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Abstract

Evoked potentials are electrical signals produced by the nervous system in response
to a stimulus. In general these signals are noisy with a low signal to noise ratio. The
aim was to investigate ways of extracting the evoked response within an evoked
potential recording, achieving a similar signal to noise ratio as conventional
averaging but with less repetitions per average. In this thesis, evolutionary
algorithms were used in three ways to extract the evoked potentials from a noisy

background.

First, evolutionary algorithms selected the cut-off frequencies for a set of filters. A
different filter or filter bank was produced for each data set. The noisy signal was
passed through each filter in a bank of filters; the filter bank output was a weighted
sum of the individual filter outputs. The goal was to use three filters ideally one for
each of the three regions (early, middle and late components), but the use of five
filters was also investigated. Each signal was split into two time domains: the first
30ms of the signal; and the region 30 to 400ms. Filter banks were then developed for

these regions separately.

Secondly, instead of using a single set of filters applied to the whole signal, different
filters (or combinations of filters) were applied at different times. Evolutionary
algorithms are used to select the duration of each filter, as well as the frequency
parameters and weightings of the filters. Three filtering approaches were

investigated.

Finally, wavelets in conjunction with an evolutionary algorithm were used to select

particular wavelets and wavelet parameters.

A comparison of these methods with optimal filtering methods and averaging was
made. Averages of 10 signals were found suitable, and time-varying techniques were

found to perform better than applying one filter to the whole signal.

Words in the main body of the text approx. 28200
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1 Introduction

In this chapter bioelectrical signals are introduced and evoked potentials in
particular. Also considered are some of the problems of evoked potential recordings
and the aims of this work.

1.1 Basis of Electrophysiology
A basic principle behind electrophysiological measurements is that living neural

cells produce electrical signals. The form of these signals that most people are
familiar with is the electrocardiogram (ECG), measuring the electrical activity of the
heart. This is not the only type of measurement that is possible. Electrical activity of

muscles can be recorded, as can activity of the nerves, spinal cord and brain.

Nerves can be stimulated and the nervous system’s response to the stimulus can then
be recorded. This is an evoked response and the form of measurement of interest for
this work. Before discussing what an evoked response is, it is worth considering

where these signals come from.
AN d
J N

Stimulus Artefact |Action Potential

Figure 1-1 Representation of an action potential

All living cells maintain a potential difference across the cell membrane, due to
imbalances of positive ions outside the cell and negative ions inside the cell. The
potential difference across the cell membrane is called the membrane potential, the
magnitude of which indicates the charge on the inside surface of the membrane
(when a neuron is not conducting impulses, it is said to be resting). At rest the
membrane potential is typically maintained at around —-70 mV, so this is known as
the resting potential. When a stimulus is applied to the membrane, the membrane or

a portion of the membrane increases its permeability. This is achieved by opening
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sodium channels in the membrane, allowing sodium to diffuse into the cell and
causing a small rise in the membrane potential (depolarisation). If the membrane
potential increases above a certain threshold level, typically —59 mV, even more
sodium channels open. These sodium channels stay open for about 1 ms, allowing
the same amount of sodium ions to diffuse in each time, thereby producing the same
magnitude of response. This response is called an action potential (figure 1-1) and is
an all-or-nothing response. If the threshold level is exceeded the full peak of the
action potential is always reached (approximately 30 mV). If the threshold potential
is not exceeded, then ne action potential is produced. Once the action potential's
peak has been reached, the voltage starts to decrease (re-polarisation). Exceeding the
threshold potential not only triggers the opening of sodium channels, but also
voltage-sensitive potassium channels. The voltage-sensitive potassium channels are
slower to respond than the sodium channels and do not open until the diffusion of
sodium ions has caused a membrane potential of around +30 mV. Once the
potassium channels open, potassium diffuses out of the cell and the potential starts
to decrease. The potassium channels remain open when the membrane potential
reaches the resting potential; an excess of potassium can diffuse out of the cell. This
can cause a brief period where the action potential voltage drops below the resting
potential (hyperpolarisation) before sodium-potassium pumps in the membrane
return the ion channels to their resting state.

t+4++++ttttoem e mmm e mattttttttt+

Active Region

+4+++++t+t+ttoem e mem ettt
I Resting T Depolatised IRepolan‘sed

Membrane Membrane Membrane
<+—————— Direction of propagation

Figure 1-2 Action potential propagation

In approximately the first half millisecond after the threshold potential is surpassed,
no matter how large the stimulus, the stimulated portion of membrane will not
respond to a further stimulus. This is the absolute refractory period. The relative
refractory period occurs in the few milliseconds after the absolute period and is the
time it takes for the resting potential to be achieved. A strong stimulus is needed to
re-stimulate the membrane during the relative refractory period.



When an action potential occurs in a region of the nerve membrane, it acts as a
current source, causing an adjacent portion of the membrane to increase in potential,
thereby initiating an action potential. This process is repeated and so an impulse
seems to move along the nerve (figure 1-2). Because a portion of the membrane that
produced an action potential goes into a refractory period after the action potential
has been produced, it is inhibited from being re-stimulated by the action potential
further along the nerve. This means that the nerve impulse moves along the nerve in

one direction.

Saltatory
g%mmcﬁon

T Node of TNode.af Mysin

Ranvier Ranvier Sheath

4—————— Direction of propagation

Figure 1-3 Propagation along 2 myelinated fibre

All except the smallest nerve fibres in the human body are insulated by a covering
called myelin. The previous description of impulse conduction refers to
unmyelinated fibres, but the principle of an action potential causing others parts of
the nerve fibre to be stimulated is still true for myelinated fibres. In myelinated
fibres, sodium and potassium channels are densely clustered around the gaps
between the myelin sheaths, called nodes of Ranvier. The difference between the
way myelinated and unmyelinated fibres conducts an impulse is that myelinated
fibres propagate an impulse by a sequentially activating the nodes of Ranvier. The
same basic idea of the nerve locally polarising and depolarising as in the
unmyleinated fibre is still true. The action potential appears to leap up the nerve
fibre (fig 1-3), so this is sometimes called saltatory conduction (from the Latin
saltare, “to leap or dance™) Clark (1992). Conduction along a myelinated fibre is

faster (approximately 20 times) that of conduction along unmyelinated fibre.



1.2 What is an evoked potential?
If a nerve is stimulated, then differences in the electrical activity in the brain or

spinal cord are produced in response to the stimulus. These are responses evoked by
a stimulus and are called therefore evoked responses or evoked potentials. The types
of response relevant to this work are somatosensory evoked potentials (SEPs), which
are usually produced by electrical stimulation of sensory nerves. Electrodes placed
on the scalp, or near the spinal cord, can be used to record these responses. The
usual way to produce these responses is to apply a short electrical pulse over the

nerve and record the response under the electrodes at the recording sites.

Somatosensory evoked potentials have a variety of applications.

¢ During spinal operations, such as to correct spinal curvature, SEP monitoring
helps to avoid paralysis, which can be a possible complication of the operation.

e To provide information of dysfunction (Rossini et al, 1981). Spinal cord tumours
may cause abnormal evoked potentials (Aminoff and Eisen, 1999).

e As a prognostic guide for coma and spinal injuries. In spinal injuries, if
stimulation is carried out below the injury site, a response can be looked for at
the scalp. If a response can be recorded after the injury, or the response returns
soon after, this is taken as a good indication that the prognosis is good.

e MacLennan and Lovely (1995) discussed the use of somatosensory evoked
potentials to test nerve conduction, which can be used in the diagnosis of
Multiple Sclerosis (MS). The use of somatosensory evoked potentials for nerve
conduction velocity studies and as an aid for MS diagnosis are two of the uses of
SEPs that have been used the longest. Abnormalities in somatosensory evoked
potentials have been found in 80% of patients diagnosed with Muitiple Sclerosis
(Aminoff (1999)).

¢ Depth of anaesthesia (Angel et al (1999), Nayak and Roy (1995,1998)).

e Braun et al (1996) used time-frequency analysis to detect temporal and spectral
changes in somatosensory evoked potentials due to neurological injury such as
from lack of oxygen (hypoxia). A form of time-frequency analysis, wavelet
analysis, has been used to characterise changes in the shape of evoked potentials
due to neurological injury (Thakor et al, (1993a, 1993b)).

The term “latency’ is used throughout the literature and is an important consideration
of any work on evoked potentials. Latency is the measurement of time to the
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occurrence of a peak after a stimulus. A number of papers (e.g. Rossini et al (1981),
Maccabee et al. (1992)) have commented that the earlier (or shorter) latency
components are considered more stable than the longer latency components. Anziska
and Cracco (1981) discussed the source of the various positive and negative peaks.
Short latency SEPs recorded by scalp electrodes do not reflect the signal travelling
up the nerve, as it approaches and passes under the electrode, but are far field
effects. These are generated mainly in the fibre tracts (Anziska and Cracco 1981).
Rossini et al (1981) concluded that the small stable early components come from
subcortical processes. Maccabee et al (1992) state that earlier components have
higher frequency contents than later components, which means that the assumption
that the signal is stationary is not valid. In other words, the signal's frequency
properties are not constant throughout the signal. Late (or long) latency components
are associated with cortical process and the path the responses can take are more
varied, spreading the peaks in the signal, thereby decreasing the stationarity of these

components.

1.3 What are the problems?
A variety of problems exists in measuring evoked potentials (EP). Low Signal to

Noise ratio (SNR) (often <<1), due to the low signal amplitude in comparison to the
amplitude of the background activity (Harrison et al., 1995) is considered the main
problem in extracting evoked responses. In the next chapter, methods to improve the
SNR will be considered, including the most commonly used method of averaging a
large number of responses. The background activity in part comes from other
sources of electrical activity within the body. An example of that includes electrical
artifacts produced by muscles, which can have a very detrimental effect on the SNR
(Cadwell and Villarreal, 1999). Activity produced by respiratory muscles and the
heart can interfere with measurements, e.g. during scolosis corrective surgery
(Choudhry et al. (1998)). Electrical activity from the brain [electroencephalograph
(EEG)] that is not directly evoked by stimulus, is a difficulty found in scalp
recordings. Table 1.1 shows examples of the signal properties of other bioelectric
signals. The range of frequency values and size of voltages of evoked potentials
(ranging from a few microvolts to hundreds of microvolts depends on where the

recording electrodes are placed.



Freq. Voltage

(Hz) (approx.)
Electrocardiogram(ECG) — Recordings of electrical | Min 0.05 5mV
activity of the heart Max 500 10 mV
Electroencephalography (EEG) - Recordings of the | Min 0.1 2uV
electrical activity within the brain. Max. 100 200 puV
Action potentials Min DC 0.01mV

Max 10000 3mV

Electromyography (EMG) - Recordings of the | Min. DC 25 mV
electrical activity of muscles. Max. 10000 5mV

Table 1-1 Other Bioelectric signals: Taken from various sonrces (Khandpur (1987), Olson
(1992))

Table 1-1 shows the approximate absolute frequencies and voltages for the four
common sources of the electrical activity (and artifacts) in the body. The
investigation site (e.g. scalp or spinal recordings) will have an effect on the response
by the different artifacts produced (Harrison and Lovely, 1995). The term noise used
here is taken to mean the unwanted components of the signal, with respect to the
evoked potentials. It should be bome in mind that some of these unwanted
components such as those in table 1-1 do have uses outside of this work. Other
factors such as fluctuations in vigilance state and conduction delays, change the

amplitude and latency of waves within the recording session and therefore alter the

signal.

Interference can also come from the recording equipment such as electrical noise
from the amplifiers used and from the environment. Line frequency or mains hum is
one such problem; this is interference from the mains supply. A filter that attenuates
frequency components at the line frequency and its harmonics can help to reduce
this problem. This type of filter is used at the recording equipment while the signal
are being collected or after the signal have been collected, may also remove
components of the evoked response at the same time. The signal, like many
biological signals, will vary (i.e. be nonstationary) over a long time interval and
most of the more commonly used signal processing techniques assume stationarity

(e.g. linear filtering).

It is timely at this point to explain some conventions for such recordings used in this
work. One convention in electrophysiological recordings is for a positive peak to be
down the page (-y axis) and negative to be up (+y axis). In this thesis because of the
packages used, the convention of positive as up (+y axis) the page and negative
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down (-y axis) has been adopted as with most physical science conventions, There is
also no clear definition on what is classed as short, mid, or late latency regions, but
based on the similar conventions adopted by some authors (e.g. Nishida et al, 1993),
less than 30 ms is classed here are short latency, 30-100 ms as mid latency and
greater than 100 ms as late latency regions.

In summary, evoked potentials are signals produced in response to an electrical
stimulus and are often recorded at the scalp or spine. These signals have a certain
amount of time variance between individual recordings. Recordings are often
corrupted with noise from within the body, as well as susceptible to noise from
outside the body. The noise power is often greater than the signal power, i.e. often
have low signal-to-noise ratios (SNR).

1.4 Aims
As will be discussed later, conventional averaging (section 2.1) is the usual method

for improving the SNR, by using large numbers of responses. The overall aim is to
investigate ways of extracting the evoked response within an evoked potential
recording, achieving a similar SNR as conventional averaging but with less
repetitions per average (see section 2.1 for advantages of this). This thesis
investigates whether the use of evolutionary algorithm can be used to achieve this by
the selection of filters or wavelets. Evolutionary algorithms (see chapter 5) use the
principles of biological evolution to find solutions to problems. An evolutionary
algorithm approach allows the number of assumptions made at the start to be
limited. One of the reasons for choosing a filter bank approach is that clinicians
already use filters routinely, so applying a set of filters to these signals is not a great
change in their usual practice.

1.8 Structure of the Thesis
After this introductory chapter, there follows a chapter (Chapter 2) introducing the

range of techniques that have been investigated previously and those in current
usage. Chapter 3 discusses the recording methodology and includes a description of
the data sets used. Chapter 4 looks at various ways of analysing these signals and
includes two techniques to enhance the extraction of evoked potential: - one by

looking at the power spectrum of the signal, the other by building a Posteriori
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optimal filters discussed in chapter 2. Chapters 5-8 show evolutionary algorithms
being used to select sets of filters or wavelets applied to a novel application of
enhancing the extraction of evoked potentials from noisy recordings. Chapter 9
contains comparisons of the methods. The final chapter (chapter 10) includes
conclusions of the work and areas of possible work leading off from this research

presented in chapters 5-8.



2 Review of Current Techniques

After discussing, in the last chapter, some of the problems of recording evoked
potentials, this chapter reviews techniques currently used.

From a signal-processing viewpoint, evoked potentials have one advantage over
some other forms of recorded biological activity (e.g. EEG). The start of the signal is
known, due to the stimulus evoking the response at a known point in time. The
beginning of the evoked response is considered to start when the stimulus is applied.
This leads to the use of techniques such as averaging, without the need for extra
processing to detect the start of the signal. Further processing is needed though to
improve the SNR.

2.1 Averaging
Two forms of averaging are considered: ensemble (or coherent) averaging and

weighted averaging. Ensemble averaging, is the usual method for improving SNR
(Harrison and Lovely, 1995) in evoked potential studies. The assumptions and some
of the properties of averaging are also relevant to other techniques and so will be
discussed in detail here.

2.1.1 Ensemble averaging
Ensemble averaging is where the mean value across all the signals at each point in

time, is calculated. At the end of the process one signal is produced, an averaged

signal. For averaging to be valid, assumptions about the signals have to be made

(Glaser and Ruchkin 1976).

¢ The recorded waveform is a linear sum of the noise and the evoked response.

¢ The shape of the waveform is attributable solely to the stimulus and is the
same for each repetition. The evoked response is assumed not to change
between each repetition. All the components of the e¢voked potentials are
considered to be locked to the stimulus. Variations in the position of the features
are known to be possible between responses (e.g. Rossini et al., 1981, Maccabee
et al. 1992).

o The contribution of noise to the observed data is sufficiently irregular that it

can be considered statistically independent samples of a random process. In
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other words, the noise is considered random and uncorrelated with the response.
If applying a stimulus alters the noise, then this change is part of the response.
Usually the noise is considered to be '‘white' noise (zero mean value, with a
Gaussian distribution).
In the ideal situation, it can be expected at some time, ¢, for a similar peak will be
present in all the signals. The noise is assumed a random signal. As the number of
signals (N) used in the average increases, the contribution to the overall signal from
noise increases proportionally to the square root of the number of signals. The
underlying signal has the same value at a point in time in all the signals. As the
number of signals averaged increases, the value in the averaged signal increase
proportionally to N. Signal to noise ratio therefore increases proportionally to the
square root of N.

Consideration of how these techniques are used is needed. To be of use a large
number of responses is often needed, sometimes over 1000 (Morin et al, 1987,
Maccabee et al, 1986) for small components. For late components that are ofien
relatively large 50-256 signals per average have been used (Carlton and Katz
(1986)). There is a practical limit to the number of stimulations per second. This
limit is due to the possibility of components of a previous response overlapping with
components in the current response. Therefore increasing the stimulation rate is
problematic. In somatosensory evoked potentials this is often a maximum of 2-5
stimuli per second (MacLennan and Lovely, 1995). The large number of responses
needed and the limitation on the stimulation rate, means in order to acquire a
suitable average, several minutes (1 to 5 minutes) worth of recordings are often
needed. Remembering that each signal is produced by a stimulus to the subject, this
is a technique where a person is having a nerve artificially stimulated for several
minutes. Collecting the evoked potentials quickly is useful, as these techniques may
be carried out as part of other activities (such as surgery), or there is an increased
risk of the subject getting bored and therefore moving more, introducing artefacts.
Connected with this, if the peaks in each response are shifted in time, this can lead to
the 'smoothing out' of peaks of the response (IeBron et al, 1995). Therefore, what is
needed is to either collect fewer signals or do more with the signals collected.

2.1.2 Weighted averaging
Davilla and Mobin (1992) have investigated a method in which each response is
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weighted individually. The value of weights were derived from the set of signals to

be averaged x and the ensemble average, x, of the set of signals, by the equation

shown below, where x is the transpose of x.

xxT

|

The Davilla and Mobin method was applied to auditory evoked potentials and

w=

Equation 2-1

showed increased signal to noise ratio compared with ensemble averaging. Using
two estimates of SNR, the authors show an 8 to 21% improvement using weighted
averaging compared to conventional ensemble averaging. The percentage increase in

SNR for each subject was considered independent of the estimator used.

Darragh et al (1995) also compared conventional averaging with weighted averaging
extending the results of Davilla and Mobin. The data used in their study was
simulated using three sets of signals based on exponentially weighted sinusoids.
Each signal was translated along the time axis randomly to simulate random
variations in latency of peaks (‘jitter’). White noise was added to simulate
background activity. They showed a decrease in SNR as the standard deviation of
the Yjitter' increased. The problem with this is that the data is based on a further set of
assumptions to those already discussed, such as the noise being white, or that the
signals can be realistically be modelled as a sets of exponentially weighted
sinusoids. It is questionable that the noise of background activity is white, but

coloured.

Bezerianos et al (1995) applied a different form of weighted averaging; they called it
data dependent weighted averaging (DDWA), to visual evoked potentials. Two
forms of this approach were used: one based on suppressing results that differ
substantially from the rest of the data and a more successful method based on the
signal to noise ratios (the estimator of Coppla et al (1978)). The authors claimed
good results for both methods but no comparison with Davilla and Mobin's method
was given; though reference to the paper was made. One problem with these claims
is the SNR estimator used to test both methods is the same one used to form the
weights of the second method. A method of estimating SNR that is independent of
how the weights were produced would have led to greater confidence in the test

method.
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Both Davilla and Mobin's approach and that of Bezerianos et al were applied to
actual evoked potential recordings. What is not clear is the suitability of these
techniques for signals with SNR significantly lower than the auditory and visual
evoked potentials used.

2.2 Linear Filtering
Filtering is often used to remove certain frequency components of a signal, e.g. the

removal of noise components or investigating the signal over a nartow band of
frequencies. Four basic types of filters are considered low-pass, high-pass, bandpass
and bandstop filters. A low-pass filter attenuates signals above a certain frequency
(cut-off frequency), but frequencies below this cut off frequency pass through
relatively unattenuated. A high-pass filter is the opposite of the previous filter,
attenuating signal companents below the cut off frequency. The third type of filter is
a bandpass filter that has two cut-off frequencies. Frequencies between these two
cut-off frequencies are passed through relatively unattenuated. All other frequencies
are attenuated. A bandstop filters is the opposite of the previous filter, all the
frequencies between the two cut-off frequencies are attenuated, all others
frequencies are passed through relatively unattenuated.

Bandpass and high-pass filtering methods have been applied to evoked potential
recordings, often to remove low frequency components that would otherwise
dominate the signal. Several groups have used bandpass filters with relatively high
cut-off frequencies (2 kHz - 3 kHz), e.g. Maccabee et al (1983), Rossini et al (1981).
All of these groups applied filtering to signals averaged with large numbers of
responses. Removing the low frequency signal components was found to make
detection of other components at higher frequencies possible, especially for the early
components. Table 2.1 (at the end of the chapter) contains a list of several groups
and the filters they used.

Analogue filters may alter the phase of the filtered signals and thereby alter the
position of signal peaks; this is phase or latency shifting. The greater the rate of
attenuation of the filter (therefore the higher the order of the filter), the greater the
phase shift (Kriss, 1985). New ‘peaks’ can also be generated by the differential

effects of analogue filters (Campbell and Leandri, 1984). Digital filters can avoid
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this problem, as techniques are available to produce digital implementations of the
analogue filters that do not produce any phase shifting in the filtered signals. A
digital band pass filter, 200-1500 Hz, has been applied to median nerve stimulated
responses (Green, 1986). These results show these filters avoided the introduction of
latency shifting. Eisen et al (1984) used a digital band-pass filter (300-2500 Hz) to
remove the effects of the larger low frequency components, similar to the analogue
filtering of others (e.g. Maccabee et al 1983). Their results show no phase shifting
was produced on the signal peaks and the filter attenuated the peaks. Bessel filters
are analogue filters that have a constant transmission delay, that means the effect of
phase shifting filtering can be accounted for. Bessel Filter do have a disadvantage of
having less effective magnitude characteristics than some of the filter types that were
commonly used (e.g. Butterworth and Chebyshev filters).

A positive property of digital filtering methods is they can be implemented in
sofiware and several commercially available packages (e.g MATLAB and
LabView) include commands to implement them. This leads to the possibility of
investigating the effects of altering properties of the filters and combinations of
filters quickly, simply and cheaply, with the possibility of later being implemented is

hardware for quicker operation

Filters set between 20-2000 Hz and 200-2000 Hz have been applied to epidural
spinal cord stimulated evoked potentials (Paradiso et al, 1995). Surface spinal
recordings of peroneal nerve stimulated signals have been made using a bandpass
filter 10 Hz - 1 kHz (Morin et al, 1987). These surface recordings showed little
significant contribution above 500 Hz. Maccabee et al (1986) found that in scalp
evoked potentials due to stimulating the median nerve, most of the spectral energy
was below 125 Hz, with lower energy components extending up to 500-700 Hz. One
group (Maccabee et al, 1986) highlighted that filters can produce artifacts of their
own. For a clinical correlation, they suggested that the filtered signal must be
compared with the all pass signal. This was defined as the unfiltered signal. Only
those peaks that appear in both the all pass and filtered signals were considered
authentic. The problem with this is how to decide that what is present is a peak of
the evoked potential and not noise. Therefore, this kind of comparison is only
possible after a signal has been processed with a technique such as averaging a large
number of signals, to reduce the noise.
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A common feature of most of these groups work is that they do not justify why they
used these particular frequencies for their filter. Bandpass filters acting as high-pass
filters are justified on the grounds that these can be used to enhance the extraction of
low amplitude high-rate components, while suppressing long-latency components
(Maccabee and Hassan (1992)). What is not usually discussed is why those
particular values were selected. A second point is the ‘high-pass' filter approach is
unsuitable if both short and long latency components are of interest. In the paper by
Maccabee et al (1986), some justification was provided by showing a power
spectrum of a scalp recording due to median nerve stimulation. The spectrum
showed different regions of the spectra, Maccabee et al (1986) commented that high
frequency components extended up to 300-700 Hz.

One of the problems with this linear filtering is it that the spectrum of the both the
noise and the evoked potential occupy similar regions (Karajalainen et al., 1999).
This means that a single linear filter is unlikely to extract the whole of the signal.

A related approach (Nishida et al., 1993) was to pass the evoked potentials through,
three bandpass filters at different times and combine the outputs of the filters, to
form a single signal. Scalp recordings of a somatosensory evoked potential were
considered to contain three frequency ranges. The first range is a high frequency
range (64.5 Hz to 300 Hz) occurring at the beginning of the signal. A second range,
a mid frequency range (17.5 to 64.5 Hz) occurs in the middle of the signal. The final
region was a low frequency range (5 to17.5 Hz) that occurs at the end of the signal.
The outputs of the filters are combined depending on where along the time axis the
signal components are. In the range 0 to 25 ms, the high frequency filter provides the
output of the signal. In the time between 35 and 80 ms, the mid-frequency filter
provides the output. For the period greater than 90 ms, the low frequency filter
provides the output. There were no abrupt changes between the various time
segments and filters; a 10 ms transition region was included. During the transition
period, the earlier filter’s contribution decreased as the next filter's contribution
increased, until only the later filter is providing the signal for the output. A different
filter at different times is an extension of the analogue and digital filters discussed
earlier. The group also added an EEG reducing algorithm they developed at the
output of the low frequency filter. The selection of these frequency ranges were
justified by looking at the frequencies in the power spectra of a scalp recorded
15



evoked potential. What is not justified is the time segment sizes. Power spectra do
not show when an event occurred; an assumption is made when using a power
spectrum that the frequency components are present throughout the signal. The
assumption that this group’s work was based upon different filters for different
regions puts into question the validity of using a power spectrum as the basis of
selecting frequencies for the filters. What has not be shown by these authors, or
those carrying out the analogue and digital filtering work is whether there are two or
three distinct regions and if each region is adjacent to the last in terms of
frequencies. The interesting part of Nishida’s paper is combining the outputs of
different filters at different times, to enhance the extraction of the evoked response.

LeBron Paige et al (1996) compiled an ensemble of averaged EP waveforms in a 2-
dimensional (2D) array, for monitoring evoked potentials during surgery. In a 2D
form, peaks and troughs in the evoked potential provide information about the
variation within a response and between responses. If a 'ridge’ is seen to shift during
an operation, one possible reason could be that something is affecting the nerves. A
2D representation also means that some of the methods used in image processing
may be applicable, such as spatial filtering, increasing the range of possible
techniques that can be applied. Low-pass filtering between potentials (i.e. vertically)
has been investigated, the assumption being that the desired waveform variations are
small from one response to another (i.e. low frequency components) and high
frequency components are more likely to contain noise. One problem with assuming
high frequency components can be filtered out, is making sure that early components
are not lost. In intraoperative electrophysiological monitoring (IEM), one objective
is to obtain interpretable EPs as rapidly as possible. The main problem, as has been
discussed earlier (see section on averaging), is the length of acquisition time; many
individual responses are needed to produce a single average with a high SNR.
During the time it takes to produce the average the characteristics of the response
may have changed. This group’s solution was to apply the 2D array to rapidly
acquired EP, with fewer EPs in each averaged response, therefore lower SNR than
an averaged response with more responses. LeBron Paige et al (1996) believed the
added benefits of a 2D approach meant that the SNR can be raised above the low

SNR.
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2.3 Adaptive Filtering
Adaptive filtering techniques automatically adjust the filter based on the input and

past output values. These techniques have been widely used in improving the
extraction of evoked potentials. Usually more than one input channel was used so
that some reference to the noise in the channels can be made. Thakor (1987)
produced a two-channel system where the primary channel (the input to be filtered)
and the reference channel were assumed to have the same signal, but with different
uncorrelated noise imposed on top. The problem with this approach is that the signal
looked for is assumed to be the same each time. Noise power is also assumed to be
lower than the signal power (i.e. a SNR>1), but somatosensory evoked potentials
often have a SNR<<1 (Harrison et al (1995)).

Parsa et al (1994) looked at the cancellation of unwanted electrical activity from
muscles (myoelectrical activity) in recording evoked potentials. They used an array
of electrodes on the forearm, on the same side as the stimulation, with one electrode
over the median nerve and four others over the forearm. The responses were evoked
by stimulation of the index finger. Myoelectric activity meant the SNR for the
evoked potential was low. As the filter is adaptive, the aim is to follow the
nonstationarities of the signal. The stimulus itself produces artifacts; Parsa et al
(1998) investigated the use of adaptive filters, both non-linear and linear, to
attenuate stimulus artifacts. Their results show that a non-linear adaptive filter
produced better cancellation of the stimulus artifact than the linear adaptive filter.
This they believed was due to the nature of the stimulus artifacts generation also
being non-linear. Several recording channels are needed with these approaches to

provide references to extract the signal.

All these techniques either need a good version of the signal or need several
channels of data including one that contains background activity or reference signal.
Approaches that require several channels have practical limitations in clinical
situations and also can not always be applied retrospectively to historically recorded
data where there is no way to control how the data were recorded and the number of
channels used. One possible way to provide the noise data would be to use
recordings, which were recorded immediately before the evoked potential
recordings, but without any stimulation. A problem with this is that a further
assumption has to be made that the properties of the background activity are not
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changed between recording the noise and the stimulated activity. This is an
extension of assuming noise properties do not change with time; i.e. the noise is a

stationary process.

