of each individual. Given the known
importance of Fc genetic variation on antibody mediated
immune responses we hypothesised that allelic and copy
number variation might be associated with baseline viral load
(HIV load prior to HAART administration) and progression
(CD4 count during HAART treatment). For the two African
populations studied, there was no evidence of association with
the variants we have examined. The lack of association of Fc
receptor genetic variation with HIV progression and baseline
viral load would support studies in primate challenge models
suggesting that non-neutralising antibodies provide limited or
no protection against HIV [30]. However our data and primate
challenge data contrasts with data from trials such as the
RV144 trial which indicated a role for non-neutralising
antibodies in mediating the protection found in 31% of their
patients [8]. Alternatively, it may be that epistatic interactions
between different FCGR alleles and IgG allotypes are
important in host control of HIV. Indeed, epistasis has been
described for KIR/HLA-C mediated control of HIV [31]. Larger
epidemiological studies combined with functional approaches
are needed to provide the power to test this possibility in a
thorough manner.

CNV of Fc Gamma Receptor Genes and HIV

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e78165



Acknowledgements

Thanks to Samantha de Werff and Mahnaz Abbasian, Mark
Jobling for access to ABI3130xl capillary electrophoresis
platform, and the patients for participation in this study.

Author Contributions

Conceived and designed the experiments: LRM EA EJH.
Performed the experiments: LRM JB. Analyzed the data: LRM

EJH MV. Contributed reagents/materials/analysis tools: EN AH
OM EM GY WA SM MJ GA FM EA. Wrote the manuscript:
EJH.

References

1. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD et al. (2013)
Disability-adjusted life years (DALYs) for 291 diseases and injuries in
21 regions, 1990–2010: a systematic analysis for the Global Burden of
Disease Study 2010. Lancet 380: 2197-2223.

2. An P, Winkler CA (2010) Host genes associated with HIV/AIDS:
advances in gene discovery. Trends Genet 26: 119-131. doi:10.1016/
j.tig.2010.01.002. PubMed: 20149939.

3. Toossi Z, Mayanja-Kizza H, Hirsch CS, Edmonds KL, Spahlinger T et
al. (2001) Impact of tuberculosis (TB) on HIV‐1 activity in dually
infected patients. Clin Exp Immunol 123: 233-238. doi:10.1046/j.
1365-2249.2001.01401.x. PubMed: 11207653.

4. Day JH, Grant AD, Fielding KL, Morris L, Moloi V et al. (2004) Does
tuberculosis increase HIV load? J Infect Dis 190: 1677-1684. doi:
10.1086/424851. PubMed: 15478075.

5. Hardwick RJ, Amogne W, Mugusi S, Yimer G, Ngaimisi E et al. (2012)
β-defensin Genomic Copy Number Is Associated With HIV Load and
Immune Reconstitution in Sub-Saharan Africans. J Infect Dis 206:
1012-1019. doi:10.1093/infdis/jis448. PubMed: 22837491.

6. Kwan CK, Ernst JD (2011) HIV and tuberculosis: a deadly human
syndemic. Clin Microbiol Rev 24: 351-376. doi:10.1128/CMR.00042-10.
PubMed: 21482729.

Table 5. Tests of association of genotype with HIV load pre-HAART n=684.

Genotype FCGR3A copy number
FCGR3A
copy numberFCGR3B copy number

FCGR3B
copy numberHNA1 ratio HNA1 ratioFCGR2C copy number

FCGR2C
copy number

Covariate
beta coefficient
(95%CI) (copies/mL)

P value
beta coefficient
(95%CI) (copies/mL)

P value
beta coefficient
(95%CI)
(copies/mL)

P value
beta coefficient
(95%CI) (copies/mL)

P value

Population
(Ethiopian=1,
Tanzanian=2)

-0.58 (-0.88,-0.28) <0.001 -0.58 (-0.88,-0.28) <0.001 -0.52 (-0.84,-0.20) 0.001 -0.57 (-0.87,-0.27) <0.001

No TB Co-infection -0.53 (-0.79,-0.27) <0.001 -0.54 (-0.80,-0.27) <0.001 -0.54 (-0.81,-0.28) <0.001 -0.53 (-0.79,-0.27) <0.001

CD4 count
-0.003 (-0.006,
-0.001)

0.01
-0.003 (-0.006,
-0.001)

0.007
-0.003 (-0.006,
-0.001)

0.007
-0.003 (-0.006,
-0.001)

0.008

Copy number 0.084 (-0.27, 0.43) 0.64 0.056 (-0.13, 0.24) 0.56 0.19 (-0.21, 0.58) 0.35 0.142 (-0.20, 0.36) 0.58
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