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Abstract 

Evoked potentials are electrical signals produced by the nervous system in response 

to a stimulus. In general these signals are noisy with a low signal to noise ratio. The 

aim was to investigate ways of extracting the evoked response within an evoked 

potential recording, achieving a similar signal to noise ratio as conventional 

averaging but with less repetitions per average. In this thesis, evolutionary 

algorithms were used in three ways to extract the evoked potentials from a noisy 

background. 

First, evolutionary algorithms selected the cut-off frequencies for a set of filters. A 

different filter or filter bank was produced for each data set. The noisy signal was 

passed through each filter in a bank of filters; the filter bank output was a weighted 

sum of the individual filter outputs. The goal was to use three filters ideally one for 

each of the three regions (early, middle and late components), but the use of five 

filters was also investigated. Each signal was split into two time domains: the first 

30ms of the signal; and the region 30 to 400ms. Filter banks were then developed for 

these regions separately. 

Secondly, instead of using a single set of filters applied to the whole signal, different 

filters (or combinations of filters) were applied at different times. Evolutionary 

algorithms are used to select the duration of each filter, as well as the frequency 

parameters and weightings of the filters. Three filtering approaches were 

investigated. 

Finally, wavelets in conjunction with an evolutionary algorithm were used to select 

particular wavelets and wavelet parameters. 

A comparison of these methods with optimal filtering methods and averaging was 

made. Averages of 10 signals were found suitable, and time-varying techniques were 

found to perform better than applying one filter to the whole signal. 

Words in the main body of the text approx. 28200 
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1 Introduction 

In this chapter bioelectrical signals are introduced and evoked potentials in 

particular. Also considered are some of the problems of evoked potential recordings 

and the aims of this work. 

1.1 Basis of Electrophysiology 
A basic principle behind electrophysiological measurements is that living neural 

cells produce electrical signals. The form of these signals that most people are 

familiar with is the electrocardiogram (ECG), measuring the electrical activity of the 

heart. This is not the only type of measurement that is possible. Electrical activity of 

muscles can be recorded, as can activity of the nerves, spinal cord and brain. 

Nerves can be stimulated and the nervous system's response to the stimulus can then 

be recorded. This is an evoked response and the form of measurement of interest for 

this work. Before discussing what an evoked response is, it is worth considering 

where these signals come from. 

~ J''''-",""--_ 
1 Stimulus Artefact Lction Potential 

Figure 1·1 Representation of an action potential 

All living cells maintain a potential difference across the cell membrane, due to 

imbalances of positive ions outside the cell and negative ions inside the cell. The 

potential difference across the cetJ membrane is caned the membrane potential, the 

magnitude of which indicates the charge on the inside surface of the membrane 

(when a neuron is not conducting impulses, it is said to be resting). At rest the 

membrane potential is typically maintained at around -70 mY, so this is known as 

the resting potential. When a stimulus is applied to the membrane, the membrane or 

a portion of the membrane increases its permeability. This is achieved by opening 
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sodium channels in the membrane, allowing sodium to diffuse into the ceH and 

causing a small rise in the membrane potential (depolarisation). If the membrane 

potential increases above a certain threshold level, typically -59 mY, even more 

sodium channels open. These sodium channels stay open for about 1 ms, allowing 

the same amount of sodium ions to diffuse in each time, thereby producing the same 

magnitude of response. This response is called an action potential (figure 1- I) and is 

an all-or-nothing response. If the threshold level is exceeded the full peak of the 

action potential is always reached (approximately 30 m V). If the threshold potential 

is not exceeded, then no action potential is produced. Once the action potential's 

peak has been reached, the voltage starts to decrease (re-polarisation). Exceeding the 

threshold potential not only triggers the opening of sodium channels, but also 

voltage-sensitive potassium channels. The voltage .. sensitive potassium channels are 

slower to respond than the sodium channels and do not open until the diffusion of 

sodium ions has caused a membrane potential of around +30 mY. Once the 

potassium channels open, potassium diffuses out of the cell and the potential starts 

to decrease. The potassium channels remain open when the membrane potential 

reaches the resting potential; an excess of potassium can diffuse out of the cell. This 

can cause a brief period where the action potential voltage drops below the resting 

potential (hyperpolarisation) before sodium-potassium pumps in the membrane 

return the ion channels to their resting state. 

++++++++++----------++++++++++ 
----------++++++++++----------

Active Region 
----------++++++++++----------
++++++++++----------++++++++++ 

1 Resting I I Membnoe ~::~:s ~::b:~ 
4 DUecti on of JX'OPIsation 

Fipre 1-1 Action poteDda. propagation 

In approximately the first half millisecond after the threshold potential is surpassed, 

no matter how large the stimulus, the stimulated portion of membrane will not 

respond to a further stimulus. This is the absolute refractory period. The relative 

refractory period occurs in the few milliseconds after the absolute period and is the 

time it takes for the resting potential to be achieved. A strong stimulus is needed to 

re-stimulate the membrane during the relative refractory period. 

3 



When an action potential occurs in a region of the nerve membrane, it acts as a 

current source, causing an adjacent portion of the membmne to increase in potential, 

thereby initiating an action potential. This process is repeated and so an impulse 

seems to move along the nerve (figure 1-2). Because a portion of the membrane that 

produced an action potential goes into a refractory period after the action potential 

has been produced, it is inhibited from being re-stimulated by the action potential 

further along the nerve. This means that the nerve impulse moves along the nerve in 

one direction. 