Doncarli et al (1992) used a Kalman Filter to improve the evoked potential SNR.
The somatosensory evoked potentials were recorded from the scalp, in response to
stimuli to the tibial nerve at the ankle. An ensemble of evoked potentials was
produced in the form of a 2D array, in a similar way to LeBron Paige et al (1996).
The approach processes the data vertically to monitor for slow changes between the
responses. The results were shown for both visual and somatosensory evoked
potentials. Only the first 100 ms were considered, so whether this approach is
applicable to latencies above 100 ms is unknown. The authors did suggest that to get
a good estimate of a positive peak around 100 ms (P100) it is best to use 16 signals
in an average, rather than 128 signals. This suggests there is a problem with
variation between the signals of the position of the peaks with time. All this brings
the discussion back to late latency components being more time variant than earlier

components.

2.4 Signal Modelling and Prediction
A moving average filter uses previous input values with appropriate weights (filter

coefficients) to estimate the evoked potential at the output of the filter. Expanding a
binomial expression and using these as the cocfficients of a moving average filter,
Wastell (1979) produced a low-pass filter with no phase shift. This filter was then
applied to visual evoked potentials. The low-pass filter removed the high frequency
noise observed in the unfiltered signal, the expected features being clear of the noise.
Care must be taken that peaks are not smoothed out or removed by this process.
Challis and Kitney (1990) describe ensemble averaging (section 2.1) as a moving
average filter (see Appendix B).

Autoregressive (AR) methods use previous output values from the filter to estimate
the current signal value. The problem with AR modelling is that either the output
values of the filter need to be known beforehand, or the signal to noise ratio needs to
be sufficiently large. A signal with a large SNR can provide a good estimate of the
signal to be used. Lange et al (1996, 1997) used an AR method to produce a single
trial (single evoked potential) estimate of evoked potentials this time for movement
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related potentials by adapting a template of the signal. Norcia et al (1986) applied
linear predictive methods to evoked potential recordings. Predicted output values y
(n) were calculated by convoluting the prediction coefficients with past output
values. Regions of the spectrum where resonance-like peaks occur are heavily
weighted by the Linear Prediction Coefficients (LPC) model and flat regions de-
emphasised. A combined form of time and frequency analysis was carried out using
LPC (Norcia et al, 1986). The aim was not to extract evoked potentials, but to track
variations in frequency components with time. Muthuswamy and Thakor (1998)
used an AR process to form a spectrum of the signal. This approach produced a
spectrum again with the advantages discussed in Norcia et al (1986).

Autoregressive Moving Average (ARMA) techniques as the name suggests are a
combination of both autoregressive and moving average techniques. Hansson (1996)
used a form of autoregressive-moving average, the Prony Method, to form a filter
for filtering single evoked potential. In this approach, the signal is modelled as sum
of damped sinusoids. This work was based on extracting parameters for the linear
prediction of the signals from additive white noise, but assumes the signals are linear
and time invariant. There is mounting evidence that these signals are not time-
invariant (e.g. Parker and Goplan (1987)).

Wiener filters, developed in the 1940s by Norbert Wiener (Wiener, 1949), are
optimal filters. Yu and McGillem (1983) used Wiener Filtering to model evoked
potentials. Comparing time-invariant and time-varying Wiener filters, they found
that time-varying filters have superior performance to time invariant filters. Time-
variant filters are better able to deal with effects such as time 'jitter' (variations in the
position on the time axis of a particular peak of the signal, relative to the start of the
signal). Their other main conclusion was that the covariance matrix of the desired
signal is needed, produced either from experimental data, or from a good signal
model.

2.5 A Posteriori "Wiener" Filtering
Wiener filtering refers to techniques, as discussed previously, in which the mean

squared error of the estimate of the signal and the desired signal is minimised, by the
filter coefficients (Hayes, 1996). Usually, as discussed previously, a target signal (or
some knowledge of the signal’s characteristics) needs to be known beforehand.

Methods have been developed that can produce a model from the signals themselves
19



(A Posteriori). Walter (1969) produced a transfer function by dividing the spectrum
of the typical record, by the average of the spectrum of the signals. This transfer

function can be used as a filter.

Sr(w) = NAj IS;( o) - —ﬁl—_-—in(a)) Equation 2-2
_ Sr(w) .
H(w) = o) Equation 2-3

Where Sr(w) is the spectrum of the desired response, Sx(w) is the power spectrum

of the average response and Sx(@) is the average of the individual power spectra.

To recover the average response spectral components, the transfer function H(w) is

multiplied by Sx(w).

Doyle (1975) suggested that Walter’s approach was more suitable for individual
visual evoked response (VEPs) and used a variation of the above equation for
averaged VEPs. In Doyle's methods a transfer function is formed by dividing
Sr(w) by the spectrum of the desired response and the noise spectra shown below: -

4 C) .
H(w) = Sr@) + @) Equation 2-4
Where
nn(w) = 7:/—(517:(0)) - Sr(w)) Equation 2-5

Walter used very simple signals, as his calculations were mostly done by hand and
simulated background noise as ‘white noise’. Doyle considered the filter to be
accentuating the frequency components of the signal where the desired response is
strong and noise is weak (high SNR) and suppressing the frequency components
where the response is weak (low SNR). Both Walter and Doyle used optimal
filtering on signals where the noise does not dominate the signal, which is not the
case in somatosensory evoked potential.
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Carlton and Katz (1980) compared four optimal filtering approaches for
somatosensory evoked potentials recorded from anaesthetised monkeys. These
approaches were the average of optimally filtered sweeps (Walter 1969), optimally
filtering the average of sweeps (Doyle 1975); and recursive versions of the last two
approaches. The recursive approaches were not found to give accurate estimates, so
were not considered further. The average of the signal and the filtered signal over
the same number of signals were correlated with the average of a large number of
samples (256 unfiltered sweeps). Both optimal filtering methods were considered to
preserve the components present in the average. It was found that there was no
significant improvement in the correlation coefficient for the same number of
samples between the unfiltered average and optimally filtered average. A factor that
was suggested for this lack of improvement is that the filter assumes that the
response and the background activity are constant. This does not account for
variations between responses. The use of a correlation coefficient is limited if the

signals looked for vary between the signals.

Dobie et al (1990) applied optimal filtering to auditory evoked responses using
Walter’s method (Walters 1969). Dobie et al and Wastell (1981) both raised the
same criticism of optimal filters; optimal filter performance is superior to signal
averaging-alone, but only at signal levels where the conventional approach
(averaging) already yields a working SNR. Wastell (1981) concluded that given the
computational overheads, this form of filtering is doubtful as a good technique. This
last criticism is less important with computing speed and cost now relatively low.
Furst and Blau (1991) took the work of Yu and McGillem and formed a suboptimal
a posteriari version, using autocorrelation of a set of signals. This approach used
several assumptions that the noise is stationary, zero-mean valued process and the
signal is deterministic. Furst and Blau did point out that the later components of
evoked potentials are less deterministic. With this in mind, it would explain why
they applied this method to Brainstem Auditory Evoked potentials (BAEP) which
are stable for early components. This still does not get around the problem of coping
with low signal-to-noise ratio signal.

The above approaches all assume that the signals are stationary, but as discussed
previously, the signals are considered to be nonstationary as they do not have the

same frequency components throughout the signals. An a posteriori filter that has
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time-varying properties has been applied to evoked potentials (de Weerd and Kap
1981a, 1981b, 1981c). The time-varying property works in a similar way to the
Nishida's linear filter bank approach (Nishida et al, 1993). The ratio of the central
frequency and bandwidth of the filters is constant; filters with a wide bandwidth
extract the later components, whereas filters with a narrow bandwidth extract the
early components, with overlap between filters. The assumption is made that early
components contain high frequency components and the later components contain
predominantly low frequency ones. The signal is passed through these filters, which
filter at different frequency ranges and a time-varying function is applied so that the
filters contribution to the overall signal varies with time. In the de Weerd approach,
the time-varying signal at the output of the filters is determined by the signals. Some
criticism has been made of the work by Bertrand et al (1994) that the theory of the
approach was lacking De Weerd et al admit this, both groups agree that it did
appear to work for the signals used, but all the signal used had relatively large SNR.
This approach is a sensible direction because it enables time vaniation of the signal
properties to be included in the modelling process.

2.6 Wavelets
Wavelets and time-frequency techniques are being increasingly used in the analysis

and processing of biomedical and biological recordings. Using wavelets to extract
evoked potentials from noisy averages has been investigated (Lim et al, 1995; and
Bartnik et al 1992a, 1992b). This technique uses the wavelet’s ability to decompose
a signal into several signals, then to remove or alter some of the signals and then
recompose the signals. Lim et al. (1995) applied this to evoked potentials caused by
stimulation of respiratory muscles and found for these signals only a few wavelets
are needed to extract the features they were interested in. These methods were able
to extract some peaks but not all. Bartnik's group (Bartnik et al 1992a, 1992b) used
auditory evoked potentials, obtaining a representation of the signal using one of the
decomposed wavelets produced (in the range 2-8 Hz), though it does appear as if

small components were being lost.

The fact that the wavelet approach produces both frequency related and time related
components has been used by Journee et al (1995), to build a time-varying filter (a
filter whose spectral properties vary with the signal). In their approach the averaged

signal is processed into wavelet components, each of which approximately related to
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a different, adjacent, bandpass filtered version of the signal. The signal represented
as a set of filtered signals and each value in the signals is a component. Instead of
treating these as a set of filtered signals, the components were treated as measures of
how well this signal at that time ‘'matched’ a particular size of wavelet. A
representation of how the frequency components of the signal vary with time can be
formed. In other words as different 'sizes' of wavelets represent different bandpass
filters, the components can be thought of as relating how a range of frequencies
varies with time. The maximum absolute value of all the components was found and
any component whose value is less than 5% of the maximum value is set to zero.
This is based on the assumption that noise components are from a white noise (e.g.
for EEG (Cadwell and Villarreal, 1999)) and likely to be smaller than signal
components. Therefore, by setting the smaller components to zero the noise
components should be reduced. A signal to be filtered is then processed into time
and frequency related components and multiplied by the previously developed filter.
The inverse of the wavelet transforms is applied to the resulting signal, acting as if
the signal has been filtered. In all three groups, an assumption was made about what

the desired signal should look like.

A modified form of Doyle's a posteriori optimal filter (1975), where the power
spectra are replaced by squared discrete wavelet transform components, has been
investigated by Bertrand (1994). The ‘optimal' filter now has time-varying
properties, which can be seen as an extension of the work of deWeerd (1981a) into
time-varying optimal filters. What is not clear in the paper is how much of an
improvement over just averaging this is, and what the effect would be of using
single evoked potential recordings, or a smaller number of evoked potentials, in a
subaverage. As a concept it is of interest because it provides a possible method of
producing a time-varying filter, without having an ideal signal known beforehand
(see section 2.5). Geva et al (1995, 1997), used 'wavelet-like' analysis to model the
spatial and temporal characteristics of neurological signal generators. The ‘wavelet’
they chose to use was the Hermite function, which is based on the first and second
derivatives of the Gaussian function. The reason for choosing this wavelet was its
shape, as it resembles monophasic and biphasic shapes found in evoked potentials.
The shape of the wavelet can improve the ability of wavelets to extract a signal.
Samar et al (1996) used a modified form of a Meyer wavelet to match the shape the
features of an auditory evoked potential. The method was applied to the early
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components of the signal. Isoglu et al (1998) used wavelets to decompose an evoked
potential, in a similar ways to that of Bartnik et al (1992a). Lewalle et al (1995) used
wavelets to analyse olfactory nerve response to a stimulus. Saatchi et al (1997) used
a combination of wavelet analysis and artificial neural networks to filter evoked

potentials.

2.7 Artificial Neural Networks
Neural networks have been used to filter visual evoked potentials (VEPs) (Fung et

al, 1995 and 1996). A multilayer perception (MLP) network was used as a filter. The
contents of a moving window formed the inputs to the neural network and the output
is a non-linear combination of the inputs. The neural network estimates the VEP
presented by estimating the components that can be determined and removing noise
that is uncorrelated with the stimulus. The training signals have SNR of
approximately -5 dB. The target signal is an ensemble average of 100 responses and
has a higher SNR. Simulated results shows that the system can improve the SNR of
single VEP, so reducing the number of responses per stimulus. No inter-subject
analysis has been carried out to see if one filter can be used on several people, or if

you need to get an average of 100 responses from each person.

Another form of neural network, the Hopfield network, was used to produce a robust
moving average (Laskaris et al., 1997). The network was used to implement cluster
analysis, in which the core of the cluster acts as an estimate of an instantaneous
visual evoked potential signal. Tian et al (1997) used a neural network to estimate
the latency of auditory brainstem tesponse. The filter produced was developed to
extract every peak possible without introducing a shift in the position of the peak.
Amplitude distortion was considered irrelevant, as the estimation of the latency
contains the medically significant information. The network was implemented as a
four layer MLP, where the input is in the principal component projection values of
the training and test data sets (15 principal component were used). The output of the
network is compared with the results of the same data as assessed by an audiologist,
with the results showing good correspondence between the two. The paper raises
some interesting points such as how much importance should be attached to
preserving relative amplitude values, if the important information is in the latencies
of the peaks.

A neural network approach has also been investigated by Grieve et al. (1995) to
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remove the stimulus artifact. The network was trained with a reference signal that
was not recorded over the recording site but near by, as the input to the network and
the primary signal from the recording site as the target for the network. The network
attempts to predict artifacts in the primary signal using artifacts in the reference.

Their initial work suggests that the network was able to cancel stimulus artifacts.

The neural network approaches have been mainly developing non-linear filters,
which are reported to have some success. What the resulting model does is not

always as easily interpreted as either a single or a set of linear filters.

2.8 Evolutionary Algorithms
Evolutionary algorithms are a range of techniques including genetic algorithms (see

chapter 5), and genetic programming, which are based on the concepts of evolving
solutions to problems. Laskaris et al (1996) used a genetic algorithm to estimate a
signal by taking the average of selected signals. Possible solutions were encoded as
a binary sequence, with a bit per signal in the set. If the bit is '1' then the signal was
included, if '0' then it was excluded. The algorithm was used to select the sets of
signals whose average produced the maximum value for the equation they used.
Evolutionary algorithms were used because they have proved a robust search
method in a large space, starting from an initial set of possible solutions, they create
sets of better solutions. This work is an extension of this group’s work discussed
previously into weighted averaging (Bezerianos et al, 1995) and it seems to be the
first use of an evolutionary algorithm approach to enhance the extraction of evoked
potentials. They themselves point out the problem that more work is needed to
extract more 'subtle’ peaks in the signals.

29 Summary
What these papers suggest is that there is a need for a method that can extract key

clinical features of the signal using a small set of signals. This is needed to avoid the
problem of a detrimental smoothing effect, due to the shifting of the latency of the
peaks with time.

Search techniques are being increasingly used to extract or enhance evoked

potentials, including evolutionary algorithms. The nature of evolutionary techniques,
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such as genetic algorithms, has potential for limiting and possibly testing the
assumption made, at the same time as enhancing the SNR of the evoked potentials.

At the same time new techniques such as wavelets are being increasingly used.

Many assumptions are made about these signals, some which conflict and are often
subjective or made with little justification. A method that can extract the evoked
potential with limited assumptions would be useful, not only as a technique to
improve SNR but to produce a better understanding of the properties of evoked
potentials. Evolutionary algorithms provide a way of limiting the assumptions made,

by searching for solutions from an initially random set of solutions.
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Stimulated

Recording Range (Hz)
Author Nerve Site Min Mazx, | Comment
Paradiso et al (1995) Epidural spinal Scalp and Cervical 20 2000 | 20-2000 is the ‘open bandpass’ range and 200-
Spine 200 2000 | 2000 is for early latency component enhancement
Nishida et al (1993) Median Scalp 5 12.5 Filter bank
17.8 64.5
64.5 300
Morin (1987) Peroneal Spinal 10 1000 | Digital filter applied to surface recordings.
Maccabee et 81(1986) Median Scalp 30 3000 | Digital filter, 30-3000 Hz used for all latency
150 3000 | componeats, 150-3000 Hz and 300-3000 Hz, act
300 3000 | As high-puss fiiters for short ©0
Green et al (1986) Median Scalp 200 1500 | Digital filter used to enhance easly latency components.
Acting as » high-pass filter.
Rossini et al (1985) Median, peronea! Spinal 200 5000 _
Eisen et al (1984) Peroneal Scalp 300 2500 | Digital filter used to enhance early latency
Median Spine 300 2500 _{ Components. Acting as high-pass filters.
Nuwer & Dawson(1984) Peroneal Spinal 30 3000
Maccabee et al(1983) Median Scalp 5 3000 _} Analogue filter, 5-3000 Hz used for all latency
150 3000 | components, 150-3000 Hz and 300-3000 Hz, act
, 300 3000 | Ashi s filters for short components.
Rossini et al{1981) Peroneal Scalp 150 3000 | Analogue filter used to enhance early latency

components. Acting as a high-pass filter.

Table 2-1 Analogue and digital filters used to filter samatosensory evoked potentials,
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3 Data Sets

All signals in this study were historical recordings, recorded either during spinal
operations or from scalp recordings, were recorded by Prof. J. Campbell at the Walton
Hospital, Liverpool. The recording methodology is described in Campbell (1985) and is
briefly described below. A description of the data sets is included, also included are
power spectra of background activity, single evoked potentials, and averaged signals.

3.1 Recording Methodology
Recordings were made using surface electrodes on the scalp or by electrodes placed

within the anterior quadrant of the spinal cord.

3.1.1 Apparatus and storage.
Electrodes were connected to the inverting input of a differential pre-amplifier in a

MEDELEC MS6 EMG machine. Pre-amplification by a factor of 15 was applied to the
signals. All the signals were filtered by a bandpass filter with a passband of 0.016 to
750 Hz. Signals were then stored on FM tape (BASF super-ferro LH), using a STORE
4 FM tape recorder (Racal Recorders, UK) recorded at tape speed of 3.75 inches per
second. A model of the system is shown in figure 3-1. Both the intraspinal and scalp
recorded evoked potentials were produced by electrical stimulation of the median nerve
in the left arm. A stimulation rate of two pulses per second was selected to provide a

sufficient interval between evoked responses.

Stmolator

Subject [::> Amplifier Bandpass filted FM Tape
x15 0.01 750 Hz .
Boﬁllinc
Filtered _
Filte
Results <:_____‘ g <::j PC @ DAQ

Figure 3-10utline of the systemn

MEDELEC MS6
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3.1.2 Data Collection

Data were collected from the tape using a Gateway 2000 Pentium P90 computer, via
an interface card and data acquisition software (PC30F, Eagle Technology). Signals
were stored as a set of binary data files by the data acquisition software, collecting
three channels of data at a time, 2 recording channels and a third channel indicating
when the stimulations were produced. A set of routines was developed in the
MATLAB (MathWorks Inc., USA) programming language to convert the signals
from a binary format into a set of single responses 400 ms long, stored in
MATLAB’s file format for ease of handling. The signal amplitude was left
unaltered.

3.1.3 Power spectrum
Power spectra were used as a method of gaining further understanding of some of the

frequency characteristics of the signals and background activity. The MATLAB
command PSD was used to produce power spectral density estimates. The default
values for this command were used, with the sampling frequency set at 7.5 kHz. The
number of samples by which the sections overlap is zero and a Hanning window was
applied. The power spectral density was estimated using Welch’s method (Hayes,
1996). This approach was chosen because it is the standard MATLAB method for
calculating power spectral density. Other options were considered but this was
decided upon as being both appropriate to the task and convenient. There are
difficulties with using power spectra to analyse signals, as it assumes the spectral
components of the signal are constant throughout the signal. This is not necessarily
true for all signals. Even with these problems, power spectra are used to gain some

understanding of the signals, as well as a starting point for further analysis.

3.2 Assumptions about the signals
The assumptions made about the signals were:

e Noise is assumed independent of the response, but not necessarily white noise
source. The possibility that the noise is structured is allowed for.

e The signal looked for has a similar shape to the target signals.

¢ Noise and signal are assumed to be linearly summated.

e Averaging can make some improvement in SNR.
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e The averaged signal of a large number of signals is a good representation of the

responses.

3.3 Intraspinal Recordings

33.1 DataSetl
Recorded data consisted of 222 responses, from a single subject, collected from the

tape. Thirty-eight responses were excluded from the experiments. The exclusion
criteria were the same for all the data sets. If the signals contained artifacts such as
‘clipping’, flat responses, or very abrupt changes in the baseline within the signal,
the response was excluded. These artifacts were taken to be due to the recording sct-
up and are not due to the responses. Using the remaining 184 recordings, two subsets
with 92 responses in each were formed into a training and test subsets. The target
signal (ideally the signals in the data set should have peaks in similar places to those
in the target signal) was produced from an average of the 184 responses (see figure
3-2c and d).

W0 20 30 00

Time(ms) Time(ma)

Figure 3-2 (a) 20 and 40th signals in the test subset of data setl, (b) 20 and 40th signals in the
test subset of the simulated data set. (c and d) are the target signals.

Figure 3-2 shows one of the problems with these signals, that of low frequency
components obscuring some of the features of the responses. The upper left plot

(figure 3-2(a)) shows two examples of responses of a spinal recording.
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Frequency(Hz)

Figure 3-3 (a) unfiltered recorded signal, {(b) target signal

In figure 3-3 the power spectral density (PSD) of an example of unfiltered signals
and the target signals are shown. Both of these spectra are both dominated by the low

frequency components.

3.3.2 Simulated Set
Pre-stimulus recordings, i.e. electrical activity recorded just before stimulation

occurred, were used as a source of background activity. The background activity was
added to a repeated set of the reference signal to create a set of simulated recordings
comprising a known signal and noise. This simulated data (target signal and noise)
set was split into a training set (55 responses) and a test set (56 responses). The pre-
stimulus recordings were taken from the same site as the evoked potential recorded
in data set 1. Activity recorded without the stimulation was considered a model of
the noise that would be present during a recording of evoked potentials. The result
was a set of signals, where the underlying signal was the same in all examples, but
was corrupted by noise, which is different in each example. The simulated data sets
used in some of the previous techniques have been a combination of a signal and
white noise. The difference here is that the noise used in combination with the signal
is the electrical activity when no stimulus is applied - no assumption are being made

that the noise is a Gaussian noise source, only that it is reasonably representative.

Both the training and test subsets were subaveraged (i.c. split into groups of a set
number of signals and each group produced an averaged signal) and the whole data
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set was used to produced an averaged signal. In figure 3-2, the upper right plots
show two simulated signals, which are like those of the two example of recorded

response, show a signal where the response is obscured by noise.
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Figure 3-4 simulated data (a) 20® signal, (b) noise and (c) target

In figures 3-4, the PSDs for a corrupted signal, noise and the target signal are shown.
MATLAB command PSD was used with values as used previously. Comparing by
inspection, the spectra of the noise and the noisy signal, it is difficult to see a
considerable difference between the two spectra. The target signal and noisy signal

are different, so this suggests noise dominate the simulated signal.

Figure 3-5 shows a comparison of an example of the recorded noise and a randomly
produced signal. As there is a pre-filtering stage during recording, the noise is band-
limited. Even considering this, there is a clear difference between the two signals,
suggesting the noise can not be considered to have a Gaussian distribution which is

an assumption that is often made.
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3.3.3 Data set two

A second set of spinal recordings was produced from a different subject in the same

way as the previous data set. Test set has 117 responses and the training set has 116

responses. A spectrum of an example is shown in figure 3-6.
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Figure 3-6 Example of the PSD of data set 2 signal (b) the target signal for data set 2

3.4 Scalp recordings

Two data sets were recorded from the scalp. Data set 3 contains 83 signals in training

set and 83 in the test set. Data set 4 contains 122 signals in the training set and 121

signal in the test set. The target signals were formed from all the signals in each data
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set. Two examples of the power spectral density plots for signals from two data sets
(figure 3-7 and 3-8) data set 3 and data set 4 respectively. The upper plot in each is
an example of a single response, arbitrarily selected as the 20" in each test data set.
The lower plots are the power spectral density plots of the target signals for each
data set.
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Figure 3-8 An example of the PSD of data set 4 signal (b) the target signal for data set 4

As with the spinal recordings, the differences between the PSD of the signals and the
target signals are not clear apart from an overall decrease in the PSD magnitude for
the target signal.
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3.5 Discussion
Five data sets have been produced. Three data sets for spinal recordings (one of

which is a simulated data set) and two data sets for scalp recordings. The spectra
show that signal energy was concentrated at the lower end of the frequency
spectrum, This is in agreement with some of the comments made by other groups
about the use of high-pass filtering to remove low frequency components of the late
latency signal components. The problem is that power spectra can not be used to

confirm this, as information about where in time a particular feature occurs is lost

with a power spectrum.
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4 Signal Analysis and Filtering

In this chapter, the selection of an imitial set of linear filters for the signals will be
investigated. In the previous chapter, signal analysis was carried out in the form of
the power spectrum. The problems of power spectra for selecting filters and
alternative method that contains time information will also be discussed.

4.1 Filter Selection
The first approach to filter selection used the power spectrum of the averaged signal

(Turner et al (1997) see Appendix D).
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Figure 4-1 The target signal for the simulated data set and data set 1 (a) Power spectra of the
averaged signal (target signal) (b) the low frequency components of the target signal, (c) the
averaged signal.

The power spectrum of the target signal for two of the data sets (simulated and data
set 1) is shown in figure 4-1. The upper graph shows the power spectrum of the
target signal over the range 0 to 750 Hz. It can be seen that most of the signal power
is in the lower frequency components. The lower spectrum shows that the majority
of the signal’s power is below 25 Hz.

Before looking at what the signals after filtering, it is worth considering what the
signals look like before filtering. Figures 4-2 and 4-3 show test signals for the
simulated and data set 1 respectively, both show three different sets of test signals.
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The first is a set of examples where there has been no processing, in the second all
signals were pre-processed as a set of averages of four signals and the third shows
averages of 10 signals. From the theory of averaging, the more signals in an average,
the better the SNR. This improvement can be seen by a comparison of the
unaveraged and averaged signals, with that of the target signal (figure 4-1). There is
a greater similarity between the target and the larger averaged results, than for the
unaveraged test signals. Visual inspection is used here and throughout the thesis,
because the assumption that will be made throughout the thesis is that the filtered
signal must be similar in terms of position in time of peaks to the target signal.
Inspection is a way to check this as well as demonstrating what the signals will look
like.

0 M4m0
Time{ms) Tima {ms) Time (ms)

Figure 4-2 Set of simulated test signals before filtering.
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Figure 4-3 Set of test signals from data set 1 before filtering.

Initially a low-pass filter with a cut-off frequency of 30 Hz was used on these two
test sets. Based on a visual inspection, the filtered results appeared to have unwanted
low frequency components compared to the target signal. The literature was
reexamined, to consider what the frequency components of other group’s filters
were, as a way of finding possible cut-off frequencies. Maccabee et al (1983) used a
bandpass filter with a passband from S to 3000 Hz for what they called their ‘open-
pass filter’. In this study, the lower frequency (5 Hz) was adopted for this data set,
but 30 Hz was used as the upper limit. Visual inspection is an appropriate method for
comparing signals since the end-use are typically clinicians who make diagnosis
based on visual inspection of the signal, looking for appropriate key features. Later
in this chapter an additional numerical methods will be introduced which is also used

to compare the waveforms.
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Figure 4-4 Filtered with a bandpass filter 5-30 Hz for simulated test set

Figures 4-4 and 4-5 show results of applying this filter to these two data sets. In both

figures, the performance for the later large components of the signal indicates the

filter's ability to improve the clarity of these peaks. However, the smalier early

components are lost using these filters.
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Figure 4-6 Power spectra for the target signal of data set 2 and the target signal

Figure 4-6 shows the power spectra of the target signal for data set 2. The spectra
again show power that is predominantly in the low frequency range of the signals, up
to around 60 Hz, so a bandpass filter with cut-off frequencies at 5 and 60 Hz was
selected. Again, the lower cut-off frequency was selected from the work by
Maccabee et al (1983). Figure 4-7 shows the results before filtering has been applied
and there is not a great deal of similarity between these signals and the target signal.

No average Subaverage:- 4 Subaverage:- 10
9

0 200 40 g 200 0 0 200 400
Time(me) Time (ms) Time (ms)

Figure 4-7 Set of test signals from data set 2 before filtering.
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Figure 4.8 Filtered with a bandpass filter 5-60 Hz for the test set of data set 2
As could be expected, the filter (figure 4-8) has removed some of the noise but it is
difficult to see similarities between these signals and the target.

1®

-

[ JURPRER -

Magnitude {dB)
=
&
‘
i
1

Lo SR B R
go3g--—-- i
re : ' :
§02 REEEE PR L
B H ' '
g N
£01 by ;
] - F— o4 : : ;
50 10 15 20 0 100 200 300 400
Frequency (Hz) Time (ms)

Figure 4-9 Power spectra of the target signal for data set 3 and the target signal.

Figure 4-9 shows the power spectra for the target signal of data set 3. Two possible
filters were investigated. First, a low-pass filter up to 60 Hz because of some of the
small components up to and around this frequency value (figure 4-11). The second
low-pass filter has a cut-off frequency at 20 Hz, as most of the signal's energy occurs
at frequencies below 20 Hz (figure 4-12). Visually the results of filtering with the
60Hz filter (figure 4-11) were ‘noisier’ than those of the 20 Hz filter (figure 4-12).
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The peaks in the 20 Hz were similar to smoothed versions of those in the target

signal (figure 4-9).