Saltatoty 
Conwdion 

~~~ i Node of r Node of T Myelin 
Ranvier Ranvier Shellh 

4 Direttion of p-opagation 

Fiaure 1-3 Propagation along a myelinated fibre 

All except the smallest nerve fibres in the human body are insulated by a covering 

called myelin. The previous description of impulse conduction refers to 

unmyelinated fibres, but the principle of an action potential causing others parts of 

the nerve fibre to be stimulated is still true for myelinated fibres. In myelinated 

fibres, sodium and potassium channels are densely clustered around the gaps 

between the myelin sheaths, called nodes of Ranvier. The difference between the 

way myelinated and unmyelinated fibres conducts an impulse is that myelinated 

fibres propagate an impulse by a sequentially activating the nodes of Ranvier. The 

same basic idea of the nerve locally polarising and depolarising as in the 

unmyleinated fibre is still true. The action potential appears to leap up the nerve 

fibre (fig 1-3), so this is sometimes called saltatory conduction (from the Latin 

saltare, "to leap or dance") Clark (1992). Conduction along a myelinated fibre is 

faster (approximately 20 times) that of conduction along unmyelinated fibre. 
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1.2 What is an evoked potential? 
If a nerve is stimu)atecL then differences in the electrical activity in the brain or 

spinal cord are produced in response to the stimulus. These are responses evoked by 

a stimulus and are called therefore evoked responses or evoked potentials. The types 

of response relevant to this work are somatosensory evoked potentials (SEPs), which 

are usually produced by electrical stimulation of sensory nerves. Electrodes placed 

on the scalp, or near the spinal cord, can be used to record these responses. The 

usual way to produce these responses is to apply a short electrical pulse over the 

nerve and record the response under the electrodes at the recording sites. 

Somatosensory evoked potentials have a variety of applications. 

• During spinal operations, such as to correct spinal curvature, SEP monitoring 

helps to avoid paralysis, which can be a possible complication of the operation. 

• To provide information of dysfunction (Rossini et aI, 1981). Spinal cord tumours 

may cause abnormal evoked potentials (Aminoff and Eisen, 1999). 

• As a prognostic guide for coma and spinal injuries. In spinal injuries, if 

stimulation is carried out below the injury site, a response can be looked for at 

the scalp. If a response can be recorded after the injury, or the response returns 

soon after, this is taken as a good indication that the prognosis is good. 

• MacLennan and Lovely (1995) discussed the use of somatosensory evoked 

potentials to test nerve conduction, which can be used in the diagnosis of 

Multiple Sclerosis (MS). The use of somatosensory evoked potentials for nerve 

conduction velocity studies and as an aid for MS diagnosis are two of the uses of 

SEPs that have been used the longest. Abnormalities in somatosensory evoked 

potentials have been found in 80% of patients diagnosed with Multiple Sclerosis 

(Aminoff (l 999». 

• Depth of anaesthesia (Angel et al (1999), Nayak andRoy (1995,1998». 

• Braun et al (1996) used time-frequency analysis to detect temporal and spectra) 

changes in somatosensory evoked potentials due to neurological injury such as 

from lack of oxygen (hypoxia). A form of time-frequency analysis, wavelet 

analysis, has been used to characterise changes in the shape of evoked potentials 

due to neurological injury (Thakor et aI, (1993a. 1993b». 

The tenn 'latency' is used throughout the literature and is an important consideration 

of any work on evoked potentials. Latency is the measurement of time to the 
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occurrence ofa peak after a stimulus. A number of papers (e.g. Rossini et aI (1981), 

Maccabee et a1. (1992» have commented that the earlier (or shorter) latency 

components are considered more stable than the longer latency components. Anziska 

and Cracco (1981) discussed the source of the various positive and negative peaks. 

Short latency SEPs recorded by scalp electrodes do not reflect the signal travelling 

up the nerve, as it approaches and passes under the electrode, but are far field 

effects. These are generated mainly in the fibre tracts (Anziska and eracco 1981). 

Rossini et al (1981) concluded that the small stable early components come from 

subcortical processes. Maccabee et al (1992) state that earlier components have 

higher frequency contents than later components, which means that the assumption 

that the signal is stationary is not valid. In other words, the signal's frequency 

properties are not constant throughout the signal. Late (or long) latency components 

are associated with cortical process and the path the responses can take are more 

varied, spreading the peaks in the signal, thereby decreasing the stationarity of these 

components. 

1.3 What are the problems? 
A variety of problems exists in measuring evoked potentials (EP). Low Signal to 

Noise ratio (SNR) (often «I), due to the low signal amplitude in comparison to the 

amplitude of the background activity (Harrison et a1.. 1995) is considered the main 

problem in extracting evoked responses. In the next chapter, methods to improve the 

SNR will be considered, including the most commonly used method of averaging a 

large number of responses. The background activity in part comes from other 

sources of electrical activity within the body. An example of that includes electrical 

artifacts produced by muscles, which can have a very detrimental effect on the SNR 

(Cadwell and Villarreal, 1999). Activity produced by respiratory muscles and the 

heart can interfere with measurements, e.g. during scolosis corrective surgery 

(Choudhry et al. (1998». Electrical activity from the brain (electroencephalograph 

(EEG)] that is not directly evoked by stimulus, is a difficulty found in scalp 

recordings. Table 1.1 shows examples of the signal properties of other bioelectric 

signals. The range of frequency values and size of voltages of evoked potentials 

(ranging from a few microvolts to hundreds of microvolts depends on where the 

recording electrodes are placed. 
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Freq. Voltase 
(Hz) (approx.) 

Electrocardiogram(ECG) - Recordings of electrical Min 0.05 5mV 
activity of the heart Max 500 lOmV 

Electroencephalography (EEG) - Recordings of the Min 0.1 2~V 
electrical activity within the brain. Max. 100 200j.tV 
Action potentials Min DC O.OlmV 

Max 10000 3mV 
Electromyography (EMG) - Recordings of the Min. DC 25mV 
electrical activity of muscles. Max. 10000 SmV 

Table 1-1 Other Bioelectrit signals: Taken rrom v.rio.s sources (Khandpur (1987), 0I10n 
(1992)) 

Table 1-1 shows the approximate absolute frequencies and voltages for the four 

common sources of the electrical activity (and artifacts) in the body. The 

investigation site (e.g. scalp or spinal recordings) will have an effect on the response 

by the different artifacts produced (Harrison and Lovely, 1995). The term noise used 

here is taken to mean the unwanted components of the signal, with respect to the 

evoked potentials. It should be borne in mind that some of these unwanted 

components such as those in table 1·1 do have uses outside of this work. Other 

factors such as fluctuations in vigilance state and conduction delays, change the 

amplitude and latency of waves within the recording session and therefore alter the 

signal. 

Interference can also come from the recording equipment such as electrical noise 

from the amplifiers used and from the environment. Line frequency or mains hum is 

one such problem~ this is interference from the mains supply. A filter that attenuates 

frequency components at the line frequency and its hannonics can help to reduce 

this problem. This type of filter is used at the recording equipment while the signal 

are being collected or after the signal have been collected, may also remove 

components of the evoked response at the same time. The signal, like many 

biological signals, will vary (i.e. be nonstationary) over a long time interval and 

most of the more commonly used signal processing techniques assume stationarity 

(e.g. linear filtering). 

It is timely at this point to explain some conventions for such recordings used in this 

work. One convention in electrophysiologieal recordings is for a positive peak to be 

down the page (-y axis) and negative to be up (+y axis). In this thesis because of the 

packages usecL the convention of positive as up (+y axis) the page and negative 
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down (-y axis) has been adopted as with most physical science conventions. There is 

also no clear definition on what is classed as short. mid. or late latency regions, but 

based on the similar conventions adopted by some authors (e.g. Nishida et aI, 1993), 

less than 30 ms is classed here are short latency, 30-100 ms as mid latency and 

greater than lOOms as late latency regions. 

In summary, evoked potentials are signals produced in response to an electrical 

stimulus and are often recorded at the scalp or spine. These signals have a certain 

amount of time variance between individual recordings. Recordings are often 

corrupted with noise from within the body, as well as susceptible to noise from 

outside the body. The noise power is often greater than the signal power; i.e. often 

have low signal-to-noise ratios (SNR). 

1.4 Aims 
As will be discussed later. conventional averaging (section 2.1) is the usual method 

for improving the SNR, by using large numbers of responses. The overall aim is to 

investigate ways of extracting the evoked response within an evoked potential 

recording, achieving a similar SNR as conventional averaging but with less 

repetitions per average (see section 2.1 for advantages of this). This thesis 

investigates whether the use of evolutionary algorithm can be used to achieve this by 

the selection of filters or wavelets. Evolutionary algorithms (see chapter 5) use the 

principles of biological evolution to find solutions to problems. An evolutionary 

algorithm approach allows the number of assumptions made at the start to be 

limited. One of the reasons for choosing a filter bank approach is that clinicians 

already use filters routinely, so applying a set of filters to these signals is not a great 

change in their usual practice. 

t.! Structure of tbe TbesM 

After this introductory chapter, there follows a chapter (Chapter 2) introducing the 

range of techniques that have been investigated previously and those in current 

usage. Chapter 3 discusses the recording methodology and includes a description of 

the data sets used. Chapter 4 looks at various ways of analysing these signals and 

includes two techniques to enhance the extraction of evoked potential: - one by 

looking at the power spectrum of the signal, the other by building a Posteriori 
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optimal filters discussed in chapter 2. Chapters 5·8 show evolutionary algorithms 

being used to select sets of filters or wavelets applied to a novel application of 

enhancing the extraction of evoked potentials from noisy recordings. Chapter 9 

contains comparisons of the methods. The final chapter (chapter to) includes 

conclusions of the work and areas of possible work leading off from this research 

presented in chapters 5-8. 
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2 Review of Current Techniques 

After discussing, in the last chapter, some of the problems of recording evoked 

potentials, this chapter reviews techniques currently used. 

From a signal-processing viewpoint, evoked potentials have one advantage over 

some other forms of recorded biological activity (e.g. EEG). The start of the signal is 

known, due to the stimulus evoking the response at a known point in time. The 

beginning of the evoked response is considered to start when the stimulus is applied. 

This leads to the use of techniques such as averaging, without the need for extra 

processing to detect the start of the signal. Further processing is needed though to 

improve the SNR. 

2.1 Averaging 

Two forms of averaging are considered: ensemble (or coherent) averaging and 

weighted averaging. Ensemble averaging, is the usual method for improving SNR 

(Harrison and Lovely, 1995) in evoked potential studies. The assumptions and some 

of the properties of averaging are also relevant to other techniques and so will be 

discussed in detail here. 

2. 1.1 Ensemble averaging 

Ensemble averaging is where the mean value across all the signals at each point in 

time, is calculated. At the end of the process one signal is produced, an averaged 

signal. For averaging to be valid, assumptions about the signals have to be made 

(Glaser and Ruchkin 1976). 

• The recorded waveform is a linear sum of the noise and the evoked response. 

• The shape of the waveform is attributable solely to the stimulus and is the 

same for each repetition. The evoked response is assumed not to change 

between each repetition. All the components of the evoked potentials are 

considered to be locked to the stimulus. Variations in the position of the features 

are known to be possible between responses (e.g. Rossini et aI., 1981, Maccabee 

et a1. 1992). 

• The contribution of noise to the observed data is sufficiently irregular that it 

can be considered statistically independent samples of a random process. In 
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other words, the noise is considered random and uncorrelated with the response. 

If applying a stimulus alters the noise, then this change is part of the response. 

Usually the noise is considered to be 'white' noise (zero mean value, with a 

Gaussian distribution). 

In the ideal situation, it can be expected at some time, t, for a similar peak. will be 

present in all the signals. The noise is assumed a random signal. As the number of 

signals (N) used in the average increases, the contribution to the overall signal from 

noise increases proportionally to the square root of the number of signals. The 

underlying signal has the same value at a point in time in all the signals. As the 

number of signals averaged increases, the value in the averaged signal increase 

proportionally to N Signal to noise ratio therefore increases proportionally to the 

square root of N. 

Consideration of how these techniques are used is needed. To be of use a large 

number of responses is often needed, sometimes over 1000 (Morin et aI, 1987, 

Maccabee et al, 1986) for small components. For late components that are often 

relatively large 50·256 signals per average have been used (Cartton and Katz 

(1986». There is a practical limit to the number of stimulations per second. This 

limit is due to the possibility of components of a previous response overlapping with 

components in the current response. Therefore increasing the stimulation rate is 

problematic. In somatosensory evoked potentials this is often a maximum of 2-5 

stimuli per second (MacLennan and Lovely, 1995). The large number of responses 

needed and the limitation on the stimulation rate, means in order to acquire a 

suitable average, several minutes (I to 5 minutes) worth of recordings are often 

needed. Remembering that each signal is produced by a stimulus to the subject, this 

is a technique where a person is having a nerve artificially stimulated for several 

minutes. Collecting the evoked potentials quickly is useful, as these techniques may 

be carried out as part of other activities (such as surgery), or there is an increased 

risk of the subject getting bored and therefore moving more, introducing artefacts. 

Connected with this, if the peaks in each response are shifted in time, this can lead to 

the 'smoothing out' of peaks of the response (leBron et al, 1995). Therefore, what is 

needed is to either collect fewer signals or do more with the signals collected. 

2.1.2 Weighted averaging 

Davilla and Mobin (1992) have investigated a method in which each response is 
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weighted individually. The value of weights were derived from the set of signals to 

be averaged x and the ensemble average, x, of the set of signals, by the equation 

shown below, where x T is the transpose of x. 

Equation 2-1 

The Davilla and Mobin method was applied to auditory evoked potentials and 

showed increased signal to noise ratio compared with ensemble averaging. Using 

two estimates of SNR, the authors show an 8 to 21 % improvement using weighted 

averaging compared to conventional ensemble avemging. The percentage increase in 

SNR for each subject was considered independent of the estimator used. 

Darragh et at (1995) also compared conventional averaging with weighted averaging 

extending the results of Davilla and Mobin. The data used in their study was 

simulated using three sets of signals based on exponentially weighted sinusoids. 

Each signal was translated along the time axis randomly to simulate random 

variations in latency of peaks ('jitter'). White noise was added to simulate 

background activity. They showed a decrease in SNR as the standard deviation of 

the jitter' increased. The problem with this is that the data is based on a further set of 

assumptions to those already discussed, such as the noise being white, or that the 

signals can be realistically be modelled as a sets of exponentially weighted 

sinusoids. It is questionable that the noise of background activity is white, but 

coloured. 

Bezerianos et al (1995) applied a different form of weighted averaging~ they called it 

data dependent weighted averaging (DDWA), to visual evoked potentials. Two 

forms of this approach were used: one based on suppressing results that differ 

substantially from the rest of the data and a more successful method based on the 

signal to noise ratios (the estimator of Coppla et al (1978». The authors claimed 

good results for both methods but no comparison with Davilla and Mobin's method 

was given; though reference to the paper was made. One problem with these claims 

is the SNR estimator used to test both methods is the same one used to form the 

weights of the second method. A method of estimating SNR that is independent of 

how the weights were produced would have led to greater confidence in the test 

method. 
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Both Davilla and Mobin's approach and that of Bezerianos et al were applied to 

actual evoked potential recordings. What is not clear is the suitability of these 

techniques for signals with SNR significantly lower than the auditory and visual 

evoked potentials used. 

2.2 Linear Filtering 
Filtering is often used to remove certain frequency components of a signal, e.g. the 

removal of noise components or investigating the signal over a narrow band of 

frequencies. Four basic types of filters are considered low-pass, high-pass, bandpass 

and bandstop filters. A low-pass filter attenuates signals above a certain frequency 

(cut-off frequency), but frequencies below this cut ofT frequency pass through 

relatively unattenuated. A high-pass filter is the opposite of the previous filter, 

attenuating signal components below the cut otT frequency. The third type of filter is 

a bandpass filter that has two cut-otT frequencies. Frequencies between these two 

cut-ofT frequencies are passed through relatively unattenuated All other frequencies 

are attenuated. A bandstop filters is the opposite of the previous filter, all the 

frequencies between the two cut-off frequencies are attenuated, all others 

frequencies are passed through relatively unattenuated. 

Bandpass and high-pass filtering methods have been applied to evoked potential 

recordings, often to remove low frequency components that would otherwise 

dominate the signal. Several groups have used bandpass filters with relatively high 

cut-ofT frequencies (2 kHz - 3 kHz), e.g. Maccabee et al (1983), Rossini et al (1981). 

All of these groups applied filtering to signals averaged with large numbers of 

responses. Removing the low frequency signal components was found to make 

detection of other components at higher frequencies possible, especially for the early 

components. Table 2.1 (at the end of the chapter) contains a list of several groups 

and the filters they used. 

Analogue filters may alter the phase of the filtered signals and thereby alter the 

position of signal peaks; this is phase or latency shifting. The greater the rate of 

attenuation of the filter (therefore the higher the order of the filter), the greater the 

phase shift (Kriss, 1985). New 'peaks' can also be generated by the differential 

effects of analogue filters (Campbell and Leandri, 1984). Digital filters can avoid 
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this problemt as techniques are available to produce digital implementations of the 

analogue filters that do not produce any phase shifting in the filtered signals. A 

digital band pass filter, 200-1500 Hz. has been applied to median nerve stimulated 

responses (Green, 1986). These results show these filters avoided the introduction of 

latency shifting. Eisen et at (1984) used a digital band-pass filter (300-2500 Hz) to 

remove the effects of the larger low frequency components. similar to the analogue 

filtering of others (e.g. Maccabee et al 1983), Their results show no phase shifting 

was produced on the signal peaks and the filter attenuated the peaks. Bessel filters 

are analogue filters that have a constant transmission delay, that means the effect of 

phase shifting filtering can be accounted for. Bessel Filter do have a disadvantage of 

having less effective magnitude characteristics than some of the filter types that were 

commonly used (e.g. Butterworth and Chebyshev filters). 

A positive property of digital filtering methods is they can be implemented in 

software and several commercially available packages (e.g. MA TLAB and 

LabView) include commands to implement them. This leads to the possibility of 

investigating the effects of altering properties of the filters and combinations of 

filters quickly. simply and cheaply, with the possibility oflater being implemented is 

hardware for quicker opemtion 

Filters set between 20-2000 Hz and 200-2000 Hz have been applied to epidural 

spinal cord stimulated evoked potentials (Paradiso et aI, 1995). Surface spinal 

recordings of peroneal nerve stimulated signals have been made using a bandpass 

filter 10 Hz - 1 kHz (Morin et ai, 1987). These surface recordings showed little 

significant contribution above 500 Hz. Maccabee et al (1986) found that in scalp 

evoked potentials due to stimulating the median nerve, most of the spectral energy 

was below 125 Hz, with lower energy components extending up to 500-700 Hz. One 

group (Maccabee et ai, 1986) highlighted that filters can produce artifacts of their 

own. For a clinical correlation, they suggested that the filtered signal must be 

compared with the all pass signal. This was defined as the unfiltered signal. Only 

those peaks that appear in both the all pass and filtered signals were considered 

authentic. The problem with this is how to decide that what is present is a peak of 

the evoked potential and not noise. Therefore. this kind of comparison is only 

possible after a signal has been processed with a technique such as averaging a large 

number of signals, to reduce the noise. 
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A common feature of most of these groups work is that they do not justify why they 

used these particular frequencies for their filter. Bandpass filters acting as high-pass 

filters are justified on the grounds that these can be used to enhance the extraction of 

low amplitude high-rate components, while suppressing long-latency components 

(Maccabee and Hassan (1992». What is not usually discussed is why those 

particular values were selected. A second point is the 'high-pass' filter approach is 

unsuitable if both short and long latency components are of interest. In the paper by 

Maccabee et al (1986), some justification was provided by showing a power 

spectrum of a scalp recording due to median nerve stimulation. The spectrum 

showed different regions of the spectra, Maccabee et at (1986) commented that high 

frequency components extended up to 500-700 Hz. 

One of the problems with this linear filtering is it that the spectrum of the both the 

noise and the evoked potential occupy similar regions (Karajalainen et at, 1999). 

This means that a single linear filter is unlikely to extract the whole of the signal. 

A related approach (Nishida et al., 1993) was to pass the evoked potentials through, 

three bandpass filters at different times and combine the outputs of the filters, to 

form a single signal. Scalp recordings of a somatosensory evoked potential were 

considered to contain three frequency ranges. The first range is a high frequency 

range (64.5 Hz to 300 Hz) occurring at the beginning of the signal. A second range, 

a mid frequency range (17.5 to 64.5 Hz) occurs in the middle of the signal. The final 

region was a Jow frequency range (5 tol7.5 Hz) that occurs at the end of the signal. 

The outputs of the filters are combined depending on where along the time axis the 

signal components are. In the range 0 to 25 ms, the high frequency filter provides the 

output of the signal. In the time between 35 and 80 ms, the mid-frequency filter 

provides the output. For the period greater than 90 ms, the low frequency filter 

provides the output. There were no abrupt changes between the various time 

segments and filters; a 10 ms transition region was included. During the transition 

period, the earlier filter's contribution decreased as the next filter's contribution 

increased, until only the later filter is providing the signal for the output. A different 

filter at different times is an extension of the analogue and digital filters discussed 

earlier. The group also added an EEG reducing algorithm they developed at the 

output of the low frequency filter. The selection of these frequency ranges were 

justified by looking at the frequencies in the power spectra of a scalp recorded 
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evoked potential. What is not justified is the time segment sizes. Power spectra do 

not show when an event occurred; an assumption is made when using a power 

spectrum that the frequency components are present throughout the signal. The 

assumption that this group's work was based upon different filters for different 

regions puts into question the validity of using a power spectrum as the basis of 

selecting frequencies for the filters. What has not be shown by these authors, or 

those carrying out the analogue and digital filtering work is whether there are two or 

three distinct regions and if each region is adjacent to the last in terms of 

frequencies. The interesting part of Nishida's paper is combining the outputs of 

different filters at different times, to enhance the extraction of the evoked response. 

LeBron Paige et a1 (1996) compiled an ensemble of averaged EP wavefonns in a 2-

dimensional (2D) array, for monitoring evoked potentials during surgery. In a 2D 

form, peaks and troughs in the evoked potential provide information about the 

variation within a response and between responses. If a 'ridge' is seen to shift during 

an operation, one possible reason could be that something is affecting the nerves. A 

2D representation also means that some of the methods used in image processing 

may be applicable, such as spatial filtering. increasing the range of possible 

techniques that can be applied. Low-pass filtering between potentials (i.e. vertically) 

has been investigated, the assumption being that the desired waveform variations are 

small from one response to another (i.e. low frequency components) and high 

frequency components are more likely to contain noise. One problem with assuming 

high frequency components can be filtered out, is making sure that early components 

are not lost. In intraoperative electrophysiological monitoring (IBM), one objective 

is to obtain interpretable EPs as rapidly as possible. The main problem, as has been 

discussed earlier (see section on averaging), is the length of acquisition time; many 

individual responses are needed to produce a single average with a high SNR. 

During the time it takes to produce the average the characteristics of the response 

may have changed. This group's solution was to apply the 2D array to rapidly 

acquired EP, with fewer EPs in each averaged response, therefore lower SNR than 

an averaged response with more responses. LeBron Paige et al (1996) beJieved the 

added benefits of a 2D approach meant that the SNR can be raised above the low 

SNR. 
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2.3 Adaptive Filtering 
Adaptive filtering techniques automatically adjust the filter based on the input and 

past output values. These techniques have been widely used in improving the 

extraction of evoked potentials. Usually more than one input channel was used so 

that some reference to the noise in the channels can be made. Thakor (1987) 

produced a two-channeI system where the primary channel (the input to be filtered) 

and the reference channel were assumed to have the same signal, but with different 

uncorrelated noise imposed on top. The problem with this approach is that the signal 

looked for is assumed to be the same each time. Noise power is also assumed to be 

lower than the signal power (i.e. a SNR>l), but somatosensory evoked potentia)s 

often have a SNR«l (Harrison et al (1995». 

Parsa et al (1994) looked at the cancellation of unwanted electrical activity from 

muscles (myoelectrical activity) in recording evoked potentials. They used an array 

of electrodes on the forearm, on the same side as the stimulation, with one electrode 

over the median nelVe and four others over the foreann. The responses were evoked 

by stimulation of the index finger. Myoelectric activity meant the SNR for the 

evoked potential was low. As the filter is adaptive, the aim is to follow the 

nonstationarities of the signal. The stimulus itself produces artifacts; Parsa et al 

(1998) investigated the use of adaptive filters, both non-linear and linear, to 

attenuate stimulus artifacts. Their results show that a non-linear adaptive fitter 

produced better cancellation of the stimulus artifact than the linear adaptive filter. 

This they believed was due to the nature of the stimulus artifacts generation also 

being non-linear. Several recording channels are needed with these approaches to 

provide references to extract the signal. 

All these techniques either need a good version of the signal or need several 

channels of data including one that contains background activity or reference signal. 

Approaches that require several channels have practical limitations in clinical 

situations and also can not always be applied retrospectively to historically recorded 

data where there is no way to control how the data were recorded and the number of 

channels used. One possible way to provide the noise data would be to use 

recordings, which were recorded immediately before the evoked potential 

recordings, but without any stimulation. A problem with this is that a further 

assumption has to be made that the properties of the background activity are not 
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changed between recording the noise and the stimulated activity. This is an 

extension of assuming noise properties do not change with time~ i.e. the noise is a 

stationary process. 

Doncarli et al (1992) used a Kalman Filter to improve the evoked potential SNR. 

The somatosensory evoked potentials were recorded from the scalp, in response to 

stimuli to the tibial nerve at the ankle. An ensemble of evoked potentiais was 

produced in the form of a 2D array, in a similar way to LeBron Paige et al (1996). 

The approach processes the data vertically to monitor for slow changes between the 

responses. The results were shown for both visual and somatosensory evoked 

potentials. Only the first 100 ms were considered, so whether this approach is 

applicable to latencies above 100 ms is unknown. The authors did suggest that to get 

a good estimate of a positive peak around ] 00 ms (P 1 00) it is best to use 16 signals 

in an average, rather than 128 signals. This suggests there is a problem with 

variation between the signals of the position of the peaks with time. All this brings 

the discussion back to late latency components being more time variant than earlier 

components. 

2.4 Signal Modelling and Prediction 
A moving average filter uses previous input values with appropriate weights (filter 

coefficients) to estimate the evoked potential at the output of the filter. Expanding a 

binomial expression and using these as the coefficients of a moving average filter, 

Wastell (1979) produced a low-pass filter with no phase shift. This filter was then 

applied to visual evoked potentials. The low-pass filter removed the high frequency 

noise observed in the unfiltered signal, the expected features being clear of the noise. 

Care must be taken that peaks are not smoothed out or removed by this process. 

ChalIis and Kitney (1990) describe ensemble averaging (section 2.1) as a moving 

average filter (see Appendix B). 

Autoregressive (AR) methods use previous output values from the filter to estimate 

the current signal value. The problem with AR modelling is that either the output 

values of the filter need to be known beforehand, or the signal to noise ratio needs to 

be sufficiently large. A signal with a large SNR can provide a good estimate of the 

signal to be used. Lange et al (1996, 1997) used an AR method to produce a single 

trial (single evoked potential) estimate of evoked potentials this time for movement 
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related potentials by adapting a template of the signal. Norcia et al (1986) applied 

linear predictive methods to evoked potential recordings. Predicted output values y 

(n) were calculated by convoluting the prediction coefficients with past output 

values. Regions of the spectrum where resonance-like peaks occur are heavily 

weighted by the Linear Prediction Coefficients (LPC) model and flat regions de­

emphasised. A combined fonn of time and frequency analysis was carried out using 

LPC (Norcia et aI, 1986). The aim was not to extract evoked potentials, but to track 

variations in frequency components with time. Muthuswamy and Thakor (1998) 

used an AR process to form a spectrum of the signal. This approach produced a 

spectrum again with the advantages discussed in Norcia et al (1986). 

Autoregressive Moving Average (ARMA) techniques as the name suggests are a 

combination of both autoregressive and moving average techniques. Hansson (1996) 

used a form of autoregressive-moving average, the Prony Method, to form a filter 

for filtering single evoked potential. In this approach, the signal is modelled as sum 

of damped sinusoids. This work was based on extracting parameters for the linear 

prediction of the signals from additive white noise, but assumes the signals are linear 

and time invariant. There is mounting evidence that these signals are not time­

invariant (e.g. Parker and Goplan (1987». 