No average

Subaverage-4

Subaverags-10

i

s
o

"
WM

.........

Figure 4-10 unfiltered data set 3 test signals
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Figure 4-11 Filtering the test signals of data set 3 with a low-pass filter (60 Hz).
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Figure 4-12 Filtering the test signals of data set 3 with a fow-pass filter (20 Hz).

Figure 4-13 shows the target signal and its power spectrum of the target signal of
data set 4 and the similar illustrations for the unfiltered test signal are shown in
figure 4-14. Again, the signal energy is predominantly below 20 Hz as in data set 3.
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Figure 4-13 Power spectra for the target signal of data set 4 and the target signal for data set 4
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Figure 4-14 Unfiltered data set 4 test signals

Looking at the filtered results for this data set (figure 4-15) using 2 20Hz low-pass
filter in the subaverages of 10 signals, there appears to be a common peak to many of
the signals in this set is between 100-200 ms. This can be seen in the some of the
unfiltered signals results (figure 4-14), but not as clearly as in the filtered signal.

No average Subaverage:- 4 Subaverage:- 10
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Figure 4-15 Filtered test signals of data set 4

Looking at figures for the filtered results, relatively small early components are often
lost. This loss is probably due to the fact that the early components generally include

high rate peaks than the later components, as these filters have removed high rate
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(and therefore usually higher frequency) components. One possible way around this
is to build a bank of filters that occur at different times. This was the approach of
Nishida et al (1993). They looked at the power spectrum of the target signal and
suggested that there were three regions in the spectrum that occurred at three
different times during the signal. There are problems with that approach, such as
assuming that each spectral region is adjacent to the next. This raises the question of
when does one region start and the previous region finish, something that cannot be
derived from the power spectrum. This approach of making filter selections by
power spectrum or the approach of Nishida et al (1993) therefore was not
investigated further, due to this inability of the power spectrum to represent when the

transition between regions occurs.

Mean squared error (equation 4-1) between the filtered signal and the target as a
measure of the success of selecting filters using power spectra and averaging-alone.

It requires only the assumptions that have already been made.

1
MSE = —ﬁZiv_le(k)z Eguation 4-1

Looking at the MSE values for the unfiltered averages (table 4-1) and for the filtered
averages (table 4-2), it can be seen that filtering did produce lower MSE values.

4.2 Spectrograms
Spectral analysis using PSD assumes that the spectral properties are the same

throughout the signal. An alternative is to use techniques that display variation in
frequency with time. Spectrograms are one such technique, computing a windowed

discrete-time Fourier transform of a signal using a sliding window.
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Figure 4-16 (a) target signal (data set 1), spectrogram of the target signal (a)

In figure 4-16, the upper plot shows the target signal for data set 1 and the lower
graph shows the spectrogram of the same signal. The spectrogram shows that the
signal contains predominantly low frequency components (<100 Hz), but that there
is variation in the magnitude of frequency components with time. To illustrate the
effect, a single continuous set of frequencies that is the same all through the signal is
shown in figure 4-17, using two sine waves at 500 Hz and 2500 Hz. These were
selected to show the spectrogram’s ability to show the different sinusoids, both of
equal magnitude.
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Figure 4-17 (a) a combination of 500 Hz and 2500 Hz sine waves, (b) spectrogram of (a)

Comparing figure 4-16 with 4-17 there is not a strong peak going through all the
plots of figure 4-16, but for the low frequencies, there are relatively high values.
Comparing the spectrogram of the background activity (figure 4-18) with that of the
averaged signal for the same subject (figure 4-16). The most noticeable difference is
that the background activity (figure 4-18) has a notable amount of high frequency
activity (>400 Hz) compared to the target signal (figure 4-16).
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Figure 4-18 (a) An example of background activity (b) spectrogram of (a)
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One problem with this approach is that all spectrograms of the recorded activity
(figure 4-16 and 4-18) have a lot of low frequency activity. It is not possible to
‘zoom-in’ on the lower frequency (figure 4-19) more than the high frequency

components, without losing the time resolution.

0.2
Time

Figure 4-19 Spectrograms of (a) the single trial evoked potential (individual responses) , (b) and
(d) two examples of background activity (noise), (c) of an averaged response.

4.3 Conclusions
Consideration of both the spectrogram and the shape of the signal (smaller high rate

components at the beginning of the signal and larger lower frequency components at
later portions of the signal), suggests these signals are nonstationary. Often the
difference between the unfiltered signal spectra and the target signal is a —20dB
change in amplitude. Looking at the individual recorded responses (figure 4-19(a)),
the range of frequency components in the target signal and the noise do overlap.

This can be seen both in the power spectral density plots and the spectrograms.

Selecting a filter based on a power spectrum has been a useful method for exploring
some of the disadvantages and advantages of linear filtering. The aim of this section
was not to claim a new method, but as a first attempt at selecting appropriate filters.
A significant disadvantage is that care must be taken when interpreting the results as
being peaks of an evoked response and not as noise. The advantages are that linear

filters are easy to implement and understand. This work also justifies some of the
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decisions made by other researchers in their selection of cut-off frequencies for their
filters to remove long latency (late components) effects. The filters generally seemed
to be attempting to extract the late components. The region containing the late
components is the biggest region of the signal often with the most dominant features
(compared to the region of the early components). It is not surprising that a method
that looks for where in a spectrum the majornity of the signal energy occurs in the
extracted the dominant features in the signal. This method works best for the signals
such as the simulated and data set 1 test subset where averaging also works well.

Data set No .of signals | Mean Squared Error
in an Average | Min (107) | Max (10¥) | Mean (107) | Std (107)
Simulated | 1 0389 9.482 2.656 1.962
0.140 7.710 1.830 1.590
4 0.079 1.620 0.781 0.504
10 0.097 0.295 0.181 0.086
Dataset1 |1 0.896 3837 10.66 8277
2 0.694 23.90 8.093 5842
4 0.746 9.851 4261 297
10 0.329 2.050 0.994 0.542
Dataset2 |1 0472 10.100 3.564 2112
2 0456 3952 1.78 0.963
4 0.201 0.823 0.396 0.143
10 0.071 0.267 0.141 0.073
Dataset3 |1 1.766 33.890 6.666 4622
2 1.051 15.27 3353 2.412
4 0.019 4.841 1.688 0971
10 0376 1.470 0.798 0343
Data Set4 | 1 0.199 6.630 0.651 0.714
2 0.122 1.309 0.323 0.228
4 0.055 0.372 0.159 0.084
10 0.028 0.123 0.058 0.026

Table 4-1 Unfiltered results
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Data Set Filter No. of signals | Mean Squared Error
(Hz) in an Average | Min (107) | Max (10*) | Mean (107) | std (107)
Simulated 5-30 1 0.049 1.630 0.251 0.256
0.053 0.507 0.149 0.108
4 0.652 0.234 0.105 0.048
10 0.065 0.098 0.077 0.015
Data set 1 5-30 1 0.176 3.111 0.959 0.662
2 0.163 2432 0.645 0.467
0.189 1.001 0.426 0.223
10 0.168 0.538 0.280 1.180
Data set 2 5-60 1 0.178 1.587 0.627 0.284
2 0.115 0.617 0.342 0.114
4 0.103 0.297 0.176 0.049
10 0.029 0.084 0.055 0.017
Data set 3 <60 1 0.837 32.023 5.343 4.44]
0.484 14.511 2.711 2.351
0.325 4513 1.381 0.942
10 0.296 1.322 0.684 0.317
Data set 3 <20 1 0.354 30.112 4.344 4,105
2 0.243 13.803 2232 2.231
4 0.209 4,191 1.154 0.887
10 0.247 1.203 0.589 0.294
Data set 4 <20 1 0.053 6.412 0.489 0.703
2 0.051 1.181 0.244 0.219
4 0.026 0.319 0.121 0.081
10 0.017 0.104 0.045 0.024
Table 4-2 Filtered results
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S Evolutionary Algorithms and Single Filters.

In the previous chapter a method was considered to aid the extraction of evoked
potentials from noisy recordings by selecting a filter based on an averaged signal’s
power spectrum. In this chapter, an evolutionary algorithm is used to select a filter
for each data set. The evolutionary algorithm is used to select the upper and lower
cut-off frequencies of the filter’s passband, as well as to select a weighting factor

that is applied to the filter’s output.

5.1 Whatis an Evolutionary Algorithm?
Evolution by natural selection is one of the most important and probably the most

debated ideas in science. Computer scientists have looked at the idea of how processes
based on evolution could be used as an optimisation tool for solving engineering
problems. Goldberg (1989) provides a historical overview of evolutionary computation,

suggesting a field that has a relatively long history, but which is still developing.

The most widely known of these are genetic algorithms, invented by John Holland in
the late 1960s and developed further in the 1970s (Holland 1995). Genetic algorithms
are based on the application of evolutionary concepts of natural selection, mutation and
reproduction to select solutions to problems. Survival of the fittest solutions is the aim
and is achieved by letting the fittest candidate solutions (or parts of the solution) pass
into the next population of solutions. A set of solutions evolves over time, with ‘fitter’
individual solutions (individuals) adapting to their 'environment'. Some of the language
of biology has crossed over into these applications. A population is a set of possible

individuals. A chromosome is an individual in the population (i.e. a possible solution).

Genetic algorithms are often represented by a sequence of bits. Binary sequences are
not the only possibility; the use of integers and floating point numbers is also
possible. To minimise any confusion the term genetic algorithm is used here to refer
to an algorithm based on binary sequences. The more general term, evolutionary
algorithm is used here to refer to an algorithm based on non-binary sequences. This

is discussed further in section 5.1.2.
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Evolutionary and genetic algorithms have been used in an ever-growing variety of
applications. Some related applications in signal processing include the selection of
signals which will contribute to form an averaged signal (Laskaris et al., 1996), or
modelling sources of electrical activity from scalp recordings (McNay et al, 1996,
Aguiar et al, 2000). This approach has also been used to select parameters of a filter for

glucose monitoring using infrared spectra (Schafer et al., 1996).

5.1.1 General overview of evolutionary algorithms
The design of an evolutionary algorithm involves

e Encoding the individual. Selecting the way the parameters are encoded within the
individuals.

e Choosing a fitness function. The aim of using an evolutionary algorithm is usually
to end up with the best individual, the algorithm needs to include a mechanism to
determine this.

e Selecting how individuals will ‘breed’ and appropriate rates of mutation. Natural
selection is not only about keeping the ‘best’ individuals, it is also about the
individuals passing on their traits into the next population. So a mechanism is
needed to select individuals and combine parts of these to produce a new
individual. Changes (mutations) can also be introduced randomly to the sequence to

produce new individuals.

Using an evolutionary algorithm involves

o Testing the fitness of the individuals in the population.

e Selection and crossover of sequences to form new individuals.

e ‘Mutating’ some of the elements in an individual.

e Iterating this process, until a certain condition is met. The ‘best’ individual is
unlikely to be found in the first population, but by iterating through this process

refining the individuals, a good individual can often be found.

5.1.2 Coded Sequence
The first stage of the process is to construct a set of coded sequences. A genetic

algorithm is usually a sequence of binary digits or Gray code, but other representations
are possible. It is usual to produce the initial population randomly. A binary
representation allows the crossover to occur within a binary number. Crossover
within a number allows the possibility of the value of a section of code to change

considerably just by changing a single bit. Genetic algorithms using binary
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representation (when single-point crossover and binary mutation are used) can be

considered robust algorithms (Davis 1991).

It has been stated that floating-point values are "intuitively closer to the problem
space” (Michaelwicz 1996, pp. 106). Applications sometimes require the range of
possible numbers to be large, at the same time maintaining precision. If implemented
as a binary representation this could lead to long sequences of binary digits, so a
floating point representation may be more appropriate. There is opposition to using
floating point numbers; one of the arguments put forward by Goldberg (1989) is that
it is distant from any biological precedent, especially from the notion of simple
mutation. In terms of an analogy of modelling the chromosome as a string of coded
letters, binary sequences (Holland, 1995) are closer to the idea of a gene, using a
limited alphabet to encode the sequence. From this point of view, floating point
representation is not really a 'genetic algorithm' as in the sense of the work of
Holland (1995). However, it is the idea of selecting the best individuals in a group,
breeding and mutating to solve the problem that is required, not to produce a model
of how nature does the same thing. Goldberg did not question the usefulness of the
floating-point representations, just their similarity to a biological system.
Michalewicz (1996) conducted experiments comparing floating point and binary
representations and concluded that floating point representation is faster, more
consistent from run-to-run and had higher precision. Consequently, floating-point

representations were used with this project.

5.1.3 Fitness Functions
A test is needed to measure the suitability of an individual sequence. In evolutionary

terms, the test is a fitness function. The selection of the fitness function is an
important factor in the success of the approach. In some applications, the choice of
fitness function is obvious. For example if the global maximum of a function is
needed, the fitness value is just the magnitude of the function. At other times it is not

obvious what the function should be.

5.1.4 Selection and Crossover
Based on the fitness value for each sequence (individual), parts of one sequence are

swapped with those of another. The fitter the individual the more likely that part or all
of the individual will be passed onto the next generation. The roulette wheel approach

is one method for selecting individuals; it gives a larger portion of the wheel to
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individuals that produce better fitness values. Therefore the larger the portion of the
wheel, the higher the probability of the individual ‘breeding’ and passing on their
‘genetic information’ to the next generation. A pair of individuals is selected and at a
randomly chosen point in the individual sequences, the pair swaps information, creating
two new individuals. The process repeats until the required number of individuals
forms a population. In an elitist strategy a number of the highest scoring (that is fittest)
individuals go through to the next generation unchanged, the rest are formed using the
selection and crossover operations. Figure 5.1 illustrates this function. The roulette
wheel approach is not the only selection process, other options include tournament
selection where selection is based on select from a small subset of the population each

time.

5.1.5 Mutation
Mutation operates by randomly selecting an element in an individual and changing its

value. In a binary sequence, mutation works by inverting a bit, a “1' becomes ‘0’ and
vice-versa. Mutation must also be applied when floating point data is used. Davis
(1991) discussed two methods. The first was to replace the floating-point number in the
chromosome with a randomly produced floating-point number. The second method is
real number creep. An assumption is made that an individual that is reproducing is
likely to be in a reasonably good position in the search space with respect to the rest of
the population. What real number creep does is to change the value by a small random
amount if the condition for mutation is met. The effect on the search was to enable the
investigation of possible solutions close in the search space to those already present in

the population.
3501920}05 90 0.1 Individual 1 - Generation n
1205360}01 S 03 Individual 2
< x1 DAL, X2 >
|
Crossover point

350192001304503 New individual 1 - Generation n+1
120536005109 02 New individual 2

A

| Mutation

Figure 5-1 Outline of the evolationary algorithm methodology

52 General Experimental Methodology
A description of the methodology of how the data sets were formed was included in

chapter 3. After the recordings were formed into data sets, one half of the data sets (the
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training subset) were used to develop sets of filters via evolutionary algorithms. The
other half of the data set is used to test the filters produced. All the evolutionary
algorithms were developed and implemented in MATLAB (MathWorks, USA) on a
Gateway 2000 Pentium P90.

5.2.1 The Filters
Each filter was a 4" order Butterworth bandpass filter, implemented using the

MATLAB command FILTFILT, which produces a zero-phase-shifting filter.
Butterworth filters were selected for their relatively smooth pass-band (compared to
that of the Chebyshev filter). A filter with a smooth pass-band was selected to lessen
the effect of an artifact being introduced by the filter. The filters were set up so that
initially the low frequency cut-off was within the range 0-200 Hz and the high
frequency cut-off was selected to be 0-300 Hz higher than the low frequency cut-off.
Averaging (or subaveraging) using a small number of single responses, was
performed to reduce the noise level. By combining the signals into a set of averaged
signals, the total number of signals used during training and testing phases were
reduced, speeding up these processes. The aim of this phase of the work was to
investigate the use of a single filter selected by an evolutionary algorithm to enhance
the extraction of the evoked potentials.

5.2.2 Fitness functions
Measuring how well a particular sequence in a population performs is central to the

evolutionary algorithm approach. Two methods were investigated to measure the
similarity of filtered signals to the target signal. The first method was the correlation
coefficient between the filtered signals and the target signal (an example of an averaged
signal is shown in figure 5-2). The second method was the mean squared error (MSE)
between the filtered signal and the target (equation 4-1). Both were considered because
they are relatively simple methods, they require only the assumptions that have already
been made. Mean square error was ultimately selected instead of correlation coefficient
for two reasons. First, the scale of the signal is not taken in account by the nature of the
correlation coefficient (see appendix A for a comparison using filter banks); in mean
squared error, scale is maintained. Second, it can be argued there is a relationship
between MSE and signal-to-noise ratio (see Appendix B.3).
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In the training process, every example in the subaveraged training set had the filter
specified by an individual sequence applied to it. The fitness of a particular sequence
is the mean of all the fitness values of the examples for that particular sequence.
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Figure 5-2 an example of an averaged signal, used as the target for data set 1 and the simulated
data set.

5.2.3 Selection
A quarter of the original population goes through unchanged, selected as those with the

best fitness values. A selection process produced the remaining three-quarters of the
population. The selection process used in this work is the roulette wheel. Pairs of
random numbers, ranging from one to the sum of all portions of the roulette wheel,
were used to select the sequences that were the 'parents’ of the next generation. A third
random number was produced, that determines where along the sequence the swapping
occurs, so the two original sequences produce two new sequences.

5.2.4 Mutation
A second operation was carried out that randomly selected elements of an individual

sequence to alter. A randomly produced value (ranging from 0 to 1) was produced for
each element in the population. If this value was less than or equal to the mutation rate
then the corresponding element in the population is selected for mutation, The value in
the population matrix was altered by between +/- 12% of the current value, with a 5%
probability that an element would mutate (mutation rate=0.05). All sequences in the
new population, except the sequence with the highest fitness value in the previous
population, were subject to possible mutation.

5.2.5 Size of Population
In this chapter, a population size of 80 individuals was selected. This size was

selected for various reasons. Firstly, a feature of the way the algorithm was
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implemented meant that the population had to be multiple of eight. Though there
does not seem to be clear rules to how big the initial population needs to be, Haupt
(1995) produced a rule of thumb for genetic algorithms that the population should be
an order magnitude larger than the number of genes (or parameters). Grefenstette
(1986) investigated population size, crossover rate and mutation rate for genetic
algorithms, coming up with population sizes of 30 to 110 individuals depending on
the application. Because of the nature of evolutionary algorithms, a large (relative to
the number of parameters) population takes longer to process whereas a small
population could cause the algorithm to converge too early. A population of 80 was
selected as a trade off between these.

5.3 Single Filtering
Filters were developed for two groups of data. In the first group, none of the data sets

were averaged (single trial). In the second group, the data was averaged in groups of
10 signals (subaveraging), done to investigate whether averaging ability to reduce
the SNR can be useful in this work. Table 5-1 and 5-2 show the MSE of the filtered
and unfiltered test subsets for both groups. Comparing the results of filtering without
averaging (Table 5-1) and filtering with subaveraging in sets of 10 responses (Table
5-2), the mean MSE for the data set are lower when subaveraging was used. This
effect can be seen in both the unfiltered and unfiltered results (Tables 5-1 and 5-2).
Subaveraging lowers SNR, so it was included in the process, to improve the SNR of

the training data before training.
No. of | Frequency (Hz) Weigh | Mean Squared Error (107)
Data set filters | Fx Fx+1 t Min Max Mean | Std
Simulated {0 - - - 0.3893 | 9.4816 | 2.6463 | 1.9622
1 5.2342 14.0689 0.7746 |1 0.0775 | 0.9855 | 0.1935 | 0.1494
1 0 - - - 0.8960 | 38.365 | 16.665 | 0.2272
i 5.1211 11.9849 0,363 | 0.0748 | 0.8973 | 0.2981 | 0.1571
2 0 - - - 0.4724 | 10.111 | 3.5639 | 2.1122
1 59414 133.8074 | 0.0104 | 0.0080 | 0.0093 | 0.0087 | 0.0003
3 0 - - - 1.7658 | 33.887 | 6.6581 | 4.6192
1 0.6798 95,6960 0.0182 [ 0.1044 | 0.1664 | 0.1282 | 0.0097
4 0 - - - 0.1992 | 6.6298 | 0.6508 | 0.7141
1 57.8492 | 78.2683 0.0318 | 0.0240 | 0.0243 | 0.0241 | 0.0001

Table 5-1 Single filter single response
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No. of | Frequency (Hz) Weight | Mean Squared Error (107)
Dataset | filters | Fx Fx+1 Min Max Mean | Std
Simulated | 0 - - - 0.0970 | 0.2934 | 0.1805 | 0.0859
1 3.4687 27.5156 0.8896 0.0369 | 0.0804 | 0.0567 { 0.0211
1 0 - - - 0.3294 | 2.0501 | 0.9943 | 0.5429
1 3.653 21.6969 0.6034 0.0522 | 0.3804 | 0.1739 | 0.1143
2 0 - - - 0.0707 | 0.2671 | 0.1412 | 0.0732
1 5.0093 163.3893 | 0.1002 0.0073 |{ 0.0100 | 0.0082 | 0.0008
3 0 - - - 0.3761 | 1.4710 | 0.7983 | 0.3432
1 3.744 7.0710 0.6613 0.0737 | 0.2225 | 0.1196 | 0.0542
4 0 - - - 0.0284 | 0.1230 | 0.0587 | 0.0263
1 58.5554 | 77.8876 0.2744 0.0238 | 0.0242 | 0.0241 | 0.0001

Table $-2 single filtering subaverages of 10 signals
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Figure 5-3 Single filter - simulated test data
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Figure 5-4 the variation in the fitness functions with the number of generations, for five runs for
a single filter with the simulated data set.
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As in chapter 4, a single filter did not extract all of the features of the evoked
responses, but did enhance the extraction of some of the features in an evoked
response. These results and those of chapter 4 showed there is an improvement when
the number of responses averaged each time is increased. Examining tables 5.1 and
5.2, the results filtered using the filters selected by the evolutionary algorithm
produced lower MSE values than when averaging-alone (unfiltered results) was
used. An improvement with increasing numbers of signals in an average is in line
with the theory of averaging, the SNR improves as the number of signals in an
average increases. Ten responses per average were selected as the final size, as a
trade off between possible improvements in the MSE with increasing the number of
signals averaged and the number of examples in the test and training sets. Figure 5-4
shows how, the fitness values varied with the number of generation during five runs
of the evolutionary algorithm for the simulated training data. This figure showed the
results converged to similar fitness values for this set of data. Figures 5-5 to 5-7 and
5-9 show filtered response developed using an evolutionary algorithm for single and
subaverages of 10 responses for data sets 1 to 4 respectively. Figures 4-2,4-3,4-7, 4-
10, 4-15, from the previous chapter, are unfiltered results for test sets for the
simulated data set and data sets 1 to 4 respectively. For both sets of results, filtering
produced a clearer response in two of the spinal data sets (simulated data set and data
set 1). Clarity is used here to mean that the key features that the clinicians are
looking for are present, this usually supported by lower mean MSE values. In the
scalp recordings and data set 2, the features extracted were not as clear as those
observed in data set 1.

Subaversges of 10 responses

Y ™ w 0 100 20 X0 40
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Figure 5-§ Single filter - data set 1 test set
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Figure 5-7 Single filter — data set 3 test set

Figure 5-8 shows in a similar way to figure 5-4 how the fitness function varied with
the number of generations for the five runs of data set 3 training data. Unlike figure
5-4 all the runs did not converge to the same fitness values, but found two different
values. One possible explanation is that the results are ending up in local minima in
the search space. Figure 5-9 shows the filtered results for the test subset of data set
4. This is an example of the limitation of the single filter approach: the filter is trying
to do too much; trying to have both low and high frequency components and not

succeeding. Alternative strategies that may improve this are included in section
10.2.2.
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Figure 5-9 single filter - data set 4
No. of | Mean Squared Emror (107)
Data set filters | Min Max Mean Std
Simulated | 0 0.005 0.0455 0.0250 | 0.0179
1 0.007 0.0207 0.0124 | 0.0056
1 0 0.031 2.1269 0.3659 | 0.0674
1 0.0088 | 0.0319 0.0152 | 0.0075
2 0 0.0059 | 0.0654 0.0367 | 0.0212
1 0.0185 |[0.0219 0.0204 | 0.0012
3 0 0.1104 |0.8474 0.3155 | 0.2758
1 0.0091 { 0.0093 0.0092 | 0.0001
4 0 0.0036 | 0.2531 0.0159 | 0.0094
1 0.0156 | 0.0164 0.0160 | 0.0003
Table 5-3 first 30 ms
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No. of | Mean Squared Error (10°%)
Data set filters | Min Max Mean Std
Simulated | 0 0.094 0.2885 0.1819 0.0874
1 0.0353 0.1005 0.0688 0.0287
1 0 0.3183 2.0462 0.9789 0.5538
1 0.0447 04236 0.1696 0.1250
2 0 0.0707 0.2599 0.1341 0.0654
1 0.0062 0.0093 0.0072 0.0009
3 0 0.3664 1.2566 0.7668 0.3005
1 0.0759 0.2206 0.1104 0.0523
4 0 0.0294 0.1298 0.0564 0.0284
1 0.0193 0.0194 0.0194 0.0001
Table 5-4 30-400 ms

Applying the filters to the first 30 ms and 30-400 ms as two separate signals shows
the mean MSE values as lower for filtered results, the exception being data set 4.
The second region 30-400 ms all produced lower MSE values for the filtered signals

than averaging-alone.
Data Set Selection Filter No. of signals
method Fl (Hz) Fh (Hz) in an Average
Simulated PS 5.00 30.00 i and 10
EA 5.23 14.07 1
EA 3.47 25.52 10
Data set 1 PS 5.00 30.00 1and 10
EA 512 11.98 1
EA 3.65 21.70 10
Data set 2 PS 5.00 60.00 1and 10
EA 5.94 13381 1
EA 5.00 163.39 10
Data set 3 PS 0.00 20.00 1 and 10
EA 0.68 95.72 1
EA 3.744 7.07% 10
Data set 4 PS 0.00 20.060 1 and 10
EA 57.84 78.27 1
EA 58.55 77.8%9 10

Table 5-5 Comparison of the frequencies selected by using the power spectra ( PS ) and using
evolutionary algorithms ( EA ),

In table 5-5 for the spinal recordings (simulated, data set 1 and data set 2) the filters
selected by the power spectra method and those selected by an evolutionary
algorithm (the results of the lowest scoring run for each of the data sets) had similar
values for the lower limits. For the simulated data set and data set 1, the upper limits
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to the passband were also similar. The results for the scalp recordings show a
difference in the frequencies select between the filters produced using the power
spectra method and those produced using the evolutionary algorithm. Power spectra
based approaches will extract the dominant features. The evolutionary algorithm
approaches will also try to extract high-rate components that are small but can be
observed in the averaged signal. The evolutionary algorithm developed filters tries to
balance maintaining these components but filtering out of the high-frequency

components due to noise.
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6 Evolutionary Algorithms and Time-Invariant Filter banks

Previously, an evolutionary algorithm based approach was considered as a method to
aid the extraction of evoked potentials from a set of noisy signals. In this chapter,
that work is developed further by an evolutionary algorithm being used to select the
parameters for a combination of filters, i.e. a filter bank.

6.1 Introduction
Some groups (e.g. Nishida et al 1983) suggest there may be three regions within the

signal (section 2.2). A region at the beginning of the signal, with relatively stable
components, has the highest frequency components of the three regions. A second
region, following the first, has more variation in the position of features between
responses and lower frequency components than the first region. In the third region,
there is more variation in the position of the features than the previous regions and
the frequency components are even lower than the other two regions. For this reason,
the evolutionary approach was extended to three weighted filters, applied to the
whole signal.

6.2 Whole Signal Filter Banks

621 Aim
The aim of this evolutionary algorithm is to select sets of filters, which enhance the

extraction of evoked potentials from sets of noisy recordings, by filtering out the noise.
A different filter bank will be produced by the algorithm for each data set, depending
on the individual characteristics of those data sets. The noisy signal was passed through
each filter in a bank of filters and output of the filter bank was a weighted sum of the
individual filter outputs (Figure 6-1). The goal is to use three filters, ideally one for
each of the three regions (early, middle and late components). To investigate whether
additional filters would be an advantage the use of a bank of five filters is also
considered.



Fiter |
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Figure 6-1 modelling the response as a set of x parallel filters

Each filter in the filter-bank was a 4™ order Butterworth filter of the same type as the
filters used in chapter 5. As in chapter 5, initially data sets containing single trial and
averages of 10 responses were employed. The results of using five filters in a filter
bank were also investigated using simulated data and data set 1,

6.2.2. Preliminary study
A preliminary study of this approach was performed to determine whether three or

five filters are needed and whether the use of filter banks was a valid direction for
investigation. In the preliminary study, two data sets were used with both three and
five filters (simulated data set and data set 1). The results (Table 6-1) showed that
using five filters did not improve MSE values enough to be worth the extra
processing of two further filters and weights, From these results, filter banks of three
filters were chosen as the appropriate size of filter-bank for this approach. The use of
fewer filters in the filter bank was not considered, as there are believed to be three

regions.
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Dataset {No.of| Frequency (Hz) |Weighting Mean Squared Error (x10™)

filters FL Fu Min Max Mean Std
Simulated 0 - - - 0.0970 { 0.2954 | 0.1805 | 0.0859
3 (402 26.97 0.9307 0.0430 | 0.0804 | 0.0603 | 0.0180

68.75 576.81 0.2848

133.40 1637.09 0.0563
5 [199.18 120962 0.2971 0.0420 | 00806 | 0.0605 | 0.0180

72.83 91.66 0.4007

80.29 200.64 0.1753

4.04 27.08 0.9353

140.48 1796.10 |0.2170
1 0] - - - 0.3294 | 2.0501 | 0.9943 | 0.5429
3 3.71 18.43 0.6253 | 0.0540 | 0.3769 | 0.1731 | 0.1124

52.79 55.65 0.3097

42.55 260.14 0.0864
5 124.00 167.57 0.0884 | 0.0551 | 0.3754 | 0.1730 | 0.1121

312.06 409.82 0.1387

178.09 | 231.15 0.141

238.14 303.94 0.1428

3.79 19.25 0.8196
2 0 - - - 0.0707 | 0.2671 | 0.1412 | 0.0732
3 13.13 15.35 0.156 | 0.0079 | 0.0083 { 0.0083 | 0.0003

152.54 | 155.55 0.63

20.54 231.27 0.109
3 Q - - - 0.3761 | 1.4701 |{ 0.7983 | 0.3432
3 158.73 161.73 | 0.1478 | 0.0927 | 0.3153 | 0.1842 | 0.0722

162.956 | 801.79 0.0702

0.68 89.95 0.4500
4 0 - - - 0.0294 ] 0.1298 | 0.0564 | 0.0284
3 58.48 77.55 0.2670 | 0.0238 1 0.0242 1 0.024 | 0.0001

107.08 | 522.14 | 0.0640

27220 | 27488 | 02180

Table 6-1 Preliminary filiered and unfiltered results for the whole signals for all test subsets

No. of | Mean Squared Error (10°)
Data set filters | Min Max Mean Std
Simulated | 0 0.0050 | 0.0455 0.0252 [0.0179
3 0.0055 |0.0198 0.0116 [ 0.0057
1 0 0.0311 | 2.1269 0.3659 | 0.6744
3 0.0082 |0.0173 0.0125 | 0.0038
2 0 0.0059 | 0.0654 0.0367 | 0.0212
3 0.0186 | 0.0216 0.0202 | 0.0010
3 0 0.1104 {08474 0.3155 | 0.2758
3 0.0105 0.1212 0.0461 0.0465
4 0 0.0036 | 0.2531 0.0159 | 0.0094
3 0.0151 {0.0163 0.0158 1 0.0003

Table 6-2 First 30 ms using filters banks selected during the preliminary study.

Often clinicians look at these signals on two time scales, the early components and
the late components. The filter banks and single filter (chapter 4) were applied to the

first 30 ms of the test signals, to look at the early components. An improvement in
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MSE values of the filter bank approach (Table 6-2) compared to only using a single
filter (see table 5-3), was seen in four out of the five data sets using this shorter
region. The single filtered signals predominantly contained low frequencies. Using
three filters showed further features that can also be seen in the target signal are
included (for example figure 6-2). This improvement is therefore believed to be due
the extra filters enabling more than one band of frequencies to be included, so a
combination of low and high frequency components can be included in the same
filtered signals. In figure 6-3 the data set (data set 3) is shown in which this
improvement in MSE value for the first 30 ms was not seen is shown. Both filtering
methods did not extract anything that looked like the target. This data set is
challenging, by examining the signals before filtering (see figure 6-13), little
similarity can be seen with the target signal. These results suggest the three-filter
approach has shown potential in extracting the signal’s earlier components.
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Figure 6-2 simulated preliminary results versus single filters. The first 30 ms (a) using a single
filter (b) using a filter bank of three filters, (¢) of a target signal. The region for the 30-400 ms
(d) using a single filter (¢) using a filter bank of three filters, (f) of a target signal.
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Figure 6-3 Data set 3 preliminary results versus single filters. The first 30 ms (a) using a single
filter (b) using a filter bank of three filters, (c) of a target signal. The region for the 30-400 ms
(d) using a single filter (¢) using a filter bank of three filters, (f) of a target signal.

No. of | Mean Squared Error (107)
Dataset | filters | Min Max Mean Std
Simulated | 0 0.0940 | 0.2885 0.1819 | 0.0874
3 0.0403 | 0.1007 0.0710 | 0.0261
1 0 0.3183 | 2.0462 0.9789 | 0.5538
3 0.0458 | 04199 0.1682 |0.1233
2 0 0.0707 | 0.2599 0.1341 [ 0.0654
3 0.0069 | 0.0081 0.0073 | 0.0003
3 0 0.3664 | 1.2566 0.7668 | 0.3005
3 0.0922 |0.3388 0.1176 | 0.0794
4 0 0.0294 10.1298 0.0564 |0.0284
3 0.0192 | 0.0194 0.0193 | 0.0001
Table 6-3 30-400 ms using filters banks selected during the preliminary study.

The results of the three-filter bank (Table 6-3) and single filters (Table 5-4) were
similar (change of between 0.8-6% in mean MSE compared to the mean MSE when
the whole signal was filter) for 30-400 ms region of the signals.

6.2.3. Filter banks applied to the whole signal
Based on the preliminary results a large trial was performed. This time five runs for

each test subset were performed, going up to 400 generations, with a population of
200 individuals. Tables 6-4 and 6-5, show the results for single trial and subaveraged
(10 signals) respectively. One goal of this study was to investigate the number of

signals used in a subaverage. As has been previously observed increasing the number
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of signals in an average can improve the extraction of the responses and this was
observed for this process as well.

Table 6-S shows the results of using subaverages of 10 signals and the MSE between
the filtered test subsets and their respective target signals. The unfiltered results have
higher MSE values than the filtered results (Table 6-5). This suggests that the
filtering process is producing signals that are closer to the target signal. This was
also shown by a visual inspection of the results for the filtered signal (figure 6-4, 6-5
and 6-6). The mean value of each averaged signal had its mean amplitude subtracted
from each value, to rule out the possibility of the larger MSE being due a DC level in
the averaged signals.
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Dats Set No of Frequencies (Hz) Weights Best mean MSE 10 Varistions in mean MSE 10~
filters F Fy Min Max Mean Std Min MIAX mean std
Simulated | 0 - - - 03893 | 04816 | 2.6463 | 19622 - - - -
3 587 7.41 32744 0.055 1237 | 0.1578 | 01749 | 01562 | 0.1686 | 0.1602 0.0049
9.78 16.29 0.6558
1126 60.24 0.0596 -
1 0 - - - 0.896_ | 38.3685 | 10.6555 | 8.217 - - - -
3 5.54 7.97 0.6437 0.0615 0.9944 0.2834 0.1724 0.2834 0.3002 0.2947 0.0069
162.40 215.51 0.0156 :
927 17.46 0.2045
2 0 - - - 0.4724 10.1108 3.5639 2.1122 - - - -
3 5.70 47.68 0.1036 0.0088 0.0222 0.0151 0.0036 0.0151 0.02 0.,0165 0.0021
164.01 527.88 0.0547
63.36 141.36 0.1735
3 0 X - . 17658 | 33.8873 | 6658 | 4619 | - - N -
3 1.42 3.06 0.1877 0.0634 02717 0.1243 0.028 0.1243 0,1301 0.1279 0.0022
147.27 148.65 0.1963
: 149.43 286.29 0.0064
4 0 - - - 0.1992 6.6298 0.6508 07141 | - - - ~
3 0.03 8.78 0.017 00196 | 00336 | 00236 | 0.0019 | 00236 | 00241 | 0.0239 0.0002
80.23 21331 0.0094
60.18 28258 0.0194

Table 6-4 Whaole signal medel flltering whole signal (single trial)
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Data Set No of Frequencies (Hz) Weights | Best mean MSE 10 Varistions im mean MSE 10
filters Fy Fu Min Max Mean Std min Max mean std
Simulated 0 - - - 0.097 0.2954 | 0.1805 0.0858 - - - -
3 3.04 4.42 1.7682 0.0269 | 0.0806 { 0.0521 0.0218 0.0521 0.0674 0.0599 0.0058
0.11 64.90 0.1096
5.60 20,02 0.8996
1 O - - - 0.3294 | 2.0501 | 0.9943 0.5424 - - - -
3 3.59 23.42 0.4260 0.0334 | 0.3686 | 0.1705 0.1114 0.1705 0.1733 0.1726 0.0012
58.37 397.29 0.0900
5.56 7.76 0.5780
2 0 - - - 0.0707 | 0.2671 | 0.1412 0.0732 - - - -
3 5.90 15.61 0.1293 0.0072 | 0.0098 | 0.0081 0.0008 0.0081 | 0.0084 0.0082 0.0001
18.81 240.90 0.1006
83.73 85.01 0.2230
3 0 - - - 0.3761 | 1.47 0.7983 0.3432 - - - -
3 1.45 2.66 2.3792 0.0384 | 0.2036 { 0.1061 0.0580 0.1061 0.1125 0.1100 0.0034
25.57 329.72 0.0543
4.69 1.73 0.4549
4 0 - - - _10.03 0.12 0.06 0.03 - - - -
3 58.163 77.21 0.2772 00206 | 0.0249 | 0.0223 0.0013 0.0223 0.0239 0.0229 0.0006
5.57 6.25 2.7908 _ )
105.24 525.68 0.0633

Table 6-5 Whale signal model filtering whole signal (averages of 10 signals)
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Data Set No of first 30 ms (10*) 30-400 ms (10° )
filters Min Max Mean Std Min max mean std
Simulated | 0 0.005 0.0455 0.025 0.0179 0.094 0.2885 0.18193 0.0874
3 0.0063 0.0158 - 0.0102 0.0036 0.0235 0.0862 0.0596 0.027
1 0 0.031 2.1269 0.3659 0.6744 0.3183 2.0462 0.9789 0.5538
3 0.0089 0.0196 0.0132 0.0043 0.0334 0.4091 0.1601 0.1209
2 0 0.0059 0.0654 0.0367 0.0212 0.0706 0.2599 0.1341 0.0654
3 0.0188 0.0217 0.0205 0.001 0.0063 0.0088‘ 0.0071 0.0008
3 0 0.1104 0.8474 0.3155 0.2758 0.3664 1.2566 0.7688 0.3005
3 0.0065 00114 0.009 0.0016 0.0360 0.1871 0.096 0.0524
4 0 0.0036 0.031 0.0159 0.094 0.02941 0.1298 0.0564 0.0284
3 0.0151 0.0163 0.0158 0.0003 0.0192 0.0195 0.0193 0.0001

Table 6-6 Whole signal model filtering partials
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In figure 6-4 the process was shown to be able to extract approximations of the
target signal for the simulated data. In this section, the same process is applied to the
four sets of recorded activity, each of which is averaged to form a target signal and
split into two subsets for training and testing. To look at differences in the recording
sites, two spinal recordings and two scalp recordings were used. All signals were
subaverages of ten signals in accordance with the results of the trials using two sizes
of averages (Tables 6-4 and 6-5).
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Figure 6-4 simulated data, whole signal model.

Data set 1 was used to form the target signal (Figure 6-5) and the underlying signal
in the simulated data set, so a comparison between the two can be made, as they both
have the same target signal. The results of the simulated data and results of the filter-
bank produced using data set 1, show some common features (figure 6-5). The larger
features are present in both. Smaller features at the beginning of the signals and near
the end of the signal between 200 and 300 ms are more attenuated in data set 1
(figure 6-5) than those observed in the simulated data sets results (figure 6-4). There
are two likely reasons for this. The first is time variation in the position of the
features. Looking at the position of the largest positive feature between 100 and 200
ms, it is not always in the same place in each signal. To produce an average signal,
variations in the position of a feature can lead to smoothing of smaller features. The
second reason is low frequency noise which is not completely removed by this
approach, can partially obscure the features.

73



Unfittersd Signals

. Filtsred Signais

s

25

Yokags (V)
~

b

06
1.5

1 0-4

05 02

KA TR

0.2

0 20 ™ 0

Time (ms)

Figure 6-5 Data set 1, whole signal model
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Data set 2 was also produced from spinal recordings. This time the average signal is

noisier than that seen in the previous two data sets. Of interest in this data set, were

the large features occurring at the beginning of the signal, as opposed to the later

components in data set 1. Filtering the test subset using the filter developed for this
data set can be seen to produce noisy results in figure 6-6. Examining the first 30 ms
of the signals (figure 6-7), this time show the large dominant features being

extracted, but the subtler features are lost.
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Figure 6-7 data set 2, first 30 ms using the whole signal model

The scalp recorded set of signals, data set 3, shows the filters acting as a relatively
low frequency bandpass filter (figure 6-8). The weightings and the frequency
parameters for this filter-bank shown in table 6-5 also show this. In this data set, the
larger features occur in the later components (figure 6-8). The final data set, data set
4, is another set of scalp recordings. The filtered signals for this data set (figure 6-9)
show no similarity to the target signal (figure 6-9).
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Figure 6-8 data set 3, whole signal model
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Figure 6-9 Data set 4, whole yignal model

6.3 Limiting the signal size
The previous results suggest that the evolutionary algorithm usually extracted the

dominant features of a signal, often at the expense of the smaller features. The
variation in the position of features between signals is one contributing factor to this
effect. A further likely factor, due to the nonstationary nature of these signals, is that
the signal has different requirements for a filter bank at different parts of the signal.
A particular filter-bank may work well for one region (e.g. first 30 ms of the signal),
but may not work as well for another region (e.g. 30-400 ms). These different
requirements may be too much for a single filter bank and the evolutionary
algorithm may produce a compromise between the requirements of the separate
regions. To examine this effect and to fit into the way clinicians use these signals,
filter banks were separately developed for two smaller regions of the signals. The
first region is the first 30 ms looking at the short latency components. The second
region, 30 to 400 ms, is used to investigate mid and late latency components; from

now on, for simplicity, these will be termed late components.

6.3.1 Short Latency (first 30 ms)
Many authors (e.g. Rossini et al (1981), Maccabee et al. (1992)) believe that earlier

signal components are more stable than the late components. Restricting the signal,
by developing a filter bank just for this early region, was investigate as a way of
improving the extraction of these earlier components.
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Figure 6-10 shows the simulated test subset filtered with a filter-bank developed
using the simulated training data in this region. These filtered signals do resemble, in
terms visual inspection of key clinical features, the target signal more than the
unfiltered signal does. A comparison with the results of figure 6-4 show there is an
improvement visually in filtering the first 30 ms, when the algorithm is trained
specifically for this region, as compared to using a filter-bank developed to filter the
whole signal. This improvement can be seen by comparing the results for the filter
bank in Table 6-6, with that in Table 6-7 where there is a lower mean MSE.
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Fig)ure 6-10 simulated data set using the filter bank trained specifically for this region (first 30
ms

Figure 6-11 shows results from the test set of data set | after passing through a set
of filters produced after training using only the first 30 ms of signal. The results
seemed to have extracted a negative ‘trough' around 13-16 ms but the peaks seen at
around 12 ms and 16 ms in the target are lost. In the majority of the signals a
smoothed outline of the signal is formed. Comparing the filtered and unfiltered
signal, in the filtered signals key features are observed, which can not be observed in
the unfiltered signals. The MSE values are lower for this filter-bank (Table 6-7)
compared to whole signal filter-bank results (Table 6-5).
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Figure 6-11 data set 1 using the filter bank trained specifically for this region (first 30 ms)
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Figure 6-12 data set 2 using the fitter bank trained specifically for this region (first 30 ms)

Figure 6-12 shows the results of filtering the test data of data set 2. The filtered
signals do bear a resemblance, in terms of key features, to the target signal, more so
than the unfiltered signals, with the largest features of the signals being extracted. As
in the previous data set, the smaller positive features, in this data set at
approximately 12 ms and 18 ms, have been attenuated by these filtering operations.
Unlike the previous data set, these signals are similar to those filtered with filter-
bank produced using the whole of the signal (figure 6-7) over the same region. The
filtered signals are extracting the larger dominant components in the signal, but
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unable to extract the high rate, smaller features. In this signal, the largest feature (see
figure 4-6) of the signal appears in this early region, hence the similarity (mean MSE
of 0.0085 and a standard deviation of 0.0038) in the results.
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Figure 6-13 data set 3 using the filter bank trained specifically for this region (first 30 ms)

Figure 6-13 shows results from data set 3 (scalp recording) for 2 to 30 ms. The
exclusion of the signal components below 2 ms was done to remove a large
stimulation artifact. Again the smaller features have been lost in the filtering process.
Large components are present but not always in the same place as those in the target
signal (figure 6-13). In figure 6-14 data set 4 was filtered extracting the underlying
shape of the signal, but in the unfiltered results these features can often be seen.
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Figure 6-14 data set 4 using the filter bank trained specifically for this region (first 30 ms)

6.3.2 Mid and Long Latency Components (30-400 ms)
The remainder of the signals can also be filtered in a similar way to the early

components. Filtering the simulated data set, data set 1 and data set 3 respectively
produced similar results (figure 6-15, 6-16 and 6-18) to those observed when
filtering the whole signal (Figures 6-4, 6-5 and 6-7 respectively). There was a small
increase in the mean MSE values compared to the filter bank developed for the
whole signal, for this region (<5% of the value of the equivalent whole signal mean
MSE (Table 6-6)). A common feature of these three data sets is they all have
relatively large dominant late component features. The rise in MSE is due to the
inclusion of noisy components. The results of the filtering data set 2 are improved
visually (figure 6-17) by only using 30-400 ms region of the data and looking at
Tables 6-6 and 6-8 the MSE shows an increased mean value when using this
narrower region. The difference in the mean MSE values for this data set between
the two filter banks was negligible. Filtering data set 4 (figure 6-19) with narrower
signal length had a similar effect to that seen in figure 6-8 for data set3, a noisy low-
pass filter. This result can also be seen in the weightings and frequency parameters
for this data set in table 6-8. The result is due to the filtering process not having to
try to model the larger components at the beginning of the signals. This time the
mean MSE (Table 6-8) is lower using this filter than when the filter developed for
the whole signal was used (Table 6-6).
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Data Set No of Frequencies (Hz) Weights | Best mean MSE 107 Variations in mean MSE 10°
filters Fy Fy Min Max Mean Std Min Max mean std

Simulated - - - 0.0050 0.0455 0.025 0.0179 - - - -
0.31 7.00 2.3741 0.0060 0.0105 0.0076 0.0017 0.0760 0.1060 0.0830 0.0130
66.00 225.20 0.4987
31045 398.69 0.653

1 - - - 0.0310 2.1269 0.3659 0.6744 - - - -
52.78 108.87 0.3996 0.00960 0.01277 001137 0.00103 0.1137 0.1144 0.1142 0.0003
335.92 362.00 0.8477
142.70 142.77 0.0883

2 - - - 0.0059 0,0654 0.0367 0.0212 - - - -
93 .80 135.4 0.6496 0.0036 0.016 0.0085 0.0038 0.0850 0.0880 0.0860 0.0010
29.50 84.40 0.6703
69.70 839.30 0.1601

3 - - - 0.1104 0.8474 0.3155 0.2758 - - - -
54.45 73.22 0.4837 0.0051 0.0124 0.009 0.0027 0.0900 0.0930 0.0910 0.0010
98.29 205.44 0.0544
164.64 151.10 0.1875

4 - - - 0.0036 0.031 0.0159 0.0940 - - - -
39.16 84.16 0.7994 0.0014 0.0129 0.0068 0.0028 0.0680 0.0710 0.0690 0.0010
0.17 20.20 0.5440
106.17 157.38 0.5960

Tabie 6-7 partial signal (first 30 ms) model filtering partial signal (first 30 ms)
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Data Set | No of filters Frequencies (Hz) Weights | Best mean MSE 10 Variations in mean MSE 10
FL Fy Min Max Mean Std Min max Mean std
Simulated | 0 - - - 0.094 .i 0.2885 0.1819 0.0874 - - - -
3 6.33 25.80 0.8251 0.0231 0.0933 0.0608 0.0313 0.0608 0.0624 0.0617 0.0006
61.65 273.37 0.2765
0.77 9.96 0.4792
1 0 - - - 0.3183 2.0462 0.9789 0.5538 - - - -
3 2.67 11.09 0.3338 0.0544 0.4299 0.1672 0.1222 0.1672 0.1675 0.1674 0.0001
522 20.72 0.4631 ’
62.19 206.86 0.064
2 0 - - - 0.0706 0.2599 0.1341 0.0654 - - - -
3 5.86 15.08 0.1155 0.0063 0.0086 0.0070 0.0008 0.0070 0.0072 0.0071 0.0001
13.25 44.16 0.0802
78.73 1361.50 0.0507
3 0 - - - 0.3664 1.2566 0.7688 0.3005 - - - -
3 0.97 7.90 0.3125 0.0399 0.1983 0.1003 0.0492 0.1003 0.1151 0.1046 0.0066
13.61 290.32 0.0596
244.24 2089.50 0.0613 .
4 0 - - - 0.02941 0.1298 0.0564 0.0284 - - - -
3 0.19 3.43 0.2765 0.0064 0.0287 0.0158 0.0074 0.0158 0.0181 0.0168 0.0009
131.28 266.14 0.0008
2.2772 324.82 0.0944

Table 6-8 partial signals (30-400 ms) model filtering partial signal (30-400 ms)
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Figure 6-15 simulated data set using the filter bank trained specifically for this region (30-400
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Figure 6-16 data set 1 using the filter bank trained specifically for this region (30-400 ms)
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Figure 6-17 data set 2 using the filter bank trained specifically for this region (30-400 ms)
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Figure 6-18 data set 3 using the filter bank trained specifically for this region (30-400 ms)

84



Unéiltered

. 0.14 ] Target
1

D12 nn o 002
< o
% 88 o1f
3 06l 0.02
08 S P ol V N

‘ 00 % 20 300 a0
y 0.0 P \""" Time {ms)

100 200 300 400 100 200 300 400
Time (ms) Time (ms)

Figure 6-19 data set 4 using the filter bank trained specifically for this region (30-400 ms)

6.4 Comparison of time-invariant methods
In this and the previous chapter time-invariant methods were developed, but now a

comparison of their effectiveness is needed. The MSE of each of the filtered signals
with the target signal forms the basis of the measurement. The mean of these MSE
values is selected as the representative value for the test set for that filtering method.
A further consideration for this work is that there should be minimal averaging
(ideally none). As the number of signals in each subaverage is varied, a mean MSE
value is produced. The goal is to produce filtering techniques with the lowest MSE
values, for a small number of signals in each subaverage. As the size of the
subaverage increases, the MSE value is expected to decrease as it gets closer to all
the signals being averaged and therefore closer to the target signal. Therefore, the
effectiveness is shown by how the mean MSE varies with an increase in the number
of signals per subaverage, for each filtering method (similar to the method shown in
Thakor, 1987). In all the tests, results of averaging-alone are included for
comparison as this is the standard technique for processing these types of signals.

6.4.1 Simulated data set
Figure 6-20 shows that the filters developed using subaveraged training data produce

better results (lower mean MSE value), for both single filter and bank of three filters.
These results were better than the equivalent filters developed using non-averaged
training data. All the above filters were developed using the whole signal. In figures
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6-21 and 6-22 where smaller regions are considered, a 3 filter model trained on this
region (represented by squares) produces an improved response over those trained
over the whole signal. In figure 6-21 the single filter models performed as well as the
three filter models developed for the whole signal. Below 20 signals per average the
filtering methods produce better (lower mean MSE values) results than averaging-
alone. Below 35 signals per average the three-filter model produced for this region
produces the lowest mean MSE values, after this averaging-alone is the better
approach. Figure 6-22 shows the results of applying filtering to the region of the
signal occupying the period 30-400 ms. A similar set, in terms of mean MSE values,
of responses to figure 6-20 is shown, except there is, in addition, a filter developed
using subaveraged training data of the same region. As in figure 6-20, the filtering
methods developed using subaverages of 10 signals produced lower mean MSE
values than averaging-alone. The filter specifically developed for this period
produced lower mean MSE value than the other methods as the size of subaverage
increased above 20 signals per average. When the size of subaverages were between
10 and 20 signals per average then mean MSE value were similar to those of the
bank of three filtered developed with subaveraged data.
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Figure 6-20 Comaprison of the filtering methods for simulated test subset using the whole of
the signal.
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Figure 6-21 Comparison of filtering methods for the first 30 ms of the simulated test subset

30-400ms

T, X

~—— Awerage only
Single trial - 3 filter modal
Subaversges (10) - 3 fiker modal
Singte trial - single fitter
Subaverages (10) - Singta fiter ]
Subaverages (10) - 3 filter modsi{partiaf)

0% 0+ x

Mean MSE

Size of Subaverage

Figure 6-22 Comparison of filtering methods for the region 30-400 ms of the simulated test
subset

642 Datasetl.
Figure 6-23 shows the same effect seen in figure 6-20, with the filters produced from

subaveraged data performing better than those filters produced using a single
example. There is some improvement with using a three-filter model for both the
single and subaveraged data, though in both cases the improvement is relatively
small. Figure 6-24 shows the results of filtering the first 30 ms of the signals. In this
figure, all the techniques produce better mean MSE values than averaging-alone.
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This changes briefly between subaverages of 47 to 65 signals, when the number of
signals averaged switches to one. In the region 20 to 60 signals per average, the
difference between the experimental techniques is relatively small. Figure 6-25
shows results for filtering the signals between 30 to 400 ms; the results are similar to
figure 6-23, with a small improvement for larger sizes of subaverage using the filter
bank developed for this region.
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Figure 6-23 comparison of filtering methods for the test subset of data set 1
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Figure 6-24 comparison of filtering methods for the first 30 ms of the test subset of data set 1
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Figure 6-25 comparison of filtering methods for the region 30-400 ms of data set 1 test subset

643 Dataset2
Figure 6-26 shows that all the techniques produced lower mean MSE values than

averaging-alone with smaller sizes of subaverages. Figure 6-27 shows filtering
methods applied to the first 30 ms of this test subset, the three filter bank developed
on this smaller region perform better than the other methods and better than
averaging-alone up to around 40 signals per subaverage. Figure 6-28 shows the
filtering methods applied to the region 30 to 400 ms, indicating that the filtering
methods all produce better results than averaging-alone, for smaller sizes of
subaveraging.

. Whole signal

T

—— Average only
Single trial - 3 §lter mode!
Subaverages (10) - 3 fiker model
Single trial - single fiter
Subeverages (10) - Single fiter

%0 4+ x

w
10 b0 000 ereeeeeReeeeed FOLIPRLPRLP0R |
-5 i A s I\ -
0 2 0 50 &0 100 120
Size of Subaverage

Figure 6-26 comparison of filtering methods for data set 2 test subset
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Figure 6-27 comparison of filtering methods for the first 30 ms of data set 2 test subset
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Figure 6-28 Comparison of filtering methods for the region 30-400 ms of data set 2 test subset

6.44 Dataset3
Figure 6-29 shows that initially the single trial single filter produced the best results

but, when ten signals are used in each average the filter bank developed using
subaveraged data performs better than a single filter. Later averaging-alone produced
the lowest mean MSE values, with the next best being the model trained on the
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region of the data. Again, the results for the whole signal show the filters trained
with the larger subaverages produced better results as the size of subaverages
(number of signals per average) increase. At the smaller subaverages, single trial
results work best, the transition occurs at around subaverages of four signals. Figure
6-30 shows results for filtering the smaller region first 30 ms models trained on this
region show initially worse results than the other filtering methods, but better results
than averaging-alone. A transition occurs at around 10 signals per average; from
there up to around 60 signals per average the model produced for this region
performed best. Figure 6-31 shows the results of filtering signals in the period 30 to
400 ms. The results are similar to figure 6-29 the filter developed specifically for this
region did not, for larger subaverages, perform as well as the filter bank developed
over the whole signal.
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Figure 6-29 comparison of filtering methods for data set 3
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Figure 6-30 comparison of filtering methods for the first 30 ms of data set 3 test subset
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Figure 6-31 comparison of filtering methods for the region 30-400 ms of data set 3 test subset

6.4.5 Dataset4
All the methods (except averaging-alone) applied to the whole of the signal are

similar (figure 6-32). Using the shorter region of the first 30 ms (figure 6-33), the 3
filter bank developed using subaverages of 10 signals for this region, performed
better than the other methods up to 20 signals per average, then averaging-alone
produced the better results. All the filtering methods produced better results (figure
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6-34) than averaging-alone below 30 signals per average, with the filters developed
for 30-400 ms.
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Figure 6-32 comparison of filtering methods for data set 4
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Figure 6-33 comparison of filtering methods for the first 30 ms of data set 4 test subset
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Figure 6-34 comparison of filtering methods for the region 30-400 ms of data set 4 test subset

6.4.6 Overall
In general, filtering methods developed using subaveraged data produced better

(lower mean MSE values) results for both single filter and banks of three filters,
producing lower mean MSE values than either of the methods developed using non-
averaged data (single trial). When the whole signal is being filtered, all the filtering
methods for small numbers of signal per average (fewer than 20 signals in a
subaverage) produced lower mean MSE values than averaging-alone (see figures 6-
20, 6-23, 6-26, 6-29, 6-32).