Wiener filters, developed in the 1940s by Norbert Wiener (Wiener, 1949). are 

optimal filters. Yu and McGillem (1983) used Wiener Filtering to model evoked 

potentiais. Comparing time-invariant and time-varying Wiener filters, they found 

that time-varying filters have superior performance to time invariant filters. Time­

variant filters are better able to deal with effects such as time 1ittert (variations in the 

position on the time axis of a particular peak of the signal, relative to the start of the 

signal). Their other main conclusion was that the covariance matrix of the desired 

signal is needed, produced either from experimental data, or from a good signal 

model. 

2.5 A Posteriori "Wiener" Filtering 
Wiener filtering refers to techniques, as discussed previously, in which the mean 

squared error of the estimate of the signal and the desired signal is minimised, by the 

filter coefficients (Hayes, 1996). Usually, as discussed previously, a target signal (or 

some knowledge of the signal's characteristics) needs to be known beforehand. 

Methods have been developed that can produce a model from the signals themselves 
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(A Posteriori). Waiter (1969) produced a transfer function by dividing the spectrum 

of the typical record, by the average of the spectrum of the signals. This transfer 

function can be used as a filter. 

Sr(m) 
H(m)== 

&(aJ) 

Equation 2·2 

Where Sr(m) is the spectrum of the desired response, Sx(m) is the power spectrum 

of the average response and Sx( OJ) is the average of the individual power spectra. 

To recover the average response spectral components, the transfer function H(m) is 

multiplied by Sx( (f}) . 

Doyle (1975) suggested that Walter's approach was more suitable for individual 

visual evoked response (VEPs) and used a variation of the above equation for 

averaged VEPs. In DoyJe's methods a transfer function is formed by dividing 

SrC aJ ) by the spectrum of the desired response and the noise spectm shown below: -

Equation 2 .... 

Where 

EquatioD 2·~ 

WaIter used very simple signals, as his calculations were mostly done by hand and 

simulated background noise as 'white noise'. Doyle considered the filter to be 

accentuating the frequency components of the signal where the desired response is 

strong and noise is weak (high SNR) and suppressing the frequency components 

where the response is weak (low SNR). Both Waiter and Doyle used optimal 

filtering on signals where the noise does not dominate the signal, which is not the 

case in somatosensory evoked potential. 
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Carlton and Katz (1980) compared four optima) filtering approaches for 

somatosensory evoked potentials recorded from anaesthetised monkeys. These 

approaches were the average of optimaUy filtered sweeps (WaIter 1969); optimally 

filtering the average of sweeps (Doyle 1975); and recursive versions of the last two 

approaches. The recursive approaches were not found to give accurate estimates, so 

were not considered further. The average of the signal and the filtered signal over 

the same number of signals were correlated with the average of a large number of 

samples (256 unfiltered sweeps). Both optimal filtering methods were considered to 

preserve the components present in the average. It was found that there was no 

significant improvement in the correlation coefficient for the same number of 

samples between the unfiltered average and optimally filtered average. A factor that 

was suggested for this lack of improvement is that the filter assumes that the 

response and the background activity are constant. This does not account for 

variations between responses. The use of a correlation coefficient is limited if the 

signals looked for vary between the signals. 

Dobie et al (1990) applied optimal filtering to auditory evoked responses using 

Waiter's method (Waiters 1969). Dobie et al and Wastell (1981) both raised the 

same criticism of optimal filters; optimal filter perfonnance is superior to signal 

averaging-alone. but only at signal levels where the conventional approach 

(averaging) already yields a working SNR. Wastell (1981) concluded that given the 

computational overheads. this form of filtering is doubtful as a good technique. This 

last criticism is less important with computing speed and cost now relatively low. 

Furst and Blau (t 991) took the work of Vu and McGiIlem and formed a suboptimal 

a posteriori version, using autocorrelation of a set of signals. This approach used 

several assumptions that the noise is stationaty, zero-mean valued process and the 

signal is deterministic. Furst and Blau did point out that the later components of 

evoked potentials are less deterministic. With this in mind, it would explain why 

they applied this method to Brainstem Auditory Evoked potentials (BAEP) which 

are stable for early components. This still does not get around the problem of coping 

with low signal-to.noise ratio signal. 

The above approaches all assume that the signals are stationary, but as discussed 

previously, the signals are considered to be nonstationary as they do not have the 

same frequency components throughout the signals. An a posteriori filter that has 
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time-varying properties has been applied to evoked potentials (de Weerd and Kap 

1981a, 1981b, 1981c). The time-varying property works in a similar way to the 

Nishida's linear filter bank approach (Nishida et aI, 1993). The ratio of the central 

frequency and bandwidth of the filters is constant; filters with a wide bandwidth 

extract the later components, whereas filters with a narrow bandwidth extract the 

early components, with overlap between filters. The assumption is made that early 

components contain high frequency components and the later components contain 

predominantly low frequency ones. The signal is passed through these filters, which 

filter at different frequency ranges and a time-varying function is applied so that the 

filters contribution to the overall signal varies with time. In the de Weerd approach, 

the time-varying signal at the output of the filters is detennined by the signals. Some 

criticism has been made of the work by Bertrand et at (1994) that the theory of the 

approach was lacking. De Weerd et at admit this, both groups agree that it did 

appear to work for the signals used, but all the signal used had relatively large SNR. 

This approach is a sensible direction because it enables time variation of the signal 

properties to be included in the modelling process. 

2.6 Wavelets 
Wavelets and time-frequency techniques are being increasingly used in the analysis 

and processing of biomedical and biological recordings. Using wavelets to extract 

evoked potentials from noisy averages has been investigated (Lim et ai, 1995; and 

Bartnik et all992a, 1992b). This technique uses the wavelet's ability to decompose 

a signal into several signals, then to remove or alter some of the signals and then 

recompose the signals. Lim et at (1995) applied this to evoked potentials caused by 

stimulation of respiratory muscles and found for these signals only a few wavelets 

are needed to extract the features they were interested in. These methods were able 

to extract some peaks but not all. Bartnik's group (Bartnik et al 19928, 1992b) used 

auditory evoked potentials, obtaining a representation of the signal using one of the 

decomposed wavelets produced (in the range 2-8 Hz), though it does appear as if 

small components were being lost. 

The fact that the wavelet approach produces both frequency related and time related 

components has been used by Joumee et al (1995), to build a time-varying filter (a 

filter whose spectral properties vary with the signal). In their approach the averaged 

signal is processed into wavelet components, each of which approximately related to 
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a different, adjacent, bandpass filtered version of the signal. The signal represented 

as a set of filtered signals and each value in the signals is a component. Instead of 

treating these as a set of filtered signals, the components were treated as measures of 

how well this signal at that time 'matched' a particular size of wavelet. A 

representation of how the frequency components of the signal vary with time can be 

formed. In other words as different 'sizes' of wavelets represent different bandpass 

filters, the components can be thought of as relating how a range of frequencies 

varies with time. The maximum absolute value of all the components was found and 

any component whose value is less than 5% of the maximum value is set to zero. 

This is based on the assumption that noise components are from a white noise (e.g. 

for EEG (Cadwell and Vil larreal , 1999» and likely to be smaller than signal 

components. Therefore, by setting the smaller components to zero the noise 

components should be reduced. A signal to be filtered is then processed into time 

and frequency related components and multiplied by the previously developed filter. 

The inverse of the wavelet transforms is applied to the resulting signal, acting as if 

the signal has been filtered. In all three groups, an assumption was made about what 

the desired signal should look like. 

A modified fonn of Doyle's a posteriori optimal filter (1975). where the power 

spectra are replaced by squared discrete wavelet transform components, has been 

investigated by Bertrand ( 1994). The 'optimal' filter now has time~varying 

properties, which can be seen as an extension of the work of deWeerd (1981 a) into 

time-varying optimal filters. What is not clear in the paper is how much of an 

improvement over just averaging this is, and what the effect would be of using 

single evoked potential recordings, or a smaller number of evoked potentials, in a 

subavemge. As a concept it is of interest because it provides a possible method of 

producing a time~varying filter, without having an ideal signal known beforehand 

(see section 2.5). Geva et al (1995, 1997), used 'wavelet-like' analysis to model the 

spatial and temporaJ characteristics of neurological signal generators. The 'wavelet' 

they chose to use was the Hermite function, which is based on the first and second 

derivatives of the Gaussian function. The reason for choosing this wavelet was its 

shape, as it resembles monophasic and biphasic shapes found in evoked potentials. 

The shape of the wavelet can improve the ability of wavelets to extract a signal. 

Samar et al (1996) used a modified form of a Meyer wavelet to match the shape the 

features of an auditory evoked potential. The method was applied to the early 
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components of the signal. Isoglu et aI (1998) used wavelets to decompose an evoked 

potential, in a similar ways to that ofBartnik et al (1992a). Lewalle et al (1995) used 

wavelets to analyse olfactoty nerve response to a stimulus. Saatchi et al (1997) used 

a combination of wavelet analysis and artificial neural networks to filter evoked 

potentials. 

2.7 Artificial Neural Networks 
Neural networks have been used to filter visual evoked potentials (VEPs) (Fung et 

aI, 1995 and 1996). A multilayer perception (MLP) network was used as a filter. The 

contents of a moving window formed the inputs to the neural network and the output 

is a non-linear combination of the inputs. The neural network estimates the VEP 

presented by estimating the components that can be detennined and removing noise 

that is uncorrelated with the stimulus. The training signals have SNR of 

approximately ·5 dB. The target signal is an ensemble average of 100 responses and 

has a higher SNR. Simulated results shows that the system can improve the SNR of 

single VEP, so reducing the number of responses per stimulus. No inter-subject 

analysis has been carried out to see if one filter can be used on several people, or if 

you need to get an average of 100 responses from each person. 

Another fonn of neural network, the Hopfield network, was used to produce a robust 

moving average (Laskaris et al., 1997). The network was used to implement cluster 

analysis, in which the core of the cluster acts as an estimate of an instantaneous 

visual evoked potential signal. Tian et at (1997) used a neural network to estimate 

the latency of auditory brainstem response. The filter produced was developed to 

extract every peak possible without introducing a shift in the position of the peak. 

Amplitude distortion was considered irrelevant. as the estimation of the latency 

contains the medically significant infonnation. The network was implemented as a 

four layer MLP, where the input is in the principal component projection values of 

the training and test data sets (15 principal component were used). The output of the 

network is compared with the results of the same data as assessed by an audiologist, 

with the results showing good correspondence between the two. The paper raises 

some interesting points such as how much importance should be attached to 

preserving relative amplitude values, if the important infonnation is in the latencies 

of the peaks. 

A neural network approach has also been investigated by Grieve et a1. (1995) to 
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remove the stimulus artifact. The network was trained with a reference signal that 

was not recorded over the recording site but near by, as the input to the network and 

the primary signal from the recording site as the target for the network. The network 

attempts to predict artifacts in the primary signal using artifa<;ts in the reference. 

Their initial work suggests that the network was able to cancel stimulus artifacts. 

The neural network approaches have been mainly developing non-linear filters, 

which are reported to have some success. What the resulting model does is not 

always as easily interpreted as either a single or a set of linear filters. 

2.8 Evolutionary Algorithms 
Evolutionary algorithms are a range of techniques including genetic algorithms (see 

chapter 5), and genetic programming, which are based on the concepts of evolving 

solutions to problems. Laskaris et al (1996) used a genetic algorithm to estimate a 

signal by taking the average of selected signals. Possible solutions were encoded as 

a binary sequence, with a bit per signal in the set. If the bit is '1' then the signal was 

included, if '0' then it was excluded. The algorithm was used to select the sets of 

signals whose average produced the maximum value for the equation they used. 

Evolutionary algorithms were used because they have proved a robust search 

method in a large space, starting from an initial set of possible solutions, they create 

sets of better solutions. This work is an extension of this group's work discussed 

previously into weighted averaging (Bezerianos et ai, 1995) and it seems to be the 

first use of an evolutionary algorithm approach to enhance the extraction of evoked 

potentials. They themselves point out the problem that more work is needed to 

extract more 'subtlel peaks in the signals. 

2.9 Summary 
What these papers suggest is that there is a need for a method that can extract key 

clinical features of the signal using a small set of signals. This is needed to avoid the 

problem of a detrimental smoothing effect, due to the shifting of the latency of the 

peaks with time. 

Search techniques are being increasingly used to extract or enhance evoked 

potentials, including evolutionary algorithms. The nature of evolutionary techniques, 
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such as genetic algorithms, has potential for limiting and possibly testing the 

assumption made, at the same time as enhancing the SNR of the evoked potentials. 

At the same time new techniques such as wavelets are being increasingly used. 

Many assumptions are made about these signals, some which conflict and are often 

subjective or made with little justification. A method that can extract the evoked 

potential with limited assumptions would be useful, not only as a technique to 

improve SNR but to produce a better understanding of the properties of evoked 

potentials. Evolutionary algorithms provide a way of limiting the assumptions made, 

by searching for solutions from an initially random set of solutions. 
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l Data Sets 

All signals in this study were historical recordings, recorded either during spinal 

operations or from scalp recordings, were recorded by Prof. J. Campbell at the Walton 

Hospital, Liverpool. The recording methodology is described in CampbeU (1985) and is 

briefly described below. A description of the data sets is included, also included are 

power spectra of background activity, single evoked potentials, and averaged signals. 

3.1 Recording Methodology 
Recordings were made using surface electrodes on the scalp or by electrodes placed 

within the anterior quadrant of the spinal cord. 

3.1.1 Apparatus and storage. 
Electrodes were connected to the inverting input of a differential pre-amplifier in a 

MEDELEC MS6 EMG machine. Pre-arnplification by a factor of ) 5 was applied to the 

signals. All the signals were filtered by a bandpass filter with a passband of 0.016 to 

750 Hz. Signals were then stored on FM tape (BASF super-ferro LH), using a STORE 

4 FM tape recorder (Racal Recorders. UK) recorded at tape speed of 3.75 inches per 

second. A model of the system is shown in figure 3 .. 1. Both the intraspinal and scalp 

recorded evoked potentials were produced by electrical stimulation of the median nerve 

in the left ann. A stimulation rate of two pulses per second was selected to provide a 

sufficient interval between evoked responses. 

Stimulatot 

Subject q 

Filtered f--, 
Results ~ 

MEDELECMS6 

I A4~ •• « I :115 

FilteriD8 
Software 

.-\BM<\pU'£i"" .-\1 FMT ... I L-f 0.01 -750 Hz L-f 

DOff-line 

pc:] \=J B 
Figure 3-IOudine or tbe 'Yltem 
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3. t.2 Data Collection 

Data were collected from the tape using a Gateway 2000 Pentium P90 computer, via 

an interface card and data acquisition software (PC30F, Eagle Technology). Signals 

were stored as a set of binary data files by the data acquisition software. collecting 

three channels of data at a time. 2 recording channels and a third channel indicating 

when the stimulations were produced. A set of routines was developed in the 

MATLAB (MathWorks Inc., USA) programming language to convert the signals 

from a binary format into a set of single responses 400 ms long, stored in 

MATLAB's file format for ease of handling. The signal amplitude was left 

unaltered. 

3.1.3 Power spectrum 
Power spectra were used as a method of gaining further understanding of some of the 

frequency characteristics of the signals and background activity. The MA TLAB 

command PSD was used to produce power spectral density estimates. The demu)t 

values for this command were used, with the sampling frequency set at 7.5 kHz. The 

number of samples by which the sections overlap is zero and a Hanning window was 

applied. The power spectral density was estimated using Welch's method (Hayes, 

1996). This approach was chosen because it is the standard MATLAB method for 

calculating power spectral density. Other options were considered but this was 

decided upon as being both appropriate to the task and convenient There are 

difficulties with using power spectra to analyse signals, as it assumes the spectral 

components of the signal are constant throughout the signal. This is not necessarily 

true for all signals. Even with these problems, power spectra are used to gain some 

understanding of the signals, as well as a starting point for further analysis. 

3.2 Assumptions about tbe signals 
The assumptions made about the signals were: 

• Noise is assumed independent of the response, but not necessarily white noise 

source. The possibility that the noise is structured is allowed for. 

• The signa1100ked for has a similar shape to the target signals. 

• Noise and signal are assumed to be linearly summated. 

• Averaging can make some improvement in SNR. 
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• The averaged signal of a large number of signals is a good representation of the 

responses. 

3.3 Intraspinal Recordings 

3.3.1 Data Set 1 
Recorded data consisted of 222 responses, from a single subject, collected from the 

tape. Thirty-eight responses were excluded from the experiments. The exclusion 

criteria were the same for all the data sets. If the signals contained artifacts such as 

'clipping', flat responses, or very abrupt changes in the baseline within the signal. 

the response was excluded. These artifacts were taken to be due to the recording set­

up and are not due to the responses. Using the remaining 184 recordings. two subsets 

with 92 responses in each were formed into a training and test subsets. The target 

signal (ideally the signals in the data set should have peaks in similar places to those 

in the target signal) was produced from an avemge of the 184 responses (see figure 

3-2c and d). 

o 100 200 DJ ..00 
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Figure l-2 <a) 20 aad 40th signals in the test subset of data sett, (b) 20 and 40th signals in the 
test subset 01 the simulattd data set. (c and d) are the target signais. 

Figure 3-2 shows one of the problems with these signals, that of low frequency 

components obscuring some of the features of the responses. The upper left ptot 

(figure 3-2(a») shows two examples of responses of a spinal recording. 
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Figure 3-3 <a) untlltered monied signal, (b) target signA' 

In figure 3-3 the powcr spectral density (PSD) of an example of unfiltered signals 

and the target signals are shown. Both of these spectra are both dominated by the low 

frequency components. 

3.3.2 Simulated Set 

Pre-stimulus recordings. l.e. electrical activity recorded just before stimulation 

occurred, were used as a source of background activity. The background activity was 

added to a repeated set of the reference signal to create a set of simulated recordings 

comprising a known signal and noise. This simulated data (target signal and noise) 

set was split into a training set (55 responses) and a test set (56 responses). The pre­

stimulus recordings were taken from the same site as the evoked potential recorded 

in data set 1. Activity recorded without the stimulation was considered a model of 

the noise that would be present during a recording of evoked potentials. The result 

was a set of signals. where the underlying signal was the same in all examples, hut 

was corrupted by noise, which is different in each example. The simulated data sets 

used in some of the previous techniques have been a combination of a signal and 

white noise. The difference here is that the noise used in combination with the signal 

is the electrical activity when no stimulus is applied- no assumption are being made 

that the noise is a Gaussian noise source, only that it is reasonably representative. 

Both the training and test subsets were subaveraged (i.e. split into groups of a set 

number of signals and each group produced an averaged signal) and the whole data 
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set was used to produced an averaged signal. In figure 3-2, the upper right plots 

show two simulated signals, which are like those of the two example of recorded 

response, show a signal where the response is obscured by noise. 
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1-60 .- -1 . . : . : : : : 
·100 • 

o 100 200 300 AOO 500 600 700 IJX) 900 1001 
FreqUllney(Hz} 

Figure 3-4 simulated data (a) 20111 signal. (b) noise aad (c) target 

In figures 3-4, the PSDs for a corrupted signal, noise and the target signal are shm'VIl. 

MA TLAB command PSD was used with values as used previously. Comparing by 

inspection, the spectra of the noise and the noisy signal, it is difficult to see a 

considerable difference between the two spectra. The target signal and noisy signal 

are different, so this suggests noise dominate the simulated signal. 

Figure 3-5 shows a comparison of an example of the recorded noise and a randomly 

produced signal. As there is a pre-filtering stage during recording, the noise is hand­

limited. Even considering this, there is a clear difference between the two signals, 

suggesting the noise can not be considered to have a Gaussian distribution which is 

an assumption that is often made. 
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Figure 3-~ (a) recorded noise (b) random noise 

3.3.3 Data set two 
A second set of spinal recordings was produced from a different subject in the same 

way as the previous data set. Test set has 117 responses and the training set has t 16 

responses. A spectrum of an example is shown in figure 3-6. 
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Figure 3-6 Eumple oftbt PSD of data set 2 signal (b) tbe target signal for data set 2 

3.4 Scalp recordings 
Two data sets were recorded from the scalp. Data set 3 contains 83 signals in training 

set and 83 in the test set. Data set 4 contains 122 signals in the training set and 121 

signal in the test set. The target signals were fonned from all the signals in each data 
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set. Two examples of the power spectral density plots for signals from two data sets 

(figure 3·7 and 3.8) data set 3 and data set 4 respectively. The upper plot in each is 

an example of a single response, arbitrarily selected as the 20th in each test data set. 

The lower plots are the power spectral density plots of the target signals for each 

data set. 
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Figure 3-7 An example of the PSD o( data set 3 signal (b) the target signal for data set 3 
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Figure 3-8 An example of the PSD of data set 4 signa. (b) tbe target signal for data set 4 

As with the spinal recordings, the differences between the PSD of the signals and the 

target signals are not clear apart from an overall decrease in the PSD magnitude for 

the target signal. 
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3.5 Discussion 
Five data sets have been produced. Three data sets for spinal recordings (onc of 

which is a simulated data set) and two data sets for scalp recordings. The spectra 

show that signal energy was concentrated at the lower end of the frequency 

spectrum. This is in agreement with some of the comments made by other groups 

about the use of high-pass filtering to remove low frequency components of the late 

latency signal components. The problem is that power spectra can not be used to 

confinn this. as infonnation about where in time a particular feature occurs is Jost 

with a power spectrum. 
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4 Signal Analysis and Filtering 

In this chapter, the selection of an initial set of linear filters for the signals will be 

investigated. In the previous chapter, signal analysis was carried out in the fonn of 

the power spectnun. The problems of power spectra for selecting filters and 

alternative method that contains time information will also be discussed. 

4.1 Filter Selection 
The first approach to filter selection used the power spectrum of the averaged signal 

(Turner et al (1997) see Appendix 0). 
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Figure 4-1 The target signal for the simulated data set and data set 1 <a> Power spectra of the 
averaged signal (target signal) (b) tbe low frequency tomponentll of the target signal, (r) the 
averaged signal. 

The power spectrum of the target signal for two of the data sets (simulated and data 

set 1) is shown in figure 4·1. The upper graph shows the power spectrum of the 

target signal over the range 0 to 750 Hz. It can be seen that most of the signal power 

is in the lower frequency components. The lower spectrum shows that the majority 

of the signal's power is below 25 Hz. 

Before looking at what the signals after filtering, it is worth considering what the 

signals look like before filtering. Figures 4-2 and 4-3 show test signals for the 

simulated and data set 1 respectively. both show three different sets of test signals. 
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The first is a set of examples where there has been no processing, in the second all 

signals were pre-processed as a set of averages of four signals and the third shows 

averages of 10 signals. From the theory of averaging, the more signals in an average, 

the better the SNR. This improvement can be seen by a comparison of the 

unaveraged and averaged signals, with that of the target signal (figure 4-1). There is 

a greater similarity between the target and the larger averaged results, than for the 

unaveraged test signals. Visual inspection is used here and throughout the thesis, 

because the assumption that will be made throughout the thesis is that the filtered 

signal must be similar in terms of position in time of peaks to the target signal. 

Inspection is a way to check this as well as demonstrating what the signals will look 

like. 
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Figure 4-2 Set o( simulated test sign." before filtering. 
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Yllure 4-3 Set of test signal. from data set 1 beror~ fUtering. 

Initially a low-pass filter with a cut-off frequency of 30 Hz was used on these two 

test sets. Based on a visual inspection, the filtered results appeared to have unwanted 

low frequency components compared to the target signal. The literature was 

reexamined. to consider what the frequency components of other group's filters 

were. as a way of finding possible cut-off frequencies. Maccabee et al (1983) used a 

bandpass filter with a passband from 5 to 3000 Hz for what they called their 'open­

pass filter'. In this study, the lower frequency (5 Hz) was adopted for this data set, 

but 30 Hz was used as the upper limit. Visual inspection is an appropriate method for 

comparing signals since the end-use are typically clinicians who make diagnosis 

based on visual inspection of the signal, looking for appropriate key features. Later 

in this chapter an additional numerical methods will be introduced which is also used 

to compare the waveforms. 
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Figure 4-4 Filtered witb a bandp ... filter 5-30 Ih for simulated test set 

Figures 4-4 and 4-5 show results of applying this filter to these two data sets. In both 

figures. the performance for the later large components of the signal indicates the 

filter's ability to improve the clarity of these peaks. However, the smaller ear1y 

components are lost using these filters. 
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Figure 4-~ Ydtered witb • bandpass mter ~3() Rz for the test set of data set I 
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Figure 4-6 Power Spedra for the targrt signal of data set 2 and the target ,ignal 

Figure 4-6 shows the power spectra of the target signal for data set 2. The spectra 

again show power that is predominantly in the low frequency range of the signals, up 

to around 60 Hz, so a bandpass filter with cut-off frequencies at 5 and 60 Hz was 

selected. Again, the lower cut-off frequency was selected from the work by 

Maccabee et al (1983). Figure 4-7 shows the results before filtering has been applied 

and there is not a great deal of similarity between these signals and the target signal. 
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Figure 4-7 Set of test signals (rom data IH 2 before filtering. 
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As could be expected, the filter (figure 4-8) has removed some of the noise but it is 

difficult to see similarities between these signals and the target. 
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Figure 4-9 Power speara o( tbe target signal for data set 3 and tbe target signal. 

Figure 4-9 shows the power spectra for the target signal of data set 3. Two possible 

filters were investigated. First, a low-pass filter up to 60 Hz because of some of the 

small components up to and around this frequency value (figure 4-11). The second 

Jow-pass filter has a cut-offfrequency at 20 Hz, as most of the signal's energy occurs 

at frequencies below 20 Hz (figure 4-12). Visually the results of filtering with the 

60Hz filter (figure 4-11) were 'noisier' than those of the 20 Hz filter (figure 4-12). 
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The peaks in the 20 Hz were similar to smoothed versions of those in the target 

signal (figure 4·9). 

No average 

25 

~ 15 
CD ~~--. 
Cl> 
as 

:f:= 
et 

> 'O~~:E~=~ 

o .. 
o 200 400 

Time(mt) 

Subaverage-4 

200 m 
Time(ms) 

Figure 4-10 unfiltered data set 3 test si,nals 

CD ... 
'" :1:1 ;; 

No average 

200 400 
Time (ms) 

Subaomege:- .. 

3.5 -

3 

2.5 

2 

1.5 

0.5 

0'--_--" __ -' 
200 400 

Time (ms) 

Subaverage-10 

200 400 
Time(ms} 

Subeverage:- 10 

200 400 
Time (ms) 
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Figure 4-lZ FUtering the test signals of data set 3 with It low-pass filt~r (20 Hz). 

Figure 4-13 shows the target signal and its power spectrum of the target signal of 

data set 4 and the similar illustrations for the unfiltered test signal are shown in 

fib'Ufe 4-14. Again, the signal energy is predominantly below 20 Hz as in data set 3. 
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Figure 4-14 Unftltered data aet 4 test signals 

Looking at the filtered results for this data set (figure 4-15) using a 20Hz low-pass 

filter in the subaverages of 10 signals, there appears to be a common peak to many of 

the signals in this set is between 100 .. 200 ms. This can be seen in the some of the 

unfiltered signals results (figure 4-14), but not as clearly as in the filtered signal. 
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Looking at figures for the filtered results, relatively small early components are often 

lost. This loss is probably due to the fact that the early components generally include 

high rate peaks than the later components, as these filters have removed high rate 
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(and therefore usually higher frequency) components. One possible way around this 

is to build a bank of filters that occur at different times. This was the approach of 

Nishida et al (1993). They looked at the power spectrum of the target signal and 

suggested that there were three regions in the spectrum that occurred at three 

different times during the signal. There are problems with that approach, such as 

assuming that each spectral region is adjacent to the next. This raises the question of 

when does one region start and the previous region finish, something that cannot be 

derived from the power spectrum. This approach of making filter selections by 

power spectrum or the approach of Nishida et at (1993) therefore was not 

investigated further, due to this inability of the power spectrum to represent when the 

transition between regions occurs. 

Mean squared error (equation 4-1) between the filtered signal and the target as a 

measure of the success of selecting filters using power spectra and averaging-alone. 

H requires only the asswnptions that have already been made. 

Equation 4-1 

Looking at the MSE values for the unfi hered averages (table 4-1 ) and for the fi Itered 

averages (table 4-2), it can be seen that filtering did produce lower MSE values. 

4.2 Spectrogram! 
Spectral analysis using PSD assumes that the spectral properties are the same 

throughout the signal. An alternative is to use techniques that display variation in 

frequency with time. Spectrograms are one such technique, computing a windowed 

discrete-time Fourier transform of a signal using a sliding window. 
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Figure 4-16 <a> target signal (data set 1), spectrogram oftbe target signal (a) 

In figure 4-16, the upper plot shows the target signal for data set 1 and the lower 

graph shows the spectrogram of the same signal. The spectrogram shows that the 

signal contains predominantly low frequency components «100 Hz), but that there 

is variation in the magnitude of frequency components with time. To illustrate the 

effect, a single continuous set of frequencies that is the same all through the signal is 

shown in figure 4-17, using two sine waves at 500 Hz and 2500 Hz. These were 

selected to show the spectrogram's ability to show the different sinusoids, both of 

equal magnitude. 
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Figure 4-17 (a) a combination of 500 Hz and 2500 Hz sine waves, (b) spectrogram of (a) 

Comparing figure 4-16 with 4-17 there is not a strong peak: going through all the 

plots of figure 4-16, but for the low frequencies, there are relatively high values. 

Comparing the spectrogram of the background activity (figure 4-18) with that of the 

averaged signal for the same subject (figure 4-16). The most noticeable difference is 

that the background activity (figure 4-18) has a notable amount of high frequency 

activity (>400 Hz) compared to the target signal (figure 4-16). 
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Figure 4-18 (a) An example of background activity (b) spectrogram of (a) 
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One problem with this approach is that all spectrograms of the recorded activity 

(figure 4-16 and 4-18) have a lot of low frequency activity. It is not possible to 

'zoom-in' on the lower frequency (figure 4-19) more than the high frequency 

components, without losing the time resolution. 
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Figure 4-19 Spectrograms of (a) the single trial evoked potential (individual responses) ,(b) and 
(d) two examples of background activity (noise), (c) of an averaged response. 

4.3 Conclusions 

Consideration of both the spectrogram and the shape of the signal (smaller high rate 

components at the beginning of the signal and larger lower frequency components at 

later portions of the signal), suggests these signals are nonstationary. Often the 

difference between the unfiltered signal spectra and the target signal is a - 20dB 

change in amplitude. Looking at the individual recorded responses (figure 4-19(a)), 

the range of frequency components in the target signal and the noise do overlap. 

This can be seen both in the power spectral density plots and the spectrograms. 

Selecting a filter based on a power spectrum has been a useful method for exploring 

some of the disadvantages and advantages of linear filtering. The aim of this section 

was not to claim a new method, but as a first attempt at selecting appropriate filters. 

A significant disadvantage is that care must be taken when interpreting the results as 

being peaks of an evoked response and not as noise. The advantages are that linear 

filters are easy to implement and understand. This work also justifies some of the 
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decisions made by other researchers in their selection of cut-off frequencies for their 

filters to remove long latency (late components) effects. The filters generaHy seemed 

to be attempting to extract the late components. The region containing the late 

components is the biggest region of the signal often with the most dominant features 

(compared to the region of the early components). It is not surprising that a method 

that looks for where in a spectrum the majority of the signal energy occurs in the 

extracted the dominant features in the signal. This method works best for the signals 

such as the simulated and data set 1 test subset where averaging also works well. 

Data set No .of signals Mean Squared Error 

in an Average Min (to·l) Max (IO·':) Mean (to·l ) Std (10.2 ) 

Simulated 1 0.389 9.482 2.656 1.962 
e------.--

2 0.140 7.710 1.830 1.590 

4 0.079 1.620 0.781 0.504 

10 0.097 0.295 0.181 0.086 

Data set 1 1 0.896 38.37 )0.66 8.277 

2 0.694 23.90 8.093 5.842 

4 0.746 9.851 4.261 2.971 

10 0.329 2.050 0.994 0.542 

Data set 2 I 0.472 10.]00 3.564 2.112 

2 0.456 3.952 1.18 0.963 

4 0.201 0.823 0.396 0.143 

10 0.071 0.267 0.141 0.073 

Data set 3 1 1.766 33.890 6.666 4.622 

2 1.051 15.27 3.353 2.412 
! 

4 0.619 4.841 1.688 0.971 

to 0.376 1.470 0.798 0.343 

Data Set 4 1 0.199 6.630 0.651 0.714 

2 0.122 1.309 0.323 0.228 

4 0.055 0.372 0.159 0.084 

10 0.028 0.123 O.OSS 0.026 

Table 4--1 Unftltertd rmdu 
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Data Set Filter No. of signals Mean Squared Error 

(Hz) in an Average Min (IO-z) Max (10'2) Mean (10'2) std (10"2) 

Simulated 5-30 I 0.049 1.630 0.251 0.256 

2 0.053 0.507 0.149 0.108 

4 0.652 0.234 0.105 0.048 

10 0.065 0.098 0.077 0.015 

Data set 1 5-30 I 0.176 3.111 0.959 0.662 

2 0.163 2.432 0.645 0.467 

4 0.189 1.001 0.426 0.223 

10 0.168 0.538 0.280 1.180 

Data set 2 5-60 1 0.178 1.587 0.627 0.284 

2 0.115 0.617 0.342 0.114 
1--

4 0.103 0.297 0.176 0.049 

10 0.029 0.084 0.055 0.017 

Data set 3 <60 I 0.837 32.023 5.343 4.441 

2 0.484 14.511 2.711 2.351 

4 0.325 4.513 1.381 0.942 

10 0.296 1.322 0.684 0.317 

Data set 3 <20 1 0.354 30.112 4.344 4.105 

2 0.243 13.803 2.232 2.231 

4 0.209 4.191 1.154 0.887 

10 0.247 1.203 0.589 0.294 

Data set 4 <20 1 0.053 6.412 0.489 0.703 

2 0051 1.181 0.244 0.219 

4 0.026 0.319 0.121 0.081 

10 0.017 0.104 0.045 0.024 

Table 4-2 Filtered rtluits 
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5 Evolutionary Algorithms and Single Filters. 

In the previous chapter a method was considered to aid the extraction of evoked 

potentials from noisy recordings by selecting a filter based on an averaged signal's 

power spectrum. In this chapter, an evolutionary algorithm is used to select a filter 

for each data set. The evolutionary algorithm is used to select the upper and lower 

cut-otT frequencies of the filter's passband, as well as to select a weighting factor 

that is applied to the filter's output. 

5.1 What is an Evolutionary Algorithm? 

Evolution by natural selection is one of the most important and probably the most 

debated ideas in science. Computer scientists have looked at the idea of how processes 

based on evolution could be used as an optimisation tool for solving engineering 

problems. Goldberg (1989) provides a historical overview of evolutionary computation, 

suggesting a field that has a relatively long history, but which is still developing. 

The most widely known of these are genetic algorithms, invented by John Holland in 

the late 1960s and developed further in the 1970s (Holland 1995). Genetic algorithms 

are based on the application of evolutionary concepts of natural selection, mutation and 

reproduction to select solutions to problems. Survival of the fittest solutions is the aim 

and is achieved by letting the fittest candidate solutions (or parts of the solution) pass 

into the next population of solutions. A set of solutions evolves over time, with 'fitter' 

individual solutions (individuals) adapting to their 'environment'. Some of the language 

of biology has crossed over into these applications. A population is a set of possible 

individuals. A chromosome is an individual in the population (i.e. a possible solution). 

Genetic algorithms are often represented by a sequence of bits. Binary sequences are 

not the only possibility; the use of integers and floating point numbers is also 

possible. To minimise any confusion the term genetic algorithm is used here to refer 

to an algorithm based on binary sequences. The more general term, evolutionary 

algorithm is used here to refer to an algorithm based on non-binary sequences. This 

is discussed further in section 5.1.2. 
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Evolutionary and genetic algorithms have been used in an ever-growing variety of 

applications. Some related applications in signal processing include the selection of 

signals which will contribute to form an averaged signal (Laskaris et aI., 1996), or 

modelling sources of electrical activity from scalp recordings (McNay et al, 1996, 

Aguiar et aI, 2000). This approach has also been used to select parameters of a filter for 

glucose monitoring using infrared spectra (Schafer et al., 1996). 

5.1.1 General overview of evolutionary algorithms 

The design of an evolutionary algorithm involves 

• Encoding the individual. Selecting the way the parameters are encoded within the 

individuals. 

• Choosing a fitness function. The aim of using an evolutionary algorithm is usually 

to end up with the best individual, the algorithm needs to include a mechanism to 

determine this. 

• Selecting how individuals will 'breed' and appropriate rates of mutation. Natural 

selection is not only about keeping the 'best' individuals, it is also about the 

individuals passing on their traits into the next population. So a mechanism is 

needed to select individuals and combine parts of these to produce a new 

individual. Changes (mutations) can also be introduced randomly to the sequence to 

produce new individuals. 

Using an evolutionary algorithm involves 

• Testing the fitness of the individuals in the population. 

• Selection and crossover of sequences to form new individuals. 

• 'Mutating' some of the elements in an individual. 

• Iterating this process, until a certain condition is met. The 'best' individual is 

unlikely to be found in the first population, but by iterating through this process 

refining the individuals, a good individual can often be found. 

5.1.2 Coded Sequence 

The first stage of the process is to construct a set of coded sequences. A genetic 

algorithm is usually a sequence of binary digits or Gray code, but other representations 

are possible. It is usual to produce the initial population randomly. A binary 

representation allows the crossover to occur within a binary number. Crossover 

within a number allows the possibility of the value of a section of code to change 

considerably just by changing a single bit. Genetic algorithms using binary 
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representation (when single-point crossover and binary mutation are used) can be 

considered robust algorithms (Davis 1991). 

It has been stated that floating-point values are "intuitively closer to the problem 

space" (Michaelwicz 1996, pp. 106). Applications sometimes require the range of 

possible numbers to be large, at the same time maintaining precision. If implemented 

as a binary representation this could lead to long sequences of binary digits, so a 

floating point representation may be more appropriate. There is opposition to using 

floating point numbers; one of the arguments put forward by Goldberg (1989) is that 

it is distant from any biological precedent, especially from the notion of simple 

mutation. In terms of an analogy of modelling the chromosome as a string of coded 

letters, binary sequences (Holland, 1995) are closer to the idea of a gene, using a 

limited alphabet to encode the sequence. From this point of view, floating point 

representation is not really a 'genetic algorithm' as in the sense of the work of 

Holland (1995). However, it is the idea of selecting the best individuals in a group, 

breeding and mutating to solve the problem that is required, not to produce a model 

of how nature does the same thing. Goldberg did not question the usefulness of the 

floating-point representations, just their similarity to a biological system. 

Michalewicz (1996) conducted experiments comparing floating point and binary 

representations and concluded that floating point representation is faster, more 

consistent from run-to-run and had higher precision. Consequently, floating-point 

representations were used with this project. 

5.1.3 Fitness Functions 

A test is needed to measure the suitability of an individual sequence. In evolutionary 

terms, the test is a fitness function. The selection of the fitness function is an 

important factor in the success of the approach. In some applications, the choice of 

fitness function is obvious. For example if the global maximum of a function is 

needed, the fitness value is just the magnitude of the function. At other times it is not 

obvious what the function should be. 

5.1.4 Selection and Crossover 

Based on the fitness value for each sequence (individual), parts of one sequence are 

swapped with those of another. The fitter the individual the more likely that part or all 

of the individual will be passed onto the next generation. The roulette wheel approach 

is one method for selecting individuals; it gives a larger portion of the wheel to 
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individuals that produce better fitness values. Therefore the larger the portion of the 

wheel, the higher the probability of the individual 'breeding' and passing on their 

'genetic information' to the next generation. A pair of individuals is selected and at a 

randomly chosen point in the individual sequences, the pair swaps infonnation, creating 

two new individuals. The process repeats until the required nwnber of individuals 

fonns a population. In an elitist strategy a nwnber of the highest scoring (that is fittest) 

individuals go through to the next generation unchanged, the rest are fonned using the 

selection and crossover operations. Figure 5.1 illustrates this function. The roulette 

wheel approach is not the only selection process, other options include tournament 

selection where selection is based on select from a small subset of the population each 

time. 

5.1.S Mutation 
Mutation operates by randomly selecting an element in an individual and changing its 

value. In a binary sequence, mutation works by inverting a bit, a 'I' becomes '0' and 

vice~versa. Mutation must also be applied when floating point data is used. Davis 

(1991) discussed two methods. The first was to replace the floating-point nwnber in the 

chromosome with a randomly produced floating-point number. The second method is 

real number creep. An assumption is made that an individual that is reproducing is 

likely to be in a reasonably good position in the search space with respect to the rest of 

the population. What real number creep does is to change the value by a small random 

amount if the condition for mutation is met. The effect on the search was to enable the 

investigation of possible solutions close in the search space to those already present in 

the population. 

3 5 0.1 9 20 I 0.5 10 90 0.1 
1 2 0.5 3 60 10.1 30 45 OJ 
<--xl->"<-x2--> 

I 
Crossov~ point 

3 5 0.1 9 20 0.1 30 45 0.3 
1 2 0.5 3 60 0.5 10 90 0.2 

A 

LMutation 

Individual 1 
Individual 2 

New individual 1 -
New individua12 

Figure 5-1 Outline of the evolutionary algorithm methodology 

~.2 GeDeral Experimental Metbodology 

Generation n 

Generation n+ 1 

A description of the methodology of how the data sets were fonned was included in 

chapter 3. After the recordings were fonned into data sets, one half of the data sets (the 

54 



training subset) were used to develop sets of filters via evolutionary algorithms. The 

other half of the data set is used to test the filters produced. All the evolutionary 

algorithms were developed and implemented in MATLAB (MathWorks, USA) on a 

Gateway 2000 Pentium P90. 

5.2.1 The Filters 

Each filter was a 4th order Butterworth bandpass filter, implemented using the 

MA TLAB command FIL TFIL T. which produces a zero-phase-shifting filter. 

Butterworth filters were selected for their relatively smooth pass-band (compared to 

that of the Chebyshev filter). A filter with a smooth pass-band was selected to lessen 

the effect of an artifact being introduced by the filter. The filters were set up so that 

initially the low frequency cut-off was within the range 0-200 Hz and the high 

frequency cut-off was selected to be 0-300 Hz higher than the low frequency cut-off. 

Averaging (or subaveraging) using a small number of single responses, was 

performed to reduce the noise level. By combining the signals into a set of averaged 

signals, the total number of signals used during training and testing phases were 

reduced, speeding up these processes. The aim of this phase of the work was to 

investigate the use of a single filter selected by an evolutionary algorithm to enhance 

the extraction of the evoked potentials. 

5.2.2 Fitness functions 

Measuring how well a particular sequence in a population performs is central to the 

evolutionary algorithm approach. Two methods were investigated to measure the 

similarity of filtered signals to the target signal. The first method was the correlation 

coefficient between the filtered signals and the target signal (an example of an averaged 

signal is shown in figure 5-2). The second method was the mean squared error (MSE) 

between the filtered signal and the target (equation 4.1). Both were considered because 

they are relatively simple methods. they require only the assumptions that have already 

been made. Mean square error was ultimately selected instead of correlation coefficient 

for two reasons. First, the scale of the signal is not taken in account by the nature of the 

correlation coefficient (see appendix A for a comparison using filter banks); in mean 

squared error, scale is maintained. Second, it can be argued there is a relationship 

between MSE and signal·to-noise ratio (see Appendix B.3). 
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In the training process, every example in the subaveraged training set had the filter 

specified by an individual sequence applied to it. The fitness of a particular sequence 

is the mean of all the fitness values of the examples for that particular sequence. 

0.15 

0.1 

D.I!; 

~ 

f 0 
> 

i).OS 

.()1 

.Q.15 

-0
2
0 100 150 DJ 250 DI a&l 400 

TIftI.(mt) 

Figure 5-2 aa esample of an averaged signal, used as the target for data set 1 and die simulated 
data set. 

5.2.3 Selection 
A quarter of the original population goes through unchange<L selected as those with the 

best fitness values. A selection process produced the remaining three-quarters of the 

population. The selection process used in this work is the roulette wheel. Pairs of 

random numbers, ranging from one to the sum of all portions of the roulette wheel, 

were used to select the sequences that were the 'parents' of the next generation. A third 

random number was produced., that determines where along the sequence the swapping 

occurs. so the two original sequences produce two new sequences. 

5.2.4 Mutation 
A second operation was carried out that randomly selected elements of an individual 

sequence 10 alter. A randomly produced value (ranging from 0 to 1) was produced for 

each element in the population. If this value was less than or equal 10 the mutation rate 

then the corresponding element in the population is selected for mutation. The value in 

the population matrix was altered by between +1- 12% of the current value, with a 5% 

probability that an element would mutate (mutation rate=O.05). All sequences in the 

new population. except the sequence with the highest fitness value in the previous 

population. were subject to possible mutation 

5.2.5 Size of Population 
In this chapter, a population size of 80 individuals was selected. This size was 

selected for various reasons. Firstly, a feature of the way the algorithm was 
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implemented meant that the population had to be multiple of eight. Though there 

does not seem to be clear rules to how big the initial population needs to be, Haupt 

(1995) produced a rule ofthwnb for genetic algorithms that the population should be 

an order magnitude larger than the number of genes (or parameters). Grefenstette 

(1986) investigated population size, crossover rate and mutation rate for genetic 

algorithms, coming up with population sizes of 30 to 110 individuals depending on 

the application. Because of the nature of evolutionary algorithms, a large (relative to 

the nwnber of parameters) population takes longer to process whereas a small 

population could cause the algorithm to converge too early. A population of 80 was 

selected as a trade off between these. 

5.3 Single Filtering 
Filters were developed for two groups of data. In the first group, none of the data sets 

were averaged (single trial). In the second group, the data was averaged in groups of 

10 signals (subaveraging), done to investigate whether averaging ability to reduce 

the SNR can be useful in this work. Table 5·1 and 5-2 show the MSE of the filtered 

and unfiltered test subsets for both groups. Comparing the results of filtering without 

averaging (Table 5-1) and filtering with subaveraging in sets of 10 responses (Table 

5-2), the mean MSE for the data set are lower when subaveraging was used. This 

effect can be seen in both the unfiltered and unfiltered results (Tables 5 .. 1 and 5-2). 

Suhaveraging lowers SNR, so it was included in the process, to improve the SNR of 

the training data before training. 

No. of Frequen~ . (Hz) Weigh Mean ~ uared Error II 0·") 
Data set filters Fx Fx+1 t Min Max Mean Std 
Simulated 0 - - - 0.3893 9.4816 2.6463 1.9622 

I 5.2342 14.0689 0.7746 0.0775 0.9855 0.1935 0.1494 
1 0 - .. - 0.8960 38.365 16.665 0.2272 

1 5.1211 11.9849 0.363 0.0748 0.8973 0.2981 0.1571 
2 0 - - - 0.4724 10.111 3.5639 2.1122 

1 5.9414 133.8074 0.0104 0.0080 0.0093 0.0087 0.0003 
3 0 - .. - 1.7658 33.887 6.6581 4.6192 

1 0.6798 95.6960 0.0182 0.1044 0.1664 0.1282 0.0097 
4 0 - .. - 0.1992 6.6298 0.6508 0.7141 

1 57.8492 78.2683 0.0318 0.0240 0.0243 0.0241 0.0001 

Table 5-1 Single filter single response 
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No. of Frequen~ (Hz) Weight Mean S( uared Error (1 O'l ) 
Data set fIlters Fx Fx+l 
Simulated 0 . - -

1 3.4681 27.5156 0.8896 
1 0 - · -

1 3.653 21.6969 0.6034 
2 0 - - -

1 5.0093 163.3893 0.1002 
3 0 - · . 

1 3.744 7.0710 0.6613 
4 0 - · . 

1 58.5554 77.8876 0.2744 

Table S-Z linpe ,.dUriog subaverages of 10 sipals 
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As in chapter 4, a single filter did not extract all of the features of the evoked 

responses, but did enhance the extraction of some of the features in an evoked 

response. These results and those of chapter 4 showed there is an improvement when 

the number of responses averaged each time is increased. Examining tables 5. 1 and 

5.2, the results filtered using the filters selected by the evolutionary algorithm 

produced lower MSE values than when averaging-alone (unfiltered results) was 

used. An improvement with increasing numbers of signals in an average is in line 

with the theory of averaging, the SNR improves as the number of signals in an 

average increases. Ten responses per average were selected as the final size) as a 

trade off between possible improvements in the MSE with increasing the number of 

signals averaged and the number of examples in the test and training sets. Figure 5-4 

shows how, the fitness values varied with the number of generation during five runs 

of the evolutionary algorithm for the simulated training data. This figure showed the 

results converged to similar fitness values for this set of data. Figures 5-5 to 5-7 and 

5-9 show filtered response developed using an evolutionary algorithm for single and 

subaverages of 10 responses for data sets 1 to 4 respectively. Figures 4-2,4-3,4 .. 7, 4-

10, 4-15, from the previous chapter, are unfiltered results for test sets for the 

simulated data set and data sets 1 to 4 respectively. For both sets of results, filtering 

produced a clearer response in two of the spinal data sets (simulated data set and data 

set 1). Clarity is used here to mean that the key features that the clinicians are 

looking for are present, this usually supported by lower mean MSE values. In the 

scalp recordings and data set 2. the features extracted were not as clear as those 

observed in data set 1. 
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Figure 5-S Single rllter - data set I telt set 
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Figure 5-8 shows in a similar way to figure 5-4 how the fitness function varied with 

the number of generations for the five runs of data set 3 training data. Unlike figure 

5-4 all the runs did not converge to the same fitness values, but found two different 

values. One possible explanation is that the results are ending up in local minima in 

the search space. Figure 5·9 shows the filtered results for the test subset of data set 

4. This is an example of the limitation of the single filter approach: the filter is trying 

to do too much; trying to have both low and high frequency components and not 

succeeding. Alternative strategies that may improve this are included in section 

10.2.2. 
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No. of Mean ~uared Error (10.2 ) 

Data set filters Min Max Mean Std 
Simulated 0 0.005 0.0455 0.0250 0.0179 

1 0.007 0.0207 0.0124 0.0056 
1 0 0.031 2.1269 0.3659 0.0674 

1 0.0088 0.0319 0.0152 0.0075 
2 0 0.0059 0.0654 0.0367 0.0212 

1 0.0185 0.0219 0.0204 0.0012 
3 0 0.1104 0.8474 0.3155 0.2758 

1 0.0091 0.0093 0.0092 0.0001 
4 0 0.0036 0.2531 0.0159 0.0094 

1 0.0156 0.0164 0.0160 0.0003 

Table 5-3 fint 38 BlI 
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No. of Mean Squared Error 1) o';! ) 
Data set filters Min Max Mean Std 
Simulated 0 0.094 0.2885 0.1819 0.0874 

1 0.0353 0.1005 0.0688 0.0287 
1 0 0.3183 2.0462 0.9789 0.SS38 

1 0.0447 0.4236 0.1696 0.1250 
2 0 0.0707 0.2599 0.1341 0.0654 

1 0.0062 0.0093 0.0072 0.0009 
3 0 0.3664 1.2566 0.7668 0.3005 

1 0.0759 0.2206 0.1104 0.0523 
4 0 0.0294 0.1298 0.0564 0.0284 

1 0.0193 0.0194 0.0194 0.0001 

Tablt 5-4 30-400 ms 

Applying the filters to the first 30 MS and 30400 ms as two separate signals shows 

the mean MSE values as lower for filtered results, the exception being data set 4. 

The second region 30-400 ms all produced lower MSE values for the filtered signals 

than averaging-alone. 

Data Set Selection Filter No. of signals 

method Ft (Hz) Fh(Hz) in an Average 

Simulated PS 5.00 30.00 1 and 10 

EA 5.23 14.07 1 

EA 3.47 25.52 10 

Data set 1 PS 5.00 30.00 1 and 10 

EA 5.12 11.98 1 

EA 3.65 21.70 10 

Data set 2 PS 5.00 60.00 1 and to 
EA 5.94 133.81 1 

EA 5.00 163.39 10 

Data set 3 PS 0.00 20.00 1 and 10 

EA 0.68 95.72 1 

EA 3.744 7.07} 10 

Data set 4 PS 0.00 20.00 land 10 

EA 57.84 78.27 1 

EA 58.55 77.89 10 

Table 5-5 Comparison of tbe frequencies selected by USiDe the power spectra ( PS ) and using 
evolutionary algoritbms ( EA ). 

In table 5-5 for the spinal recordings (simulate<L data set 1 and data set 2) the filters 

selected by the power spectra method and those selected by an evolutionary 

algorithm (the results of the lowest scoring run for each of the data sets) had similar 

values for the lower limits. For the simulated data set and data set 1, the upper limits 
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to the passband were also similar. The results for the scalp recordings show a 

difference in the frequencies select between the filters produced using the power 

spectra method and those produced using the evolutionary algorithm. Power spectra 

based approaches will extract the dominant features. The evolutionary algorithm 

approaches will also try to extract high-rate components that are small but can be 

observed in the averaged signal. The evolutionary algorithm developed filters tries to 

balance maintaining these components but filtering out of the high-frequency 

components due to noise. 
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6 Evolutionary Algorithms and Time-Invariant Filter banks 

Previously, an evolutionary algorithm based approach was considered as a method to 

aid the extraction of evoked potentials from a set of noisy signals. In this chapter, 

that work is developed further by an evolutionary algorithm being used to select the 

parameters for a combination of filters, i.e. a filter bank:. 

6.1 Introduction 
Some groups (e.g. Nishida et al1983) suggest there may be three regions within the 

signal (section 2.2). A region at the beginning of the signal, with relatively stable 

components, has the highest frequency components of the three regions. A second 

region, following the first, has more variation in the position of features between 

responses and lower frequency components than the first region. In the third region, 

there is more variation in the position of the features than the previous regions and 

the frequency components are even lower than the other two regions. For this reason. 

the evolutionary approach was extended to three weighted filters, applied to the 

whole signal. 

6.2 Whole Signal Filter Banks 

6.2.1 Aim 
The aim of this evolutionary algorithm is to select sets of filters, which enhance the 

extraction of evoked potentials from sets of noisy recordings, by filtering out the noise. 

A different filter bank will be produced by the algorithm for each data set, depending 

on the individual characteristics of those data sets. The noisy signal was passed through 

each filter in a bank of filters and output of the filter bank was a weighted sum of the 

individual filter outputs (Figure 6-1). The goal is to use three filters, ideally one for 

each of the three regions (early, middle and late components). To investigate whether 

additional filters would be an advantage the use of a bank of five filters is also 

oonsidered. 
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Each filter in the filter-bank was a 4th order Butterworth filter of the same type as the 

filters used in chapter 5. As in chapter 5, initially data sets containing single trial and 

averages of 10 responses were employed. The results of using five filters in a filter 

bank were also investigated using simulated data and data set 1. 

6.2.2. Preliminary study 
A preliminary study of this approach was performed to determine whether three or 

five filters are needed and whether the use of filter banks was a valid direction for 

investigation. In the preliminary study, two data sets were used with both three and 

five filters (simulated data set and data set 1). The results (Table 6-1) showed that 

using five filters did not improve MSE values enough to be worth the extra 

processing of two further filters and weights. From these results, filter banks of three 

filters were chosen as the appropriate size of filter-bank for this approach. The use of 

fewer filters in the filter bank was not considered, as there are believed to be three 

regions. 
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Data set No. of Frequency (Hz) Weighting Mean Squared Error (x10''') 
filters Fl FH Min Max Mean Std 

Simulated 0 - - - 0.0970 0.2954 0.1805 0.0859 
3 4.02 26.97 0.9307 0.0430 0.0804 0.0603 0.0160 

66.75 576.61 0.2846 
133.40 637.09 0.0563 

5 199.18 209.62 0.2971 0.0420 0.0806 0.0605 0.0180 
72.83 91.66 0.4007 
80.29 200.64 0.1753 
4.04 27.08 0.9353 
140.48 1796.10 0.2170 

1 0 - - - 0.3294 2.0501 0.9943 0.5429 
3 3.71 18.43 0.6253 0.0540 0.3769 0.1731 0.1124 

52.79 55.65 0.3097 
42.55 260.14 0.0864 

5 124.00 167.57 0.0984 0.0551 0.375~r r-6.1730 0.1121 
312.06 409.82 0.1387 
178.09 231.15 0.141 
238.14 303.94 0.1428 

3.79 19.25 0.6196 

2 0 - - - 0.0707 0.2671 0.1412 0.0732 
3 13.13 15.35 0.156 0.0079 0.0083 0.0083 0.0003 

152.54 155.55 0.63 
20.54 231.27 0.109 

3 0 - - - 0.3761 1.4701 0.7983 0.3432 
3 158.73 161.73 0.1478 0.0927 0.3153 0.1842 0.0722 

162.95 801.79 0.0702 
0.68 89.95 0.4500 

4 0 - - - 0.0294 0.1298 0.0564 0.0284 
3 58.48 77.55 0.2670 0.0238 0.0242 0.024 0.0001 

107.08 522.14 0.0640 
272.20 274.88 0.2180 

Table 6-1 Preliminary raltered and unrdtered results for the whole sipals for all test subsets 

No. of Mean Squared Error (1 O,:z ) 
Data set filters Min Max Mean Std 
Simulated 0 0.0050 0.0455 0.0252 0.0179 

3 0.0055 0.0198 0.0116 0.0057 
1 0 0.0311 2.1269 0.3659 0.6744 

3 0.0082 0.0173 0.0125 0.0038 

2 0 0.0059 0.0654 0.0367 0.0212 
3 0.0186 0.0216 0.0202 0.0010 

3 0 0.1104 0.8474 0.3155 0.2758 
3 0.0105 0.1212 0.0461 0.0465 

4 0 0.0036 0.2531 0.0159 0.0094 

3 0.0151 0.0163 0.0158 0.0003 

Table 6-2 First 30 ml USIDI ftlten banks .eleded durilll the preliminary study. 

Often clinicians look at these signals on two time scales, the early components and 

the late components. The filter banks and single filter (chapter 4) were applied to the 

first 30 ms of the test signals, to look at the early components. An improvement in 
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MSE values of the filter bank approach (Table 6-2) compared to only using a single 

filter (see table 5-3), was seen in four out of the five data sets using this shorter 

region. The single filtered signals predominantly contained low frequencies. Using 

three filters showed further features that can also be seen in the target signal are 

included (for example figure 6-2). This improvement is therefore believed to be due 

the extra filters enabling more than one band of frequencies to be included, so a 

combination of low and high frequency components can be included in the same 

filtered signals. In figure 6-3 the data set (data set 3) is shown in which this 

improvement in MSE value for the first 30 ms was not seen is shown. Both filtering 

methods did not extract anything that looked like the target. This data set is 

challenging, by examining the signals before filtering (see figure 6-13), little 

similarity can be seen with the target signal. These results suggest the three-filter 

approach has shown potential in extracting the signal's earlier components. 

(a) 
o.tE r----__ = 0.1 (b) 

(c) 
0.04 ..--;r-. -.--' 
0.02 ·-------1---------;-·----·-: :-

002 -- ...... i .. -- -+ ---
O~-'--'-"'" . " -0.04 '---'--'--..... 
o 10 20 31 0 10 20 30 0 10 20 30 

TIme (ms) TIme (1Il8) TIme (ma) 
(e) (f) 

0.5 · ... r 0.2 r--r-~~~ 

0 . .4 '" 
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Fil1lre 6-1.imulated preliminary results venus single filters. The first 30 ms (a) mini a .ingle 
filter (b) using a filter bank or tbree Rlters, (c) or a taraet signal. The repon for tbe 30-400 ms 
(d) using. single mter (e) U$iog a filter bank of three filters, (I) of. target silDal. 
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(d) using a single filter (e) usin.1 filter bank ortbree tilters. (t) ora target signal. 

No. of Mean Squared Error (10.2 
) 

Data set filters Min Max Mean Std 
Simulated 0 0.0940 0.2885 0.1819 0.0874 

3 0.0403 0.1007 0.0710 0.0261 
1 0 0.3183 2.0462 0.9789 0.5538 

3 0.0458 0.4199 0.1682 0.1233 
2 0 0.0707 0.2599 0.1341 0.0654 

3 0.0069 0.0081 0.0073 0.0003 
3 0 0.3664 1.2566 0.7668 0.3005 

3 0.0922 0.3388 0.1176 0.0794 
4 0 0.0294 0.1298 0.0564 0.0284 

3 0.0192 0.0194 0.0193 0.0001 

Table6..J 30-400 ml using falters banks selected during the preliminary study. 

The results of the three-filter bank (Table 6-3) and single filters (Table 54) were 

similar (change of between 0.8-6% in mean MSE compared to the mean MSE when 