When the filtering methods for the whole signal are grouped as those developed
using data that were not averaged and those developed using data that were formed
as subaverages of 10 signals each, the difference between the results of the single
filtered and filter bank filtered results was often small. Usually the three filter bank
methods in both groups produced the lower mean MSE results.

Overall, filtering developed specifically for the first 30 ms performed better than the
filters developed for the whole signal. This effect can be most clearly seen in figure
6-27 and 6-33. The common feature of these two signals is that when the test data
are subaveraged (see figures 6-12 and 6-14), some features of the response can be
seen in the unfiltered signals. Initially these often had a higher mean MSE for the
very small size of subaverages (<5 signals per average), or similar results to the other
methods.



The results for the whole signal are similar to those for the region 30-400 ms. The
results using the filter developed for the whole signal produced higher mean MSE
values (except in data set 3) than those of the filter bank developed specially for this

region.

The developed filtering methods responses with increasing the number of signals per
average in terms of mean MSE values ‘flattens’ out earlier than those of averaging-
alone. This effect is mostly to do with the relative scale of the averaging-alone
results and the filtering methods. The range of values of mean MSE for averaging-
alone can be nearly three orders of magnitude. The filtering methods range of mean
MSE values vary by up to one order of magnitude. Variations in the relative values
of the filtering methods were less obvious than averaging-alone, therefore appeared

to have a smoother response.

As the number of signals in an average increased, averaging-alone in most of the
recording produced lower MSE values than the filtering methods, but usually for
smaller averages, the filtering methods produced the better results. Apart from
averaging-alone, three filter methods performed better than the single filter.

6.5 Conclusions
The time-invariant methods developed can extract the largest features in the signals.

Smaller features (relative to the largest features in a signal) such as observed in the
first 30 ms can be attenuated with averaging and these techniques, the filtering
processes may also distort the signal. The differences between a five-filter and three-
filter bank were small: the advantage to using a three-fiiter bank over the five-filter
bank was speed, less processing needed and fewer parameters to ‘adapt’.

Simulated responses show lower MSE than those of the recorded responses. This is
due to the simulated response being time-invariant as they were produced by taking
the target response and adding recorded noise. This means that the underlying
response does not change. In the recorded data, the underlying response can vary; for
example, a peak at 15 ms in one responses could be at 16 ms in another or 14 ms ina
third. In averaging the assumption is that the signals do not vary between the

responses. In these filtering approaches the assumption is modified to be that the
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variation between the responses is assumed to be small. Training a filter on the first
30 ms improves the extraction of the earlier components. This is due to the greater
stability of these earlier components as compared to the later components of most of
the data sets. The results for filtering the signal in the region 30 to 400 ms were often
similar to those of filtering the whole signal, though for three of the data sets there
was a small rise in mean MSE values for the filter bank developed specially for this

region.

If the signals to be filtered have both high signal-to-noise ratio (>1) and stability
between the signals, then filter banks developed for a specific signal region (e.g. the
first 30 ms of the signal) can produce a larger improvement in mean MSE than the
other techniques, for smaller numbers of signals per average than are currently used.



7 Time-varying Filter Banks

In the previous chapter, evolutionary algorithms were used to select the cut-off
frequencies and weights for a bank of filters. In this chapter the previous work is
extended to produce time-varying filters. Time-varying filters have been applied to
evoked potentials before (e.g. deWeerd (1981a, 1981b), Nishida et al., 1993) and
were found to perform better than time-invariant filters (Yu et al., 1983). Instead of
using a single set of filters applied to the whole signal, in this chapter different filters
(or combinations of filters) are applied at different times. Evolutionary algorithms
are used to select the active duration of each filter, as well as the frequency
parameters and weightings of the filters. Three filtering approaches will be
investigated.

7.1 Modification to Nishida’s Approach
Nishida et al (1993) used three bandpass filters to extract evoked potentials, with a

time-varying function on the output of each filter. This function enabled each filter to
be applied to a different segment of the signal. A high frequency bandpass filter,
relative to the other two filters, was used for the first portion of the response. A
medium frequency bandpass filter was used for the middle portion of response and a
bandpass filter of lower frequencies for the remainder of the response (figure 7-1).
This has been discussed previously in chapters 2 and 6.

Time-varying functions

ol | filter | P I }
Signal in T
P filter ¥
———P} | filter | P '1 c

Figure 7-1 Idealised model of the Nishida approach

Signal Out
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A modified version of the Nishida method was investigated. Instead of trying to get
this information from a power spectrum an evolutionary algorithm selects the four
frequencies used in the three filters, as well as the duration of the filters. The active
duration of the filters was selected by specifying the ends of the period for the high
frequency and medium frequency filters. A 10 ms transition period between the end
of one filter and the start of the next filter’s period was included as in Nishida et al,
to limited abrupt changes between the active region of one filter and another. The
fitness function was, as in the time-invaniant filter bank, the mean squared error
between the test responses and the averaged response, for each ‘individual' in the
population.
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Figure 7-2 Simulated test subset filtcred by the modified Nishida approach. (a) The filtered
short Iatency results, (b) the unfiltered short latency test signals (c) the target for the short

Iatency, (d) the filtered late Iatency signals (e) the unfiltered late latency test signals (f) the
target signal for the late latency signals.
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In only figures 7-2 (simulated) and 7-4 (data set 2) has this method extracted some of
the peaks of the first 30 ms seen in the target signal. In the others (figures 7-3, 7-5
and 7-6) the extraction of the peaks was not effective enough to see these features.
As in the time invariant methods (chapter 6) for the later components of the
simulated data (figure 7-2) and data set 1 (figure 7-3) some of the peaks observed in
the target signal were extracted. The extraction of the later components in the other

data sets were insufficient for clinical usage.
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Figure 7-5 Modified Nishida approach applied to the data set 3 test subset. . (a) The filtered
short latency results, (b) the unfiltered short latency test signals (c) the target for the short
latency, (d) the filtered late latency signals (¢) the unfiltered late latency test signals (f) the
target signal for the late latency signals.
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Figure 7-6 Modified Nishida appreach applied to the data set 4 test subset. (a) The filtered short
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Data Set Lowest Range of Mean Values

Mean Squared Error (10%) Mean Squared Error (107)

Min Max Mean Std Min Max Mean Std
Simulated 03977 | 0.7644 | 0.5474 | 0.1777 0.5474 0.6885 | 0.5764 | 0.0627
1 1.0891 | 3.1925 | 1.9835 | 0.7987 1.9835% 20782 | 2.0404 | 0.0361
2 0.0685 | 0.0821 | 0.0761 | 0.0043 0.0761 0.1033 | 0.0852 | 0.0113
3 1.1979 | 13257 | 1.2565 | 0.0564 1.2565 1.3307 | 1.2938 | 0.0341
4 0.2288 | 0.2485 | 0.2338 | 0.0058 0.2077 0.243 02322 {00144

Table 7-1 MSE values for the modified Nishida approach

Overall, this method produced MSE values that were unacceptable and did not
preserve enough key features in a visual inspection and was therefore deemed to be

insufficient for clinical usage.

7.2 Extending the number of filters
The previous approach assumed that the regions were adjacent to each other in the

frequency spectrum, giving low, middle and high frequency regions, with no overlap
between the regions. This was then modified in three ways. First, though the signals

were split into three regions, each region was a weighted combination of the output
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of two filters, enabling more than one set of frequency components in the same
portion of signal. Second, the filters selected were not directly dependent on the
filters in the other regions. The passband frequencies of each filter did not
necessarily have any frequencies in common with the other two regions. Thirdly,

overlapping pass bands of the filters within a region were possible.
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Figure 7-7 filtering using multiple filters for the test subset of simulated data set 1
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Figure 7-8 filtering using multiple filters for the test subset of data set 1
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Figure 7-11 filtering using multiple filters for the test subset of data set 4

The results of the first 30 ms for the simulated data set (figure 7-7), data set 1 (figure
7-8) and data set 3 (figure 7-10) are shown above. It can be seen that the technique
was unable to extract features from the noisy signal (data set 3). However, this
technique was able to extract certain key features of the first 30 ms of data set 2 (e.g.
a negative feature at 14 ms in figure 7-9) and data set 4 (e.g. a positive feature at
approximately 20 ms in figure 7-11). The unfiltered signals for the first 30 ms of
these signals show some of the features that are to be extracted, in the other signals
the features are less visible. The results for the first 30 ms of data set 4 also included
a large artifact at the beginning of the signal. It is unclear what the exact cause of the
artifact is, but it is most likely to be a stimulus artifact. Late components are
extracted in the simulated data set (figure 7-7) and data set 1 (figure 7-8), whereas in
the other data sets the effectiveness is less clear.

7.3 Splitting the signals into early and late components
In the previous chapter, splitting the signal into two separate signals improved the

effectiveness of the filters for the early components. This work and the work carried
out by other groups suggest that there are at least two different regions. Early
components are more stable than the later components and have higher frequency
components (Maccabee et. al., 1983). The late component region is likely to vary
between signals and has predominantly low frequency components. Splitting the
signal into two signals based on these regions (the first 30 ms and 30-400 ms) means
that the two regions are filtered independently of each other using the method
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described previously (section 7.2). In other words the method described previously is
applied to the first 30 ms and in parallel applied to the second signal (30-400 ms),
treating each as two independent signals. The fitness value was changed to the mean
value of the MSE values of the two separate regions. In tables 7-2 and 7-3 values
shown are for the lowest scoring combined MSE values, not necessarily the lowest
scoring first 30 ms or 30-400 ms results.
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Figure 7-12 The filtered results when splitting the simulated signals
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Figure 7-13 The filtered results when splitting data set 1 into two parts

In both the simulated data set (figure 7-12) and data set 1 (figure 7-13), features were
extracted for the late components. In figure 7-12, the first 30 ms of simulated data
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has extracted a combination of large and small components, in figure 7-13 in six out
of the nine signals for the early components the larger components are extracted. For
data set 2 (figure 7-14) the dominant early component is extracted, but there appears
to be an artifact around 100 ms probably due to the filtering process.
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Figure 7-14 The filtered results when splitting the signals in data set 2 into two parts
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Figure 7-15 Splitting the signals in data set 3 into two parts

For data set 3 (figure 7-15) it is difficult to see any clear features in either of the two
regions. The results of data set 4 (figure 7-16) show that the dominant early
components are extracted, but the late components were not.
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Figure 7-16 The filtered results when splitting the signals of data set 4 into two parts

This technique improved the extraction of early components. In some of the data

sets, late components have also been extracted.
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Figure 7-17 Filters selected for the simulated test set
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Figure 7-18 Filters selected for the test subset of data set 1
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Figure 7-19 Filters selected for the test subset of data set 2
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Figure 7-20 Filters selected for the test subset of data set 3
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Figure 7-21 Filters selected for the test subset of data set 4

For the early latency components, the bandpass frequencies with the largest
weighting were generally at higher frequencies than those selected for the late
latency components. These results fit with some of the previous work on linear filters
that discussed the early components having higher frequency components than the
later components. The late components of both data set 1(figure 7-18) and the
simulated data set results (figure 7-17) are dominated by filter with a narrow range of

109



relatively low frequency filters between 4 and 27 Hz. For the early components of
data set 2 (figure 7-19) in general, the frequency components are below 200 Hz. The
exception to this is a short region of time 10.67 to 14.8 ms where a wider filter with
lower weighting extending up to 400 ms. One possible explanation of this is that the
filter is attempting to extract the small feature visible in this region on the target
signal (figure 7-4c). Data set 3 (figure 7-20) used a relatively narrow range of low
frequencies, up to around 200 Hz for early components. For data set 4 (figure 7-21)
for early components the filters are narrow band filters with frequency below 200
Hz. In the region 1.73-8.8 ms, the second filter has a pass band approximately
between 300-400 Hz. In this region of the target signal (figure 7-6¢) small features
are present. One possible explanation is that this filter is attempting to extract those
features.

7.4 Comparison of methods
In chapter 6 a comparison of time-invariant methods showed that the results (lower

mean MSE values) were improved when the signals were split into a short signal (the
first 30 ms of the signal) and a longer signal (30-400 ms of the signal). Figures 7-22
to 7-26 show a similar comparison of the three methods used in this chapter,
comparing the mean MSE of the filtered signals from the target signals, as the

number of signals per subaverage increase.

In all the figures, the best (i.e. the lowest) mean MSE values were those of the third
approach, of splitting the signals for smaller sizes of subaverages.
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Figure 7-22 Comparison of time-varying methods for simulated test data
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Figure 7-23 Comparisons of time-varying methods for data set 1
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Figure 7-24 Comparisons of time-varying methods for data set 2
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Figure 7-25 Comparisons of time-varying methods for data set 3

The first 30 ms of the simulated data set (figure 7-22) produced an unusual result as
compared to all the others (figures 7-23 to 7-26) in that the multiple filter results
produce the lower MSE values for larger sizes of subaveraging (20 to 40 signal per
average). Compared with the other data sets where the approach of splitting the
signals produced the lower MSE values, this effect is not significant, as the aim of

this work is to use a small number of signals in a subaverage to enhance the signals.
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In figure 7-26 the difference between three approaches for the region of 30-400 ms
was small. The effects shown in figure 7-26 were also shown in table 7-3.

The modified Nishida approach in general has been the least effective for all the
signals, except for the first 30 ms of data set 4 (figure 7-26).
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Figure 7-26 Comparisons of time-varying methods for data set 4

7.5 Conclusions

Splitting the signal into two separate signals and using three regions per separate
signal, with two filters per region, produces lower mean MSE values than using three
regions per signal with two or one filter per region. This confirms some of the results
seen in the previous chapter where the results for the early components are improved
by splitting the signals into early and late components. In this chapter the late
components mean MSE values are also improved by the time-varying filters. This
improvement is seen in both in terms of the lower mean MSE values shown in
figures 7-12 to 7-16, but also in the extraction of peaks not previously extracted by
the other methods.

All the techniques showed variations in the position of the largest peak in the region
30-400 ms for the test subset of data set 1. As the simulated subsets were constructed
from the target signal of data set 1, a direct comparison between the effect of the

113



methods can be made. This variation in the latency of the peak does not appear in the
simulated data where variation in latency was not included, but it can be seen in
results for data set 1. This suggests that the system can cope with relatively small
variation of latency in the dominant peak. When looking at the smaller late latency
components between 200-300 ms, these peaks did not always appear in the filtered
results of data set 1, using a single filter per region. When the second filter was
added these components were usually present. The addition of this extra filter allows
peaks to be extracted from a different region to the first filter, again suggesting that
using a single filter will not going to solve the problem of extracting evoked
potentials from a noisy signal. The filters are still assuming stationarity, but now
only over the part of the signals that each combination of filters is applied to.

For smaller number of averages (<20 signals/average) both splitting and multiple
filters were often better than averaging-alone, the exception being the multiple filter
results for data set 4.

A direct comparison with some groups work (e.g. such as Paradiso et al, 1995,
Maccabee et al (1986), or Rossini et al, 1981) for short latency components is not
entirely meaningful as they used filters to discard low frequency components in
order to extract the higher frequency components of some of the smaller features.
Looking at the representation of the frequencies of the filters and weighting for the
time-varying technique of splitting the signals, in figure 7-17 to 7-18 for simulated
and data set 1, a filter is shown for the largest segment of this region that is able to
keep high frequency components, but a larger weighting is given for the a narrow
lower frequency filter. The results for data set 2 showed a wide band frequency
components starting at low frequencies and going up to 400 Hz, but this time the
dominant filters were within this range but also relatively narrow. This fits in with
the shape of the target signal where there is a dominant low frequency component
with smaller features superimposed. Figure 7-20 to 7-21, the scalp recordings did not
show a filter for a wide band of high frequency components. Instead the results
showed filters with narrow bands. The later components do not appear to be better
than the frequencies suggested by other groups except in part Maccabee et al (1986),
who used a 5-3000 Hz bandpass filter and the late latency part of Nishida (1993) (5 -
17.5Hz). In general bandpass filters with low frequency components were the
dominant filters.
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Table 7-2Results for the first 30 ms

Table 7-3 Results for the region 30-400 ms

St

Modified Nishida Multiple filters/Region Splitting the Signal

Mean Squared Error (x107) Mean Squared Error (x10~) Mean Squared Error (x10°)
Data Set Min Max Mean min max Mean Min Max Mean
Simulated | 0.1126 0.3987 0.2281 0.0422 0.2293 0.1311 0.0627 0.1103 0.0863
1 0.2176 0.5542 0.4014 0.0872 0.1666 0.1251 0.0515 0.1539 0.0866
2 0.0522 0.1601 0.1010 0.0470 0.2176 0.1006 0.0168 0.1497 0.0482
3 0.0915 0.0922 0.0918 0.0842 0.4960 0.2111 0.0346 0.1315 0.0914
4 0.1640 0.1642 0.1641 0.0792 0.2272 0.1288 0.0311 0.1155 0.0572

Modified Nishida Multiple filters/Region Splitting the Signal

Mean Squared Error (x107) Mean Squared Error (x10™) Mean Squared Error (x107)
Data Set Min Max Mean min max Mesan min Max Mean
Simulated | 04192 0.8107 0.5719 0.1863 0.7515 0.4593 0.1139 0.5700 0.2983
1 1.1563 3.4327 2.102 0.4382 3.4062 1.6211 0.3274 3.3581 1.2555
2 0.0692 0.0801 0.0739 0.0553 0.1197 0.0761 0.0391 0.1195 0.0666
3 1.1112 1.2396 1.1714 0.5995 1.8312 1.0159 0.3895 2.6819 0.9252
4 0.1221 0.1912 0.1514 0.0804 0.234 0.1429 0.0884 0.2411 0.1441




8 Wavelets and Evoked Potentials

In the previous chapters linear filters were used, with different methods applied
to making a filter bank have time-varying properties. Wavelets are a group of
techniques that fit the need for filter banks and the ability to process
nonstationary data. In this chapter the aim is not to perform a detailed analysis of
wavelets for processing SEPs, as there is a growing body of work in this area
(e.g. Bartnik et al. (1992); Bertrand et al (1994); Blinowska and Durka (1997),
and Samar et al. (1995,1996,1999)). The aim of this chapter is to investigate
whether evolutionary algorithms can select wavelets and coefficients to extract

evoked responses.

8.1 Introduction to Wavelets
Wavelet analysis has become a widely used set of techniques to analyse and

process signals and images. A general outline of these techniques is presented
here, as well as placing wavelets in the context of other signal processing
techniques. More detail introductions are available (e.g. Bentley and McDonnell
(1994); and Strang and Nguyen (1997) and from a mathematical perspective,
Daubechies (1988,1990) and Mallat (1998)).

The most commonly used method of signal analysis is Fourier analysis, in which
the signal is broken down into its constituent sinusoids of different frequencies
and relative phase. In other words, Fourier analysis is a mathematical approach to
transform the signal from a time-based representation to a frequency-based one.
The technique for doing this is the Fourier Transform.

Flw) = Ff(t) exp(jax) dt Equation 8-1

This is the sum over all time of the signal f (t) muitiplied by a complex
exponential. Complex exponentials can be broken down into real and imaginary
sinusoidal components, hence the reason for sine waves being the basis of the

Fourier analysis.
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Figure 8-1 Principles behind Fourier transforms

The results of the transform are the Fourier coefficients F (@) of the signal,
which when multiplied by a sinusoid of frequency ® produce the sinusoidal
components of the original signal

This technique is useful for many signals, as the frequency components of the
signal can contain important information. However, there is a drawback to this
approach. When transforming from a time-based signal to a frequency-based
representation, time information is lost. So when looking at the transformed
signal, it is not possible to tell when a particular event took place. If a signal does
not change significantly over time it is stationary and so this drawback is not
important. If the signal contains components that vary over time, such as drift, or
abrupt changes, the signal is nonstationary and where in the signal a particular
event occurred is lost. These characteristics are often important, so Fourier

Analysis is not suited to for use with nonstationary signals.

8.1.1 Short Time Fourier Transforms
Trying to correct this weakness, the Fourier Transform was adapted to look at

small section of the signal at a time. This process is called the Short-Time
Fourier Transform (STFT). This transform maps the signal onto a function not
only of frequency, but also of time. The transform works by only carrying out the
Fourier Transform on a signal enclosed within a window. The window moves
along the time axis and then performs the Fourier Transform on the signal within
this new window. These windows often overlap. This process continues until the
whole signal has been analysed.

This process provides some information about both when and with what
frequency components a signal event occurred. This only obtains information

with limited precision and the precision is determined by the window size.
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8.1.2 Wavelet Analysis
Wavelet analysis provides a more flexible approach. One advantage of wavelet

analysis is its ability to perform localised analysis, i.e. to analyse a small area of
a signal. Therefore, what is wavelet analysis and what are wavelets? A wavelet is
a waveform of effectively limited duration that has an averaged value of zero.
Fourier analysis works by ‘breaking’ the signal into sine waves of varying
frequencies. In wavelet analysis, the signal splits into components of scaled and

shifted versions of a basic original (or mother) wavelet.

§.1.3 What is a wavelet?
One definition of a wave is an oscillating function, such as a sinusoid, it is

periodic so theoretically it can continue for infinite amount of time, so has
infinite energy. A wavelet is a ‘small wave’, it may oscillate but it does not
repeat and as time increases, it tends to zero, therefore it has finite energy. This
property means that if it is used as a window function, signal components in time
away from the window are poing to have no significant contribution to the
analysis until the ‘window’ is used to analyse them. Fourier analysis is based on
sinusoids, so it can be thought of as wave analysis, the whole signal contributes
to the analysis. Because of their finite range wavelets provide more localised

analysis.

8.1.4 Continuous Wavelet Transform
The continuous wavelet transform (CWT) is the sum over all time of the signal

C(scale, position) = |".. f{t)y (scale, position, time)dt Equation 8-2

J\,

Wavelets of different scales and postions

multiplied by a scaled, shifted version of a wavelet y.

L

i
I

4

Figure 8-2 Basic principles of wavelets

The results of the CWT are wavelet coefficients C, which are functions of scale
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and position. Multiplying each coefficient by the appropriate scaled and shifted
wavelet yields the component wavelets of the original signal. Another way of
thinking about the value C, is that it is a measure of how well the section of
signal under investigation correlates with the wavelet, the higher the value of C
the greater the similarity. Two terms have been mentioned, shifting and scaling,
but yet not discussed. Shifting a wavelet means either delaying or hastening its
onset, so if a wavelet has a function y(t), a delayed wavelet by a time interval k
has a function y(t-k). Scaling a wavelet means to stretch or compress it. A
scaling factor is usually signified by a.

8.1.5 Scalogram
One point to note is that in wavelet analysis there is no frequency component but

a scale component. In a similar way to the time-frequency plots formed using an
STFT, wavelets produce a different view of the signals properties in the form of
a scale-time plot. The higher scale values of a, correspond to more stretched
wavelets. The longer the wavelet, the longer the portion of the signal that is being
compared (similar to the larger the window in STFT, the larger the portion of the
signal considered each time.) and the coarser the signal peaks measured. For a
low scale value of a (i.e., a compressed wavelet), the shorter the portions of the

signal considered, so the finer the details of the signals compared.

8.1.6 Why use wavelets?
An advantage of wavelets is the ability to analyse a signal at a localised level.

This ability comes from scaling the wavelet, compressing the wavelet and,
performing the analysis of the signal at progressively smaller area. Wavelets are
essentially looking at how similar the portion of the signal is to a scaled wavelet,
so wavelet analysis can reveal aspects of the signal (or images) such as
discontinuities and self-similarity (fractal). Wavelet analysis has also been used
to compress and de-noise signals and images. In appendix A.3 scalogram of
evoked potentials and background activity (noise) are included to show the
nonstationary nature of the signals and properties of wavelets.

8.1.7 Discrete Wavelet Analysis
So far, continuous wavelet transformations have been considered. The

continuous part of the name comes from the ability of the CWT to operate at

every scale. It does not mean that the signal must be continuous. The signals by
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their very nature, since the signals are being processed on a computer, are
discrete. Having to calculate wavelet coefficients for every scale is computer
intensive, producing a considerable amount of data. If the scales and position
selection are based on powers of two (or dyadic), the analysis is more efficient
and just as accurate (Strang and Nguyen, 1997). This type of analysis is called
the Discrete Wavelet Transform (DWT). The Mallat algorithm (Mallat, 1989) is
an efficient way to implement this and is based on the idea of two channel
subcoding, or pyramidal decomposition. The wavelet coefficients quickly
emerge, so it is sometimes also called the fast wavelet transform.

HPF—'@ -> D1
s HPF—@ > D2

LPF * s

LPF _@_______> A3
Figure 8-3 Decomposing a signal into details and an approximation, HPF- High-pass filter,
LPF- low-pass filter.

D1 @-E

02 O

D3 "'—‘@'—E %r—i@'ﬁ
PF

A3 ST

Figure 8-4 Reconstructing a signal from the details and approximation. HPF- High-pass
filter, LPF- low-pass filter.

The signal goes through a low-pass filter and a high-pass filter and emerges as
two signals (figure 8-3). The output of the high-pass filter is the detailed signal
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and the low-pass filter output is an approximation. The high-pass filters used are
wavelets and the low-pass filters are the scaling functions. To reduce the number
of points in each signal and therefore avoiding having a lot of data stored, the
detail and approximations are down sampled. Down sampling here means
discarding every second data point. The process is repeated several times with
the approximation forming the input to the next stage, so the signal is broken
down into many lower resolution components, The number of stages (or levels)
could theoretically be continued until a single pixel or sample point is formed,
but this is not practicable. In practice, the number of levels selected is usually
based on the nature of the signal. To reconstruct the signal (figure 8-4) the
process is carried out in reverse with the inputs being the detail signal and the
final approximation and up sampling this time. Up sampling is the process of
lengthening the signal by adding zeros between each sample. The equation for
the reconstructed signal, using the notation shown in figure 8-4, is: -

S=A3+D1+D2+D3 Equation 83

So far, in the discussion about the DWT, the use of low-pass and high-pass filters
was been discussed, but no mention of wavelets. The high-pass filters are the
wavelets, and the low-pass filters form the approximation.

8.1.8 Denoising
Techniques to reduce the noise in a signal have been developed for decomposed

signals. Donoho and Johnstone (1994) made the assumption that the large detail
coefTicients of a noise corrupted signal will be those of the signal and the others
will be components of the noise. This assumes that the noise is white noise. The
denoising technique starts by setting a threshold, so that if the absolute value of a
coefTicient is below the threshold the coefficient 1s set to zero. This is known as
hard thresholding. A second method, soft thresholding, is an extension of the
previous method. As well as reducing coefficients that are less than the threshold
value to zero, the other coefficients are reduced by the threshold value (Donoho
(1995), Donoho et al. (1995)).

8.2 Combined evolutionary algorithm and wavelet approaches
Approaches that combine evolutionary algorithms and wavelets have been

investigated previously for other applications; Lankhorst and Lann (1994) used
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spline wavelets and an evolutionary algorithm to approximate signals. They
selected parameters such as dilation, translations and amplitude for each wavelet.
A different method is investigated here, in line with the idea of splitting the
signal into two portions (first 30 ms and 30 to 400 ms) and then processing them
separately as in sections 6.5 and 7.3. Here the filters are replaced with wavelets.
The discrete wavelet transform using Mallat’s method decomposes the signal
(figure 8.3) into a set of ‘details’ and an approximation of the signal at the lowest
level is examined. This can be viewed as a set of bandpass filters (the filters may
be high-pass filters but in combination with downsampling they become
bandpass filters) and a single low-pass filter, in other words a filter bank. The
aim of the evolutionary algorithm this time is to weight the outputs of these
filters (figure 8-5) and select which wavelet to use (from a list of 46 wavelets).
The fitness function was the same as in section 7.3, the mean value of the MSE
values of the two regions.

' Detmls and
Signal Approximation| Weighting the

Details and
Decompose Approximation

Processed
Signal Recompose

Figure 8-8 Outline of the combined wavelet and evolutionary algorithm approach.
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Figure 8-6 Wavelet filtering approach applied to the test subset of the simulated data set
(first 30 ms). (a) After filtering, (b) before filtering, (c) target signal.

In figures 8-6 to 8-9 the filtered signals are noisier than the methods in chapter 6
and 7 but the smaller features can be seen that appear in the target signal but
were lost by the other methods

)

; 100 200 300 400
..... 4 Time (ms)

I 01
100 200 300 400
Time (ms)

100 200 300 400
Time (ms)

Figure 8-7 Wavelet filtering approach applied to the test subset of the simulated data set
(30-400 ms). () After filtering, (b) before filtering, (c) target signal.
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Figure 8-8 the wavelet filtering approach applied to the test subset of data set 1. (a) After
filtering, (b) before filtering, (c) target signal.
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Figure 8-9 Wavelet filtering approach applied to the test subset of data set 1 (30-400 ms). (a)
After filtering, (b) before filtering, (c) target signal.
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Figure 8-10 the wavelet filtering approach applied to the test subset of data set 2 (first 30
ms), (a) After filtering, (b) before filtering, (c) target signal.

Figure 8-10 shows a problem using wavelets where the larger features of the
signal fit the shape of the wavelet and the smaller features do not, so the smaller

features are lost.
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Figure 8-11The wavelet filtering approach applied to the test subset of data set 2 (30-400
ms). (a) After filtering, (b) before flltering, (c) target signal.
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Figure 8-12 the wavelet filtering approach applied to the test subset of data set 3. (a) After
filtering, (b) before filtering, (c) target signal.