the whole signal was filter) for 30400 ms region of the signals. 

6.2.3. Filter banks applied to the whole signal 

Based on the preliminary results a large trial was performed. This time five runs for 

each test subset were performed, going up to 400 generations, with a population of 

200 individuals. Tables 6-4 and 6-5, show the results for single trial and subaveraged 

(10 signals) respectively. One goal of this study was to investigate the number of 

signals used in a subaverage. As has been previously observed increasing the number 

68 



of signals in an average can improve the extraction of the responses and this was 

observed for this process as well. 

Table 6-5 shows the results of using subaverages of 10 signals and the MSE between 

the filtered test subsets and their respective target signals. The unflltered results have 

higher MSE values than the filtered results (Table 6-5). This suggests that the 

filtering process is producing signals that are closer to the target signal. This was 

also shown by a visual inspection of the results for the filtered signal (figure 6-4, 6-5 

and 6-6). The mean value of each averaged signal had its mean amplitude subtracted 

from each value. to rule out the possibility of the larger MSE being due a DC level in 

the averaged signals. 

69 



• DataSd No of Frequencies (Hz) Weigbta Best moan MSE 10·~ Variations in mean MSE 10·;J 
! fiken F1. FH MiD Ma Mean Std MiD max mean std 

Simulated 0 - · · 0.3893 ~.4816 2.6463 1.9622 . - . . 
3 S.37 7.41 3.2744 0.055 1.237 0.1518 0.1749 0.1562 0.1686 0.1602 0.0049 

9.78 16.29 0.6SSa 
11.26 60.24 O.OS96 

1 0 - - · 0.896 38.36" 10,6555 8.277 - - - -
3 S.S4 7.97 0.6437 0.0615 0.9944 0.2834 0.1724 0.2834 0.3002 0.2947 0.0069 

162.40 215.51 0.0156 
9.27 17.46 0.2045 

2 0 - - - 0.4724 10.1105 3.5639 2.1122 - - . -
3 5.10 47.68 0.1036 0.0088 0.0222 0.0151 0.0036 O.OlSI 0.02 0.0165 0.0021 

164.01 527.88 0.0547 
63.36 141.36 . 0.1735 

3 0 . · · 1.7658 33.1173 6.658 4.619 - . - . 
3 1.42 3.06 0.1877 0.0684 0.277 0.1243 0.028 0.1243 0.1301 0.1279 0.0022 

147.27 148.65 0.J963 
149.43 286.29 0.0064 

4 0 - · · 0.1992 6.6298 0.6501 0.7141 . - - -
3 0.03 8.78 0.017 0.0196 0.0336 0.0236 0.0019 0.0236 0.0241 0'()239 0.0002 I 

80.23 273.31 0.0094 ! 

60.18 282.58 0.0194 - --- - I 
Table 6-4 WboIe tigullDOdel flltering .. boIe ....... (ape trial) 
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Data Set No of Freauencles CHz) Weights Best mean MSE 10·;£ Variations in mean MSE 10~ 
tlltcJ F-'. FM MiD Mu Mean Std miD MIx mean std 

SimuJated 0 - . - 0.097 0.2954 0.1805 0.08S8 - - - - ! 

3 3.04 4.42 1.7682 0.0269 0.0806 0.0521 0.0218 0.0521 0.067~ 0.0599 0.0058 , 
, 

0.11 64.90 0.1096 
5.60 20.02 0.8996 

.. ' 

1 0 - - - 0.3294 2.0501 0.9943 0.5424 .. - .. -
3 3.59 23.42 0.4160 0.0334 0.3686 0.1105 0.1l1~ 0.1705 0.1733 0.1726 0.0012 

51.37 397.29 0.0900 
5;56 7.76 0.5780 , 

2 0 - .. - 0.0707 0.2671 0.1412 0.0732 - - .. -
3 5.90 15.61 0.1293 0.0072 0.0098 0.0081 0.0008 0.0081 0.0084 0.0082 0.0001 

18.81 240.90 0.1006 
83.13 85.01 0.2230 

3 0 .. - .. 0.3761 1.47 0.7983 0.3432 .. .. .. -
3 1.45 2.66 2.3792 0.0384 0.2036 0.1061 0.0580 0.1061 0.1125 0.1100 0.0034 

25.S7 329.72 0.0543 
~.69 7.13 0.4~9 

4 0 .. .. .. 0.03 0.12 0.06 0.03 .. - .. -
3 58.163 77.21 0.2n2 0.0206 0.0249 0.0223 0.0013 0.m23 0.0239 0.0229 0.0006 

5.51 6.25 2.7908 
105.24 525.68 0.0633 

~----

Table ~S Wbole ....... model fiItert8I wbole JipaI (avtraaa .r 18 tipaII) 
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Data Set No of first 30 ms (l0-~) 30-400 ms (1 O-~ ) I 

filters Min Max Mean Std Min max mean std i 

Simulated 0 0.005 0.0455 0.025 0.0179 0.094 0.2885 0.18193 0.0874 
3 0.0063 0.0158 . 0.0102 0.0036 0.0235 0.0862 0.0596 0.027 

1 0 0.031 2.1269 0.3659 0.6744 0.3183 2.0462 0.9789 0.5538 
3 0.0089 0.0196 0.0132 0.0043 0.0334 0.4091 0.1601 0.1209 

2 0 0.0059 0.0654" 0.0367 0.0212 0.0706 0.2599 0.1341 0.0654 
3 0.0188 0.0217 0.0205 0.001 0.0063 0.0088 0.0071 0.0008 

3 0 0.1104 0.8474 0.3155 0.2758 0.3664 1.2566 0.7688 0.3005 
3 0.0065 0.0114 0.009 0.0016 0.0360 0.1871 0.096 0.0524 

4 0 0.0036 0.031 0.0159 0.094 0.02941 0.1298 0.0564 0.0284 
3 0.0151 0.0163 0.0158 0.0003 0.0192 0.0195 0.0193 0.0001 

Table 6-6 Whole signal model filtering partiall 
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In figure 6-4 the process was shown to be able to extract approximations of the 

target signal for the simulated data. In this section, the same process is applied to the 

four sets of recorded activity, each of which is averaged to form a target signal and 

split into two subsets for training and testing. To look at differences in the recording 

sites~ two spinal recordings and two scalp recordings were used. All signals were 

subaverages of ten signals in accordance with the results of the trials using two sizes 

of averages (Tables 6-4 and 6·5). 

Unfilt,red Signals 

0.5 

O'---2!)j-'----'.m .(l' t) 

Time (ms) 

Filtered Signals 

200 
Time (InS) 

Figure 6-4 simulated data, whole sipal model. 

o:tB 
-02 o 200 400 

Time (ms) 

Data set 1 was used to form the target signal (Figure 6-5) and the underlying signal 

in the simulated data set, so a comparison between the two can be made, as they both 

have the same target signal. The results ofthe simulated data and results of the filter­

bank produced using data set 1, show some common features (figure 6 .. 5). The larger 

features are present in both. Smaller features at the beginning of the signals and near 

the end of the signal between 200 and 300 ms are more attenuated in data set 1 

(figure 6-5) than those observed in the simulated data sets results (figure 6-4). There 

are two likely reasons for this. The first is time variation in the position of the 

features. Looking at the poSition of the largest positive feature between 100 and 200 

ms, it is not always in the same place in each signal. To produce an average signal, 

variations in the position of a feature can lead to smoothing of smaller features. The 

second reason is low frequency noise which is not completely removed by this 

approach. can partially obscure the features. 
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Figure 6-S Data set 1, whole lignal model 
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Figure 6-6 data set 1, whole sipal model 

Data set 2 was also produced from spinal recordings. This time the average signal is 

noisier than that seen in the previous two data sets. Of interest in this data set, were 

the large features occurring at the beginning of the signal, as opposed to the later 

components in data set 1. Filtering the test subset using the filter developed for this 

data set can be seen to produce noisy results in figure 6-6. Examining the first 30 ms 

of the signals (figure 6-7), this time show the large dominant features being 

extracted, but the subtler features are lost. 

74 



Unfi/t8fl!d Signals 

0.2 

0.1 

°o~-'--"--"""~ 10 2C .;AJ 

Time (ms) 

Filtered Signals 

Target Signal 

o··~oo -002 

..0.04 

10 20 30 
Time (ma) 

o 10 20 3J 
TIme (ms) 

Fipre 6-7 data set 2, tint 38 nu UliDI the whole signlll model 

The scalp recorded set of signals, data set 3. shows the filters acting as a relatively 

low frequency bandpass filter (figure 6-8). The weightings and the frequency 

parameters for this filter-bank shown in table 6-5 also show this. In this data set, the 

larger features occur in the later components (figure 6-8). The final data set, data set 

4, is another set of scalp recordings. The filtered signals for this data set (figure 6-9) 

show no similarity to the target signal (figure 6-9). 
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Figure 6-8 data set 3, whole tipal model 
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Figure 6-9 Data let ", whole 'ipal model 

6.3 Limiting the signal size 
The previous results suggest that the evolutionary algorithm usually extracted the 

dominant features of a signal. often at the expense of the smaller features. The 

variation in the position of features between signals is one contributing factor to this 

effect. A further likely factory due to the nonstationary nature of these signals, is that 

the signal has different requirements for a filter bank at different parts of the signal. 

A particular filter-bank may work well for one region (e.g. first 30 ms of the signal), 

but may not work as well for another region (e.g. 30-400 ms). These different 

requirements may be too much for a single filter bank and the evolutionary 

algorithm may produce a compromise between the requirements of the separate 

regions. To examine this effect and to fit into the way clinicians use these signals, 

filter banks were separately developed for two smaller regions of the signals. The 

first region is the first 30 ms looking at the short latency components. The second 

region, 30 to 400 msy is used to investigate mid and late latency components; from 

now on, for simplicity, these will be termed late components. 

6.3.1 Short Latency (first 30 MS) 

Many authors (e.g. Rossini et al (1981), Maccabee et al. (1992)) believe that earlier 

signal components are more stable than the late components. Restricting the signal, 

by developing a filter bank just for this early region, was investigate as a way of 

improving the extraction ofthese earlier components. 
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Figure 6-10 shows the simulated test subset filtered with a filter·bank developed 

using the simulated training data in this region. These filtered signals do resemble, in 

terms visual inspection of key clinical features. the target signal more than the 

unflltered signal does. A comparison with the results of figure 6-4 show there is an 

improvement visually in filtering the first 30 ms, when the algorithm is trained 

specifically for this region, as compared to using a filter-bank developed to filter the 

whole signal. This improvement can be seen by comparing the results for the filter 

bank in Table 6-6, with that in Table 6-7 where there is a lower mean MSE. 
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Ytpre 6-10 simalated data set using tile fDter bank tntined specifically tor this region (fmt 30 
m.) 

Figure 6-11 shows results from the test set of data set I after passing through a set 

of filters produced after training using only the first 30 ms of signal. The results 

seemed to have extracted a negative 'trough' around 13-16 ms but the peaks seen at 

around 12 ms and 16 ms in the target are lost. In the majority of the signals a 

smoothed outline of the signal is formed. Comparing the filtered and unfiltered 

signal, in the filtered signals key features are observed, which can not be observed in 

the unfiltered signals. The MSE values are lower for this filter-bank (Table 6-7) 

compared to whole signal filter-bank results (Table 6-5). 
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Figure 6-12 data set 2 using the fUter bank trained 'p«iraeally for thiB region (first 30 ms) 

Figure 6-12 shows the results of filtering the test data of data set 2. The filtered 

signals do bear a resemblance, in terms of key features, to the target signal, more so 

than the unfiltered signals, with the largest features of the signals being extracted. As 

in the previous data set, the smaller positive features, in this data set at 

approximately 12 ms and 18 ms, have been attenuated by these filtering operations. 

Unlike the previous data set, these signals are similar to those filtered with filter­

bank produced using the whole of the signal (figure 6-7) over the same region. The 

filtered signals are extracting the larger dominant components in the signal, but 
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unable to extract the high rate, smaller features. In this signal, the largest feature (see 

figure 4-6) of the signal appears in this early region, hence the similarity (mean MSE 

of 0.0085 and a standard deviation of 0.0038) in the results. 
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Figure 6.-13 data set 1 asias the rllter bank trained spedfitaUy for this region (tint 30 ma) 

Figure 6-13 shows results from data set 3 (scalp recording) for 2 to 30 ms. The 

exclusion of the signal components below 2 ms was done to remove a large 

stimulation artifact. Again the smaller features have been lost in the filtering process. 

Large components are present but not always in the same place as those in the target 

signal (figure 6-13). In figure 6-14 data set 4 was filtered extracting the underlying 

shape of the signal, but in the unfiltered results these features can often be seen. 
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Figure 6--14 data let 4 uling tbe rdter baRk trained .peeif'Kally for thi. region (first 30 ID.) 

6.3.2 Mid and Long Latency Components (30-400 ms) 

The remainder of the signals can also be filtered in a similar way to the early 

components. Filtering the simulated data set, data set 1 and data set 3 respectively 

produced similar results (figure 6-15, 6-16 and 6-18) to those observed when 

filtering the whole signal (Figures 6-4, 6-5 and 6-7 respectively). There was a small 

increase in the mean MSE values compared to the filter bank developed for the 

whole signal, for this region «5% of the value of the equivalent whole signal mean 

MSE (Table 6-6). A common feature of these three data sets is they all have 

relatively large dominant late component features. The rise in MSE is due to the 

inclusion of noisy components. The results of the filtering data set 2 are improved 

visually (figure 6-17) by only using 30-400 ms region of the data and looking at 

Tables 6-6 and 6-8 the MSE shows an increased mean value when using this 

narrower region. The difference in the mean MSE values for this data set between 

the two filter banks was negligible. Filtering data set 4 (figure 6-19) with narrower 

signal length had a similar effect to that seen in figure 6-8 for data set3, a noisy low­

pass filter. This result can also be seen in the weightings and frequency parameters 

for this data set in table 6-8. The result is due to the filtering process not having to 

try to model the larger components at the beginning of the signals. This time the 

mean MSE (Table 6-8) is lower using this filter than when the filter developed for 

the whole signal was used (Table 6-6). 
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Data Set No of Frequencies (Hz) Weights Best mean MSE lO'z Variations in mean MSE 10'3 
filters Ft FH Min Mu Mean Std Min Max mean std 

Simulated 0 - - - 0.0050 0.0455 0.025 0.0179 - - - -
3 0.31 7.00 2.3741 0.0060 0.0105 0.0016 0.0017 0.0760 0.1060 0.0830 0.0130 

66.00 225.20 0.4987 
310.45 398.69 0.653 

1 0 - - - 0.0310 2.1269 0.3659 0.6744 - - - -
3 52.78 108.87 0.3996 0.00960 0.01277 0.01137 0.00103 0.1137 0.1144 0.1142 0.0003 

335.92 362.00 0.8477 
142.70 142.77 0.0883 

2 0 - - - 0.0059 0.0654 0.0367 0.0212 - - - -
3 93.80 135.4 0.6496 0.0036 0.016 0.0085 0.0038 0.0850 0.0880 0.0860 0.0010 

29.50 84.40 0.6703 
69.70 839.30 0.1601 

3 0 - - - 0.1104 0.8474 0.3155 0.2758 - - - -
3 54.45 73.22 0.4837 0.0051 0.0124 0.009 0.0027 0.0900 0.0930 0.0910 0.0010 

98.29 205.44 0.0544 
164.64 151.10 0.1875 

4 0 - - - 0.0036 0.031 0.0159 0.0940 - - - -
3 39.16 84.16 0.7994 0.0014 0.0129 0.0068 0.0028 0.0680 0.0710 0.0690 0.0010 

0.17 20.20 0.5440 
106.17 157.38 0.5960 

- ~---.- ---------

Table 6-7 partial sigul (lint 30 IDJ) model filteriDJ partial JigDaI (lint 30 ms) 
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Data Set No of filters FreQuencies (Hz) Weights Best meanMSE 10'~ 
Fl Fw Min Max 

Simulated 0 - - - 0.094 . 0.2885 
3 6.33 25.80 0.8251 0.0231 0.0933 

61.65 273.37 0.2765 
0.77 9.96 0.4792 

1 0 - - - 0.3183 2.0462 
3 2.67 11.09 0.3338 0.0544 0.4299 

5.22 20.72 0.4631 
62.19 206.86 0.064 

2 0 - - - 0.0706 0.2599 
3 5.86 15.08 0.1155 0.0063 0.0086 

13.25 44.16 0.0802 
78.73 1361.50 0.0507 

3 0 - - - 0.3664 1.2566 
3 0.97 7.90 0.3125 0.0399 0.1983 

13.61 290.32 0.0596 
244.24 2089.50 0.0613 

4 0 - - - 0.02941 0.1298 
3 0.19 3.43 0.2765 0.0064 0.0287 

131.28 266.14 0.0008 
2.2772 324.82 0.0944 

Table 6-8 partial signals (JO-400 ms) model filtering partiallignai (J0-400 nu) 

00 
N 

Variations in mean MSE 10'~ 
Mean Std Min max Mean std 
0.1819 0.0874 - - - -
0.0608 0.0313 0.0608 0.0624 0.0617 0.0006 

. 
0.9789 0.5538 - - - -
0.1672 0.1222 0.1672 0.1675 0.1674 0.0001 

0.1341 0.0654 . - - -
0.0070 0.0008 0.0070 0.0072 0.0071 0.0001 

0.7688 0.3005 - - - -
0.1003 0.0492 0.1003 0.1151 0.1046 0.0066 

0.0564 0.0284 . - - -
0.0158 0.0074 0.0158 0.0181 0.0168 0.0009 
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6.4 ComparisoD of time-invariant metbods 
In this and the previous chapter time-invariant methods were develope~ but now a 

comparison of their effectiveness is needed. The MSE of each of the filtered signals 

with the target signal fonns the basis of the measurement. The mean of these MSE 

values is selected as the representative value for the test set for that filtering method. 

A further consideration for this work is that there should be minimal averaging 

(ideally none). As the number of signals in each subaverage is varied, a mean MSE 

value is produced. The goal is to produce filtering techniques with the lowest MSE 

values, for a small number of signals in each subaverage. As the size of the 

subaverage increases, the MSE value is expected to decrease as it gets closer to all 

the signals being averaged and therefore closer to the target signal. Therefore, the 

effectiveness is shown by how the mean MSE varies with an increase in the number 

of signals per subaverage, for each filtering method (similar to the method shown in 

Thakor, 1987). In all the tests, results of averaging-alone are included for 

comparison as this is the standard technique for processing these types of signals. 

6.4.1 Simulated data set 

Figure 6-20 shows that the filters developed using subaveraged training data produce 

better results (lower mean MSE value), for both single filter and bank of three filters. 

These results were better than the equivalent filters developed using non-averaged 

training data. All the above filters were developed using the whole signal. In figures 
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6-21 and 6-22 where smaller regions are considered, a 3 filter model trained on this 

region (represented by squares) produces an improved response over those trained 

over the whole signal. In figure 6-21 the single filter models perfonned as well as the 

three filter models developed for the whole signal. Below 20 signals per average the 

filtering methods produce better (lower mean MSE values) results than averaging­

alone. Below 35 signals per average the three· filter model produced for this region 

produces the lowest mean MSE values, after this averaging-alone is the better 

approach. Figure 6-22 shows the results of applying filtering to the region of the 

signal occupying the period 30-400 ms. A similar set, in terms of mean MSE values, 

of responses to figure 6-20 is shown, except there is, in addition, a filter developed 

using subaveraged training data of the same region. As in figure 6-20, the filtering 

methods developed using subaverages of 10 signals produced lower mean MSE 

values than averaging·alone. The filter specifically developed for this period 

produced lower mean MSE value than the other methods as the size of subaverage 

increased above 20 signals per average. When the size of subaverages were between 

10 and 20 signals per average then mean MSE value were similar to those of the 

bank of three filtered developed with subaveraged data. 
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o Single trial· single filter 
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Figure 6-20 ComapriJoa oftbe fdtering method. for simulated test subset using tbe whole of 
tbe lignal. 
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Figure 6-22 Comparison of filtering methods for the regioa 30-400 ms of the simulated test 
subset 

6.4.2 Data set 1. 

Figure 6-23 shows the same effect seen in figure 6-20, with the filters produced from 

subaveraged data performing better than those filters produced using a single 

example. There is some improvement with using a three-filter model for both the 

single and subaveraged data, though in both cases the improvement is relatively 

small. Figure 6-24 shows the results of filtering the first 30 ms of the signals. In this 

figure, all the techniques produce better mean MSE values than averaging-alone. 
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This changes briefly between subaverages of 47 to 65 signals, when the number of 

signals averaged switches to one. In the region 20 to 60 signals per average, the 

difference between the experimental techniques is relatively small. Figure 6-25 

shows results for filtering the signals between 30 to 400 ms~ the results are similar to 

figure 6-23, with a small improvement for larger sizes of subaverage using the filter 

bank developed for this region. 
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10° r---r---,.---r---.--;::::::c:=:t=:=:x:=:::::r:::=::=::l=::::;1 

- Average only 
" Single trill· 3 filter model 
+ Subaverages (to) • 3 filter model 
o Single trial· single frlter 
It Subaverages (10) • Sin III filter 

IO~~~----~-~--~--~--~--~~--~---J 
o w ~ ~ ~ ~ ~ ro 00 00 lOO 

Siz8ofSub~ 

Figure 6-13 comparilOD of filtering metbods for the test subset of data set t 
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Figure 6-25 comparison mfiltering metbCHI. ror the reaion 30-400 ms of data set I test subset 

6.4.3 Data set 2 

Figure 6-26 shows that all the techniques produced lower mean MSE values than 

averaging-alone with smaller sizes of subaverages. Figure 6·27 shows filtering 

methods applied to the first 30 ms of this test subset, the three filter bank developed 

on this smaller region perform better than the other methods and better than 

averaging-alone up to around 40 signals per subaverage. Figure 6-28 shows the 

filtering methods applied to the region 30 to 400 ms, indicating that the filtering 

methods all produce better results than averaging-alone, for smaller sizes of 

subaveraging. 
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Figure 6-28 Comparison of filtering metbods for tbe recion 30-400 ms of data set 2 test subset 

6.4.4 Data set 3 

Figure 6-29 shows that initially the single trial single filter produced the best results 

but, when ten signals are used in each average the filter bank developed using 

subaveraged data performs better than a single filter. Later averaging-alone produced 

the lowest mean MSE values, with the next best being the model trained on the 
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region of the data. Again, the results for the whole signal show the filters trained 

with the larger subaverages produced better results as the size of subaverages 

(number of signals per average) increase. At the smaller subaverages, single trial 

results work best, the transition occurs at around subaverages of four signals. Figure 

6·30 shows results for filtering the smaller region first 30 ms models trained on this 

region show initially worse results than the other fi1tering methods, but better results 

than averaging-alone. A transition occurs at around 10 signals per average~ from 

there up to around 60 signals per average the model produced for this region 

performed best. Figure 6-31 shows the results of filtering signals in the period 30 to 

400 ms. The results are similar to figure 6-29 the filter developed specifically for this 

region did not, for larger subaverages, perform as well as the filter bank developed 

over the whole signal. 
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6.4.5 Data set 4 

All the methods (except averaging-alone) applied to the whole of the signal are 

similar (figure 6-32). Using the shorter region of the first 30 ms (figure 6-33), the 3 

filter bank developed using subaverages of 10 signals for this region, performed 

better than the other methods up to 20 signals per average, then averaging-alone 

produced the better results. All the filtering methods produced better results (figure 
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6-34) than averaging-alone below 30 signals per average, with the filters developed 

for 30400 MSo 
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6.4.6 Overall 
In general, filtering methods developed using subaveraged data produced better 

(lower mean MSE values) results for both single filter and banks of three filters, 

producing lower mean MSE values than either of the methods developed using non­

averaged data (single trial). When the whole signal is being filtered, all the filtering 

methods for small numbers of signal per average (fewer than 20 signals in a 

subaverage) produced lower mean MSE values than averaging-alone (see figures 6--

20, 6-23, 6-26, 6-29, 6-32). 

When the filtering methods for the whole signal are grouped as those developed 

using data that were not averaged and those developed using data that were formed 

as subaverages of 10 signals each, the difference between the results of the single 

filtered and filter bank filtered results was often small. Usually the three filter bank 

methods in both groups produced the lower mean MSE results. 

Overall, filtering developed specifically for the first 30 ms performed better than the 

filters developed for the whole signal. This effect can be most clearly seen in figure 

6--27 and 6-33. The common feature of these two signals is that when the test data 

are subaveraged (see figures 6-12 and 6-14), some features of the response can be 

seen in the unfiltered signals. Initially these often had a higher mean MSE for the 

very small size of subaverages «S signals per average). or similar results to the other 

methods. 
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The results for the whole signal are similar to those for the region 30~400 ms. The 

results using the filter developed for the whole signal produced higher mean MSE 

values (except in data set 3) than those of the filter bank developed specially for this 

region. 

The developed filtering methods responses with increasing the number of signals per 

average in terms of mean MSE values 'flattens' out earlier than those of averaging~ 

alone. This effect is mostly to do with the relative scale of the averaging-alone 

results and the filtering methods. The range of values of mean MSE for averaging~ 

alone can be nearly three orders of magnitude. The filtering methods range of mean 

MSE values vary by up to one order of magnitude. Variations in the relative values 

of the filtering methods were less obvious than averaging-alone, therefore appeared 

to have a smoother response. 

As the number of signals in an average increased, averaging-alone in most of the 

recording produced lower MSE values than the filtering methods, but usually for 

smaller averages, the filtering methods produced the better results. Apart from 

averaging-alone, three filter methods performed better than the single filter. 

6.S Conclusions 
The time-invariant methods developed can extract the largest features in the signals. 

Smaller features (relative to the largest features in a signal) such as observed in the 

first 30 ms can be attenuated with averaging and these techniques, the filtering 

processes may also distort the signal. The differences between a five-filter and three­

filter bank were small: the advantage to using a three-filter bank over the five-filter 

bank was speed, less processing needed and fewer parameters to 'adapt'. 

Simulated responses show lower MSE than those of the recorded responses. This is 

due to the simulated response being time-invariant as they were produced by taking 

the target response and adding recorded noise. This means that the underlying 

response does not change. In the recorded data. the underlying response can vary; for 

example, a peak at 15 ms in one responses could be at 16 ms in another or 14 ms in a 

third. In averaging the assumption is that the signals do not vary between the 

responses. In these filtering approaches the assumption is modified to be that the 
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variation between the responses is asswned to be small. Training a filter on the first 

30 ms improves the extraction of the earlier components. This is due to the greater 

stability of these earlier components as compared to the later components of most of 

the data sets. The results for filtering the signal in the region 30 to 400 ms were often 

similar to those of filtering the whole signal, though for three of the data sets there 

was a small rise in mean MSE values for the filter bank developed specially for this 

region. 

If the signals to be filtered have both high signal·to-noise ratio (> 1) and stability 

between the signals, then filter banks developed for a specific signal region (e.g. the 

first 30 ms of the signal) can produce a larger improvement in mean MSE than the 

other techniques, for smaller numbers of signals per average than are currently used. 
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7 Time",varying Filter Banks 

In the previous chapter, evolutionary algorithms were used to select the cut-off 

frequencies and weights for a bank of filters. In this chapter the previous work is 

extended to produce time-varying filters. Time-varying filters have been applied to 

evoked potentials before (e.g. deWeerd (1981a, 1981b), Nishida et aI., 1993) and 

were found to perfonn better than time-invariant filters (Vu et al., 1983). Instead of 

using a single set of filters applied to the whole signal, in this chapter different filters 

(or combinations of filters) are applied at different times. Evolutionary algorithms 

are used to select the active duration of each filter, as well as the frequency 

parameters and weightings of the filters. Three filtering approaches will be 

investigated. 

7.1 Modification to Nisbida's Approacb 
Nishida et at (1993) used three bandpass filters to extract evoked potentiais, with a 

time-varying function on the output of each filter. This function enabled each filter to 

be applied to a different segment of the signal. A high frequency bandpass filter, 

relative to the other two filters, was used for the first portion of the response. A 

medium frequency bandpass filter was used for the middle portion of response and a 

bandpass filter of lower frequencies for the remainder of the response (figure 7-1). 

This has been discussed previously in chapters 2 and 6. 

Time-varying functions 
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Fiaure 7-1 Idealised model of the Nishida approach 
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A modified version of the Nishida method was investigated. Instead of trying to get 

this infonnation from a power spectrum an evolutionary algorithm selects the four 

frequencies used in the three filters, as well as the duration of the filters. The active 

duration of the filters was selected by specifying the ends of the period for the high 

frequency and medium frequency filters. A 10 ms transition period between the end 

of one filter and the start of the next filter's period was included as in Nishida et aI, 

to limited abrupt changes between the active region of one filter and another. The 

fitness function was, as in the time-invariant filter bank, the mean squared error 

between the test responses and the averaged response, for each 'individual' in the 

population. 
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In only figures 7-2 (simulated) and 7-4 (data set 2) has this method extracted some of 

the peaks of the first 30 ms seen in the target signal. In the others (figures 7-3, 7-5 

and 7-6) the extraction of the peaks was not effective enough to see these features. 

As in the time invariant methods (chapter 6) for the later components of the 

simulated data (figure 7-2) and data set 1 (figure 7-3) some of the peaks observed in 

the target signal were extracted. The extraction of the later components in the other 

data sets were insufficient for clinical usage. 
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Data Set Lowest Range of Mean Values 

Mean Squared Error (l0") Mean Squared Error (1 O·;}) 

Min Max Mean Std Min Max Mean Std 
Simulated 0.3977 0.7644 0.5474 0.1777 0.5474 0.6885 0.5764 0.0627 

1 1.0891 3.1925 1.9&35 0.7987 1.9835 2.0782 2.0404 0.0361 

2 0.0685 0.0821 0.0761 0.0043 0.0761 0.1033 0.0852 0.01 13 

3 1.1979 1.3257 1.2565 0.0564 1.2565 1.3307 1.2938 0.0341 

4 0.2288 0.2485 0.2338 0.0058 0.2077 0.243 0.2322 0.0144 

MSE values for the modified N~hida approach 

Overall, this method produced MSE values that were unacceptable and did not 

preserve enough key features in a visual inspection and was therefore deemed to be 

insufficient for clinical usage. 

7.2 Extending the Dumber offilten 
The previous approach assumed that the regions were adjacent to each other in the 

frequency spectrum, giving low, middle and high frequency regions, with no overlap 

between the regions. This was then modified in three ways. First. though the signals 

were split into three regions, each region was a weighted combination of the output 
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of two filters, enabling more than one set of frequency components in the same 

portion of signal. Second, the filters selected were not directly dependent on the 

filters in the other regions. The passband frequencies of each filter did not 

necessarily have any frequencies in common with the other two regions. Thirdly. 

overlapping pass bands of the filters within a region were possible. 
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The results of the first 30 ms for the simulated data set (figure 7.7), data set 1 (figure 

7-8) and data set 3 (figure 7-10) are shown above. It can be seen that the technique 

was unable to extract features from the noisy signal (data set 3). However, this 

technique was able to extract certain key features of the first 30 ms of data set 2 (e.g. 

a negative feature at 14 ms in figure 7-9) and data set 4 (e.g. a positive feature at 

approximately 20 ms in figure 7-11). The unfiltered signals for the first 30 ms of 

these signals show some of the features that are to be extracted, in the other signals 

the features are less visible. The results for the first 30 ms of data set 4 also included 

a large artifact at the beginning of the signal. It is unclear what the exact cause of the 

artifact is, but it is most likely to be a stimulus artifact. Late components are 

extracted in the simulated data set (figure 7-7) and data set 1 (figure 7-8), whereas in 

the other data sets the effectiveness is less clear. 

1.3 Splitting tbe siglla.s into early and late components 

In the previous chapter, splitting the signal into two separate signals improved the 

effectiveness of the filters for the early components. This work and the work carried 

out by other groups suggest that there are at least two different regions. Early 

components are more stable than the later components and have higher frequency 

components (Maccabee et. aI., 1983). The late component region is likely to vary 

between signals and has predominantly low frequency components. Splitting the 

signal into two signals based on these regions (the first 30 ms and 30-400 ms) means 

that the two regions are filtered independently of each other using the method 