Figure 8-11 shows results for the late components of data set 2, showing signals
with low frequency content with a small amount of noise, similar to the target
signal. As observed in the previous chapter the results for data set 3 (figures 8-12
and 8-13) show many of the key features of the target signals.

Voltage (V)

00 200 X0 400 100 200 300 AW
Time (ms) Tima {ms)

Figure 8-13 The wavelet filtering approach applied to the test subset of data set 3 (30 to 400
ms). (a) After filtering, (b) before filtering, (c) target signal.
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Figure 8-14 the wavelet filtering approach applied to the test subset of data set 4. (a) After
filtering, (b) before filtering, (c) target signal.

Both the unfiltered and filtered early components of data set 4 (figure 8-14) were
similar to the target signal, with the filtered signal producing visually greater
similarity to the target signal and also in terms of MSE (see figure 8-25).
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Figure 8-15The wavelet filtering approach applied to the test subset of data set 4 (30-400
ms). (a) After filtering, (b) before filtering, (c) target signal.
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Figure 8-16 Outlines of the wavelet and evolutionary algorithm with denoising as a post-
processing stage

Signal

As has already been mentioned (section 8.1.8) wavelets can be used to denoise
the signals. This was applied as a further stage to this process (figure 8-16). After
the evolutionary algorithms have selected the wavelet and weighting for the
levels, whilst processing the test data the signal were further processed using a
denoising algorithm and the wavelet selected to lower the noise. This process is
separate to the evolutionary algorithm, performed after processing with the
model developed using evolutionary algorithms.
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Figure 8-17 Denoising applied to the first 30 ms of the simulated test data. (a) After
filtering, (b) before filtering, (c) target signal.

Comparing the effect of the extra denoising stage (figures 8-17 and 8-18), this
extra stage is applied to the first 30 ms of the test sets of the simulated data and
data set 4, with the results of the wavelet approach (figures 8-6 and 8-14
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respectively). What is shown here is that the denoising algorithm has only a
small effect on noise removal, removing relatively low magnitude high

frequency components (but can improve the visual representation of the signals).
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Figure 8-18 Denoising applied to the first 30 ms of data set 4. (a) After filtering, (b) before
filtering, (c) target signal.
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Figure 8-19 Denoising applied to the region of 30-400 ms of data set 1. () After filtering, (b)
before filtering, (c) target signal.

The effect of denoising is more noticeable when applied to the late components
(30 - 400 ms). Comparing the non-denoised results of data set | and data set 2

(figures 8-9 and 8-11 respectively) with the signals after denoising (figure 8-19
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and 8-20). The denoising stage removes what appears to be the random noise left
after filtering, which would fit in with the theory of denoising (Donoho et al.

1995).

0.14

012

Sid/

8
o S AT

Figure&-”l)enouhgapplbdhﬂemMmd‘dauutz.(a)Aftermtem;,(b)
before filtering, (c) target signal.

Comparisons of the wavelet methods with and without the extra denoising stage
are shown in figure 8-21 to 8-25. In terms of mean MSE there is littde difference
between the two methods.
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Figure 8-21 A comparisen of the wavelet method and the wavelet method with a deneising
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simulated dats sct.
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Figure 8-22 A comparisen of the wavelet method and the wavelet method with a denoising
stage for the early (first 30 ms) and late components (30-400 ms) of the test data of data set
1
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stage for the early (first 30 ms) and iate compeonents (30-400 ms) of the test data of data set
2.
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Figure 8-24 A comparison of the wavelet method and the wavelet method with a denoising

stage for the early (first 30 ms) and late components (30-400 ms) of the test data of data set
3.
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Figure 8-25 A comparison of the wavelet method and the wavelet method with a denoising
stage for the early (first 30 ms) and late components (30-400 ms) of the test data of data set
4.

In comparison with the time-varying methods of chapter 7 the results are similar
to those of splitting the signals (section 7.3). Averaging-alone was found to only
better or similar to these filtering methods when the size of the subaveraging is

relatively large (greater than 40 to 50 signals per average).
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8.3 Discussion
Wavelets are appropriate because they are suited to dealing with nonstationary

signals. Here wavelets were used to act in a similar way to a set of bandpass
filters with the output of the filters, the wavelets, weighted, which was similar to
the approaches in the previous chapters.

This technique is broadly similar to the approach used by several other groups
for late components (e.g. Bartnik et al 1992a, Quiroga, 2000), where the levels of
the wavelets were selected for inclusion in the reconstructed signal. The
differences however are that the evolutionary algorithm selects the wavelet used
and by adjusting the weights, the evolutionary algorithm selects how much a
particular level contributes to the result. This technique differs from the approach
of Lankhorst and Lann (1994) in two ways. The technique used here, again,
selects which wavelet to use and the dilation and translation is taken care of by
the decompostion and reconstruction stages, the algorithm contains the amplitude
weighting for the wavelets. Second, Lankhorst and Lann (1994) method was
developed to approximate the signals it was trained upon and so only used single
examples of signals uncorrupted by noise, unlike the signals used with this study.

Both small and large features can be extracted by wavelets (see figure 8-17), but
when features due to noise are similar to some of the features in the target signal

then these noise components are likely to be included in the reconstructed signal.

This technique often selected two different wavelets for the two separate regions
(see Appendix A). This difference is believed to be due to the difference in
requirement for the two regions. Early components are more likely to contain
high frequency components and the later components lower frequency
components, leading to the wavelet used in the reconstruction of the late
components usually being smoother than those used to reconstruct the early
components. The denoising algorithms used made small visual improvements in
the signals, but in terms of MSE the difference was insignificant.
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9 Comparison of Methods and Discussion

In chapters 6 to 8 the methods developed were compared with averaging and for
some of the methods averaging was not as good as these techniques until the size
of subaverages was relatively large (greater than 40 signals per subaverage). In
this chapter a comparison of the filtering methods for smaller sizes of
subaverages will be produced.

9.1 Comparison of Methods
As measures of the effectiveness of the techniques developed during this work,

three repeatedly used techniques have been included for comparison, The first is
Wiener optimal filtering (Doyle, 1975), introduced as one benchmark. The
second benchmark is ensemble averaging, which is selected because it is the
most commonly used technique for extracting these types of signals. Finally, a
comparison with Bertrand’s wavelet optimal filtered method is also made
(Bertrand et al, 1996). Bertrand’s method is based on Doyle's method with the
spectra replaced by wavelets and is included because it is both a wavelet method
and a method of optimal filtering (see chapter 2).

9.1.1 Whole signal
A further technique using the frequencies and the time domain regions described

by Nishida et al (1983) was included as a comparison with the modified Nishida
approach (section 7.1). The effects of the various filtering methods developed to
extract the whole signal are shown in figure 9-1. Four methods were considered:
a filter bank of three filters (section 6.2), single filter (chapter 5), multiple filters
(section 7.2) and the Modified Nishida approach (section 7.1).
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When the number of signals per average was small (less than 10), the
evolutionary algorithm based methods are all better (lower mean MSFE values)
than optimal filtering methods and averaging-alone. For the spinal recordings, in
general, optimal filtering performed worse or similarly, in terms of mean MSE,
to the evolutionary algorithm filtering methods. Using multiple filters per region
produced the best results for small sizes of subaveraging in three out of the five
data sets. The exceptions being data sets 2 and 3. In data set 2 the performance of
this technique was not as good initially, but as the size of subaverages increased,
the difference between this and the other evolutionary algorithm based filtering
methods became marginal. In the scalp recordings, the optimal filtering methods
produced lower mean MSE than the other methods for smaller numbers of
signals.

The modified Nishida and single filtering were the least effective methods. The
common feature between these two approaches is that only one filter at a time is
used. The main difference between them is the modified Nishida approach uses
different filters at different times through the signal, whereas the single filter
approach applies the same filter all through the signal. For all the data sets, as the
number of signals in the average increased, the wavelet optimal filter (Bertrand
et al, 1996) performed better than the optimal Wiener filtering approach (Doyle,
1975). A possible explanation of this is that as the sizes of subaverage increases,
the ‘high rate’ features in the signal due to noise are reduced. The remaining
features are more likely to be those of the signals and the wavelet can then
extract them. Averaging-alone, currently most widely used, had a higher MSE in
4 out of 5 of the data sets. Its performance improves only with the simulated data
set in which the underlying signal was the averaged signal.

9.1.2 Partial signal
The filtering methods were first developed and applied to the whole signal.

Techniques were then developed to be applied to the signals in two parts: the first
30 ms and the region 30 to 400 ms of the signals, including the optimal filtering
methods. To this aim figures 9-2 to 9-6 show the results in a similar way to
figure 9-1 how the mean MSE values for these techniques varied as the size of
subaverage increased. See Appendix A (Table A-4) for example mean MSE

values of the various techniques.
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Splitting the signals |Optimal filter |Partial Wavelet |Optimal-wavelet
Change %| Change %| Change %| Change % Change %
simulated 26.5306 50.0000, 30.6122{ 76.5306 37.7551
1 95.8186 85.1118] 93.4829| 95.3475 94.9941
2 77.1830 32.7485] 59.0643] 64.9123 72,5146
3 93.2163 81.3009] 93.1346] 91.0615 82.7374
4 23.2319 21.8957| -8.3917| 62.2313 29.9864
mean 63.1981 582114 53.7365| 78.0166 65.5975

Table 9-1 For the first 30 ms the percentage decrease in mean MSE of the techniques
compared to the values for average alone, for subaverages of 20 signals using the equation
(1-(techniques mean MSE - averaging-alone mean MSE)//averaging-alone mean MSE)

[Splitting the signals [Optimal filter [Partial Wavelet  [Optimal-wavelet

Change %{ Change %| Change %| Change % Change %

simulated 81.3590 57.2458| 658449 60.9140 67.3482
1 80.8749 516446 68.8708; 65.2764 67.1075

2 80.5923 87.8B049; 66.7598| 88.5017 88.1533

3 79.7630 77.1751 77.4973] 79.0648 76.3963

4 57.5397 555525| 61.6098] 67.1724 68.8915

mean 78.0238 65.8846] 70.1164] 72.1839 73.5394

Table 9-2 For the 30 — 400 ms the percentage decrease in mean MSE of the techniques
compared to the values for average alone, for subaverages of 20 signals using the equation
(1-(techniques mean MSE - averaging-alone mean MSE)/averaging-alone mean MSE)

For the first 30 ms, in ail but the simulated data set and data set 4 (figure 9-2 and
9-6) the method of splitting the signal into three regions with two filters per

region (section 7-3) produced lower mean MSE (the largest percentage change

139




for these data sets in table 9-1) values than the other techniques. In the simulated
data set and data set 4, a similar method where the filters were replaced by
wavelets (section 8-2) produce the lower mean MSE. For the early components,
the approaches that produced the lowest mean MSE values were both time-
varying techniques using more than one filter at a time. This included the results
of data set 4 (figure 9-6) where the wavelet can be considered as a set of filters.

For the region of the signal between 30 and 400 ms, in all but data set 4 (figure
9-6) the method of splitting the region into three sub-regions with two filters
each produced the lowest mean MSE values (see Table 9-2). The improvements
in mean MSE was small (<5% difference) in both data set 2 and 3. The results of
evolutionary algorithms filtering methods, for the late components, were better
than the optimal filtering results, except in data set 4 (figure 9-6). The time-
invariant filter bank developed by splitting the signals into these two regions in
the spinal recordings was more successful for the 30-400 ms and first 30 ms, than
the filter bank approach developed for the whole signal (figure 9-1). This
approach work well especially for data set 2 (figure 9-4).

9.2 Discussion
The simulated data set has been useful for checking that the techniques are

practical and extract some of the features. There is a lack of realistic models
evoked potentials, which meant that only a time-invariant simulated data set was
generated. Time-varying models for simulated data based on exponentiaily
weighted sinusoids have been suggested by some authors (e.g. Darragh et al,
1995), without any clear justification as being realistic models. Therefore a time-
invariant simulated data set and four recorded data sets were used. Though the
simulated data sct was based on a time invariant response, it is an averaged
signal from a recorded data set (data set 1). The noise was recorded at the same
site as the signals used in the averaged signal. Both the averaged signal and the
noise are based on actual recorded electrical activity.

The evolutionary algorithm based techniques work best for short latency
components. This is not entirely surprising as the method works by comparing
the filtered signals to a fixed target signal. Short latency has less variability in
position than the late components. Therefore, the filtered and target signals are

more likely than the late components, to have features that are approximately (<2
140



ms) in the same position in time as those in the target signal. The approaches in
general found the large features. If the relative positions in time of the
components do not vary greatly between subaverages, these approaches could
still extract the feature. This can be seen in filtered results of the late components
of data set 1 (see figure 6-16). For the early components, the likely positions of
the features are known, so by looking to see if these features are present in the
filtered signal it can be said that the features have been extracted. For later
components, because of the variations in position of features, it is not always

easy to say what is and what is not a feature of a response.

Time-invariant methods were able to show that the overall shape of the signal
could often be extracted, but the small details were often lost. Splitting the signal
into different regions, in this case two subregions, the short latency region
performed better (lower mean MSE) than the models developed using the whole
signal applied to the same region. Artifacts were not produced due to phase shift,
as these filters do not introduce any phase shift (see chapter 5).

Splitting the signals and using multiple filters in each region has been shown (in
the comparison of methods section chapter 7) to be the best time-varying method
for some data sets and in others the equivalent wavelet based results were better.

Looking at the simulated data set for splitting of the signals, the methods ability
to enhance the extraction of features can be seen, It has extracted features that are
present in the target, that the other time-varying and time invariant techniques
(other than the wavelet based result) have not been able to extract. The
assumption that there is an underlying signal throughout the data set, which is the
basis of averaging, is flawed. The results suggest that time-varying filters
produced better results which is in agreement with the results of some other
authors (e.g. deWeerd et al, 1981a). The nonstationary nature of the signal means
that improvements in the extraction of the signal are possible when the different
filters operate at different portions of the signal. Wavelet analysis of recorded
background activity, an averaged signal and a random signal, suggest that the
background activity and the averaged evoked response show greater similarity to
each other than the example of random noise (see Appendix A.3). These
techniques have worked better for regions of the signals where the signal looked
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for is relatively stable; these are often the carly components of the signal due to
the nature of its production. Overall the first 30 ms could be extracted in three
out of the five data sets with fewer of the smaller features.

The signals are nonstationary which is the logic behind using time-varying
techniques. Wavelets, by their nature, are suitable for nonstationary signals.
Their shape means that the signals they filtered are in effect windowed and the
signal’s energy localised. One of the advantages of wavelets is their ability to
extract discontinuities in the signals making it suitable for extracting sharp
features in the signals. The disadvantage of this is that noise can also produce
high-rate features that can also be extracted. This could explain the appearance of

the wavelet results in chapter 8.

It is important to use more than one run, and given the time constraints it was
decided to run each evolutionary algorithm five times for each test. The use of
only five runs for each evolutionary algorithm means that statistical analysis of
the effectiveness of the techniques is limited. In this application the requirement
was to achiecve low mean MSE for a set of evoked responses, with a small
number of runs. The techniques are slow and having to wait several days to get
an answer was not appropriate. One of the difficulties with these approaches was
shown in figure 5-8 where in five runs the MSE values converged to two
different values. In other words, non-optimal solutions in terms of MSE, were
possible. Tt has been concluded that the parameters of the evolutionary algorithm
(e.g. weightings and frequencies of the filters) were not independent.
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10 Ceonclusions and Scope for Future Developments

The aims of the research have been met. The claims for this work is evolutionary

algorithms can be used to select sets of filters or wavelets applied to enhance the

extraction of evoked potentials from noisy recordings. Using the approaches

developed, evoked potentials can be extracted using fewer signals per average

than is typically used in ensemble averaging. Effectiveness is measured in terms

of visual inspections and MSE.

10.1 Conclusions

Using an evolutionary algorithm to choose filters or wavelets is effective
both in terms of visual comparison between the resulting signals and the
respective target signals and MSE values. With current processor speeds this
has to used as an off-line process.

Techniques with a time-varying element worked better than applying the
same set of filters to the whole signal.

These worked most effectively for early (or short latency) components, or
when the variability of the late components was small, as in the simulated
data set and data set 1.

Time-varying techniques were better (in terms of MSE values) than optimal
filtering methods for small sizes of subaverages.

The wavelet approach and the equivalent time-varying filter bank approach
(splitting the signals) gave comparable.

Resuits showed some common features such as filters with narrow bandwidth
were in general selected for the early components, often with no overlapping
components.

Wavelets proved to be the better approach to extracting early components of
evoked responses from a noisy signal for two reasons. Firstly, denoising can
be applied as a post processing stage, which improves the visual
representation of the signal. As the wavelet approach has the ability to handle
discontinuous features in a signal such as small features in an evoked
response, it can keep features in the results that may be lost with other
techniques. The wavelet results were often better than, or similar to, the
results of splitting the signal. However, the wavelet approach is very
computationally intensive.
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10.2 Scope for Future Development with these data sets
As a direction for future investigation there is further scope in the idea of an

evolutionary algorithm being used to select filter banks or wavelets.

10.2.1 Alternative target
To develop the techniques further, an altemative to the averaged signal as the

target would be potentially useful. The alternative should take into account
nonstationary nature of the evoked potential signals or by its nature be relatively
independent of the position of the signal features.

10.2.2 Wavelet Techniques
An extension to the wavelet techniques is to use a combination of different

wavelets. Wavelet packets are an extension of the pyramidal decomposition
method (Mallat et al, 1989) where instead of decomposing the approximated
signal into details and approximations, the detail signals are also decomposed.
This means that signal can be reconstructed by combining these decomposed
details and approximations and permits further control by including or excluding
certain details and approximations. Coifman and Wickerhauser (1992), used
wavelet packets to mode! evoked potentials. One possible direction for
investigation is to use the methods in chapter 8 but replace the decomposition of
wavelets by a wavelet packet. Matching pursuit (Mallat and Zhang, 1993) is a
similar technique to wavelet packets but a dictionary of possible waveforms is
used. Akay and Daubenspeck (1999) used matching pursuit to separate
bioelectric noise sources and EEG activity under certain conditions and may be
worth investigating to separate evoked potentials from noise sources. Wavelet
Networks (Zhang and Benveniste 1992) are a combination of wavelets and
artificial neural networks. These have recently been applied to a closely related
set of signals, event-related potentials, for analysis (Heinrich et al., 1999).

10.2.3 Modification to the evolutionary algorithm approaches
Evolutionary algorithm methods could be modified to extract the small high

frequency components in the early latency region. The system would preprocess
the signals (and the target signal) with a high-pass filter, removing the often
larger low frequency components that dominate the signal. Maccabee et al (1986)
used a high-pass filter cut-off frequency set at around 150 to 300 Hz in a similar

way to filter averages of large number of signals. This would mean losing the

144



lower frequency components, but increases the potential to extract the smaller

high-rate components.

Altemative strategies are possible for mutation and selection, such as increasing
the mutation rate when the population converges to an early solution, so other
areas of the search space can be searched. These may avoid the searching

becoming too localised in the search space, missing possible optimal solutions.

10.2.4 Noise modelling
Instead of treating the background activity as noise, modeling it to se¢ if realistic

models can be produced and then use these as part of the process to remove the
noise from the recorded signals. A model that varies with time is likely to be
effective, due to the time-varying nature of the noise (as shown by the
spectrograms in chapter 4).

,
10.3 Scope for future development with alternative data sets
All the method discussed in 10.2 were for the historical data sets used here and

could be used for other signals recorded in a similar method. Further techniques
as well as those above are available if more channels of data were collected.

Independent component analyses (ICA) are a range of techniques that take
signals from several recording sources and extract a set of signals. Makeig et al
(1997) applied this technique to represent the sources generating the signals on
the scalp due to the Auditory Event Related responses. This technique was not
available to this research, as only two or three channels (including one used as a

stimulus marker) were available.
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A Background Experimental Work.

A.l1 Choice of fitness function
A measure of how well a particular sequence in a population performs is needed.

The fitness function initially considered here was the correlation coefficient
between the results of the evolutionary algorithm and a known target response.

1
;:_1 :‘~1(x(k) - xmm)(y(k) - ym)
r= Equation A-1
0',\- Gy

The above equation shows the correlation coefficient where x (k) is the kth value in
the resulting response after using the operations encode by an individual sequence
and y (k) was the kth value of the target response. The standard deviations of the
two signals o, and o, were included. This is the Pearson's Correlation coefficient
and the values of r range from -1 for an exact negative correlation, to +1 for an

exact positive correlation, with zero being no correlation between the two signals.

| Y
mse = ﬁqu e(k)2 Equation A-2

The above equation shows the Mean Squared Error, where the difference between
the target signal and the test sequence (e (k)) at a point in time in squared and the
results is the mean value of these values.

Table A-1 shows a comparison of the two fitness functions for the simulated data
set and data set 1, with the functions being used to compare the two methods.
Both produce similar mean correlation coefficients, which are higher than those
for unfiltered signals, but different MSE values. When MSE was used as a fitness
function, their MSE values were lower than those of correlation coefficient are
fitness functions. The difference is due to the correlation coefficient being
independent of scale, where MSE is not.
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Data set | Fitness Function Frequency (Hz) Weighting Measurements
FL Fu MSE Correlation
Coefficient
Simulated Unfiltered - - - 0.8313 0.0018
MSE 4.022 26.9667 | 0.9307 0.9423 0.0006
66.751 | 576.816 | 0.2848
133.398 | 637.093 | 0.0563 0.9422 0.0031
Correlation 1.11 53.05 0.678
Coefficient 475 22.56 1.348
105.46 367.72 0.35
1 Unfiltered - - - 0.5405 0.009¢
MSE 3.7097 | 18.4259 | 0.8253 0.7727 0.0017
52.787 | 55.6489 | 0.3097
42,5453 |1260.1425| 0.0864
Correlation 4.41 23.77 0.623 0.7734 0.003
Coefficient 4.06 19.07 0.211
55.61 198.11 0.069

Table A-1Preliminary filtered and unfiltered results for the whole signals for all test subsets
comparing filters developed using MSE and corrclation cocfficient as fitness functions

The unfiltered subaveraged signals for the two data sets are shown in figure A-1.

The filtered results of the two fitness functions are shown in figures A-2 and A-3.

There is little difference between the results of the two methods in terms of

morphology, but the magnitudes are different
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Figure A-4 Comparing the first 30 ms of the two data sets for the two fitness functions

The only other difference between the two methods is that the MSE based results
produced slightly noisier results. Looking at the early (first 30 ms) components of
these signals show in the simulated data set that the MSE based results (figure A-4)
produced results that which are closer to the target. Than those of the correlation
coefficient based results. Due to the results of MSE as the fitness functions to
produce good correlation coefficient results as well as MSE values, this was
selected as the fitness function.

A.2 Power spectra of data sets
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Figure A-5 20th of the test subset of recorded signal (data set 1), (b) target
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A.3 Continuous Wavelet Analysis of Evoked Potential

As has already been discussed, wavelets can be used to analyse how the
frequencies (or components related to frequency) vary with time. The examples
below were processed using the symlet-4 wavelet because of its approximate

similarity to an action potential.
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time (or space) d

Figure A-11 Continuous Wavelet Analysis of a portion of background activity
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Figure A-12continuous wavelet analysis of white noise, used as a comparison

In figures A-11, a sample of background activity has been processed using a
continuous wavelet, showing the distribution of frequency components with
time. The vertical axis is scale, the higher the frequency component the lower its
value. What can be seen here is that the signal is dominated by low frequency.
As a comparison, in figure A-12 a random signal (white noise) was used and
scalogram was produced. What is clear here is that there is no structure within
the signal. This is to be expected, as a high scale value is as likely as a low scale
value, if the signal was randomly produced.

Absolute Values of Ca b Coeflicients fora = 1 129 257 385513 ..

500 1000 1500 2000 2500 3000 N
time (or space) b

Figure A-13 continuous wavelet analysis of an averaged spinal recording of an evoked

potential

Figure A-13 shows the results of an average of 222 evoked potentials, processed
using wavelet analysis. In contrast to figure A-11, where the very low frequency
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components are dominant, there is some higher frequency components that

dominate at different points in the signal.
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Figure A-14 Looking at the high frequency components of the wavelet analysis of the
averaged signal

Figure A-14 shows the low scale values of the averaged signal and shows one of
the properties of wavelet analysis, the ability to look at low scale (high

frequency) components in time, to localise the analysis.
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Figure A-15 continuous wavelet analysis of a single spinal recording of an evoked potential
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Figure A-16 continuous wavelet analysis of a single spinal recording of an evoked potential
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The properties of the signals vary with time, as has been seen in the previous
igures, but there are also changes between different samples of the signal, cven
within the same person and site. In figures A-15 and A-16, the differences are
shown. Figure 8-15 is dominated by a low frequency signal, whereas in figurc A-
16 higher frequency components than in figure A-15 are dominant.

Continuous wavelets are useful for showing the signal as nonstationary. but is

computationally intensive.

A.4 Wavelets
Included here are the scaling function (produces the approximations) and thc

wavelet functions (produces the details) select for by the evolutionary algorithms

in chapter 8.
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Figure A-17 Daubechies-18 first 30 ms of simulated
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Figure A-20bior2.2 for 3-400 ms of data set 1 and for first 30 ms of data set 2 and 3.
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Figure A-21 sym-5 for 30-400 ms of data set 2
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Figure A-22 dbS 30-400 ms of data set 3
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Figure A-23 wavelet 1 —sym? for first 30 ms of data set 4 and wavelet 2 — db17 for 30-400
ms of data set 4

An extension of the previous approach was investigated. As well as selecting the
weightings for the levels and the wavelet as before, the parameters used for de-
noising: thresholding method, whether hard or soft thresholding is to used and
scaling (no extra scaling, scaling based on one level, scaling each level
separately) were selected. The results of applying this approach to the simulated
data were found to produce distorted signals, losing more of the features than in
the previous techniques. This extended approach was not developed further.

A.S Effect of the filters on random and biological noise
The following figures (figures A-24 to A-26 for background activity and A-28 to

A-30 for randomly produced signal) show the effect of passing subaveraged
noise through the time-varying splitting the signals method, time-invariant filter
bank applied to the two separate regions and the wavelet method. As a
comparison the unfiltered signals are shown in figures A-27 and A-31.
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Figure A-25 Background activity passed through a filtered developed using separate
signals.
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These methods did not produce replica of evoked potentials, this was especially
true of the wavelet method filtering subaveraged random noise, which produce
signals that bear no resemblance to evoked potentials.

Spiitting the signals [Optimal filter [Partiel  {Wavelet  [Optimal-wavelet

Change %| _Change %] Change %, Change % Change %/

[simutated 26.5306]  50.0000{ 30.6122] 76.5306] 37.7651
1 9568186 951119 93.4629] 95.3475 94.8941

2 771930 327485 69.0643] 64.9123 72.5146

3 932163] ©01.3008] 93.1348] 91.0615 92.7374

4 232319]  218957] -8.3917| 622313 25.9664

{mean 63.1961 58.2114] S53.7365| 78.0166 65.5075

Table A-2 For the first 30 ms the perceatage decrease in mean MSE of the technigues
compared to the values for average alone, for subaverages of 20 signals using the equation
(1-{techniques mean MSE -  averaging-alone mean MSE)/averaging-alone mean MSE)
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Spiitting the signals [Optimal filter |Partial  |Wavelet  [Optimal-waveiet

Change %! Change %| Change %| Change % Change %

{simulated 81.3590|  57.2458| 65.8449] 60.9140 67.3482
1 80.8749]  51.6446| 66.8708| 65.2764 67.1075

2 905623  87.8049] 86.7596| 88.5017 88.1533

3 79.7 77A751]  77.4973]  79.0548 76.3963

4 57.5397 555525 51.6098] 67.1724 68.6915

[mean 78.0238]  66.8846] 70.1164] 72.1839| 73.5384

Table A-3 For the 30 - 400 ms the percentage decrease in mean MSE of the techniques
compared te the values for average alone, for subaverages of 20 signals using the equation
(1<(techniques mean MSE - aversging-alone mean MSE)/averaging-alone mean MSE)
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First 30 ms — Mean MSE (10%) 30400 ms — Mean MSE (10™)
Size nfl Data set|Averaging [Spiitting Opumal ]Partia! Wavelet [Optimal- |Averaging |Splitting Wl Partial  [Wavelet fOpﬁmal-
average -alone gi_gndo fter waveiet _ -alone the signals wavelet
10}simuiated 0.0250 0.0058] 0.0076] 00059 0.0087] 0.1820] 002088 0.1383] 0.0608] 0.0748] 0.1236
1 0.3859 O 0087 0.0198] 00114/ 0.00868f 00129 0.9784 0.1266] 0.36857{ 0.1671 0.1858] 0.2832
2l 0.0387 0.0048! 0.0248] 0.0088] 0.0073] 0.0090; 0.1341 0.0067, 0.0113| 0.0099] 0.0075 0.0123
3] 031585 00091} 0.0098 0.008] 00123} 00113 0.7665f 00925 0.1544] 0.0971] 0.1031] 0.1404
4, 00159 000571 00117} 0.0088] 0.0140f 00110 0.0564] 0.0144] 0.0268/ 0.0158] 00159 0.0190
20|{simulated 0.0088] 0.0072] 00049 0.0088] 0.0023] 00061} 0.1663] 00310 0.0711] 0.0568] 0.0650] 0.0543
1 0.1698 0.0071 0.0083 0.0111 0.0078] 00085 02949 0.0564] 0.1426] 0.0918] 01024 0.0870
21 00171 00038 001157 ©00070{ 0.0080], 0.0047f 0.0574] 0.0054 0.007 0.0076f 0.0066f 0.0068
3l 01253 0.0085{ 0.0108] 0.0078/ 0.0112] 0.0091 0.3724 0.0754 0.085] 0.0838] 0.0780; 0.0879
4 0.0054] 0.0041] 0.0042] 0.0058] 0.0140] 0.0038] 0.0307] 0.0130] 0.0136} 0.0148] 0.0145{ 0.0096

Table A-4 Comparison of time varying techniques when 10 and 20 signals per subaveraging was used
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B Background Theory

B.1 Signal Modelling
Methods that model evoked potentials have been investigated. The basics of

signal modelling are considered.
y(n)= 2i-obfkix(n-k)- 2r-ak)y(n- k) Equation B-1

In the equation y (n) is the current output (or an estimation of the output value) of
a linear filter and x (n) is the input to the filter. In the above equation, the output
is predicted from past output values, and past and present inputs. The input is a
combination of the desired signal d (n) and noise v (n), such that x (n)=d (n)+v

(n),
Y+ Zi-akyin - k) = Li_ob(kjx(n - k) Equation B-2

Where ideally d (n)=y (n).