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described previously (section 7.2). In other words the method described previously is 

applied to the first 30 ms and in parallel applied to the second signal (30400 ms), 

treating each as two independent signals. The fitness value was changed to the mean 

value of the MSE values of the two separate regions. In tables 7-2 and 7-3 values 

shown are for the lowest scoring combined MSE values, not necessarily the lowest 

scoring first 30 ms or 30400 ms results. 
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Figure 7-12 The raltered mults whn splittilll tbe stmulated Signals 

1st3lms 

10 4D 100 m 300 400 
nme(ms) TII'I'I8 (ms) 

Figure 7-131be rlltered multi wben .pUtting data let 1 into two parts 

In both the simulated data set (figure 7-12) and data set 1 (figure 7-13), features were 

extracted for the late components. In figure 7-12, the first 30 ms of simulated data 
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has extracted a combination of large and small components, in figure 7-13 in six out 

of the nine signals for the early components the larger components are extracted. For 

data set 2 (figure 7-14) the dominant early component is extracted, but there appears 

to be an artifact around lOOms probably due to the filtering process. 

1st 30ms 3J.AOOms 

03 

: i · .... ··t·· .... ····:-.. ····· .. · 
: : i 
! 1 • 

~ 0.2 ...... + .......... ;_ ......... + ........ .. 
i i i : 
f3 
> O. t5 ....... -¥J __ ~ ................. _-...I 

0.1 

o ............. ~ .......... ~ ........... .. 
: : 

o 10 20 30 100 200 300 400 
Tlms (me) TIfYl8 Cms) 
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Figure 7-15 Splitting tile signals in data set 3 into two parts 

For data set 3 (figure 7-15) it is difficult to see any clear features in either of the two 

regions. The results of data set 4 (figure 7-16) show that the dominant early 

components are extracted. but the late components were not. 
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Figure 7-16 The fIltered results when splitting the signals of data set 4 into two parts 

This technique improved the extraction of early components. In some of the data 

sets, late components have also been extracted 
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For the early latency components, the bandpass frequencies with the largest 

weighting were generally at higher frequencies than those selected for the late 

latency components. These results fit with some of the previous work on linear filters 

that discussed the early components having higher frequency components than the 

later components. The late components of both data set l(figure 7-18) and the 

simulated data set results (figure 7-17) are dominated by filter with a narrow range of 
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relatively low frequency filters between 4 and 27 Hz. For the early components of 

data set 2 (figure 7-19) in general, the frequency components are below 200 Hz. The 

exception to this is a short region of time 10.67 to 14.8 ms where a wider filter with 

lower weighting extending up to 400 ms. One possible explanation of this is that the 

filter is attempting to extract the small feature visible in this region on the target 

signal (figure 7-4c). Data set 3 (figure 7-20) used a relatively narrow range of low 

frequencies, up to around 200 Hz for early components. For data set 4 (figure 7-21) 

for early components the filters are narrow band filters with frequency below 200 

Hz. In the region 1.73-8.8 ms, the second filter has a pass band approximately 

between 300-400 Hz. In this region of the target signal (figure 7-6c) small features 

are present. One possible explanation is that this filter is attempting to extract those 

features. 

7.4 Comparison of methods 
In chapter 6 a comparison of time-invariant methods showed that the results (lower 

mean MSE values) were improved when the signals were split into a short signal (the 

first 30 ms of the signal) and a longer signal (30-400 ms of the signal). Figures 7-22 

to 7-26 show a similar comparison of the three methods used in this chapter, 

comparing the mean MSE of the filtered signals from the target signals, as the 

number of signals per sUbaverage increase. 

In all the figures, the best (i.e. the lowest) mean MSE values were those of the third 

approach, of splitting the signals for smaller sizes of subaverages. 
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The first 30 ms of the simulated data set (figure 7-22) produced an unusual result as 

compared to all the others (figures 7-23 to 7-26) in that the multiple filter results 

produce the lower MSE values for larger sizes of subaveraging (20 to 40 signal per 

average). Compared with the other data sets where the approach of splitting the 

signals produced the lower MSE values, this effect is not significant, as the aim of 

this work is to use a small number of signals in a subaverage to enhance the signals. 
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In figure 7-26 the difference between three approaches for the region of 30-400 ms 

was small. The effects shown in figure 7-26 were also shown in table 7-3. 

The modified Nishida approach in general has been the least effective for all the 

signals, except for the first 30 ms of data set 4 (figure 7-26). 
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Figure 7-26 ComparisoD1 of time-varyiDI methods for data let 4 

7.S Conclusions 
Splitting the signal into two separate signals and using three regions per separate 

signal, with two filters per region, produces lower mean MSE values than using three 

regions per signal with two or one filter per region. This confinns some of the results 

seen in the previous chapter where the results for the early components are improved 

by splitting the signals into early and late components. In this chapter the late 

components mean MSE values are also improved by the time-varying filters. This 

improvement is seen in both in terms of the lower mean MSE values shown in 

figures 7-12 to 7-16, but also in the extraction of peaks not previously extracted by 

the other methods. 

All the techniques showed variations in the position of the largest peak in the region 

30-400 ms for the test subset of data set 1. As the simulated subsets were constructed 

from the target signal of data set I, a direct comparison between the effect of the 
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methods can be made. This variation in the latency of the peak does not appear in the 

simulated data where variation in latency was not included, but it can be seen in 

results for data set 1. This suggests that the system can cope with relatively small 

variation of latency in the dominant peak. When looking at the smaller late latency 

components between 200-300 ms, these peaks did not always appear in the filtered 

results of data set I, using a single filter per region. When the second filter was 

added these components were usually present. The addition of this extra filter allows 

peaks to be extracted from a different region to the first filter. again suggesting that 

using a single filter will not going to solve the problem of extracting evoked 

potentials from a noisy signal. The filters are still assuming stationarity, but now 

only over the part of the signals that each combination of filters is applied to. 

For smaller number of averages (<20 signals/average) both splitting and multiple 

filters were often better than averaging-alone, the exception being the multiple filter 

results for data set 4. 

A direct comparison with some groups work (e.g. such as Paradiso et aI, 1995, 

Maccabee et at (1986), or Rossini et al, 1981) for short latency components is not 

entirely meaningful as they used filters to discard low frequency components in 

order to extract the higher frequency components of some of the smaller features. 

Looking at the representation of the frequencies of the filters and weighting for the 

time-varying technique of splitting the signals, in figure 7-17 to 7-18 for simulated 

and data set 1, a filter is shown for the largest segment of this region that is able to 

keep high frequency components, but a larger weighting is given for the a narrow 

lower frequency filter. The results for data set 2 showed a wide band frequency 

components starting at low frequencies and going up to 400 Hz, but this time the 

dominant filters were within this range but also relatively narrow. This fits in with 

the shape of the target signal where there is a dominant low frequency component 

with smaller features superimposed. Figure 7-20 to 7-21, the scalp recordings did not 

show a filter for a wide band of high frequency components. Instead the results 

showed filters with narrow bands. The later components do not appear to be better 

than the frequencies suggested by other groups except in part Maccabee et al (1986), 

who used a 5-3000 Hz bandpass filter and the late latency part of Nishida (1993) (5-

17.5Hz). In general bandpass filters with low frequency components were the 

dominant ftlters. 
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Modified Nishida Mult!ple filte[~on ~plitting tbe Signal 
Mean Squared Error (xIO") Mean Squared Error (x 1 0'-') Mean Squared Error (x 10'') 

Data Set Min Max Mean min max Mean Min Max Mean 
Simulated 0.1126 0.3987 0.2281 0.0422 0.2293 0.1311 0.0627 0.1103 0.0863 
1 0.2176 0.5542 0.4014 0.0872 0.1666 0.1251 0.0515 0.1539 0.0866 
2 0.0522 0.1601 0.1010 0.0470 0.2176 0.1006 0.0168 0.1497 0.0482 
3 0.0915 0.0922 0.0918 0.0842 0.4960 0.2111 0.0346 0.1315 0.0914 
4 0.1640 0.1642 0.1641 0.0792 0.2272 0.1288 0.03II 0.1155 0.0572 

---~-----~ -- - .. -.---~--.- -

Table 7-2Relulo for tbe fint 30 ml 

Modified Nishida Multiple filtersIRegion Sj>litti~ the Signal 
Mean Squared Error (x 1 0.3 ) Mean SQuared Error (xIO'l Mean Squared Error (x 10") 

Data Set Min Max Mean min max Mean mm Max Mean 
Simulated 0.4192 0.8107 0.5719 0.1863 0.7515 0.4593 0.1139 0.5700 0.2983 
1 1.1563 3.4327 2.102 0.4382 3.4062 1.6211 0.3274 3.3581 1.2555 
2 0.0692 0.0801 0.0739 0.0553 0.1197 0.0761 0.0391 0.1195 0.0666 
3 1.1112 1.2396 1.1714 0.5995 1.8312 1.0159 0.3895 2.6819 0.9252 
4 0.1221 0.1912 0.1514 0.0804 0.234 0.1429 0.0884 0.2411 0.1441 

--- -

Table 7-3 Results for the regioa 30-400 DU 
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8 Wavelets and Evoked Potentia Is 

In the previous chapters linear filters were u~ with different methods applied 

to making a filter bank have timc--varying properties. Wavelets are a group of 

techniques that fit the need for filter banks and the ability to process 

nonstationary data. In this chapter the aim is not to perform a detailed analysis of 

wavelets for processing SEPs. as there is a growing body of work in this area 

(e.g. Bartnik et al. (1992); Bertrand et at (1994); Blinowska and Durka (1997); 

and Samar et al. (1995,1996,1999». The aim of this chapter is to investigate 

whether evolutionary algorithms can select wavelets and coefficients to extract 

evoked responses. 

8.1 Introduction to Wavelets 
Wavelet analysis has become a widely used set of techniques to analyse and 

process signals and images. A general outline of these techniques is presented 

here, as well as placing wavelets in the context of other signal processing 

techniques. More detail introductions are available (e.g. Bentley and McDonnell 

(1994); and Strang and Nguyen (1997) and from a mathematical perspective, 

Daubechies (1988,1990) and Mallat (1998». 

The most commonly used method of signal analysis is Fourier analysis, in which 

the signal is broken down into its constituent sinusoids of different frequencies 

and relative phase. In other words, Fourier analysis is a mathematical approach to 

transform the signal from a time-based representation to a frequency-based one. 

The technique for doing this is the Fourier Transform . 

.. 
F(OJ) = I f(lj exp(jrd) dt Equation 1-1 .. 

This is the sum over all time of the signal f (t) multiplied by a complex 

exponential. Complex exponentials can be broken down into real and imaginary 

sinusoidal components, hence the reason for sine waves being the basis of the 

Fourier analysis. 
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Fourier ... 
Signal Sinuaoida of diIfwJent 

Figure 8-1 Principles behind Fouriet transforms 

The results of the transform are the Fourier coefficients F (ID) of the signal, 

which when multiplied by a sinusoid of frequency ro produce the sinusoidal 

components of the original signal 

This technique is useful for many signals, as the frequency components of the 

signal can contain important information. However, there is a drawback to this 

approach. When transforming from a time-based signal to a frequency-based 

representation, time information is lost. So when looking at the transformed 

signal, it is not possible to tell when a particular event took place. If a signal does 

not change significantly over time it is stationary and so this drawback is not 

important. If the signal contains components that vary over time, such as drift, or 

abrupt changes, the signal is nonstationary and where in the signal a particular 

event occurred is lost. These characteristics are often important, so F ourier 

Analysis is not suited to for use with nonstationary signals. 

8.1.1 Short Time Fourier Transfonns 

Trying to correct this weakness, the Fourier Transform was adapted to look at 

small section of the signal at a time. This process is called the Short-Time 

Fourier Transform (STFT). This transfonn maps the signal onto a function not 

only of frequency, but also of time. The transform works by only carrying out the 

Fourier Transform on a signal enclosed within a window. The window moves 

along the time axis and then perfonns the Fourier Transform on the signal within 

this new window. These windows often overlap. This process continues until the 

whole signal has been analysed. 

This process provides some information about both when and with what 

frequency components a signal event occurred. This only obtains information 

with limited precision and the precision is determined by the window size. 
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8.1.2 Wavelet Analysis 

Wavelet analysis provides a more flexible approach. One advantage of wavelet 

analysis is its ability to perfonn localised analysis, i.e. to analyse a small area of 

a signal. Therefore, what is wavelet analysis and what are wavelets? A wavelet is 

a waveform of effectively limited duration that has an averaged value of zero. 

Fourier analysis works by 'breaking' the signal into sine waves of varying 

frequencies. In wavelet analysis, the signal splits into components of scaled and 

shifted versions of a basic original (or mother) wavelet. 

8.1.3 What is a wavelet? 

One definition of a wave is an oscillating function, such as a sinusoid, it is 

periodic so theoretically it can continue for infinite amount of time, so has 

infinite energy. A wavelet is a 'small wave', it may oscillate but it does not 

repeat and as time increases, it tends to zero, therefore it has finite energy. This 

property means that if it is used as a window function, signal components in time 

away from the window are going to have 00 significant contribution to the 

analysis until the 'window' is used to analyse them. Fourier analysis is based on 

sinusoids. so it can be thought of as wave analysis, the whole signal contributes 

to the analysis. Because of their finite range wavelets provide more localised 

analysis. 

8.1.4 Continuous Wavelet Transfonn 

The continuous wavelet transform (CWT) is the sum over all time of the signal 

C(scale, position) = eo<> f(t)fII (scale, position, time)dt 

multiplied by a scaled, shifted version of a wavelet 'V. 

Signal 

Wavelet 

Ill' 
Transform 

Wavelets of different scales and postionS 

Figure 1-1 Ruie prUaeipJa of "avelets 

Equation 1-1 

The results of the CWT are wavelet coefficients C. which are functions of scale 
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and position. Multiplying each coefficient by the appropriate scaled and shifted 

wavelet yields the component wavelets of the original signal. Another way of 

thinking about the value e, is that it is a measure of how well the section of 

signal under investigation correlates with the wavelet, the higher the value of e 
the greater the similarity. Two terms have been mentioned, shifting and scaling, 

but yet not discussed. Shifting a wavelet means either delaying or hastening its 

onset, so if a wavelet has a function ",(t), a delayed wavelet by a time interval k 

has a function ",{t-k). Scaling a wavelet means to stretch or compress it. A 

scaling factor is usually signified by a. 

8.1.5 Scalogram 

One point to note is that in wavelet analysis there is no frequency component but 

a scale component. In a similar way to the time-frequency plots formed using an 

STFT, wavelets produce a different view of the signals properties in the form of 

a scale-time plot. The higher scale values of a, correspond to more stretched 

wavelets. The longer the wavelet, the longer the portion of the signal that is being 

compared (similar to the larger the window in STFf, the larger the portion of the 

signal considered each time.) and the coarser the signal peaks measured. For a 

low scale value of a (i.e., a compressed wavelet), the shorter the portions of the 

signal considered, so the finer the details of the signals compared. 

8.1.6 Why use wavelets? 

An advantage of wavelets is the ability to analyse a signal at a localised level. 

This ability comes from scaling the wavelet, compressing the wavelet and, 

performing the analysis of the signal at progressively smaller area. Wavelets are 

essentially looking at how similar the portion of the signal is to a scaled wavelet, 

so wavelet analysis can reveal aspects of the signal ( or images) such as 

discontinuities and self-similarity (fractal). Wavelet analysis has also been used 

to compress and de-noise signals and images. In appendix A.3 scalogram of 

evoked potentials and background activity (noise) are included to show the 

nonstationary nature of the signals and properties of wavelets. 

8.1.7 Discrete Wavelet Analysis 

So far, continuous wavelet transformations have been considered. The 

continuous part of the name comes from the ability of the eWT to operate at 

every scale. It does not mean that the signal must be continuous. The signals by 
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their very nature, since the signals are being processed on a computer, are 

discrete. Having to calculate wavelet coefficients for every scale is computer 

intensive, producing a considerable amount of data. If the scales and position 

selection are based on powers of two (or dyadic). the analysis is more efficient 

and just as accurate (Strang and Nguyen, 1997). This type of analysis is called 

the Discrete Wavelet Transform (DWT). The Mallat algorithm (Mallat, 1989) is 

an efficient way to implement this and is based on the idea of two channel 

subcoding, or pyramidal decomposition. The wavelet coefficients quickly 

emerge. so it is sometimes also called the fast wavelet transform. 

Figure 8-3 Decomposing a signal into detaUs and an approximation, HPF· High-pall filter, 
LPF-Iow-pus filter. 

01 

02 

03 

A3 ___ --l 

Figure 8-4 RecooltrucOnl a lipal from tbe details and approximation. HPF- High-Pili 
rdter. LPF-Iow-pUI filter. 

The signal goes through a low-pass filter and a high-pass filter and emerges as 

two signals (figure 8-3). The output of the high-pass filter is the detailed signal 
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and the low·pass filter output is an approximation. The high-pass filters used are 

wavelets and the low-pass filters are the scaling functions. To reduce the number 

of points in each signal and therefore avoiding having a lot of data stored, the 

detail and approximations are down sampled. Down sampling here means 

discarding every second data point. The process is repeated several times with 

the approximation forming the input to the next stage, so the signal is broken 

down into many lower resolution components. The number of stages (or levels) 

could theoretically be continued until a single pixel or sample point is formed, 

but this is not practicable. In practice, the number of levels selected is usually 

based on the nature of the signal. To reconstruct the signal (figure 84) the 

process is carried out in reverse with the inputs being the detail signal and the 

final approximation and up sampling this time. Up sampling is the process of 

lengthening the signal by adding zeros between each sample. The equation for 

the reconstructed signal, using the notation shown in figure 84, is: -

S=A3+Dl+D2+D3 Equation a..3 

So far, in the discussion about the DWT, the use of low-pass and high-pass filters 

was been discussed, but no mention of wavelets. The high-pass filters are the 

wavelets, and the low-pass filters form the approximation. 

8.1. 8 Denoising 
Techniques to reduce the noise in a signal have been developed for decornposed 

signals. Donoho and Johnstone (1994) made the assumption that the large detail 

coefficients of a noise corrupted signal will be those of the signal and the others 

will be components of the noise. This assumes that the noise is white noise. The 

denoising technique starts by setting a threshold, so that if the absolute value of a 

coefficient is below the threshold the coefficient is set to zero. This is known as 

hard thresholding. A second method, soft thresholding, is an extension of the 

previous method. As well as reducing coefficients that are less than the threshold 

value to zero, the other coefficients are reduced by the threshold value (Donoho 

(1995), Donoho et aJ. (1995». 

8.2 Combined evolutionary algorithm and wavelet approaches 
Approaches that combine evolutionary algorithms and wavelets have been 

investigated previously for other applications~ Lankhorst and Lann (1994) used 
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spline wavelets and an evolutionary algorithm to approximate signals. They 

selected parameters such as dilation, translations and amplitude for each wavelet. 

A different method is investigated here, in line with the idea of splitting the 

signal into two portions (first 30 ms and 30 to 400 ms) and then processing them 

separately as in sections 6.5 and 7.3. Here the filters are replaced with wavelets. 

The discrete wavelet transform using Mallat's method decomposes the signal 

(figure 8.3) into a set of 'details' and an approximation of the signal at the lowest 

level is examined This can be viewed as a set of band pass filters (the filters may 

be high-pass filters but in combination with downsarnpling they become 

bandpass filters) and a single low-pass filter, in other words a filter bank. The 

aim of the evolutionary algorithm this time is to weight the outputs of these 

filters (figure 8-5) and select which wavelet to use (from a list of 46 wavelets). 

The fitness function was the same as in section 7.3, the mean value of the MSE 

values of the two regions. 

Signal 
Details and 
Approximation 

'--__ ~,.....~-e-c-o-m-po-se...,l c=) 

Proce88e~ 
Signal ~ 

Weighting the 
Details and 
Approximation 

Fipre s..s OadiDe of the combined wavelet and evolutionary aIgoritbm approach. 
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o ········1·········j····· 
o 10 20 3J 0 10 20 30 

Time (ms) Time (ms) 

Figure 8-6 Wavelet filtering .pproaeh applied to the test subset or the simulated data set 
(fll'lt 30 ml). (a) After filtering. (b) before filtering. (c) target lianaL 

In figures 8-6 to 8-9 the filtered signals are noisier than the methods in chapter 6 

and 7 but the smaller features can be seen that appear in the target signal but 

were lost by the other methods 

0.6 

0.5 

~ 
.0.3 
= 
~ 

0.2 

0.1 

(a) (b) 

..{J.1 L...-.i..----'-_...i----I 

100 all DJ 400 100 all 3Xl 400 
Time (ms) Time (ms) 

(c) 

100 DJ DJ 400 
Time (ms) 

Figure 8-7 Wavelet filtering approacb applied to tbe test subset of the limulated data set 
(30-400 m.). (a) After filtering, (b) before ftlterinl. (c) target lignal. 
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Figure 8-8 the wavelet rdtering approach applied to the test subset of data set 1. <a) After 
filtering. (b) before filteri .... (c) target signaL 
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Fiaure 8-9 Wavdet rlltering approaeh applied to tbe test subset of data set I (~OO ms). (a) 
After rdtering, (b) before fUtering, (c) target lipaL 
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Figure 8-10 tile wavelet faltering approach applied to tbe test subset of data set 1 (tint 30 
101). (a) After filtering, (b) before faltering, (c) target signaL 

Figure 8-10 shows a problem using wavelets where the larger features of the 

signal fit the shape of the wavelet and the smaller features do not, so the smaller 

features are lost. 

(a) 

o '--"-----'--'---' 
100 200 1J) m 

Twne (ma) 

(b) 

o '--"-----'--'"---' 
11]) 200 3D 400 

Time (ms) 

(c) 

100 200 DJ 400 
Time (ms) 

Figure 8-11 The wavelet filtering approach applied to the test lubset of data set 2 (30-400 
ms). (a) After filtering, (b) before ftltering, (c) target signal. 
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Figure 8-12 the wavelet filtering approach applied to the test subset of data set 3. (a> After 
fdteriag, (b) before filtering. (e) ta'let sig ..... 

Figure 8-11 shows results for the late components of data set 2, showing signals 

with low frequency content with a small amount of noise, similar to the target 

signal. As observed in the previous chapter the results for data set 3 (figures 8-12 

and 8-13) show many of the key features of the target signals. 

0.1 

(a) 

100 200 :Jl) 400 
TIme (ms) 

(b) 

100 2ID 3D 400 
Time {ms) 

(c) 

100 m 3'll ~ 
Time (me) 

Figure 8-13 The wavelet fdteriugapproach applied to the test substt of data set 3 (30 to 400 
mal. (a) After rdterin~. (b) before filteriag. (e) target signal. 
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Figure 8~14 the wavelet rdtering approach applied to the test subset or data set 4. <a> After 
filtering. (b) before filtering, (c) target signaL 

Both the unfiltered and filtered early components of data set 4 (figure 8-14) were 

similar to the target signal, with the filtered signal producing visually greater 

similarity to the target signal and also in terms ofMSE (see figure 8-25), 

(a) 

O,25,....~Iii:l.:..·, 

~ ---
CD :. 

~ 0,2 ····!·······1 .... 
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~ 
O,'5~~~ ..... ~ 

100 200 DJ 400 
Time (ms) 

(b) 

o 
-0,02 

(e) 

"WI1IIIIfIII1I!IIIII1'Wd -0,04 '--'---'-___ '---...J 

100 200 :m .mJ 
Time (ms) 

100 200 300 400 
Time (ms) 

Figure 8-1 SThe wavelet filtering approacb applied to the test subset of data set 4 (30-400 
ms). (a) After filtering. (b) before fdtering. (c) target signal. 
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Figure 8-16 Oudines Grtlle wavelet and evolutio ... ry algorithm witl1 denoising as R post­
processing stage 

As has already been mentioned (section 8.1.8) wavelets can be used to denoise 

the signals. This was applied as a further stage to this process (figure 8-16). After 

the evolutionary algorithms have selected the wavelet and weighting for the 

levels, whilst processing the test data the signal were further processed using a 

denoising algorithm and the wavelet selected to lower the noise. This process is 

separate to the evolutionary algorithm, performed after processing with the 

model developed using evolutionary algorithms. 
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Time (ms) Trme {ms) 

Figure 8-17 DenoiJiDg applied to tile first 30 ms orthf simalated tHt data. (a) After 
filterlna, (b) before rutering, (c) ta ... ,t signal 

Comparing the effect of the extra denoising stage (figures 8-17 and 8-18), this 

extra stage is applied to the first 30 ms of the test sets of the simulated data and 

data set 4, with the results of the wavelet approach (figures 8-6 and 8-14 
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respectively). What is shown here is that the denoising algorithm has only a 

small effect on noise removal. removing relatively low magnitude high 

frequency components (but can improve the visual representation of the sibrnals). 
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Figure 8-18 Denoising applied to the flnt 30 ms of data set 4. (a) After r.Jtering, (b) before 
filtering, (c) target sigDal. 
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Figure 1-19 DenoisiDg applied to tbe rep.n of 30-400 ms or data tlet t. (a) After filtering, (b) 
before filtering, (c) target signal. 

The effect of denoising is more noticeable when applied to the late components 

(30 - 400 MS). Comparing the non-denoised results of data set I and data set 2 

(figures 8-9 and 8-11 respectively) with the signals after denoising (figure 8-19 
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and 8-20). The denoising stage removes what appears to be the random noise left 

after filtering. which would fit in with the theory of denoising (Donoho et a1. 

1995). 

Cl) tb) 
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Fipre 1-28 Pea ..... ap .... to tile ..... 30-488 l1li or clata .. 2. (a) After fIIte ...... (b) 
before fdteriq. (eltarad ...... 

Comparisons of the wavelet methods with and without the extra denoising stage 

are shown in figure 8-21 to 8-2"S. In 1mns of mean MSE there is little difference 

between the two methods. 
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Figure 1-24 A romparison or the wavelet method and the wavelet method with a denoising 
stage for tbe early (nrst 30 ml) and late componnts (30-400 IUS) of the test data 01' data set 
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Figure 1-1S A comparison of the wavefet method and the wavelet method with a deMising 
stage for the early (first 30 ms) aad late components (30-400 IllS) of tbe test data of data set 
4. 

In comparison with the time-varying methods of chapter 7 the results are similar 

to those of splitting the signals (section 7.3). Averaging-alone was found to only 

better or similar to these filtering methods when the size of the subaveraging is 

relatively large (greater than 40 to 50 signals per average). 
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8.3 DiKussioD 
Wavelets are appropriate because they are suited to dealing with nonstationary 

signals. Here wavelets were used to act in a similar way to a set of bandpass 

filters with the output of the filters, the wavelets, weighted, which was similar to 

the approaches in the previous chapters. 

This technique is broadly similar to the approach used by several other groups 

for late components (e.g. Bartnik et aI1992a. Quiroga. 2000), where the levels of 

the wavelets were selected for inclusion in the reconstructed signal. The 

differences however are that the evolutionary algorithm selects the wavelet used 

and by adjusting the weights, the evolutionary algorithm selects how much a 

particular level contributes to the result. This technique differs from the approach 

of Lankhorst and Lann (1994) in two ways. The technique used here, again, 

selects which wavelet to use and the dilation and translation is taken care of by 

the decompostion and reconstruction stages, the algorithm contains the amplitude 

weighting for the wavelets. Second, Lankhorst and Lann (1994) method was 

developed to approximate the signals it was trained upon and so only used single 

examples of signals uncorrupted by noise, unlike the signals used with this study. 

Both small and large features can be extracted by wavelets (see figure 8-17), but 

when features due to noise are similar to some of the features in the target signal 

then these noise components are likely to be included in the reconstructed signal. 

This technique often selected two different wavelets for the two separate regions 

(see Appendix A). This difference is believed to be due to the difference in 

requirement for the two regions. Early components are more likely to contain 

high frequency components and the later components lower frequency 

components, leading to the wavelet used in the reconstruction of the late 

components usually being smoother than those used to reconstruct the early 

components. The denoising algorithms used made small visual improvements in 

the signals, but in tenns ofMSE the difference was insignificant. 
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9 Comparison of Metbods and Discussion 

In chapters 6 to 8 the methods developed were compared with averaging and for 

some of the methods averaging was not as good as these techniques untll the size 

of subaverages was relatively large (greater than 40 signals per subaverage). In 

this chapter a comparison of the filtering methods for smaller sizes of 

subaverages will be produced. 

9.1 Comparison of Methods 
As measures of the effectiveness of the techniques developed during this work, 

three repeatedly used techniques have been included for comparison. The first is 

Wiener optimal filtering (Doyte, 1975), introduced as one benchmark. The 

second benchmark is ensemble averaging, which is selected because it is the 

most commonly used technique for extracting these types of signals. Finally, a 

comparison with Bertrand's wavelet optimal filtered method is also made 

(Bertrand et aI, 1996). Bertrand's method is based on Doyle's method with the 

spectra replaced by wavelets and is included because it is both a wavelet method 

and a method of optimal filtering (see chapter 2). 

9.1.1 Whole signal 

A further technique using the frequencies and the time domain regions described 

by Nishida et al (1983) was included as a comparison with the modified Nishida 

approach (section 7.1). The effects of the various filtering methods developed to 

extract the whole signal are shown in figure 9-1. Four methods were considered: 

a filter bank of three filters (section 6.2), single filter (chapter 5), multiple filters 

(section 7.2) and the Modified Nishida approach (section 7.1). 
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When the number of signals per average was small (less than 10), the 

evolutionary algorithm based methods are all better (lower mean MSE values) 

than optimal filtering methods and averaging-alone. For the spinal recordings, in 

general, optimal filtering performed worse or similarly, in terms of mean MSE, 

to the evolutionary algorithm filtering methods. Using multiple filters per region 

produced the best results for small sizes of subaveraging in three out of the five 

data sets. The exceptions being data sets 2 and 3. In data set 2 the performance of 

this technique was not as good initially, but as the size of subaverages increased, 

the difference between this and the other evolutionary algorithm based filtering 

methods became marginal. In the scalp recordings, the optimal filtering methods 

produced lower mean MSE than the other methods for smaller numbers of 

signals. 

The modified Nishida and single filtering were the least effective methods. The 

common feature between these two approaches is that only one filter at a time is 

used. The main difference between them is the modified Nishida approach uses 

different filters at different times through the signal, whereas the single filter 

approach applies the same filter all through the signal. For all the data sets, as the 

number of signals in the average increased, the wavelet optimal filter (Bertrand 

et ai, 1996) performed better than the optimal Wiener filtering approach (Doyle, 

1975). A possible explanation of this is that as the sizes of subaverage increases, 

the 'high rate' features in the signal due to noise are reduced. The remaining 

features are more likely to be those of the signals and the wavelet can then 

extract them. Averaging-alone, currently most widely used, had a higher MSE in 

4 out of 5 of the data sets. Its performance improves only with the simulated data 

set in which the underlying signal was the averaged si gnat. 

9.1.2 Partial signal 
The filtering methods were first developed and applied to the whole signal. 

Techniques were then developed to be applied to the signals in two parts: the first 

30 ms and the region 30 to 400 ms of the signals, including the optimal filtering 

methods. To this aim figures 9-2 to 9-6 show the results in a similar way to 

figure 9-1 how the mean MSE values for these techniques varied as the size of 

subaverage increased. See Appendix A (Table A4) for example mean MSE 

values of the various techniques. 
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Splitting the signals Optimal filter Partial Wavelet Optimal·wavelet 
Change % Change % Change % Change % Change % 

simulated 26.5306 50.0000 30.6122 76.5306 37.7551 
1 95.8186 95.1119 93.4629 95.3475 94.9941 
2 77.1930 32.7485 59.0643 64.9123 72.5146 
3 93.2163 91.3009 93.1346 91.0615 92.7374 
4 23.2319 21.8957 -8.3917 62.2313 29.9864 

mean 63.1981 58.2114 53.7365 78.0166 65.5975 

Table 9-1 For the first 30 m8 tbe perc:eiltage decrease in mean MSE oftbe techniques 
compared to the values for average alone, fer subaverages of 20 signals using the equation 
(J-(t«buiquel mean MSE - averaging-alone mean MSE)llaveraging-alone mean MSE) 

Splitting the signals Optimal filter Partial Wavelet Optimal-wave/et 
r--'. 

Change % Change % Change % Change % Change % 
simulated 81.3590 57.2459 65.8449 60.9140 67.3482 

1 80.8749 51.6446 68.8708 65.2764 67.1075 
2 90.5923 87.8049 86.7596 88.5011 88.1533 
3 79.7530 77.1751 77.4973 79.0548 76.3963 
4 57.5397 55.5525 51.6096 67.1724 68.6915 

mean 78.0238 65.8846 70.1164 72.1839 73.5394 

T.bIe 9-2 For the 30 - 400 m. the percentage decrease in mean MSE of the techniques 
compared to the values for average alone. for lubaveraga of 20 signals using the t.quation 
(t..-'ecboiqua mean MSE • averaging-alone mean MSE)laveraging-alone mean MSE) 

For the first 30 ms, in all but the simulated data set and data set 4 (figure 9-2 and 

9-6) the method of splitting the signal into three regions with two filters per 

region (section 7-3) produced lower mean MSE (the largest percentage change 
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for these data sets in table 9-1) values than the other techniques. In the simulated 

data set and data set 4, a similar method where the filters were replaced by 

wavelets (section 8-2) produce the lower mean MSE. For the early components, 

the approaches that produced the lowest mean MSE values were both time­

varying techniques using more than one filter at a time. This included the results 

of data set 4 (figure 9-6) where the wavelet can be considered as a set of filters. 

For the region of the signal between 30 and 400 ms, in all but data set 4 (figure 

9-6) the method of splitting the region into three sub-regions with two filters 

each produced the lowest mean MSE values (see Table 9-2). The improvements 

in mean MSE was small «5% difference) in both data set 2 and 3. The results of 

evolutionary algorithms filtering methods, for the late components, were better 

than the optimal filtering results, except in data set 4 (figure 9-6). The time­

invariant filter bank developed by splitting the signals into these two regions in 

the spinal recordings was more successful for the 30-400 ms and first 30 ms, than 

the filter bank approach developed for the whole signal (figure 9-1). This 

approach work well especially for data set 2 (figure 9-4). 

9.2 Discussion 
The simulated data set has been useful for checking that the techniques are 

practical and extract some of the features. There is a lack of realistic models 

evoked potentials, which meant that only a time-invariant simulated data set was 

generated. Time-varying models for simulated data based on exponentially 

weighted sinusoids have been suggested by some authors (e.g. Darragh et ai, 

1995), without any clear justification as being realistic models. Therefore a time­

invariant simulated data set and four recorded data sets were used Though the 

simulated data set was based on a time invariant response, it is an averaged 

signal from a recorded data set (data set 1). The noise was recorded at the same 

site as the signals used in the averaged signal. Both the averaged signal and the 

noise are based on actual recorded electrical activity. 

The evolutionary algorithm based techniques work best for short latency 

components. This is not entirely surprising as the method works by comparing 

the filtered signals to a fixed target signal. Short latency has less variability in 

position than the late components. Therefore, the filtered and target signals are 

more likely than the late components, to have features that are approximately «2 
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ms) in the same position in time as those in the target signal. The approaches in 

general found the large features. If the relative positions In time of the 

components do not vary greatly between subaverages, these approaches could 

still extract the feature. This can be seen in filtered results of the late components 

of data set 1 (see figure 6-16). For the early components, the likely positions of 

the features are known, 50 by looking to see if these features are present in the 

filtered signal it can be said that the features have been extracted. For later 

components, because of the variations in position of features, it is not always 

easy to say what is and what is not a feature of a response. 

Time-invariant methods were able to show that the overall shape of the signal 

could often be extracted. but the small details were often lost. Splitting the signa) 

into different regions, in this case two subregions, the short latency region 

performed better (lower mean MSE) than the models developed using the whole 

signal applied to the same region. Artifacts were not produced due to phase shift. 

as these filters do not introduce any phase shift (see chapter 5). 

Splitting the signals and using multiple filters in each region has been shown (in 

the comparison of methods section chapter 7) to be the best time-varying method 

for some data sets and in others the equivalent wavelet based results were better. 

Looking at the simulated data set for splitting of the signals, the methods ability 

to enhance the extraction of features can be seen. It has extracted features that are 

present in the target, that the other time-varying and time invariant techniques 

(other than the wavelet based reSUlt) have not been able to extract. The 

assumption that there is an underlying signal throughout the data set, which is the 

basis of averaging, is flawed. The results suggest that time-varying filters 

produced better results which is in agreement with the results of some other 

authors (e.g. deWeerd et ai, 1981a). The nonstationary nature of the signal means 

that improvements in the extraction of the signal are possible when the different 

filters operate at different portions of the signal. Wavelet analysis of recorded 

background activity, an averaged signal and a random signal, suggest that the 

background activity and the averaged evoked response show greater similarity to 

each other than the example of random noise (see Appendix A.3). These 

techniques have worked better for regions of the signals where the signal looked 
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for is relatively stable; these are often the early components of the signal due to 

the nature of its production. Overall the first 30 ms could be extracted in three 

out of the five data sets with fewer of the smaller features. 

The signals are nonstationary which is the logic behind using time~varying 

techniques. Wavelets, by their nature, are suitable for nonstarionary signals. 

Their shape means that the signals they filtered are in effect windowed and the 

signal's energy localised. One of the advantages of wavelets is their ability to 

extract discontinuities in the signals making it suitable for extracting sharp 

features in the signals. The disadvantage of this is that noise can also produce 

high-rate features that can also be extracted. This could explain the appearance of 

the wavelet results in chapter 8. 

It is important to use more than one run, and given the time constraints it was 

decided to run each evolutionary algorithm five times for each test. The use of 

only five runs for each evolutionary algorithm means that statistical analysis of 

the effectiveness of the techniques is limited. In this application the requirement 

was to achieve low mean MSE for a set of evoked responses, with a small 

number of runs. The techniques are slow and having to wait several days to get 

an answer was not appropriate. One of the difficulties with these approaches was 

shown in figure 5-8 where in five runs the MSE values converged to two 

different values. In other words. non-oprimal solutions in terms of MSE, were 

possible. It has been concluded that the parameters of the evolutionary algorithm 

(e.g. weightings and frequencies of the filters) were not independent. 
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10 Conclusions and Scope for Future Developments 

The aims of the research have been met. The claims for this work is evolutionary 

algorithms can be used to select sets of filters or wavelets applied to enhance the 

extraction of evoked potentials from noisy recordings. Using the approaches 

developed, evoked potentials can be extracted using fewer signals per average 

than is typically used in ensemble averaging. Effectiveness is measured in terms 

of visual inspections and MSE. 

10.1 Conclusions 

• Using an evolutionary algorithm to choose filters or wavelets is effective 

both in terms of visual comparison between the resulting signals and the 

respective target signals and MSE values. With current processor speeds this 

has to used as an off-line process. 

• Techniques with a time-varying element worked better than applying the 

same set of filters to the whole signal. 

• These worked most effectively for early (or short latency) components, or 

when the variability of the late components was small, as in the simulated 

data set and data set 1. 

• Time-varying techniques were better (in terms of MSE values) than optimal 

filtering methods for small sizes of subaverages. 

• The wavelet approach and the equivalent time-varying filter bank approach 

(splitting the signals) gave comparable. 

• Results showed some common features such as fitters with narrow bandwidth 

were in general selected for the early components, often with no overlapping 

components. 

• Wavelets proved to be the better approach to extracting early components of 

evoked responses from a noisy signal for two reasons. Firstly, denoising can 

be applied as a post processing stage, which improves the visual 

representation of the signal. As the wavelet approach has the ability to handle 

discontinuous features in a signal such as small features in an evoked 

response, it can keep features in the results that may be lost with other 

techniques. The wavelet results were often better than, or similar to, the 

results of splitting the signal. However, the wavelet approach is very 

computationally intensive. 

143 



10.2 Scope for Future Development with these data sets 
As a direction for future investigation there is further scope in the idea of an 

evolutionary algorithm being used to select filter banks or wavelets. 

10.2.1 Alternative target 

To develop the techniques further, an alternative to the averaged signal as the 

target would be potentially useful. The alternative should take into account 

nonstationary nature of the evoked potential sisna1s or by its nature be relatively 

independent of the position of the signal features. 

10.2.2 Wavelet Techniques 

An extension to the wavelet techniques is to use a combination of different 

wavelets. Wavelet packets are an extension of the pyramidal decomposition 

method (Mallat et ai, 1989) where instead of decomposing the approximated 

signal into details and approximations, the detail signals are also decomposed. 

This means that signal can be reconstructed by combining these decomposed 

details and approximations and permits further control by including or excluding 

certain details and approximations. Coifinan and Wickerhauser (1992), used 

wavelet packets to model evoked potentials. One possible direction for 

investigation is to use the methods in chapter 8 but replace the decomposition of 

wavelets by a wavelet packet. Matching pursuit (Mallat and Zhang, 1993) is a 

similar technique to wavelet packets but a dictionary of possible waveforms is 

used. Akay and Daubenspeck (1999) used matching pursuit to separate 

bioelectric noise sources and EEG activity under certain conditions and may be 

worth investigating to separate evoked potentials from noise sources. Wavelet 

Networks (Zhang and Benveniste 1992) are a combination of wavelets and 

artificial neural networks. These have recently been applied to a closely related 

set of signals, event-related potentials, for analysis (Heinrich et aI., 1999). 

10.2.3 Modification to the evolutionary algorithm approaches 

Evolutionary algorithm methods could be modified to extract the small high 

frequency components in the early latency region. The system would preprocess 

the signals (and the target signal) with a high-pass filter, removing the often 

larger low frequency components that dominate the signal. Maccabee et al (1986) 

used a high-pass filter cut-offfrequency set at around 150 to 300 Hz in a similar 

way to filter averages of large number of signals. This would mean lOSing the 
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lower frequency components, but increases the potential to extract the smaller 

high~rate components. 

Alternative strategies are possible for mutation and selection, such as increasing 

the mutation rate when the population converges to an early solution, so other 

areas of the search space can be searched. These may avoid the searching 

becoming too localised in the search space, missing possible optimal solutions. 

10.2.4 Noise modelling 
Instead of treating the background activity as noise, modeling it to see if realistic 

models can be produced and then use these as part of the process to remove the 

noise from the recorded signals. A model that varies with time is likely to be 

effective, due to the time-varying nature of the noise (as shown by the 

spectrograms in chapter 4). 

, 
10.3 Scope for future development with alternative data sets 
All the method discussed in 10.2 were for the historical data sets used here and 

could be used for other signals recorded in a similar method. Further techniques 

as well as those above are available if more channels of data were collected. 

Independent component analyses (leA) are a range of techniques that take 

signals from several recording sources and extract a set of signals. Makeig et 81 

(1997) applied this technique to represent the sources generating the signals on 

the scalp due to the Auditory Event Related responses. This technique was not 

available to this research, as only two or three channels (including one used as a 

stimulus marker) were available. 
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A Background Experimental Work. 

A.I Choice of fitness fUBction 
A measure of how wen a particular sequence in a population perfonns is needed. 

The fitness function initially considered here was the correlation coefficient 

between the results of the evolutionary algorithm and a known target response. 

J 't"" --1 £...,,-/ (x(k) - x_)(y(k) - y"-!) 
n-r = "'-"----"----------- Equation A·I 

The above equation shows the correlation coefficient where x (k) is the kth value in 

the resulting response after using the operations encode by an individual sequence 

and y (k) was the kth value of the target response. The standard deviations of the 

two signals 0'. and CJy were included This is the Pearson's Correlation coefficient 

and the values of r range from ·1 for an exact negative correlation, to + 1 for an 

exact positive correlation, with zero being no correlation between the two signals. 

1 ",N :2 
mse = N 4.Jk:l e{ k) Equation A-2 

The above equation shows the Mean Squared Error, where the difference between 

the target signal and the test sequence (e (k)) at a point in time in squared and the 

results is the mean value of these values. 

Table A-l shows a comparison of the two fitness functions for the simulated data 

set and data set 1, with the functions being used to compare the two methods. 

Both produce similar mean correlation coefficients, which are higher than those 

for unfiltered signals, but different MSE values. When MSE was used as a fitness 

function, their MSE values were lower than those of correlation coefficient are 

fitness functions. The difference is due to the correlation coefficient being 

independent of scale, where MSE is not. 
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Data set Fitness Function Frequency (Hz) Weighting Measurements 

FL FH MSE Correlation 
Coefficient 

Simulated Unfiltered - - - 0.8313 0.0018 
MSE 4.022 26.9667 0.9307 0.9423 0.0006 

66.751 576.816 0.2848 
133.398 637.093 0.0563 0.9422 0.0031 

Correlation 1.11 53.05 0.678 
Coefficient 4.75 22.56 1.348 

105.46 367.72 0.35 

1 Unfiltered - - - 0.5405 0.0099 
MSE 3.7097 18.4259 0.6253 0.7727 0.0017 

52.787 55.6489 0.3097 
42.5453 260.1425 0.0864 

Correlation 4.41 23.77 0.623 0.7734 0.003 
Coefficient 4.06 19.07 0.211 

55.61 198.11 0.069 

Table A-IPreliminary filtered and unfiltered results for the whole signals for all test subsets 
comparing filters devclol)ed using MSE and correlation coefficient as fitness functions 

The unfiltered sub averaged signals for the two data sets are shown in figure A-I. 

The filtered results of the two fitness functions are shown in figures A-2 and A-3. 

There is little difference between the results of the two methods in terms of 

morphology, but the magnitudes are different 

Unliltered simulated data Unfiltered data set 1 

o 100 200 )J() 400 o 100 200 3]0 400 
Time (ms) Time (ms) 

Figure A-I unfiltered simualted and data set 1 
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The only other difference between the two methods is that the MSE based results 

produced slightly noisier results. Looking at the early (first 30 ms) components of 

these signals show in the simulated data set that the MSE based results (figure A-4) 

produced results that which are closer to the target Than those of the correlation 

coefficient based results. Due to the results of MSE as the fitness functions to 

produce good correlation coefficient results as well as MSE values. this was 

selected as the fitness function. 

A.2 Power spectra of data sets 
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A.3 Continuous Wavelet Analysis of Evoked Potential 
As has already been discussed. wavelets can be used to analyse how the 

frequencies (or components related to frequency) vary with time. The examples 

below were processed using the symlet-4 wavelet because of its approximate 

similarity to an action potential. 
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Figure A~ 11 Continuous Wavelet Analysis of a portion of batkgrouild activity 
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Figure A-12continuous wavelet analysis of'wbite noise, used as a comparison 
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In figures A-lt, a sample of background activity has been processed using a 

continuous wavelet, showing the distribution of frequency components with 

time. The vertical axis is scale, the higher the frequency component the lower its 

value. What can be seen here is that the signal is dominated by low frequency. 

As a comparison, in figure A-12 a random signal (white noise) was used and 

scalogram was produced What is clear here is that there is no structure within 

the signal. This is to be expected, as a high scale value is as likely as a low scale 

value, if the signal was randomly produced. 
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Figure A-13 continuous wavelet analysis of an averaged spinal recording of an evoked 

potential 

Figure A-13 shows the results of an average of222 evoked potentials, processed 

using wavelet analysis. In contrast to figure A-II, where the very low frequency 
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components are dominant, there is some higher frequency components that 

dominate at different points in the signal. 

s 
c 
a 
I 

• • 
a 

Absolute V.lue, of Ca,b Coefficients for a .. 13365 &7 128 

1 921 
1793 

1665 
1537 
1409 
1 281 
1153 
1025 
897 
769 
641 
513 

385 
257 
129 

500 1000 1500 2000 
lim e (or space) b 

2500 3000 

20 

00 

80 

eo 

40 

20 

o 

Figure A-14 Looking at the high frequency components of the wavelet analysis of the 

averaged signal 

Figure A-14 shows the low scale values of the averaged signal and shows one of 

the properties of wavelet analysis, the ability to look at low scale (high 

frequency) components in time, to localise the analysis. 
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Figure A-15 continuous wavelet analysis of a single spinal recording of an evoked potential 
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Figure A-16 continuous wavelet analysis of a single spioal recording of an evoked potential 
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The properties of the signals vary with time, as has been seen in the preVIOUS 

igures, but there are also changes between different sample~ of the ~ignal. ('vcn 

within the same person and site. In figures A·IS and A·16. the differences are 

shown. Figure 8·15 is dominated by a low frequency signal, whereas in figure A-

16 higher frequency components than in figure A·I S are dominant. 

Continuous wavelets are useful for showing the signal as nonstationary. but is 

computationally intensive. 

A.4 Wavelets 
Included here are the scaling function (produces the approximations) and the 

wavelet functions (produces the details) select for by the evolutionary algorithms 

in chapter 8. 
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An extension of the previous approach was investigated. As well as selecting the 

weightings for the levels and the wavelet as before, the parameters used for de~ 

ooising: thresholding method, whether hard or soft thresholding is to used and 

scaling (no extra scaling, scaling based on one level, scaling each level 

separately) were selected. The results of applying this approach to the simulated 

data were found to produce distorted signals, losing more of the features than in 

the previous techniques. This extended approach was not developed further. 

A.5 Effect of tbe fIlten on random and biological noise 

The following figures (figures A·24 to A-26 for background activity and A·28 to 

A-30 for randomly produced signal) show the effect of passing subaveraged 

noise through the time-varying splitting the signals method, time-invariant filter 

bank applied to the two separate regions and the wavelet method. As a 

comparison the unfiltered signals are shown in figures A-27 and A-31. 
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These methods did not produce replica of evoked potentials, this was especially 

true of the wavelet method filtering subaveraged random noise, which produce 

signals that bear no R:SeIDblaDce to evoked poteDtials. 

:s... . ..;. .. _ the ....... - fiIfI8r P.-tIaI Wavelet l~ ,~ 

Change % YNI¥," Change" Change % U-_y.% 
IimUIIIted 26.5306 60.0000 30.6122 76.5306 37.7551 

1 95.8186 95.1119 93.~ 95.3475 94.9941 
2 77.1930 32.7~ 59.0643 64.9123 72.5146 
3 93.2163 91.3009 93.1346 91.0615 92.7374 
4 23.2319 21.8957 -8.3917 62.2313 29.9864 

mean 63.1981 58.2114 53.7365 78.0166 65.5975 

Table A-2 Por dte tint. - die peneataae decnae ...... MBE ofdle teelaaiqll_ 
C'JOIapared to tM "'Mtror pence ..... for ........... of 20 ....... 'ia& tile eqaadon 
(1 .. ~ .... MU - aftI'aIIIII_H ... MSE)flaverlalel'"aioIle __ MSE) 
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SpUtting the signals vplim_ filter Partial Wavelet Optimal-wavelet 
\"f - 'V'" % ~-¥I''' Change" Change " 

Change % 
IimuIIIled 81.3590 57.2459 65.8449 60.9140 61.3482 

1 80.8149 51.6446 68.8708 65.2764 67.1075 
2 90.5923 81.8049 86.7598 88.5017 88.1533 
3 19.7530 77.1751 n.4973 79.0548 76.3963 
4 57.5391 55.5525 51.6096 67.1724 68.6915 

mean 18.0238 65.8846 70.1164 72.1839 73.5394 

Ta" A-3 For me 30 -a _ die peraatale detleue la .... MBE of the techniques 
..,..... .. die vaI .. for~ .... for _bavetqts oflt ........... the equation 
(l-{tedallqaes .... MSE - ............. eaa MSE)ID~ mean MSE) 
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Fill 30 ma - Mean MSE (10--) 3Q.4OO ms - Mean MSE (10"") 
Sized' Data let A~ :!'::.. Optimal Partial W8vIIet ~. Averaging Splitting OptImal Partial w.vatet Optimal-... mttw -alone the_, wavelet 

10 simulated 0.0250 O.ooee 0.0058 0.0078 0.0059 0.0087 0.1820 0.0298 0.1393 O.oeoe 0.0748 0.1236 
1 0.3859 0.0087 0.0198 0.0114 0.0098 0.0129 0.97&1 0.1258 0.3657 0.1871 0.1858 0.2832 
2 0.0387 0.0048 0.0248 0.0088 0.0073 0.0090 0.1341 0.0067 0.0113 0.0099 0.0075 0.01231 
3 0.3155 0.0091 0.0098 0.008 0.0123 0.0113 0.7685 0.0925 0.1544 0.0971 0.1031 0.1404 
4 0.0159 0.0057 0.0117 0.0088 0.01«) 0.0110 0.0564 0.0144 0.0268 0.0158 0.0159 0.0190 

20 simulated 0.0098 0.0072 0.0049 0.0088 0.0023 0.0081 0.1683 0.0310 0.0711 0.0568 0.0850 0.0543 
1 0.1898 0.0071 0.0083 0.0111 0.0079 0.0085 0.2949 0.0564 0.1426 0.0918 0.1024 0.0970 
2 0.0171 0.0039 0.0115· 0.0070 O.ooeo 0.0047 0.0574 0.0054 0.007 0.0076 0.0066 0.0068 
3 0.1253 0.0085 0.0109 0.0076 0.0112 0.0091 0.3724 0.0754 0.085 0.0838 0.0780 0.0879 
4 0.0064 0.0041 0.0042 0.0058 --~.~ 0.0038 '-- 0.0307 0.0130 0.0136 0.0148 0.0145 0.0096 

---.-~ -------- -----_ .. _------

Table A .... CoeIpariIoII otdlae nrylaa tedlaiqaes "beD 10 ad 2t ....... per .baveratdaa w .... 
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B Background Theory 

B.1 Signal Modelling 

Methods that model evoked potentials have been investigated. The basics of 

signal modelling are considered. 

y(n) = r..l_ob(k)x(n - k) - r..:~la(k)y(n - k) Equation B-1 

In the equation y (n) is the current output (or an estimation of the output value) of 

a linear filter and x (n) is the input to the filter. In the above equation, the output 

is predicted from post output values, and past and present inputs. The input is a 

combination of the desired signal d (n) and noise v (n), such that x (n)=d (n)+v 

(n), 

EquatioD B-2 

Where ideally d (nM (n). 

The coefficients a (1c) and b (k) are called the filter coefficients. Separating all the 

components ofy (n) and x (n). 

Taking the z-transfonn of the above equation 

Y(z)(J + L':_la(lc)z.J:) = X(z)L%-ob(k)z.J: Equation 8-03 

Y(z) r.loob(k)z.J: 
H(z) = X(z) = 1 +- r.:_1a(k)z-l Equation B-4 

H (z) is the pole-zero representation of the transfer function of the predictive 

filter. 

There are three forms of models: 

(1) If a (0)=1 and a (k)=O for k>O. then H (z) is an all-zero model known as the 

Moving Average (MA) process. 
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H(zj ~ Y(z) ~ 'Lk-ob(k)z.J: Equation B-5 

y(n) = rJ-ob(k)x(n - k) Equation B-6 

The output is predicted only by the past and present inputs and is often used in 

functions to smooth the signal. 

(2) If b (0)=1 and b (k)=O for k>O. the H (z) only contain poles, this is know as 

an autoregressive (AR) process. 

J 
Equation JJ..7 

Equation B-8 

The output is predicted from past output values. The AR process is widely used. 

In some applications the signal generated will result in an all-pole model or filter, 

but in others it has been found that AR produce sufficiently accurate 

representation of many types of signal. The problem with the AR modelling are 

that the output values of the filter need to be known before hand, or the signal to 

noise ratio needs to be sufficiently large enough that a good estimate of the signal 

can be used. 

Y(z) ~:oQb(7c)z..t 
H/ZI--~ 

";1 - X(z) J + ~:~}a(k)z-t 
Equation 8-9 

(3) The final case is where both poles and zeros are used, this is called an 

Autoregressive Moving Average (ARMA) process 

This has the properties of both the moving average and autoregressive processes, 

leading to methods that can predict output values based on previous and present 

values of inputs and previous output values. The point ofthese three cases is to 

predict what the value of the output signal is going to be~ by modelling the 

signal. 
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B.l Averaging 
Ensemble averaging can be considered as a moving average (Challis and Kitney, 

1990). 

1 + Z-l + Z-21 + ... +Z-(N-I)l 1 1- z-Nk 
H(z)=----N----- N l-z-' Equation 8-10 

If there are N responses each of k samples long, then the z-transform of the 

filtering operation is shown in equation (2) and this is a moving average low-pass 

filter. 

B.3 Relating Mean-Squared Error (MSE) and Signal-to-Noise Ratio (SNR) 
The assumption has been that the filtered signal (filtered) is the target signal plus 

noise and as the signal and target are Voltage so the ratio of the signal (target) and 

noise power is: -

~:>arge/2 
SNR = =---'-=------:­

'L(jiltered - target)2 

and 

1 
MSE = -'L (jiltered - target)2 

N 

'Ltarget2 
SNR= N.MSE 

Equation B-ll 

Equation B-12 

Equation 8-13 

As N, the number of samples in the filtered signal and the power of the target 

signal are constants for the data set used, then 

1 
SNRac-

AfSE 
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C Selection of MATLAB programs 

C.I Time invariant filter bank (Chapter 6) 

function (temprx,rrxJ=gam5e1x(dat,av,rp,5z2,mu,R) 

fs~3750; %Half the sampling frequency in Hz 
szl=max (s i ze (dat ) ; 
sz3=min (s i ze (dat )) ; 
5z4=3; 
szl - size of the sequence 

%sz2 - s~ze of the initial population defined as input argument 
sz2 
%sz3 - the number of examples 
%sz4 - The number of parameters 

frequencies Selecting the filter cut - off 
f(:,1 )=1 00.*rand ([ 5z2,1) ) ; 
%Selecting weights 

f ( : , 2 ) "" 3 0 0 • * rand ( (s z 2 , 1] ) + f ( : , 1) ; 

w=rand ( [5z2, 1 ) ) ; 

%Removing mean val ues from the target signal 
av=detrend(av,O ) ; 

%Producing the subaverages 
rndd1 =floor (sz3/R ) ; 
lxx=l; rrx;=O; 
for loopl=O: (rnddl-l) 

avv ( :, l oop1+1 ) =detrend (mean(dat(;,loopl . *R+l : (loopl+l) ~*R) ') ', 0) ; 
end; 

%A set of target signal same size as the subaverages 
for loop=l:rnddl, 

avvx ( :, l oop) =av.*ones([szl,l]); 
end; 

%While the number of generations is less than the set value 
%iterate 
while ( (lxx<=rp) ) 

clear CInn; 

for 11=1:5z2, 
%Producing the filtered results 
[bl, al)=butter (2, [f (11 , 1) Ifs f (11 , 2) IfsJ) ; 
yy=filtfilt (bl,a1,avv) .*w(ll) ; 
%Ca1culating the MSE values and Mean MSE value for the 
%individua1 solution 
e=yy-avvx; 
cmn1~ean(e.*e); 

cmn (11 )=mean (cmn1); 
end; 

r = (f wJ ; 

vn=[cmn' (1 : 5Z2) 'J; 

%Sorting the sequences in fitness function descending order 
[S4, sl]=sort (vn ( :,1» ; 

%select individual to produce new generation 
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s4=1. 184; 
ss4;round(s4./lO) '+1:suml~sum(abs(ss4»; 
clear se le 
c:::rO; 
for loop=1:sz2, 

sele (e+1: C+ (854 (loop) ) ) =sl (loop) . *ones ( r ss4 (loop), 1 J) , ; 
e=c+ss4 (loop) ; 

end : 
sz=max(size(selc»; 
cheekl=zeros([sz2,1]); 
gx ( 1 : 5 z 2 1 4, : ) "'" r ( s 1 (1 : 5 Z V 4) , : ) ; 
rl=floor (rand ( [3. * (5z2/8) ,2) 1 • * (sz-ss4 (loop) } } +1; 

for loop=1:3.*(sz2/8)~ 
r2=round((sz4-Z) .*rand)+ l ; 

gx((sz2/4)+loop, :)=(r(selc(rl(loop,l}),1:r2),r(selc(rl(loop, 2» ,r 
2+1:sz4»): 

gx((sz2/4}+3.*(sz2/8)+loop, :) =[r(selc(rl(loop,2»,1:r2),r(selc (rl 
(loop, 1», r2+1: 5z4)]; 
end; 

pp(:, :)=abs(rand(5z2,5z4-1 ) : %Randoml y genera ted probabili5tic 
values 
for loop=2: sz2, 

for loop2=1:sz4-1, 
if (pp (loop, loop2) <=mu) %i s pp<=mu 

r5=O.25.*(rand-O.5); 
gx(loop,loop2}=gx(loop,loop2)+r5.*gx(loop,loop2); 

end : 
end ; 

end ; 
temprr=r; 
r=gx;f=r(:,1:2) ;w=r(:,3); 
rrx(lxx)=1./s4(1); 
lxx 
[1./54(1)1 
temprr(sl(1),1:3) 
lxx=lxx+l: 
end ; 
temprx=temprr(sl(l),:) ; 

C.l Combined evolutionary algorithm and wavelets approach (Chapter 8) 
function (finall,rrx)=gn5(inp,av,5z1,rp,mu,R,xz1,loopout) 

[sz2,sz3]=size(inp) ; 
and 

%Calculate s l eng th of sequence sz2 

%Select the level of the sequence t o avo id unnecessary processing 
Lev""ll; 
3z4:;:Lev+4; 
5zx=O; %Value one less than the first i ndi v idua l to be tested 

%Averaging the input signals into rnndl signals 
rnddl=floor(sz3/R}; 
lXK""l;rrx=O; 
for loopl=O: (rnddl-l), 

datl (:, loopl+l) =mean (inp (: ,loopl. *R+l : (loop1+1) . *R) ') '; 

end; 
datl1=detrend(datl(Kzl:225, : ) ,O);av1=detrend(av(xzl:225 ),O); 
dat12~detrend(datl(225:sz2, : ) ,O ) ;av2=detrend(av(225:3z2),O); 
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%Weightings individual ranging from -1 to 1 
GAxl ( : , : , : ) =5. * ( (rand (5zl, Lev+2, 2) ) -0.5) ; 
GAx2c round(45.*rand(5z1,1,2»+1: 
GA=[GAx2 GAx1 zero5([szl,1,2})]i 

%lxx is the generation number. 
1xx=1; 

%Main loop counting the number of generations from 1 to the value 
rp 
while (l.xx<""rp), 

%loop to process szx+1 individuals in the population 
for loop2=1:szl, 

[wnl)=5elwavelet(GA(loop2,1,1»: 
[wn2J c se1wavelet(GA(loop2,1,2» ; 

%wnl and wn2 are the wavelets for the region <30 ms and 30-400 ms 
%re5pectively 

[c,LL]=wavedec(avl,7,wnl); 
[cc,LLLj=wavedec(av2,11,wn2); 
nn(l )=O ;nnn(l)=O; 
for loop1:2:9, 

nn(loopl)=nn(loopl-l)+LL(loopl-l): 
end; 
for loopl1=2:13, 

nnn(loopll)=nnn(loopll-l)+LLL(loopll -l); 
end : 

for loop=l:rnddl, 
[C,LLJ=wavedec(datll(:,loop),7,wnl); 
[cc,LLL)=wavedec(dat12(:,loop) ,11,wn2); 
for loopl=2:9, 

cx«(nn(loopl-1)+1) :nn(loop1»= 
c«nn(loop1-l)+1):nn(loop1» .*GA(loop2,loopl,1); 

end; 
for loopll=2:13, 

ccx«nnn(loop1l-1)+1) :nnn(loopl1»= 
cc ( (nnn (loopll-

1)+1) :nnn (loop11 » .*GA(loop2,loopll,2); 
end ; 
%Reconstruct the signal by combining the GA sequence and 

the wavelet coeff~cient 
xx=waverec(cx,LL,wnl); 
ccl=xx'-avl; 

%error between the reconstrJcted signal and target signal 
cmnxl (loop ) =mean (ccl . *cc1); ~,MSE 

xx1=waverec (ccx,LLL,wn2 ) ; 
cccl=xxl'-av2; 

%error between the reconstructed signal and target signal 
cmnx2(loop)=mean(cccl.*cccl); ~MSE 

end; 
%mean MSE for the individual solution 
mn 1 «mean ( cmnx 1) ; 
cmnlx(loop2)cmnl; 
mn2=mean(cmnx2); 
cmn2x(loop2)zron2; 

end ; 

vnl=[cmnlx' (1:5z1)']; 
vn2=[cmn2x' (1:5Z1) ' J ; 
;:.Sort 1".g the 5eq..lenCes in fitness function descending order 
[s41,sll)=sort(vnl); 
[s42,s12)usort(vnZ); 
51 :o::[1 :5z1 J '; 
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54=(s41(:,l)+542(:,1»./2; 
GAl ( : , : , 1) =GA ( s 11 ( : , 1) , : , 1) ; 
GAl (:, : ,2) =GA(s12 (:,1), :,2); 

~ Setting up the roulette wheel 
5B4~round(O.Ol./s4) '+1; 
sum1=sum(ss4); 
clear selc 
xc=O; 
for loop=l:szl, 

selc(xc+l: (xc+ss4(loop»)=s1(loop) .*ones([s54(loop),1) '; 
xc=xc+ss4(loop); 

end ; 

sz=max(size(selc»; 
clear gXi 

%Fi ttest quar t er of the population go through to the next 
population 