The coefficients a (k) and b (k) are called the filter coefficients. Separating all the

components of y (n) and x (n).

Taking the z-transform of the above equation

Y(z)(1+ Zf.1a)z*) = X(2) Zi0bk) 2* Equation B-3

Yz _ 100zt
Xz 1+Xi,af:z*

H(z)= Equation B-4

H (z) is the pole-zero representation of the transfer function of the predictive

filter.

There are three forms of models:
(1) If a (0)=1 and a (k)=0 for k>0, then H (2) is an all-zero model known as the

Moving Average (MA) process.
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H(z) - Y(z) - qu,b(k)z* Equation B-8

yn) = i oblk)x(n-k) Equation B-6

The output is predicted only by the past and present inputs and is often used in

functions to smooth the signal.

(2) If b (0)=1 and b (k)=0 for k>0, the H (z) only contain poles, this is know as

an autoregressive (AR) process.

Hiz)= ! =Y(z) Equation B-7
T - Fauln

ym) = 2ia®yn-k) Equation B-8

The output is predicted from past output values. The AR process is widely used.
In some applications the signal generated will result in an all-pole model or fiiter,
but in others it has been found that AR produce sufficiently accurate
representation of many types of signal. The problem with the AR modelling are
that the output values of the filter need to be known before hand, or the signal to
noise ratio needs to be sufficiently large enough that a good estimate of the signal
can be used.

Ye) _Ziob@a Equation B-9
Xz 1+Y).,afk)z*

(3) The final case is where both poles and zeros are used, this is called an

HE) =

Autoregressive Moving Average (ARMA) process

This has the properties of both the moving average and autoregressive processes,
leading to methods that can predict output values based on previous and present
values of inputs and previous output values. The point of these three cases is to

predict what the value of the output signal is going to be, by modelling the
signal.
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B.2 Averaging
Ensemble averaging can be considered as a moving average (Challis and Kitney,

1990).

+ .
H(Zz)= = = Equation B-10

If there are N responses each of k samples long, then the z-transform of the
filtering operation is shown in equation (2) and this is a moving average low-pass
filter.

B.3 Relating Mean-Squared Error (MSE) and Signal-to-Noise Ratio (SNR)
The assumption has been that the filtered signal (filtered) is the target signal plus

noise and as the signal and target are voltage so the ratio of the signal (target) and

noise power is: -

rarget®
SNR = <= ; g 5 Equation B-11
) (filtered - target)

and

MSE = —1—-2( filtered — target)’ Equation B-12
N
> targer’

SNR = &=——— Equation B-13

As N, the number of samples in the filtered signal and the power of the target
signal are constants for the data set used, then

1
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C Selection of MATLAB programs

C.1 Time invariant filter bank (Chapter 6)

function [temprx, rrx]=gamselx(dat,av,rp,sz2,mu,R)

£fs=3750; %$Half the sampling frequency in Hz
szl=max (size(dat));
sz3=min(size(dat));

s24=3;

$szl - size of the sequence

$sz2 - size of the initial population defined as input argument
sz2

$sz3 - the number of examples

$s24 The number of parameters

$Selecting the filter cut-off frequencies
f(:,1)=100.*rand([s22,1]); £(:,2)=300.*rand(([s22,1])+f(:,1);
$Selecting weights

w=rand([sz2,1]);

$Removing mean values from the target signal
av=detrend(av,0);

$Producing the subaverages
rnddl=floor(sz3/R);
1xx=1;rrx=0;

for loopl=0: (rnddl-1)

avv(:,loopl+l)=detrend (mean(dat(:,loopl.*R+1: (loopl+l) .*R)"')"',0);
end;

$A set of target signal same size as the subaverages
for loop=l:rnddl,

avvx(:,loop)=av.*ones ([(szl,1]1);
end;

§While the number of generations is less than the set value
$iterate
while ( (lxx<=rp))
clear cmn;
for 11=1:s22,
$Producing the filtered results
[bl,al)=butter(2,[£(11,1)/fs £(11,2)/fs]);:
yy=filtfilt (bl,al,avv).*w(1l1);
$Calculating the MSE values and Mean MSE value for the
$individual solution
e=yy-avvx;
cmnl=mean (e.*e);
cmn (11)=mean(cmnl);
end;
r=[f w]:

vn=[(cmn' (1l:s22)'};

¢Sorting the sequences in fitness function descending order
[s4,sl])=sort(vn(:,1));

$select individual to produce new generation
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s4=1./84;

ssd4=round(s4./10) '+1;suml=sum(abs (ss4)) ;

clear selc

¢=0;

for loop=l:sz2,
selc(ct+l:c+(ssd(loop))) =81 (loop).*ones ([ssd(loop),1]))"';
c=c+s6s4 (loop) ;

end;

sz=max (size (selc));

checkl=zeros([sz2,1]):

gx(l:s522/4,:)=r(sl(1:s22/4),:);

r1l=floor (rand ([3.*(s22/8),2]) .*(8z~ss4 (loop) ) )+1;

for loop=1:3.*(s822/8),

r2=round((sz4-2) .*rand) +1;
gx ((sz2/4)+loop,:)=[r(selc(rl(loop,1)),1:x2),r(selc(rl(loop,2)),r
2+1:s524) 1; '

gx((sz2/4)+3.*(s2z2/8)+1loop, :)=[r(selc(rl(loop, 2 :
(loop,1)),r2+1:824)1; P,2)),1:x2),r(selc(rl
end;
pp(:,:)=abs(rand(sz2,s5z4~1)); %Randomly generated probabilistic
values

for loop=2:822,

for loop2=l:sz4d-1,
if (pp(loop, loop2)<=mu) %is pp<=mu
r5=0.25.* (rand-0.5) ;
gx (loop, loop2) =gx (loop, loop2) +r5. *gx (loop, loop2) ;
end;
end;

end;

temprr=r;

ragx; f=r(:,1:2) ;w=r(:,3);

rrx(lxx)=1./s4(1);

1xx

[1./84(1)]

temprr (sl1(1),1:3)

1xx=1xx+1;

end;

temprx=temprr (sl(1),:);

C.2 Combined evolutionary algorithm and wavelets approach (Chapter 8)

function [finall, rrx}=gn5(inp,av,szl,rp,mu,R,xz1, loopout)

[sz2,sz3]=size(inp); #Calculates length of sequence sz2
and

$Select the level of the sequence to avoid unnecessary processing

Lev=11;
sz4=Lev+4;
szx=0;%Value one less than the first individual to be tested

$Averaging the input signals into rnndl signals
rnddl=floor (sz3/R);
1xx=1;rrx=0;
for loopl=0: (rnddl-1),

datl(:,loopl+l)=mean (inp(:,loopl.*R+1: (loopl+l) .*R)")"';
end;
datll=detrend(datl(xz1:225,:),0);avl=detrend(av(xz1:225),0);
dat12=detrend<datl (225: SZZ: &y r 0) ,’avzsdetrend(av(ZZS:szz) ’ 0);
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¥Weightings individual ranging from -1 to 1
GAX1(:,:,:)=5.*((rand(szl,Lev+2,2))-0.5);
GAxZ2=round (45.*rand(sz1,1,2))+1;

GA=[GAx2 GAx1l zeros{[szl,1,2]})]:

$lxx is the generation number.
1xx=1;

$Main loop counting the number of generations from 1 to the value

Ip
while (lxx<=rp),
$loop to process szx+l individuals in the population
for loop2=1:szl,
[wnl]=selwavelet (GA(loop2,1,1));
[wn2]=selwavelet (GA(loop2,1,2)):;
twnl and wnZ are the wavelets for the region <30 ms and 30-400 ms
grespectively
[c,LL}=wavedec{avl, 7,wnl);
[cc, LLL]=wavedec (av2, 11,wn2);
nn(l)=0;nnn(1)=0;
for loopl=2:9,
nn{loopl)=nn(loopl-1)+LL{loopl-1);
end;
for loopll=2:13,
nnn(loopll)=nnn(loopll-1)+LLL(loopll-1);

end;

for loop=1:rnddil,
[¢c,LL]}=wavedec (datll(:,loop),7,wnl);
[cc, LLL)=wavedec (datl2(:,loop),11,wn2);
for loopl=2:9,
cx((nn(loopl-1)+1) :nn(loopl) )=
c((nn(loopl=-1)+1):nn(loopl)).*GA(loop2, loopl,1);
end;
for loopll=2:13,
ccx{ (nnn(loopll-1)+1):nnn(loopll))=
cc((nnn(loopll-
1)+1):nnn(loopll)).*GA(loop2, loopll, 2);
end;
tReconstruct the signal by combining the GA sequence and
the wavelet coefficient
xx=waverec (cx, LL,wnl) ;
ccl=xx'-avl;
$error between the reconstructed signal and target signal
cmnxl (loop) =mean(ccl.*ccl); $MSE
xxl=waverec (ccx, LLL,wn2) ;
cccl=xxl'-av2;
$error between the reconstructed signal and target signal
cmnx2 (loop) =mean (cccl.*cccl); *MSE
end;
$mean MSE for the individual solution
mnl=mean(cmnxl) ;
cmnlx (loop2)=mnl;
mn2=mean (cmnx2) ;
cmn2x (loop2)=mn2;
end;

vnl=[cmnlx' (l:szl1)'};

vn2=[cmn2x' (l:szl)'];

2Sorting the sequences in fitness function descending order
[s41,sll])=sort (vnl);

[842,s812]=s0ort (vn2);

sl=[1:s2z1]"';
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84=(s41(:,1)+s42(:,1))./2;
GA1(:,:,1)=GA(s11l(:,1),:,1);
GAl(3,:,2)=GA(s12(:,1),:,2):

2Setting up the roulette wheel
ss4=round(0.01./s4) '+1;
suml=sum(ss4);
clear selc
xc=0;
for loop=1l:szl,
selc(xc+l: (xc+ss4 (loop)))=sl(loop) .*ones ([ss4(loop),1])"';

xc=xc+ss4 (loop) ;
end;

sz=max (size(selc)):;
clear gx;

¢Fittest quarter of the population go through to the next

population
gx(1:821/4,:,:)=GAl1([1:821/4},:,:):

¥selecting where on the 'wheel' the sequence to crossover

occur
ri=floor(rand([3.*(sz1/8),4]).*(sz-ss4(loop)))+1;

¢Crossover the sequences
for loop=1:3.*(szl1/8),
r2=round( (sz4-1).*rand) +1;
gx((szl/4)+loop,:,1)=
[GAl (selc(rl(loop,1)),1:x2,1),GAl (selc(rl(loop,2)),r2+1:524,1)];
gx(5.*(sz1/8)+loop,:,1)=
[GAl (selc(rl(loop,2)),1:x2,1),GAl (selc(rl(loop,1)),r2+1:s24,1)];
gx((szl/4)+loop,:,2)=
[GAl (selc(rl(loop,3)),1:r2,2),GAl (selc(rl(loop,4)),r2+1:524,2)];
gx(5.*(szl1l/8)+loop,:,2)=
[GAl (selc(rl(loop,4)),1:r2,2),GAl (selc(rl(loop,3)),r2+1:s24,2)];

end;

$Mutation
ppr(:,:,:)=abs(rand(szl,s24-1,2));
¢Randomly generated probablistic values
for loopé4=1:2
if loop4==1,mml=10;end;
if loop2==2,mml=14;end
for loop=2:szl,
for loop2=1:mml,
if (ppr(loop,loop2,loopd)<=mu) %is pp<=mu
if loop2>=2,
gx (loop, loop2, loopd) =
gx (loop, loop2, loop4) . * (1+(0.25.* (rand-0.5)) ) ;
end;
if loop2==1,
gx (loop, loop2, loopd4)=round (45.*rand) +1;
end;
end;
end;
end;
end;

2Temporary store for the current population
tempr=GAl;

#New population becomes current population
GA=gx;
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rrx(lxx)=s4(1);%Store the maximum fitness for population
tempr(1,1,:)
lxx=1xx+1; %*increment generation counter

end;

$§Final sequences

fina11=[tempr(1a PES ST

C.3 Splitting the signal

function [tempr,rrx,stempl=nisind2d2(dat,av,sz2,rp,mu,R)

524=21; £5=3750; sxxz=0;
[szl,sz3]=size(dat); %size of the sequence

$Selecting the filter cutoff frequencies
f(:,1,:)=50.*rand([s22,1,2});
£{:,2,:)=80.*rand ([522;1,21)+E(s:;1,2)2
£(:,3,:)=300.*rand([s22,1,2]);
£(:,4,:)=300.*rand([{s822,1,2])+£(:,3,:):
f(:,5,:)=50.*rand((sz2,1,2]):;
fl:,6, :)=50.*rand(i522,1,2))+€(2,5,4):
£f(:,7,:)=300.*rand([sz22,1,2]):
£f(:,8,:)=300.*rand([s22,1,2])+f(:,7,:):;
f(:,9,:)=50.*rand([sz2,1,2});
£(:,10,:)=50.*rand(([sz2,1,2])+£(:,9,:)¢
f(:,11,:)=300.*rand(([sz2,1,2]);
£(:,12,:)=300.*rand([s22,1,2])+£(2,11,2)

wl=190.*rand([sz2,2]);
w2=750*rand([sz2,2]);
W(:,:,1)=wl;w(:,:,2)=w2;
ww=rand ([sz2,6,2]);
w=round (w) ;
rnddl=floor (sz3/R);
1xx=1;rrx=0;
for loopl=0: (rnddl-~1)
datl(:,loopl+l)=mean(dat(:,loopl.*R+1: (loopl+l).*R)")*;
end;
avl=detrend(av(16:225),0);
av2=detrend(av(226:3001),0);
while ((1xx<=rp) & (rrx<0.99))
for ll=sxxz+l:sz2,
clear ttlj;clear tt2;clear yy;
for loopcl=1:2
for loopff=1:2
for loopf=1:2:11,
if f£(11,loopf, loopff)>=f(11,loopf+l, loopff)
tempf=£f (11, loopf+1, loopff):
£f(11, loopf+l, loopff)=£f (11, loopf, loopff) ,.*1.1;
£(11, loopf, loopff)=tempf.*0.9;
end;
if (£(11,loopf,loopff)>1000),
f(11, loopf, loopff)=900;
end;
if (£f(11, loopf+l, loopff)>1000),
f(11,loopf+1l, loopff)=900;
end;
end;end;end;
[bl,al]=butter(2, [£(11,11,1)/fs £(11,12,1)/£s]);
(b2,a2]=butter (2, [£(11,9,1)/fs £(11,10,1)/fs8]);
[b3,a3]=butter(2, [£(11,7,1)/fs £(11,8,1)/fs]);
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[b4,ad]=butter (2, (£(11,5,1)/fs £(11,6,1)/fs]):
(b5,a5]=butter(2,[£(11,3,1)/fs £(11,4,1)/fs]);
[b6,a6)=butter (2, [£(11,1,1)/fs £(11,2,1)/£fs]):
for loopwx=1:2
if ((w(ll,1,1)+17)>=w(1l1,2,1))

tempw=w(11,2,1);

w(ll,2,1)=w(l1,1,1)+32;

w(ll,1,1)=tempw;
end;
if ((w(11,1,1)<2)), w(ll,1,1)=2;end;
if w(ll,2,1)>=170, w(ll,2,1)=16;end;
end;
t1=(1/15) .*([w(11,1,1):1:w(11,1,1)+14)"-w(11,1,1));
t2=(1/15) .*([w(11,2,1):1:w(12,2,1)+14] "-w(11,2,1));
yli(:,:)=£iltfilt(bl,al,datl (16:225,:));

y21(:,:)=£filtfilt(b2,a2,dat1(16:225,:));yl=ww(11,1,1).*yll+ww(l1,
2,1).*y21;
y31(:,:)=filtfilt(b3,a3,datl1(16:225,:));

y41(:,:)=filtfilt (b4,a4,dat1(16:225,:));y2=ww(11,3,1).*y31+ww(l1,
4,1) .*y4l;
y51(:,:)=£iltfilt(b5,a5,datl(16:225,:));

y61(:,:)=filtfilt (b6,a6,dat1(16:225,:));y3=ww(ll,5,1).*y51l+ww(l1,
6,1) .*Y61)
for 1x2=1:rnddl,

ttl=( (1~
tl) . *yl(w(11,1,1)+1:(w(11,1,1)+15),1x2))+(tl.*y2(w(11,1,1)+1: (w(l
1,1,1)+15),1x2));

tt2=((1-
t2) . *y2(w(11,2,1)+1:(w(11,2,1)+15),1x2) )+ (t2.*y3(w(11,2,1)+1: (w(l
1,2,1)#18),1x2)) 3

yy=[yl(1l:w(11,1,1),1x2);ttl;y2(w(11,1,1)+16:w(11,2,1),1x2);tt2;y3
(w(ll,2,1)+16:225~15,1x2)];
if max(size(yy))~=(225-15),yy=yy(1:225-15) ;end;
e=avl-yy;cmnxz (1x2)=mean(e.*e);
end;
clear ttl;clear tt2;clear yy:
cmnx (11) =mean (cmnxz) ;
[bl1l,all]=butter(2, [£(11,11,2)/£fs £(11,12,2)/fs]);
[b21,a21]=butter(2, (f(11,9,2)/fs £(11,10,2)/£fs]):
(b31,a31]=butter(2, [£(11,7,2)/fs £(11,8,2)/fs]);
[b41,ad4l)=butter(2, [£(11,5,2)/fs £(11,6,2)/£fs]});
(b51,a51)=butter (2, (£(11,3,2)/fs £(11,4,2)/fs}1);
[b61,a6l}=butter(2, [f(11,1,2)/fs £(11,2,2)/fs]);
for loopxw=1l:2
if ((w(ll,1,2)+17)>=w(l1,2,2))
tempw=w(11,2,2);
w(ll,2,2)=w(11,1,2)+32;
w(ll,1,2)=tempw;
end;
if ((w(l1,1,2)<2)), w(ll,1,2)=2;end;
if w(ll,2,2)>=0.5.%sz1, w(1ll1l,2,2)=200;end;
end;
t1=(1/75) .*({w(11,1,2):1:w(11,1,2)+74])'-w(11,1,2)
t2=(1/75) .* ([w(11,2,2):1:w(11,2,2)+74]'-w(11,2,2)
yl11(:, :)=filtfilt(bll,all,datl (226:3001,:)):

):
Yi

y211(z, :)=filtfilt(b21,a2l,datl1(226:3001, :));yxl=ww(1l,1,2) Jxylll

+ww(l1,2,2),*y211;
y311(:,:)=filtfilt(b31,a31,datl1(226:3001,:));
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y411(:,:)=£i1tfilt(b4l,ad1,datl (226:3001, 1)) ;yx2=ww (11, 3,2).*y311
+ww(l1,4,2).*ydll;
y511(:,:)=Ffiltfilt (b51,a51,datl(226:3001,:));

y611(:,:)=filtfilt(b61,a61,datl1(226:3001,:)) yx3=ww(11,5,2) .*y511
+ww(ll, 6,2) .*y611;
for 1x2=1:rnddl

ttl=((1~
tl).*yx1(w(l1l,1,2)+1:(w(11,1,2)+75),1%x2))+(t1.*yx2 (w(11,1,2)+1: (w
(11,1,2)+75),1%2));

tt2=( (1~
t2) . *yx2(w(ll,2,2)+1:(w(11,2,2)+75),1x2))+(t2.*yx3(w(l1,2,2)+1; (w
(11,2,2)+75) ,1x2}) ;

yy=[yx1(1l:w(11,1,2),1x2);ttl;yx2(w(11,1,2)+76:w(11,2,2),1x2);tt2;
yx3{w(l1l,2,2)+76: (s21-225),1x2)];
if max(size(yy))~=3001-225,yy=yy(1l: (3001-225)) tend;
e=av2-yy;cmnxzz (1x2) =mean(e.*e);
end;
cmnxzl (11)=mean (cmnxzz) ;
end;
1f (1xx>1),
cmnx (1:sxxz)=cmn (sl (l:sxxz),1);
end;
cmn(:,1)=cmnx’';
if (1xx>1),
cmnxzl (l:sxxz)=cmn(sl (l:sxxz),2);
end;
cmn(:,2)=cmnxzl';

r=[f w ww zeros([sz2,1,2]}];
vnl={cmn(:,1)]1;
vn2=[cmn(:,2)1;

$Sorting the sequences in fitness function descending orde
[s41,sll]=sort(vnl); -
[s42,s12]=sort (vn2);

% [s41 s42]

r{l:822,:,1)=r(sll(:,1),:,1):
r(l1:822,:,2)=r(812(:,1),:,2)7

s4=(s841(:,1)+s42(:,1))./2;
sl=[1:822}];
ssx4=1,/84(:,1);
for loop=l:sz2
if ((ss4(loop)<10710)&(ssd4{loop)>1)),
ss4 (loop)=ss4 (loop) ;
else
ss4 (loop)=1;
end
end;
$Call to the function to produce new generation
ssd4=round (0.01.*ssx4) '+1;suml=sum( (ssd));
clear selc
c=0;
for loop=1:s22,
selc(ct+l:c+(ss4 (loop)})=sl(loop).*ones ([ss4(loop),1])';
c=ct+ss4(loop);
end;
sz=max (size(selc)):;
clear gx;
gx(1:822/4,:,:)=r(1:822/4,:,:);
rl=floor(rand([3.*(sz2/8),2]).*(sz-ss4 (loop)))+1;

174



for loop=1:3.*(sz2/8),
r2=round((sz4-2) .*rand) +1;

gx ((sz2/4)+loop,:,1)=(r(selc(rl(loop,1)),1:r2,1),r(selc(rl(loop,?2
)),r2+1:s24,1)1:

gx((sz2/4)+3.* (sz2/8)+1loop,:,1)=[r(selc(rl(loop,2)),1:r2,1),r(sel
c(rl(loop,1)),r2+1:s24,1)};

gx ((sz2/4)+loop,:,2)=[r(selc(rl(loop,1)),1:x2,2),r(selc(rl(loop,2
)),r2+1:824,2)};

gx((sz2/4)+3.%(sz2/8)+loop, :,2)=[r(selc(rl(loop,2)),1:r2,2),r(sel
c(rl(loop,1)),r2+1:sz4,2)];

end;

ppr(:,:,:)=abs(rand(sz2,sz4-1,2)); %Randomly generated
pobablistic values

for loop4=1:2

for loop=sz2./4:sz2,

for loop2=1:sz4-1,

if (ppr(loop,loop2,loop4)<=mu) %is pp<=mu
r5=0.25.* (rand-0.5) ;

gx (loop, loop2, loopd) =gx (loop, 1loop2, loop4) +r5. *gx (loop, loop2, loop4
) :
end;
end;
end;end;

tempr=r;tempr(:,13:14,:)=round(tempr(:,13:14,;));

r=gx; f=abs(r(:,1:12,:)) ;w=abs(round(r(:,13:14,:))) ;ww=r(:,15:20, :
):
rrx(lxx)=s4(1);
1xx, [s41(1) s42(1) s4(1)]
sxxz=0;
$tempr(sl(1l),:)
stemp=tempr(si{1),:):
1xx=1xx+1;
end;

C.4 Wayvelet Optimal Filter (Bertrand et al, 1996)
function [outl,dat_m,H]=dfilterwl (inp,L)

[822,523]=size(inp);
R=floor (sz3/L);
for loopl=0:(R-1),
dat m(:,loopl+l)=mean(inp(:, loopl.*L+1: (loopl+l).*L)")";
end;
mav=mean (inp')';
[cl,Lenl]) = wavedec (mav,11, 'dmey"');
$Decomposing the grand averaged signal into details and
$approximations
frql=cl.*cl;
for loop=1:R
[c2,1len2] = wavedec(dat_m(:,loop), 11, 'dmey') :
$Decomposing each averaged signal into details and
fapproximations
frq2(:,loop)=c2.*c2;
end;

175



mav2=mean (frqg2')"';
[szzl,8zz2]=size (mav?);

$Avoiding dividing by zero errors by setting any components that
$equal zero to a small number several orders of magnitude smaller
%than the number likely as wavelets components

for loop=l:szzl
if frql(loop)==0, frql(loop)=le-14;end;
if mav2 (loop)==0,mav2(loop)=le-14;end;

end;

$The transfer function
H=(R./(R-1)).*(1-((1/R) .*(mav2./frql)}):

$Filtering the averaged signals

for loop=1:R
[c3,len3] = wavedec(dat_m(:,loop),1l,  'dmey') ;
outl (:,loop)= waverec(c3.*H,len3, 'dmey’);

end;
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Filter selection for evoked potentials using genetic algorithm
techniques
JA Campbell, S Tumer, P Picion

University College Northampon UK

Introduction

The recording of potenuials evoked by different parts of the human nervous
system n response to specific stmuli can lead to wital information on
neurophysiological mechamisms and function and are an important technique in
neurological diagnosis and research. The main problem with these techmques
however 1s the presence of electncal noise from other sources, which can mask or
distort the underlying signal This unwanted activity originates from sources such
as other parts of the body (e g muscle, hean, other neural structures), recording
equipment, or the local electncal environment (Harmson and Lovely 1993).
Ensemble averaging is the most commonly used method of reducing the notse in
evoked potential recordings This technique calculates the algebraic sum of a
large number of repeated, triggered responses. The main disadvantages of this
method are that the signals need to be collected over a relatively long penod of
time, which may be undesirable or impractical, and that the signals may vary with
time, leading to distortion of features within the signal. '

This paper describes a method that aims to reduce the number of stimuli
needed to produce an evoked response comparable to a ‘good’ averaged response
and reponts the results to date of this on-going work. The objectives of this
project were to design a system that uses post-recording digital filters to reduce

the noise components to such an extent that the number of responses needed to be
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averaged could be substanually reduced with no significant degradation of the
final averaged response. The frequency spectrum of the noise component of
evoked potentials overlaps with that of the signal spectrum and is different for
each recording situation. It was not considered realistic therefore to apply a fixed
set of filters 1o all recordings. An evolutionary approach to individual selection of

the most appropnate filters for cach set of data was therefore taken.

Methods

All the signals were recorded on FM tape, using 2 STORE 4 FM tape
" recorder (RACAL Recorders), using analo-guc filters with a bandpass of 0 016-
750Hz The evoked potentials used in this work were recorded intraspinally at C,.
» In response to stimulation of the median nerve at the wnst. The data was
collected using a Gateway 2000 Pentium P90 computer via an interface card and
data acquisition software (PC30F, Eagle Technology). All the filters and
evolutionary algorithms werc developed and implemented in MATLAB
(MathWorks, USA).

Recorded data consisting of 222 responses werc collected from the tape. A
total of 38 responses were excluded from the expenments as they were found to
contain artefacts such as ‘clipping’. Using the remaining 184 recorded responses,
two sets of data with 92 responses in each were fonned into a test and a training
set. These sets are referred to here, as the recorded data. An average of the 134
recorded responses was used to form é reference signal which was the target
signal that the filters aimed to extract. Pre-stimulus recordings, i.e. electrical

activity recorded just before stimulation occurred, were used as a source of
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background noise which was also added to the reference signal 10 create
simulated recordings with a known signal and 1vpical nose charactenstics This
simulated data (target signal+noise) set was split into a tramnng set (55 responses)
and a test set (56 responses).

The arrangement of the filter bank is shown in Figure 1. Each signal was
passed through each filter separately. The output of this system was the response
produced by a weighted sum of the individual filter outputs.

The results shown in this paper are those obtained using 3 filters in the filter
bank. The filters were 44 order Butterworth bandpass filters, implemented using
the MATLAB command FILTFILT. This command produced a zero-phase shift
filter, which means that the filter itself did not produce a phase shift in the signal.
Butterworth filters were selected because of their relatively smooth pass-band.

All the filters were set up randomly so that initially the low frequency cut-off
was within the range 0-200Hz, and the high frequency cut-off was selected to be
up to 300Hz higher than the low frequency cut-off. Sub-averages (averaging
small sets of signals) of the input sets was performed to reduce the noise level.
Again, the results shown in this paper are those obtained when 10 responses were
used in each sub-average. The stimulation rate was set at two stimulations per
second, so sub-averages of 10 responses equate to 5 seconds worth of evoked
responses. In the training process every example in the sub-averaged training set
was used to measure the fitness of the “individual’ set of filters and weightings in
the population of possible solutions. The mean of all the example fitness values
for that individual solution was used Both simulated data and recorded data were

used to develop and test the filter banks
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A genetic algonthm was used to select the optimum filter settings for each
set of data. This is a computer-based problem solving system, which uses some of
the mechanisms of evolution as key elements in their design and implementation.
The computer creates a population of structures that evolve according to specified
rules of selection. The evolutionary mechanisms involve procedures such as
crossover, mutation and fitness-proportionate reproduction and therefore mirror
such processes in the natural world. Fitness for purpose measures are then used to
assess the success of this generation of structures and the process 1s iterated until
a salisféctory end-point is reached.

The genetic algonthm for filter selection comprised of procedures for

creation of initial filter parameters, evaluation of goodness-of-fit against the

known
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known signal and selection and mutauon of filter parameters which were in tum
evaluated for fit and so on until a satisfactory fit was obtained

Two sets of data were used mally for this work. To simulate the situation
whereby the underlying signal 1s unknown, the test and training sets of data were
used. The reference signal + notse data was used to assess the performance of the
system against a known signal.

A population of random 3-filter ‘chromosomes’ was created (n=80), each
encoded as a sequence of floating point numbers on the EI\fQunosomes. This
representation was selected as it closer to the values expected and the methods
used. Michaelwicz (1996) suggests that floating-point values are “intuitively
closer to the problem space”. Each chromosome comprised of 9 numbers,
representing the low frequency limit, the high frequency limit and the weighting
factor for each of the three filters.

The Mean Squarcd Error (MSE) between the results of the evolutionary
algorithm and the known target response was used to assess goodness of fit.

mse = %ZL. e(k)?

The error is the difference between the target signal and the test sequence at
a point in time, e(k). The fitnéss function for the evolutienary algonthm was the ‘
mean MSE for all the training signals.

The next generation of chromosomes was generated by first selecting the

25% of chromosomes, which had the best fit and passing them unchanged to the
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pent gencranon  The remammg 75% were produced by 3 selection process using
crossover  The selection process used m this work was the roulette wheel
approach where the lugher the fitness of an individual sequence, the greater the
probabihty that the sequence’s genes will be used in the next generation. A set of
pairs of random numbers, ranging from 1 to the sum of all portions of roulette
wheel, was used to sclect the sequences that were the ‘parents’ of the next
generation. A third random number was produced, that detennines where along
the sequence the swapping occurs, so the two onginal sequences produce two
new sequences. A further random mutation was made in one gene of 5% of the

next generation of chromosomes. These random mutations were limited to

+12.5% of the previous gene value.

Results

Simulared data
Figure 2 shows the averaged signal used both as the underlying signal of the

simulated data sets and as the target signal.

This spinal recording was chosen as it has small but important early
components and much larger later components which were mor;: time invanant_ [t
therefore combines many of the features that need to be taken into account in the
extraction of the evoked potentials from the background noise.

Five unfiltered sub-averages of simulated test data and the effects of filtering
are shown 1n Figure 3 The signals have been shified along the voltage axis to aid

the visual presentation Three filters were developed using the simulated training

set ¢

betwe



set Companng the results of the set of filters and the target signal, resemblance

between the target signal and these filters can be seen

Figure 2: Target signal



tigure 3: (a) Unfiltered data comprising averages (n=10) of simulaied data

ttarget signal + recorded noise), (b) The signals m (a) afier bewng passed

through a set of filiers whose paramcicrs were selected by a genenc

algorithm. (Filter characteristics: 4-27 Hz, weighung factor w= 0.98, 67-577
2w 028, 133-637 Hz w=0.03)

The most noticeable feature of these filtered signals is that they have
negative peaks at around 50ms and 200ms. Two positive peaks in the region 100-
200ms were also observed. These peaks are present in the target signal (Figure
2) Later components around 250, 300, 350ms do not appear in the majority of
the signals. At the beginning of the signal, featurcs are not present or have been
‘flattened’. This data set contains stationary (time wwvariant) signals and it can be
scen that this technique gives good noise reduciion although there 1s a reduction

in amplitude of the small early components in this mstance

Recorded data (signal unknown)
This process was repeated using input signals which were averages of 10
sweeps each of consecutively recorded evoked responses The training set used

by the genetic algorithm to define the filter setings was an average of the
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preceding 92 recorded responses (tranmg set) The mput and output signals are
shown i Figure 4.

A noticeable feature of all the processed responses, whether from simulated
or recorded data, was that features at the beginning of the response were not as
large as they were in the target signal. The reason for this was that these
components were small compared with the rest of the response, and have higher
frequency components than those in the rest of the response. The dominant
features were therefore these larger componehls, and this was the fcature the
algorithms have preferentially found. Changes in the larger low frequency
components produced larger changes in MSE than the higher frequency
components of the smaller early components. Both sets of filters illustrated above
have a high weighting on low frequencies, which would help to explain why
components at the beginning of the response were sinoothed out or reduced. This
fits with groups such as Rossini et al. (1981), who used a bandpass filter with
relatively high frequency parameters (e.g. 150-3000 Hz) to extract short latency
components (early components of the responses). Increasing the number of filters
was investigated, but the results were no better, and so did not jusufy the extra
processing needed. A range of different number of responses per average for the

input signal was used, but the optimum number of pre-processing sweeps was

found to be 10.
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ligure 4: (a) Unfiliered daia comprising averages (n=10) of recorded datu,
(h) The signals i (a) aficr being passed through a ser of filiers whose
parameters were selected by a gencuc algorhm. (Filier characierisues: 4-18
H:z, weighing facior w 0062, 33-36Hz w-0.31, 42-260 Hz w  0.05)

Conclusions

Filtening sumulated responses produced better results than filtering recorded
responses  Tlis was believed to be due to the simulated response being time
invanant They were produced by taking the target responses, repeating it several
uymes, and adding recorded noise. This means that the underlyving response was
not changing between the responses In the recorded data, the underlying
response can vary between the responses All averaging procedures assume that
the signal 1s stationan and hence that the frequency components are the same
throughout the response A visual inspection of the responses suggests this i1s not
true, as doeS the work by vanous groups using high-pass filtering to extract shon
latency components (¢ g Rossin et al (1981), McCabee et al (1983)). A possible

way around this problem s 1o allow the filters to contribute to the overall final
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response at different tunes. These are ume-varying filters, and work 1s on-going

wr investigate these.
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Use of Evolutionary Algorithms to Enhance the Extraction of Short Latency
Evoked Potentials

Scott J Turner, Phil D Picton, Jackie A Campbell.
Faculty of Applied Sciences, University College Northampton,
Northampton, NN2 6JD, UK.

ABSTRACT

An evolutionary algorithm has been used to determine the cut-
off frequencies for a bank of band-pass filters. The output of the
filter bank is a weighted sum of the outputs of the individual
filters, where the weights are also determined by the
evolutionary algorithm. These filters process evoked potential
signals recorded at the spine or scalp of a patient. These signals
sre very noisy, and it is common practice to use ensemble
averaging to remove the noise, which usually requires a large
mmnber of responses. The aim of this work is to reduce the
sumber of responses required by filtcring sub-averages.

Keywords: Evoked potentials, evolutionary algorithms, filter
design , short latency.

1. INTRODUCTION

Evoked potentials (or evoked responses) are electrical signals
recorded from a human body i response to stimuli to the
nervous system. Somatosensory evoked potentials are recorded
at sites such as the scalp or spine, usualty due to direct electrical
stimulation of nerves in arms or legs. The features looked for
are negative or positive peaks at certan known values of time,
e.g. at 20msec. The main problem with evoked potentials is the
presence of noise from, for example, other sources within the
body, and recording equipment [1). There are scveral
difficulties with this noise, onc of which is that the spectral
of the noise overlap with those of the evoked

ial. This means that just applying a bandpass filter will

not extract the evoked potential, and the noise components are
often nch larger than those of the evoked potential. Ensemble
averaging is the most commonly used method of reducing the
noise in evoked potential recordings. The main disadvantage of
this method is that to produce a reasonably noise-free signal, a
large number of signals need to be averaged. Collection of a
large number of signals means that signals need to be collected
over relatively long periods of time. Taking a long time to
collect the data may be undesirable for the subject under going
the tests, or even impractical, and variations between signals
can Jead to distortion of features in the averaged signal. After
ensemble averaging, a single bandpass filter is often applied [2].

The aim of this work is to investigate the use of a set of
bandpass filters to process the signals after ensemble averaging
in order to reduce the number of signals that are needed to
extract the evoked potential. The scarching abilities of
evolutionary algorithms were used to select appropriate filter
and ‘weights. Previous work has concentrated on
extracting the entire response from the noisy signal which lasts
for around 400ms [3). It is belicved by many authors ¢.g.
Maccabee et al. {4] that the carlier components (the first 30 ms)
we more stable than the late components, and that a great deal
of pseful information can be provided from this early
somponcnt. This paper therefore describes work  which
toncentrates only on the extraction of the carlier components.

2. METHOD

Equipment and Data

All the signals were recorded on FM tape, using a STORE 4
FM tape ‘recorder (RACAL Recorders), in response to
stimulation of the median nerve at the wrist. The data was
collected using a Gateway 2000 Pentium P90 computer via an
interface card and data acquisition software (PC30F, Eagle
Technology). All the filters and evolutionary algorithms were
developed in MATLAB (MathWorks, USA). Before being
stored on tape, the signals were passed through a bandpass filter
(0.016-750Hz). Data set 1 consists of 184 responses split equally
into a test set and a training set. An average of the 184 recorded
responses was used to form a reference signal which was the target
signal that the filters aim to extract. In addition it was possible to
make simulated data by adding noise to this reference signal.
Electrical activity recorded just before stimulation occurred was
the source of the added noise. This was chosen as it represents
electrical activity recorded at the same site as where the evoked
responses were to be recorded and should therefore contain similar
kinds of electrical activity as the background noise on the evoked
response recordings. This simulated data (target signal + noise) set
was split into a training set (55 responses) and a test set (56
responses). Data set 2 consists of a test set with 117 responses,
and a training set with 117 responses. Data set 3 consists 122
signals in the iraining set and 121 signals in the test set. Data
sets 1 and 2 were spinal recordings, and data set 3 was a scalp
recording.

Filter Banks

The arrangement of the filter bank is shown in Figure 1. The signal
was passed through each filter separately. The output of this
system was the response produced by a weighted sum of the
individual filter outputs.

W
Hiter1 |
Sgdin _ W Sgrel at
Fiter 2
W
Fiter 3

Figure 1 Modelling the response as a set of 3 parallel filters

The results shown in this paper are those obtained using 3 filters
in the filter bank. The filters were 4* order Butterworth
bandpass filters, implemented using the MATLAB command
FILTFILT. This command produced a zero-phase shift filter,
which means that the filter itse!f did not produce a phase shift in
the signal. Butterworth filters were selected because of their
relatively smooth pass-band.

All the filters were set up randomly so that initially the low
frequency cut-off was within the range 0-200Hz, and the high
frequency cut-off was selected to be up to 300Hz higher than
the low frequency cut-ofl. Sub-averages (averaging small sets



gnals) of the input sets were created to reduce the noise
i, Again, the results shown in this paper are those obtained
10 responses were used in each sub-average. The
ation rate was set at two stimulations per second, so sub-
mges of 10 responses equate to 5 seconds worth of evoked
mmses. In the training process every example in the sub-

ped training set was used to measure the fitness of the
pal’ set of filters and weightings m the population of
ibie solutions. The mean of all the example fitness values
that individual solution was used. Both simulated data and
torded data were used to develop and test the filter banks.

filter parameters were encoded as a sequence of flosting point
bers on the chromosomes. Michalewicz [5) suggests that
ing point values are “intuitively closer to the probiem

» Finess Function: The fitness function used here was
Mcan Squared Emmor (MSE) between the results of the
holutionsry algorithm and the known target response. The error is

difference between the target signal and the test sequence at a
int in time, o(k).

mse = —IIVZ:;e(k)’

Selection and Mutation: Afier the fitness of each of the
ller banks has been calculsted the top quarter of the original
palation go through to the next gencration unchanged ie. those
h the highest fitness (ie. lowest MSE values) The remaining
quarters of the population in the ncxt generation were
nced: by a sclection process using crossover. The sclection
Nocess wsed in this work is the rouletie wheel approach where the
Ngher the fitness of an individual sequence, the greater the
nobability that the sequence’s genes will be used in the next
kneration. A sct of pairs of random numbers, ranging from 1 1o

Equation (1)

. i the population matrix was altered by up o +- 12.5% of the
carent value. The population size was chosen as 80 individuals
md the mutation rate was set at 005. The cvolutionary

3. RESULTS

Figure 2 shows how the MSE varied during training as the
number of generations increased for all four data sets. The MSE
converged to a stable value after 400 gencrations.

Figures 3 to 6 show results of the trained filter banks for cach
data set on the test data. Table 1 comperes the mean squared
error between the signal and the target signal, when the sub-
averages are unfiltered, filtered with a filter bank developed for
the ssme data set but for the whole of the signal (400ms) and
the filler bank trained on oaly the 1* 30ms of the signal
Visually there is an improvement when using these filter banks
over the unfiltered signals. Table 1 shows the lowest MSE
values were produced when the filters were developed for this

smaller region of the signal.
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Figure 2 The variation in mean squared error against the
number of generations during the training process for (a)
simulated data set (b.c, and d) data set 1,2,3 respectively.
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Figure 3 The results of a bank of three filters filtering the
region 1” 30ms of the simulated test subset, each signal a sub-
average of ten signals. The filters were trained on the 1* 30ms
of the training subset for the data set. (a) The unfiltered sub-
averages. (b) The sub-average signals after filtering. (c) The
target signals.

Tina(ms)

Figure 4 The results of a bank of three filters filtering the
region Ist 30ms of data set 1°s test subset, each signal a sub-
average of ten signals. The filters were trained on the 1" 30ms
of the training subset for the datq set. (a) The unfiltered sub-
averages. (b) The sub-average signals after Siltering. (c) The
target signals.
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5 The results of a bank of three filters filtering the
ngion lst 30ms of data set 2's test subset, each signalla sub-
\ewerage of ten signals. The filters were trained on the 1* 30ms
of the training subset for the data set. (a) The unfiltered sub-

wverages. (b) The sub-average signals afier filtering. (c) The

larget signals.
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Figure 6 The results of a bank of three filters filtering the
region 2 1o 30ms of data set 3 s test subset, each signal a sub-
average of ten signals. The filters were trained on the 2-30ms of
the training subset for the data set. (@) The unfiltered sub-
averages. (b) The sub-average signals after filtering. (c) The

target signals.

Mean Squared Error (10

DATA SETS | unfiltered | Whole 1 30ms

Simulated 0.1805 0.1008 0.0764

Data set | 3.6593 0.1302 0.1143

Data set 2 0.3669 0.2047 0.0851

0.1593 0.1578 0.0675

Data set 3

Table 1 A comparison of the filter bank produced and applied
to the 1st 30ms, and when no filtering is applied, and when
filter developed for 400ms were used on this region.

4. DISCUSSION

ionary algorithms enable less specific assumptions to be
fn::lemabout the frequency properties of the signal beforehand.
Using an cvolutionary algorithm, the algorithm can select cut-
off frequencies for the filter, and weights, based on how well

the filtered signal matches the shape of the target signal. A filter
bank approach was selected so that spectral areas that are not
important to extracting the evoked potential are less likely to be
included in the filtered resuit.

A noticeable feature seen in figures 4 and § is the s
features in the signals are not being extracted, and in figure 3
these are being extracted but so are some artefacts.

3. CONCLUSIONS AND FURTHER WORK

Previous work {2,4,6] used ensemble averaging followed by a
single band-pass filter. This paper has shown that fewer samples
can be used for ensemble averaging when a more sophisticated
filter bank is used as a post processor. The cut-off frequencies
and weights were optimised using an evolutionary algorithm. It
was noted that filtering simulated responses produced better
results than filtering recorded responses (Table 1). This was
believed to be due to the simulated response being time
invariant. They were produced by taking the target responses,
repeating it several times, and adding recorded noise. This
means that the underlying response was not changing between
the responses. In the recorded data, the underlying response can
vary between the responses. An assumption has to be made
about the response that the frequency components were the
same throughout the response, i.e. that it is stationary. A visual
inspection of the responses suggests this is not true, as does the
work by various groups using high-pass filtering to extract short
latency components (e.g. Rossini et al. [6], Maccabee et al. (2).
Therefore, further work is needed to design time variant filters,
which could also be done using evolutionary algorithms
possibly in combination with wavelets.
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PROVED SIGNAL TO NOISE RATIO IN
MATOSENSCRY EVOKED POTENTIALS
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of the largest chailenges in the processing of evoked potentials Is overcoming thelr low signal-
ratio (SNR). The aim of this research is to improve the SNR by the use of filtering and

t'ar techniques.

poster shows the distribution of spectral energy of potentlals from scalp recordings, bott with
without synchronised stimulation of Sensory nerves. This information is then used to design
filters that have zero-phase shift between filtered and unfiltered signals, customised to the
dual recording situation. This gives an increase in SNR, but does not overcome the problem
there are :pectral components of the unstimulated recordings, which Is considered as

ground noise, in the same region as stimulated responses.

results of a variety of estimation techniques performed on the evoked signals and simulated
are presented to compare their effects on SNR.
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Selecting Filter Banks to Enhance Evoked Potentials
Recordings Using Evolutionary Algorithms

SJ Turner, PD Picton, JA Campbell
University College Northampton, Northampton, NN2 6JD, UK
scott.turner@nene.ac.uk

Abstract. Evoked potentials are electrical signals produced by the body in
response to a stimulus. In general these signals are noisy with a low signal to
noise ratio. In this paper a method is proposed that uses sets of filters, whose
cut-off frequencies are selected by an evolutionary algorithm. An evolutionary
algorithm was investigated to limit the assumptions that were made about the
signals. The set of filters separately filter the evoked potentials, and are
combined as a weighted sum of the filter outputs. The evolutionary algorithm
also selects the weights. Inputs to the filters are sets of averaged signal, 4 or
10 signals per average. Even though there is likely to be variations between
the signals, this process can improve the extraction of potentials. '

1. Introduction

Evoked potentials (or evoked responses) are electrical signals recorded from a
human body in response to a stimulus to the nervous system. Somatosensory evoked
potentials in particular are recorded at sites such as the scalp or spine, ordinarily due
to direct electrical stimulation of the nerves in the arms or legs. The features looked
for are negative or positive peaks at certain known values, e.g. at 20msec or
300msec. The main problem with evoked potentials is the presence of noise from, for
example, other sources within the body, recording equipment, or the local
environment [1]). Noise can dominate the recorded signal, leading to a very low
signal to noisc ratio. There are several difficulties with this noise, one of which is
that the spectral components of the noise overlap the same region as those of the
evoked potential. This means that just applying a bandpass filter will not extract the
evoked potential, and the noise components are often larger than those of the evoked
potential. Ensemble averaging is the most commonly used method of reducing the
noise in evoked potential recordings. The main disadvantage of this method is that to
produce a reasonably noise-free signal, a large number of signals need to be
averaged. Collection of a large number of signals means that signals need to be
collected over relatively long periods of time. Taking a long time to collect the data
may be undesirable for the subject under going the tests, or even impractical, and
variations between signals can lead to distortion of features in the averaged signal.
After ensemble averaging, a single bandpass filter is often applied. The aim of this
work is to investigate using a set of bandpass filters to reduce the number of signals
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that are needed to extract the evoked potential. The searching abilities of
evolutionary algorithms were used to select appropriate filter parameters ang
weights.

2. Method

2.1 Equipment And Data

All the signals were recorded on FM tape; using a STORE 4 FM tape recorder
(RACAL Recorders), from spinal recorded evoked potentials in response to
stimulation of the median nerve at the wrist. The data was collected using a Gateway
2000 Pentium P90 computer via an interface card and data acquisition software
(PC30F, Eagle Technology). All the filters and evolutionary algorithms were
developed and implemented in MATLAB (MathWorks, USA). Before being
recorded the signals were passed through a bandpass filter (0.016-750Hz).

Recorded data consisting of 222 responses were collected from the tape. A total of 38
responses were excluded from the experiments as they were found to contain artifacts such
as ‘clipping.' Using the remaining 184 recorded responscs, two sets of data with 92
responses in each were formed into a test and a training set These sets are referred to
here, as the recorded data. An average of the 184 recorded responses was used to form a
reference signal which was the target signal that the filters aim to extract. In addition it
was possible to make simulated data by adding noise to this reference signal. Pre-stimulus
recordings, i.e. electrical activity recorded just before stimulation occurred, was the source
of the added noise. This was chosen as it represents electrical activity recorded at the same
site as where the evoked responses were to be recorded and should therefore contain
similar kinds of electrical activity as the background noise on the evoked response
recordings. This simulated data (target signal + noise) set was split into a training set (55
responses) and a test set (56 responses).

2.2 Filter Banks

The arrangement of the filter bank is shown in Figure 1. The signal was passed
through each filter separately. The output of this system was the response produced by a
weighted sum of the individual filter outputs.
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| The results shown in this paper are those obtained using 3 filters in the filter
L bank. The filters were 4™ order Butterworth bandpass filters, implemented using the
 MATLAB command FILTFILT. This command produced a zero-phase shift filter,
which means that the filter itself did not produce a phase shift in the signal.

Butterworth filters were selected because of their relatively smooth pass-band.

" All the filters were set up randomly so that initially the low frequency cut-off was
within the range 0-200Hz, and the high frequency cut-off was sclected to be up to
300Hz higher than the low frequency cut-off. Subaverages (averaging small sets of
signals) of the input sets were created to reduce the noise level. Again, the results
shown in this paper are those obtained when 10 responses were used in each sub-
average. The stimulation rate was set at two stimulations per second, so sub-averages
of 10 responses equate to 5 seconds worth of evoked responses. In the training
process every example in the sub-averaged training set was used ta measure the
fitness of the ‘individual’ set of filters and weightings in the population of possible
solutions. The mean of all the example fitness values for that individual solution was
used. Both simulated data and recorded data were used to develop and test the filter
banks.

2.3 Evolutionary Algorithm

The filter parameters were encoded as a sequence of floating point numbers on the
chromosomes. Michalewicz [3] suggests that floating point values are "intuitively

closer to the problem space.”

Fitness Function. The fitness function used here was the Mean Squared Error
(MSE) between the results of the evolutionary algorithm and the known target response.

1 1
mse = 7\/-Z:::Izle(k)2 M
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The error is the difference between the target signal and the test sequence at a point in
time, e(k).

Selection and Mutation Afier the fitness of each of the filter banks has been
calculated the top quarter of the original population go through to the next generation
unchanged i.e. those with the highest fitness (i.e. lowest MSE values). The remaining
three quarters of the population in the next generation were produced by a selection
process using crossover. The selection process used in this work is the roulette wheel
approach where the higher the fitness of an individual sequence, the greater the
probability that the sequence’s genes will be used in the next generation. A set of pairs of
random numbers, ranging from 1 to the sum of all portions of roulette wheel, was used to
sclect the sequences that were the 'parents' of the next generation. A third random
number was produced that determines where along the sequence the swapping occurs, so
the two original sequences produce two new sequences. A second matrix was formed that
was the same size and shape as the population matrix, and contained values in the range 0
to 1. If the value in the matrix was less than or equal to the mutation rate, then a change
was made to the value in the population matrix at the corresponding position. The value
in the population matrix was altered by up to +/- 12.5% of the current value. The
population size was chosen as 80 and the mutation rate was set at 0.05. The evolutionary
algorithms were all stopped after 200 generations.

3. Results

Figure 2 shows the averaged signal used both as the underlying signal of the
simulated data sets and as the target signal. '
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Fig. 2. Target signal
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This spinal recording was chosen as it has small but important early components
and much larger later components which were more time invariant. It therefore
combines many of the features that need to be taken into account in the extraction of
the evoked potentials from the background noise.

Five unfiltered sub-averages of simulated test data and the effects of filtering are
shown in Figure 3. The signals have been shifted along the voltage axis to aid the
visual presentation. Three filters were developed using the simulated training set.
Comparing the results of the set of filters and the target signal, resemblance between
the target signal and these filters can be seen. The most noticeable feature of these
filtered signals is that they have negative peaks at around 50ms and 200ms. Two
positive peaks in the region 100-200ms were also observed. These peaks are present
in the target signal (Figure 2). Later components around 250, 300, 350ms do not
appear in the majority of the signals. At the beginning of the signal, features are not
present or have been ‘'flattened.’
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Fig. 3. (a) Averages of simulated activity (10 simulated ¢voked response per average). (b)
The signals in (a) after being passed through a set of filters whose parameters were selected
by an evolutionary algorithm, based on training with a different set of simulated responses.

Recorded evoked potentials were passed through the filters used previously.
Figure 4 shows both the unfiltered and filtered responses. As in Figure 3, some of the
features can be seen, but the similarities with the target signal are not as clear as
when the simulated test data were filtered. Figure 5 shows the unfiltered averaged
test recorded data again, but this time the signals are passed through a set of filters
developed using the recorded data training set. In comparison with Figure 4, these
are essentially the same shape but smoother. Table 1 contains the filter parameters
and weightings for both sets of filters. Table 2 contains the minimum, maximum,
mean and standard deviations of the MSE values.



106

After filtering
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Fig. 4. (a) Averages of recorded activity (10 recorded evoked response per average). (b) The
signals in (a) after being passed through a set of filters whose parameters were selected by an
evolutionary algorithm (same filters as used in figure 3.)
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Fig. 5. (a) Averages of recorded activity (10 recorded evoked response per average). (b) The
signals in (a) after being passed through a set of filters whose parameters were selected by an -
evolutionary algorithm, based on training with a different set of recorded responses.
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Cut-off (Hz)
frequencies

_ fx fx+1 weight
I 3 filter bank 4.022 26.9667 0.9307
" (simulated) 66.751 576 816 0.2848
133.398 637.093 0.0563
3 filter bank 371 18.4259 0.6253
(recorded) 52.788 55.649 031
42.545 260.143 0.086

_Table 1. Filter parameters selected using the evolutionary approach

min max. mean | STD
Training Test Data 10° 103 10% | 103

Data
simulated simulated | 0.39 081 | 061 | 018
recorded 1.6 59 2.7 1.4
recorded simulated 1.0 14 12 | 02
recorded 0.6 3.8 1.7 1.1

Table 2. Mean Squared Error values for the two filters.

4. Discussion

Evolutionary algorithms enable less specific assumptions to be made about the
frequency properties of the signal beforehand. Using an evolutionary algorithm the
algorithm can select cut-off frequencies for the filter, and weights, based on how well
the filtered signal matches the shape of the target signal. A filter bank approach was
selected so that spectral areas that are not important to extracting the evoked
potential are less likely to be included in the filtered result.

A noticeable feature of all the processed responses, whether from simulated or
recorded data, was that features at the beginning of the response were not as large as
they are in the target signal. The reason for this was that these components were
small compared with the rest of the response, and have higher frequency components
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than those in the rest of the response. The dominant features were therefore these
larger components, and this was the feature the algorithms have found. Changes in
the larger low frequency components produced larger changes in MSE than the
higher frequency components of the smaller early components. In Table 1, a list of
the cut-off frequencies of the filter banks developed are given. Common to both set of
filters is a high weighting on low frequencies, which would help to explain why
components at the beginning of the response were smoothed out or reduced. This fits
with groups such as Rossini et al. (1981) [4], who used a bandpass filter with
relatively high frequency parameters (i.e. 150-3000 Hz) to extract short latency
components (early components of the responses). The idea of a bandpass filter to
extract these components does therefore seem relevant. Increasing the number of
filters was investigated, but the results were no better, and so did not justify the extra
processing needed. A reduction in the number of responses per average was tried, but
the combination of the ‘'noisier' inputs signals and filters produced were not as
effective as those where 10 responses were used. .

5. Conclusions

Filtering simulated responses produced better results than filtering recorded
responses (Table 2). This was believed to be due to the simulated response being
time invariant. They were produced by taking the target responses, repeating it
several times, and adding recorded noise. This means that the underlying response
was not changing between the responses. In the recorded data, the underlying
response can vary between the responses. The results of the filter developed using
recorded data suggest that it was better than the filter developed using simulated
data, for filtering recorded data (Table 2), at least for the later components of the
signals. An assumption has to be made about the response that the frequency
components were the same throughout the response, i.e. that it is stationary. A visual
inspection of the responses suggests this is not true, as does the work by various
groups using high-pass filtering to extract short latency components (e.g. Rossini et
al. (1981) [4], McCabee et al. (1983)[2]). A possible way around this problem is to
allow the filters to contribute to the overall final response at different times. These
are time-varying filters, and work is on-going to investigate these. The effects of
using other sets of intraspinal recordings and scalp recordings are also needed to
investigate the effects of variations in recordings between subjects. A particular
problem area is that the later components of the signals are likely to vary more than
the earlier components. It is possible that other data sets may have signals that vary
more than these, but this would also be a problem for the conventional ensemble
average method.
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