gx ( 1 : 5 Z 1 1 4, :, :) =GAl ( [1 : s Z 1 / 4] , : , : ) ; 

~ selecting where on the 'wheel' the sequence to crossover 
occur 

rl=floor (rand( [3. * (Bz1/8), 4) • * (sz-ss4 (loop») +1; 

%Crossover t he sequences 
for loop=1:3.*(sz1/8), 

r2=round«sz4-1) . *rand) +1; 
gx«sz1/4)+loop, :,1)= 

[GAl (se 1 c (r 1 (loop, 1) ) , 1 : r2, 1) , GAl (s e le (rl (loop, 2) ) , r 2+ 1 : s z 4, 1) 1 ; 
gx(5.*(szl/8)+loop, :(1)= 

[GA1(selc(r1(loop,2»,l:r2,1),GA1(selc(rl(loop,l»,r2+1 :5z4,1)]; 
gx«szl/4)+loop, :,2)= 

[GA1(5elc(r1(loop,3),l:r2,2),GA1(selc(rl(loop,4»,r2+1:5z4,2)]; 
gx(5.*(szl/8)+loop, :,2)= 

{GAl(selc(rl(loop,4»,1:r2,2),GA1(selc(r1(loop,3» ,r2+1:sz4,2»); 
end ; 

~Muta tion 

ppr(:,:, :)=abs(rand(szl,sz4-1,2»; 
Randoml y generated probabl istic values 

for loop4=1:2 
if loop4==1,mml=lO; end; 
if loop2==2,mm1=14; end 
for loop=2:sz1, 

for loop2=1:mm1, 
if (ppr(loop,loop2,loop4)<=mu) %is pp<=mu 

if loop2>=2, 
gx(loop,loop2,loop4)= 
gx (loop,loop2,loop4) .*(1+(O.25.*(rand-O.5)); 
end ; 
if loop2==1, 

gx(loop,loop2,loop4)=round(45 .*rand)+1; 
end ; 

er.d ; 
end; 

end ; 
end ; 

%Temporary s ore for the current population 
tempr-GA1; 

New population becomes current popu l ation 
GAcgx; 
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rrx(lxx)~s4(1); ~Store the maximum fitness for population 
tempr (l,l, :) 
lxx=lxx+l; ~increment generation counter 

end ; 
%Fina l s equences 
final1=[tempr(1, :,:)]; 

C.3 Splitting tbe signal 
function (tempr,rrx,stemp]=nisind2d2 (dat,av, sz2,rp,mu,R) 

sz4~21;fs~3750;sxxz=O; 

[szl,sz3]==size(dat ) ; _s i ze o f t he sequence 

%Selecting the fl lter cutof f frequencies 
f (:,1, :) =50. *rand{ [5z2, 1,2) ; 

f ( : , 2, : ) = 5 0 . * r ahd ( [5 Z 2, 1, 2] ) + f ( : , 1, : ) ; 
f ( : , 3, : ) == 3 0 0 . * rand ( [s z 2, 1, 2 1 ) ; 

f ( : , 4, : ) =300. * rand ( (S 22, 1, 2 J ) + f ( : I 3, : ) ; 
f ( : , 5, : ) == 5 0 . * rand ( (5 Z 2, 1 ~ 2] ) ; 

f ( : , 6, : ) =50. * rand ( [sz2, 1,2] ) +f ( : ,5, : ) ; 
f (: ,7, : ) =300. * rand ( [5z2, 1,2 J ) ; 

f ( : , 8, : ) == 3 0 0 • * rand ( [s z 2, 1, 2) ) + f ( : , 7, : ) ; 
[(:,9, :)=50.*rand([sz2,1,2]); 
f ( : , 1 0, : ) == 5 0 • * rand ( [ s z 2 I 1 , 21 ) + [ ( : , 9, : ) ; 
f ( : , 11, : ) ::: 3 0 0 . * rand ( [s z 2, 1, 2 J ) i 
f ( : , 12, : ) = 3 0 0 . * rand ( [s z 2, I, 2] ) + f ( : , 11, : ) ; 

wl=190.*rand([sz2,2]); 
w2=750*rand([sz2,2JJ; 
W ( ; , : , 1 ) ==w1 ; w ( : , : , 2) :::w2 ; 
~rand([sz2,6,2J ) ; 

w=round (w) ; 
rnddl=floor(sz3/R); 
lxx=l;rrx=O; 

for loop1=0: (rndd1~1 ) 

datl(:,loop1+1)=mean(dat(:,loopl.*R+l: (loopl+1) .*R) ') t; 
end; 
avl=detrend(av(16:225),O); 
av2 r detrend(av(226:3001),O); 

while (lxx<~rp)&(rrx<O.99» 

for 11=sxxz+l:sz2, 
clear ttl;clear tt2;clear YYi 
for loopcl=1:2 
for loopff""1:2 

for loopf=1:2:11, 
if f(ll,loopf,loopff»=f(ll,loopf+l,loopff) 

tempf=f(ll,loopf+l,loopff); 
f(ll,loopf+l,loopff)=f(ll,loopf,loopff) .*1.1; 
f(11,loopf,loopff}~tempf.*O.9; 

end ; 
if (f(ll,loopf,loopff»lOOO), 

f(11,loopf,loopff)~900; 

end : 
if (f (11,loopf+l,loopff»1000), 

f(11,loopf+l,loopff)=900: 
end ; 

end ; end i end; 
[bl,alJ=butter(2, [f(ll,11,l)/fs f(11,12,1)/fsJ); 
[b2,a2 ]=butter(2, (f(11,9,1)/fs f(11,10,1)/fs]); 
[b3, a3] =butter(2, [f (11, 7,1) Ifs f (11,8,1) Ifs]); 
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[b4,a4]=butter(2, (f(11,5,1)/fs f(11,6,1)/fs); 
(b5,a5]=butter(2, [f(11,3,1}/fs f(11,4,1)/fs]); 
[b6,a6]=butter(2, [f(ll,l,l)/fs f(11,2,1)/fs]); 
for loopwx=1:2 
if «w(11,1,1)+17»=w(11,2 ,1» 

tempw::w(11,2,1) ; 
w(11,2,1)=w(11,1,1)+32; 
w(ll,l,l)=tempw; 

end : 
if «w(11,1 ,1 )<2», w(11,1,1)=2; end; 
if w(11,2,1»=170, w(1I,2,l)=16: end; 
end; 
tl = ( 1/ 15) . * ( (w ( 11 , I, 1) : 1 : w (11, I, 1 ) + 141 '-w (11, 1, 1) ) ; 
t2= (1/15) • * ( [w (11,2, 1) : 1: w (11, 2, 1) + 14] '-w (11, 2, 1) ) : 
yll(:, :)=filtfilt(bl,al,dat1(16:225,:»; 

y21 ( : , : ) = f i It f i It {b2 , a2 , da tl (16: 225, : ) ) i y1 =ww (11, 1, 1) • * yll +ww ( 11, 
2,1) . *y21; 

y31 (:, :) =filtfilt (b3, a3, datl (16: 225, : ) ) ; 

y41(:, :)=filtfilt(b4,a4,dat1{16:225, :»iy2=ww(11,3,1) .*y31+ww(11, 
4,1) . *y41; 

y 51 ( : , : ) = f i It f il t (b 5, a 5, da t1 ( 16 : 22 5, : ) ) ; 

y61(:,:)=filtfilt(b6,a6,dat1(16:225, :» iy3=ww(ll,5,l) .*y51+ww(11, 
6,1) .*y61; 

for lx2=1:rnddl, 
tt1= «1-

tl) .*y1{w(ll,l,1)+l: (w{1l,1,1)+lS) ,lx2)+(t1.*y2(w(ll,l,l)+1: (w(l 
1, 1, 1) + 15) , lx2) ) i 

tt2=( (1-
t2) . *y2 (w (11,2,1) +1 : (w (11,2,1) + 15) , lx2) ) + (t2. *y3 (w (11,2,1) + 1: (w (1 
l,2,1)+lS),lx2»; 

yy=[yl(1:w(11,1,1),lx2);ttliy2(w(11,1,1)+16;w(11,2,1),lx2); tt2 iy3 
(w(1l,2,1)+16:225-1S,lx2) ]; 

if max(size(yy»-=(225-15),yy=yy(l:225-15); end; 
e=avl-yYicmnxz(lx2)=rnean(e.*e): 

end ; 
clear tt1iclear tt2;clear yy; 
crnnx(ll)=rnean(cmnxz); 
[bll,all]=butter(2, [f(l1,11,2)/fs f(l1, 12,2) Ifs]); 
[b21, a21]=butter (2, [f (11, 9, 2) Ifs f{ll, 10,2) Ifs]); 
[b31,a31)==butter(2, [fell, 7,2) Ifs fell, 8,2)/fs]); 
[b41,a41)::butter(2, [f(ll,5,2) Ifs f(11,6,2)/fs]); 
(b51,a5l)=butter(2 , [f(ll,3,2)/fs f(l1,4,2)/fsJ); 
[b61,a61)=butter(2, (f(11,l,2)/fs f(11,2,2)/fsJ); 
for loopxw=1:2 
if «w(11,1,2)+17»=w(11 ,2,2 ») 

t empw=w ( 11 , 2, 2) ; 
w(11,2,2)=w(11,1,2)+32; 
w(11,1,2)=tempw; 

end: 
if «w(11,l,2)<2», w(11,l,2)=2; end; 
if w(11,2,2»=0.S.*szl, w(11,2,2)=200; end; 
end ; 
t 1:: ( 1/7 5) . * ( (w ( 11, 1, 2) : 1 ; w (11, 1, 2) + 7 4] t -w (11, 1, 2) ) ; 
t2== (1/7 5) • * ( tw (11,2,2) : 1: w (11,2,2) + 7 4) '-w (11,2,2) ) ; 
y111 (:, :) =filtfilt (bll, all, datl (226: 3001, :) ) ; 

y211 (:, : ) =filtfilt (b21, a21, datl (226: 3001, : ) ) ; yxl=ww (11,1,2) . *y111 
+ww ( 11, 2 , 2) . * y2l1 ; 

Y 311 ( : , : ) = f il tf il t (b 31 , a31 , da t1 (226 : 3001, : ) ) ; 
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y411 (:, : ) =filtfilt (b41, a41, dat1 (226: 3001, :) } ; yx2=ww (11,3,2) • *y311 
+ww(11,4,2) .*y41l; 

y511(:, :)=filtfilt(b51,a51,datl(226:3001,!)}; 

y611 ( :, :) =filtfilt {b61, a61, datl (226: 3001, : ) ) ; yx3=ww (11,5, 2) . *y511 
+ww(11,6,2) .*y61l: 

for lx2=1:rnddl 
ttl= ( (1~ 

t1) • *yx1 (w (11,1,2) +1: (w (11,1 ,2) +75) ,lx2} ) + (tl. *yx2 (w (11,1,2) +1: (w 
(11,1, 2) +75) ,lx2} ); 

tt2""( (1-
t2) .*yx2(w (11,2,2}+l: {w(ll,2,2)+75},lx2}}+(t2.*yx3(w(11,2,2}+1: (w 
(11,2, 2) +75), lx2)}; 

yy=[yxl(1;w(11,1,2),lx2};tt1;yx2{w(11t 1 ,2}+76:w(11,2,2),lx2);tt2; 
yx3(w(lI,2,2)+76: (szl-225) ,lx2»); 

if max(size(yy»-=3001-225,yy=yy(1: (3001-225}}; end; 
e=av2-YYicmnxZz(lx2)=mean(e.*e); 

end ; 
cmnxzl(ll)=mean{cmnxzz) ; 

end; 
if (Ixx>l), 

cmnx(l:sxxz)tcmn(sl(l:sxxz},I); 
end; 
cmn ( : , 1) =crnnx • ; 
if (lxx>l), 

cmnxzl(1:sxxz)=cmn(sl(1:sxxz),2); 
end; 
cmn ( : I 2) =cmnxz 1 • ; 

rr[f w ww zeros([sz2,l,2]}): 
vnl=[cmn(:,l}); 
vn2= [cm.n ( : , 2) ] ; 

~sorting the sequences in fitness function descending order 
[s41,s11)=sort(vnl); 
[s42,sI2J=sort(vn2); 
%[s41 s42) 
r (1 : s z2, : ,I ) =r ( s 11 ( : , 1) , ! ,I} ; 
r { 1 : s z 2, : , 2 } =r ( s 12 ( : t 1 ) , : , 2) ; 

s4=(s41(:,l}+s42(:,l» ./2: 
sl=[1:5Z2Ji 
ssx4=1./s4 (:, I); 
for loop=1:sz2 

if «ss4{loop)<10 A IO}&(ss4{loop»l}) , 
ss4(loop)=ss4(loop}; 

else 

end 
end; 

554 {loop)==l; 

%Cal1 to the function to produce new generation 
ss4=round(O.01.*ssx4) '+1;suml~sum«5S4}); 
clear selc 
c=O; 
for loop:ul:sz2, 

selc(c+l:c+ (554 (loop» )=sl (loop). *ones ([554 (loop) ,1) '; 
c=c+ss4 (loop) i 

end; 
sz=max(size(selc»; 
clear qx; 
gx(1:sz2/4,:, :)=r(1:sz2/4,:,:); 
r1=floor(rand([3.*(sz2/8),2) .*(5z-ss4(loop»)+1; 
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for loop=1:3.*(sz2/8), 
r2=round ( (sz4-2) . *rand) +1; 

gx«(sz2/4)+loop,:,1)=[r(selc(rl(loop,l)),1:r2,l),r(selc(rl(loop,2 
)),r2+1:sz4,l)]; 

gx((sz2/4)+3.*(sz2/S)+loop, :,1)=[r(selc(r1(loop,2)),1:r2,1),r(sel 
c (rl (loop, 1 ) ) , r2+ 1: sz4, 1) ] ; 

gx((sz2/4 )+loop,:,2)=[r(selc(rl(loop,1)),l:r2,2),r{selc(rl(loop,2 
)),r2+l:sz4,2)); 

gx((sz2/4 ) +3.*(5z2/8)+loop, :,2)=[r(selc(rl(loop,2),l:r2,2),r(sel 
c(rl(loop,1)),r2+1:sz4,2}]; 

end ; 
ppr(:,:, :)=ab5(rand(sz2,sz4-1,2)); %Randomly generated 

pobablistlc values 
for loop4=1:2 

for loop=sz2./4:5Z2, 
for loop2=1:sz4-1, 
if (ppr(loop, loop2, loop4) <=mu) %is pp<=mu 

r5=O.25.*(rand-O.5); 

gx(loop,loop2,loop4)=gx(loop,loop2,loop4)+r5.*gx(loop,loop2,loop4 
) ; 

end: 
end; 

end; end ; 

tempr=r;tempr(:,13:14, :)=round(tempr(:,13:14, :)); 

r=gx;f=abs(r(:,1:12,:));w=abs(round(r(:,13:14, :) )) ;ww=r(:,15:20,: 
) ; 
rrx(lxx)=54(1); 
lxx, (s41(1 ) 542(1 ) 54(1)) 
sxxz=O; 
t. t empr (51 (1) , : 

stemp=tempr(sl(l), :); 
lxx<=lxx+l; 

end; 

C.4 Wavelet Optimal Filter (Demand et ai, 1996) 
function [outl,dat_ffi,H)=dfilterw1(inp,L) 

[sz2,sz3)=5ize(inp); 
R==floor (sz3/L); 

for loop1=O: (R-l), 
dat_m(:,loop1+1)=mean(inp(:,loopl.*L+1 : (loopl+l) .*L) ') '; 

end ; 
mav-xmean (inp' ) , ; 
[cl,Len1) = wavedec(mav,11, 'dmey' ); 
~Decomposing the grand averaged signa l i nto details and 
"' app rox imations 
frql==cl.*cl; 
for loop=l:R 

[c2,len2] = wavedec(dat_m(:,loop),ll, 'dmey') ; 
Decomposing each averaged s i gna l into detai l s and 

<approx ima tions 
frq2(:,loop)=c2.*c2; 

end; 
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mav2=mean(frq2') '; 
[szzl,szz2]csize(mav2); 

%Avo1ding dividing by zero errors by setting any components that 
%equal zero to a small number several orders of magnitude smaller 
%than the n~~~er likely as wavelets components 
for loop=l:szzl 

if frql{loop):=O,frql{loop)=le-14; end; 
if mav2(loop)==O,mav2(loop)=le-14; end; 

end ; 

%The transfer function 
H= (R. / (R-1 ) ) . * {1- ( (1/R) . * (mav2. /frql) ) ) : 

%Fil:ering the averaged signals 
for loop=l:R 

[c3,len3] = wavedec(dat_m(:,loop),11, ' dmey ' ) 
outl{:,loop)= waverec(c3.*H,len3, ' dmey ' ); 

end ; 
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Filter selection for t'\ oktd potentia Is using genetic algorithm 
:cchniqucs 

J A Campbell, S Turner, P PlC 1011 

UmvenllY ('ollege Northamptoll ilK 

Introduction 

The recordmg of potellltals evoked by different parts of the human nervous 

system 111 response to sJl'!(lfic stImuli can lead to vital infonnalion on 

neurophysiological mechanisms and function and· are an important teclmique in 

neurological diagnosis and research. The main problem with these teclmiques 

however IS Ihe presence of eleclncal noise from other sources, which can mask or 

distort Ihe underlying signal. This unwanted activity originates from sources such 

as olher parts of the body (e g muscle, heart, other neural structures), recording 

equipment, or the local electrical environment (Harrison and Lovely 1995). 

Ensemble averaging is the most commonly used method of reducing the noise in 

evoked potential recordings This technique calculates the algebraic Sllm of a 

large number of repeated, triggered responses. The main disadvantages of this 

method are that the signals need to be collected over a relatively long period of 

time, which may be tmdesirable or impractical. and that lhe signals may vary with 

time, leading to distortion of fealures within the signal. 

This paper describes a method that aims to reduce the number of slimuli 

needed 10 produce an evoked response comparable 10 a 'good' averaged response 

and reports Ihe results 10 date of Ihis on-going work. The objectives of this 

proJecl were 10 design a syslem Ihal uses post-recordmg digital filters to reduce 

the nOise components to sllch an exlent that the number of responses needed 10 be 
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.1\ I!rag~d clluld be substanllally reduced \\ Ith no slgndicalll degradalloll of the 

final a\'~raged response The frequency spectrum of the nOise compollelll of 

~\"oked potentlals overlaps wllh that of rhe signal spectnlln and is different for 

each recording situation. It was nol considered realiSlic Iherefore 10 apply a fixed 

set of filters 10 all recordings An evolullonary approach 10 individual selection of 

Ihe most appropriate filters for each sel of data was rherefore laken 

Methods 

All Ihe signals were recorded on FM tape, uSing a STORE 4 FM lape 

recorder (RACAl Recorders), using analogue filters wilh a bandpass of 0 016-

750Hz The evoked potentials used in this work were recorded intraspinally al Cl. 

1 in response to stimulation of the median nerve al Ihe wrist. The data was 

collected IISlI1g a Gateway 2000 Penlium P90 computer via an interface card and 

data acqUIsition software (PCJOF, Eagle Technology). AJI the fillers and 

evolutionary algorithms were developed and unplemented in MA TLAB 

(MalhWorks, USA). 

Recorded data consisting of 222 responses were collected from Ihe tape. A 

tOlal of 38 responses were excluded from the expenments as they 'were found to 

contain artefacts such as 'clipping'. Using the remaining 184 recorded responses, 

Iwo sets of data with 92 responses in each were fonned into a test and a training 

set. These selS are rc:ferred to here, as the recorded data. An average of the 184 

recorded responses was used to form a reference Signal which was the target 

signal that the fillers aimed to extract. Pre-stimulus recordings, i.e. electrical 

activity recorded just before stimulation occurred, were used as a source of 
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backgrollnd IllHSC: whIch was also added to the: rdi:rcnce sIgnal to neatc 

:'Jlllulalcd recordmgs with a known sIgnal and tYPICal nOIse charactenstlcs This 

simulated data (target signal-+nolse) set was split 11110 a tramlllg set (55 responses) 

and a test set (56 responses) 

The arrangement of the filter bank is shown m FIgure I. Each signal was 

passed through each filter separately. The output of thIs system was the response 

produced by a weighted SWll of the mdividual filter outputs 

The results shown in Ihis paper are those obtallled uSlllg 3 filters in the filter 

bank. The filters were 4. order BUllerworth band pass filters, implemented using 

the MATLAB command FILTFILT. This command produced a zero-phase shift 

filter, whIch means that the filter ilself did not produce a phase shift in the signal. 

Butterworth filters were selected because of their relatIvely smooth pass-band. 

AJI the filters were set up randomly so that initially the low frequency cut-off 

was withm the range 0-200Hz, and the high frequency cut-ofT was selected to be 

up to 300Hz higher than the low frequency cut-ofT. Sub-averages (averaging 

small sets of signals) of the input sets was performed to reduce the noise level. 

Again, Ihe resulls shown ~ Ihis paper are Ihose oblamed when 10 responses were 

used in each sub-average. The stimulation rate was set al two stimula.ions per 

second, so sub-averages of 10 responses equate to 5 seconds worth of evoked 

responses. In the training process every example in Ihe sub-averaged training set 

was used to measure the fitness of the "individual' set of filters and weightings in 

the populatIon of possible solutIons The mean of all the example fitness values 

for .hat indIvidual solution was used Bolh simulated data and recorded data were 

used to develop and test the filter banks 
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W1 

Wx-l 

Wx 

Fig I - Arrong~m~nI of IM set o/x porallel fillers 

A genetic algorithm was used to select the optimum filter seltings for each 

set of data. This is a computer-based problem solving system, which uses some of 

the mechanisms of evolution as key elements in their design and implementation. 

The computer creates a population of structures that evolve aq::ording to specified 

mles of selection. The evolutionary mechanisms involve procedures such as 

crossover, mutation and fitness-proportionate reproduction and therefore mirror 

such processes in the natural world. Fitness for purpose measures are then lIsed to 

assess the success of this generation of structures and the process is iterated until 

a satisfactory end-point is reached. 

The genetic algorithm for filter selection comprised of procedures for 

creation of initial filter parameters, evaluation of goodness-of-fit against the 
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known signal and selccllon and mlllallOI1 of filter parameters which were in tum 

evaluated for fit and so on lIntil a satisfactory fit was obtained 

Two sets of data were used initially for this work. To simulate the situation 

whereby the underlying signal is unknown, the test and training sets of data were 

used. The reference signal + noise data was used to assess the perfonnance of the 

system against a known signal. 

A population of random 3-filter 'chromosomes' was created (n=80). each 

encoded as a sequence of floating pomt numbers on the chromosomes. This 

representation was selected as it closer to the values expected and the methods 

used. Michaelwicz (1996) suggests that floating-point values are "intuitively 

closer 10 Ihe problem space". Each chromosome comprised of 9 numbers, 

representing the low frequency limit, the high frequency limit and the weighting 

factor for each of the three filters. 

The Mean Squared Error (MSE) between the results of the evolutionary 

algoritlun and the known target response was used to assess goodness of fit. 

I I°"i 2 mse=- e(k) N lcl 

The error is the difTerence between the target signal and the test sequence at 

a point in time, e(lc) 0 The fitness function for the. evolutienary algoritlun was the 

mean MSE for all the training signals. 

The next generation of chromosomes was generated by first selecting the 

25% of chromosomes, which had the best fit and passing them unchanged to the 
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n~'\1 gC'k" allllll I h .. : '~'IIM"lIllg 7 5~o \\'I."rl." prudu(cd b~ a sl."iccllon process IISlIlg 

I."H1SSl1\ I."r The.: se. .. I..:(I, .. 1II p/Occss used In '/lIS work was .he rou/eue wheel 

approach \\'h .... re Ihe higher the fitness of an indIVIdual sequence, Ihe greater the 

probab,IIty that the sequence's genes will be used in the next generation. A set of 

pairs of random numbers, ranging from I 10 Ihe sum of all portions of roulelle 

wheel, \vas used 10 se/ecl Ihe sequences Ihal were Ihe 'parenls' of Ihe nexl 

general,on A third random number was produced. Ihal delennines where along 

Ihe sequence Ihe swapprng occurs. so the 1"0 onglD," sequences produce Iwo 

new sequences. A further random mutation was made in one gene of 5% of the 

nexl general Ion of chromosomes. These random mutations were limited to 

:12.5% oflhe preVIous gene value. 

RHUI.s 

Sm",lated data 

F lcure 2 shows the averaged signal used both as the underlying signal of the 

Simulated data sets and as Ihe target signal. 

This spinal recordmg was chosen as It has small but important early 

companenls and much larger later components which were more time invariant II 

Iherefore combines many of the features that need 10 be taken into account in Ihe 

eXlraction of Ihe evoked potentlals from the background noise. 

Five unfilrered sub-averages of simulated lest data and the effects of filtering 

are shown ID Figure 3 The Signals have been shifted along the voltage axis to aid 

Ihe visual presenlation Three filters were developed usmg the simulated training 

- 20-
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set Companng the results of Ihl.:' ,1.:'1 of tillers and Ihe larget sIgnal. rl.:'sl'",hlancc 

between the target signal and Ihesl.:' tilters can be seen 

F'gllfl! 1. Target signal 
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Figure 3: (0) Unfillered dOlo comprising OI't!rogc!.'t (n~ 10) 0/l/lllltltlll'" data 
(larget ngllol + ~corrJed IIoise). (b) Tht! .uglla/, /11 fa) aJit'r hl'/IIg /,(/\ H'-cl 
thmllgh 0 set of jillers whost! poralllt'/('r.\ II"t'rt' W/c'('/l'd hy " g('IIC!ltc 
U/gOTIIltlll. (Filtt!r characteristics: ./-27 H:. lI't!tgllllllg jacltJr II'~ OI}IJ. 6 7.j 77 
H= 11' 018. BJ-6J7 Hz 11'=0.05) 

The most noticeable feature of these filtered signals is that they have 

nt!gative peaks at around 50ms and 200ms. Two positive peaks in the region lOO· 

200ms were also observed. These peaks are prescnt in the targct signal (Figure 

2) Laler components arollnd 250, 300, 350ms do not appear in the majority of 

the signals. At the beginning of the signal, featllles are not present or have been 

'flattened'. This data set contains stationary (time invariant) signals and It can be 

seen thal Ihis technique gives good noise reduc/lolI although there IS a reduction 

in amplitude of the small early components in thiS Instance 

Recorded data (~'ignal Imknowl1) 

This process was repeated lIsing input Signals which were averages of 10 

sweeps each of conseclllively recorded evoked responses The traming set used 

by the genetic algorithm to define the filter seltmgs was an average of the 
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plccedlllg 92 recorded responses (trallllllg set) The IIlput and ourput signals are 

.• howl1 III Figure 4. 

A nOllceable fearure of all the processed responses, whether from slll1ulated 

or recorded data, was thal features at the beginning of the response were not as 

large as they were in the target signal. The reason for .his was that rhese 

componel1ls were small compared with the rest of the response, and have higher 

frequency components than Ihose in the rest of the response. The dominanr 

features were therefore these larger components, and this was the feature the 

algorithms have preferentially found. Changes In the larger low frequency 

components produced larger changes in MSE than the higher frequency 

componenls of the smaller early components. Both sets of filters illuslraled above 

have a high weighting on low frequencies, which would help to explain why 

componenls al the beginning of the response were smoothed Ollt or reduced. This 

fits with groups such as Rossmi et al. (1981), who used a bandpass filter with 

relatively high frequency parameters (e.g. 150-3000 Hz) to extract shon latency 

componenls (early componenls of the responses). Increasing the number of filters 

was invesligated. but the results were no better, and so did not jusllfy the exrra 

processing needed. A range of different number of responses per average . for the 

input signal was used. but the optimum number of pre-processing sweeps was 

found 10 be 10. 
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F'gll~ ~: fQ) Ullfi/'r~J dula cv"'pn~lIrg Q\~ragf!~ r,,= 10) (If recorc/!~J Jaw. 
rh) ~ ·\lX""/' 11/ (a) tllirr ~"'X P<' .... n:'/ IhrouKh a .'tf!1 (l1.fi"f!r~ lI·hm(' 

pora~/rn .. ·at' \t'/e'<"I('" "J' a Kt'Mlle a/Kcm,h",. (Fi/'f!r cI,arllcl.:ruIICL ./-/8 
H;:. II'r'gh''''K}cltlor ". (J 61. jJ-j6H= " .. O.J/ . .Jl-160 H= ". 0.05) 

Conclusions 

Filtering stimulated responses produced better results Ihan filtering recorded 

responses Tills was believed 10 be due 10 the simulaled response being lime 

invariant They were produced by taking the targel responses, repeating it several 

times, and addmg recorded noise This means Ihat the underlYlIlg response was 

nOl changmg between Ihe responses In the recorded. dala, Ihe underlying 

response can vaf)· belween Ihe responses AJI averaging procedures assume Ihal 

Ihe signal is slalioniu~ and hence thal the frequency components are Ihe same 

Ihroughout Ihe response A \Isual Iflspecllon of the responses suggesls Ihis is nol 

'me, as does the \\ ork by vanous groups using high-pass filtenng 10 extract shon 

latency componenls leg ROSSlIlI et al( 1981 ), McCabee el 31 (1983». A possible 

way around thiS problem IS to allow the filters 10 contnbule 10 the overall final 
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response at different tllnes These are time-varying filters. and "ork IS on-going 

", lI1\'esligate these. 
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Use of Evolutionary Algorithms to Enhance the Extraction of Short Latency 
Evoked Potentials 

Scott J Turner, Phil D Picton, Jackie A Campbell. 
Faculty of Applied Sciences, University College Northampton, 

Northampton, NN2 6JD, UK. 

ABSTRACf 

All eYOIutiooary algoritlun has been used to detennine the cut­
rAf frequeDcies for a bank ofband-pass filters. The output of the 
filta" bank is a weighted SIDD of the outputs of the individual 
filtas. wbere the weights are also detennined by the 
nolutiooary algorithm. lbese filters process evoked potential 
Iipals recorded at ~ spine or scalp of a patient. These signals 
Ire very noisy. and it is COIIIIIlOIl practice to use ensemble 
naaging to remove the noise. which asually requires a large 
JIIIDber of responses. The aim of this work is to reduce the 
JIIIDber of respooscs required by 6h.n.g sub-averages. 

lCeywords: Evoked potcntials, ewlutionary algorithms, filter 
dc:sip • short Iatc:ocy. 

1. INTRODUCTION 

EVCJkcd potcntials (ac evoked respoIllCS) are electrical signals 
rec:uded from a hwnan body in response to stimuli to the 
aenous system. Somatosensory cwb:d potentials are recorded 
IlIiteS such as the scalp or spine. usually due to direct electrical 
stimulation of nerves in arms or Icgs. The features looked for 
.re nqptive or positive peaks at certain known values of time, 
e.g. at 20m1ec. The main problem with e\'OL:ed potentials is the 
pleaeace of noise from. for c:xempIe. other sources within the 
body. and rec:ording c:quipmc:nt [I). There are several 
cIifticUltieS with this noise, one of whicb is that the spectral 
QHE, aoenU of the noise overt.p with those of the C\'Oked 
pokIItial This meaDS that just appIyiDg a baodpess filter will 
DOt extaact the evoked potmtiaI. ... the noise components are 
often IIIUdI bqcr than tJao.c ofthecded potential. Ensemble 
~ is the most commonly used method of reducing the 
aoi.Ie in evoked potential recordings. The main disadvantage of 
this method is that to produce a rcisooabIy noise-free signal, a 
large JUIIIIber" of signa1s need to be a¥eragcd. Collection of a 
large JUIIIIber" of signals means that signals need to be collected 
ewer relatively long periods of time. Taking a long time to 
coUect the data may be undesirable for the subject under going 
the tests. or even impractic:al. and variations between signals 
CIIIl lead to distortion of features in the averaged signal. After 
cmcmblc averaging. a single bandpass filter is often applied [2]. 

The aim of this work is 10 investiple the use of a set of 
haadpess filters to process the signals after ensemble averaging 
iD ordec 10 reduce the number of signals that are needed to 
txInICt the evoked potcntial. The acarcbing abilities of 
CtOlutiOlllllY aIgoritluns were used to ICIed appropriate filter 
panIIIIdaS and· weights. Previous Md has concentrated on 
~ the entire iesponse from the noisy signal which lasts 
r« .-oUDd 400ms (3). It is beliewx1 by many authors e<.g. 
t.faceabc:c et al. (4) that the earlier components (the first 30 ms) 
Ire more: stable than the Iatc compoaaents, and that a great deal 
• U8dW information can be provided from this early 
~ This paper thcrefCR describes work which 
~ only on the cxtractioo of the earlier components. 

2. MEmOD 

Equipment and Data 
All the signals were recorded on FM tape, using a STORE 4 
FM tape 'recorder (RACAL Recorders), in response 10 
stimulation of the median nerve at the wrist The data was 
collected using a Gateway 2000 Pentium P90 Computer via an 
interface card and data acquisition software (PC30F, Eagle 
Technology). All the filters and evolutionaay algorithms were 
developed in MAlLAB (MathWorks, USA). Before being 
stored on tape, the signals were passed through a bandpass filter 
(O.OI6-750Hz). Data set I oonsists of 184 responses split equally 
into a test set and a training set. An awnge of the 184 recorded 
respomes was used to fonn a reference signal which was the target 
signal that the filters aim to extract. ht addition it was possible to 
make simulated data by adding noise to this reference signal. 
Electrical activity recorded just befae stimuIaticn occurred was 
the source of the added noise. This was chosen as it represents 
electrical activity recorded at the same site as Where the evoked 
responses were to be recorded and sbouId therefae oontain similar 
kinds of electrical activity as the 1xdground noise on the evoked 
response recordings. This simulated data (taaget signal + noise) set 
was split into a training set (55 n:!SpOmeS) and a test set (56 
responses). Data set 2 ~ of a test set with 117 responses, 
and a training set with 117 responses. Data set 3 consists 122 
signals in the training set and 121 signals in the test set. Data 
sets I and 2 were. spinal recordings, and data set 3 was a scalp 
recording. 

Filter Banks 
The arrangement of the filter bank is shown in Figure I. The signal 
was passed through each filter separately. The output of this 
system was the response poduced by a weighted swn of the 
individual filter outputs. 

SsBin . 

Fipre J Modelling the raponse as Q set of j parallel filters 

The results shown in this paper are those obtained using 3 filters 
in the filter bank. The filters were 4* order Butterworth 
bandpass filters, implemented using the MA 1LAB command 
FILTFILT. This conunand produced a zero-phase shift filter 
which means that the filter itself did not produce a phase shift i~ 
the signal. Butterworth filters were selected because of their 
relatively smooth pass-band. 

All the filters were set up randomly so th3t initially the low 
frequency cut-off was within "the range 0-200Hz, and the high 
frequency cut-off was selected to be up to 300Hz higher than 
the low frequency cut-off. Sub-averages (averaging small sets 



) of the input sets were created to reduce the noise 
Apia. the results sbown in this Jl8PCI" are those obIainc:d 
10 IapClIISeS were used in e8th sub-average. The 

........ rate was set • two stimulaticas per second. so sub­
of 10 rcspooscs cquaIe to 5 SCCODds v.uth of m>kcd 

ID the traiDing process ew:ry cumple in the sub­
CIainiag set was used to measure the filDess of the 

1Iiri"-l' set of filters and weigbtinp iD the populatioo of 
IOIuIioas. The mean of all the example filDess values 

tIIIl iDdmdual solutioD WIIS used. BoIb simulatccl data aDd 
cilia were used to detdop aDd tat the filter bats. 

".. ... If'1A1pridIID n-.o.... . 
&IB~ ~ CIICOCIed as a JCqUCIICC of ~ pod 

CIl 1bc dJIlOalC«lDeS Michalewic:z [5] suggests that 
point values are -iDtuitiw:ly cIoIer to the problem 

• JIlt-. hadIoa: The fitDess fiIIIdioa used here MS 

..... SquKed Emlr' (MSE) bc:twcm the results of the 
. .Jpi1bm aad the blown CIrF n:spame. The CIJU' is 

cifraaIce bI:twec:o the .... siplllld the test sequeooe 11 a 
iD tilDe. .(t). 

l:LN 
2 mse=- e(k) N hi 

EquatiOll (1 ) 

SelettJoa ad Mutadaa: After the fitness of each of the 
...... bcco cain''*' the top qunr of the original 

....... ID IMlugb to the next ~ unchaFl ie.. thoae 
the Jaisbest fitness (ie.. lowest MSE .aucs). The P'JIIIinias 
CJI*bs of the p'p....... iD the IICCl penIIiaa ~ 

II1II .. :111. by a ICkdicm pocas ... a....a. The scIcttioa 
8ICd in this ~ is the nlIdeae wbeIl ipp'CIICh v.bcft: the 

~ die fitDesI of III iDdiYicUl 'CIp"'llCe, the JrC*r the 
~ IbIt the seqnence's FOeS win be used in the next 
.11'" A set of pas ofnDdam IIIIIIIIwn. nmging &om 1 to 
lie .... of all portions of RIUIeae v.t.ceI. MS used to select the 
... .,IC!I!S tbIl ~ the ~ Of tile next ~ A thinl 
IIDdom JDDbcI' WIIS poduccd IbII cb"";'. s wbae ... the 
IIIqIaCC the SMIlPiaI occars. so the .., originII 'CIp1lCllCCS 
JIIOcb;c two new ~ A·.:aIIId IDItrix MS IOnncd IbII 1l1li 
lie ___ and sbIpe as the pop' .... ...nx. _ ClOIlIaiaacd 

'lilacs iD 1be ... 0 to I. If the Wue iD the mMrix MS less ... 
• equII to the mntation rate, then a ~ MS made to the value 
it 1be popuJIIjon JIIIIrix 11 the CXlit:SfXIIldiIll position. The value 
it the popuJaDon JIIIIrix WIIS aIIcRd by up to +1- 12.5% of the 
cam:d wluc. The popdatim silJe was dIoaen lIS m individulls 
IIId die .... daIim rate WIIS set at 0.05. The evolutionary 
aJaoritllms were all. stopped after 400 generations. 

3. RESULTS 

tlglUC 1 shows how ~ MSE varied during training as the 
lIIIIJJber of generatioos increased for all four data sets. The MSE 
cooWlflDCl to • stable value after 400 gc:nc:rations. 

Figures 3 to 6 show results of the trained filter banks for each 
data Id OD the test data. Table I CIOIiII*.:5 the mean squan:d 
mar between the sipal aad the target signal, when the sub­
~ are unfilteRld. filtaed with a filter bent dtYdopcd for 
tile SMIe data set but for the whole of the signal (4OOms) aDd 
the filler bank trained OD ooly the .11 30ms of the sipal. 
VISUIIIIy there is an improwmcnt when usins these filter banks 
over 1bc unfiltcrcd signals. Ta~le I shows the lowest MSE 
mucs wae produced when the filters WCR developed for this 
smaUcr region of the signal. 
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Fipn 1 The variation in m«m 3qIIIU'«l errOr against the 
mutrber of generatiOll3 thuing the training pl"OCU$lor (0) 
si"",IoI«l data set (h.c. and d) data set 1.1.3 rupectively. 
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Fipn 3 'I'M TaUlts of 0 bank of tJuw filten filtering the 
regiofIl" Jo..u of the si"",lot«ltcrt swbset. eocIt signal" svb­
QYftragtt often signals.. Thefilten lfMr trained on the 1" Jo..u 
of the training nbset lor the dolD set. (0) The ""filtered SIIb­
averages. (h) The nb-ovuage signals ofter filtering. (c) The 
target signals. 

02 ----}--.-~---. 

~ ~ ~ 0 m » ~ 
~ T ...... l 

Fipn ., The ruults of 0 bank of thlW filten filtering the 
region 1st 30ms of dota set 1 ·s test subset. each signal 0 svb­
average of ten signals. The filten wen Irain«lon the I" 30ms 
01 the Iraining subset lor the data $ftt. (0) 7M rmjilteml swb­
averages. (h) The sub-average signals ofter jiltering. (c) The 
target signals. 
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Fipnr j TM results of a bank of three filters filtering the 
regioII 1st JOnu of data set 2 's test subset, t!Qch signal a sub­
. ..-ag- often signals. Thefilten were trained on the J" 30ms 
rf tM training subset for the data set. (a) The unfiltered sub­
~. (b) The sub4Verage signals after filtering. (c) The 
IGtgd .pals. 
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Fi,.". 6 The results of a bank of three filten filtering the 
region 2 to 30nu of data set 3 's test subset, each signal a sub­
tINnIg_often signals. Thefilters were trained 01' d,e 2-30msof 
tIw training subset for the data set. (a) The IInfiltered sub­
tINnIgu. (b) The ~erage signals after filtering. (c) Tire 
ttuget signals. 

Mean Squared Error ( 10.3) 

DATASETS Wlfiltered Whole III 30ms 

Simulated 0.1805 0.1008 0.0764 

DatasetJ 3.6593 0.1302 0.1143 

Data sel2 0.3669 0.2047 0.0851 

Data set 3 0.1593 0.1578 0.0675 

Tabk 1 A comparison of the filter bank pradllced and applied 
to tM 1st JOnu, and when no filtering is applied, and when 
/ill#' developed for 400ms were wed 011 this regiOll. 

4. DISCUSSION 

Evolutionary algorithms enable less specific assumptions to be 
made about the frequency properties of the signal beforehand. 
UIiDg an evolutionary algorithm, the algorithm can select cut­
oft" frequencies for the filter, and weights, based on how well 

the filtered signal matches the shape of the target signal. A filter 
bank approach was selected so that spectral areas that are not 
important to extracting the evoked potential are less likely to be 
included in the filtered result. 

A noti~ble f~ture seen in figures 4 and 5 is the sharper 
features In the SignalS are not being extracted, and in figure 3 
these are being extracted but so are some artefacts. 

S. CONCLUSIONS AND FURTHER WORK 

Previous work [2,4,6] used ensemble averaging followed by a 
single band-pass filter. This paper has shown that fewer samples 
can be used. for ensemble averaging when a more sophisticated 
filter ~ IS used as a post processor. The cut-off frequencies 
and weights were optimised using an evolutionary algorithm. It 
was noted that filtering simulated responses produced better 
results than filtering recorded responses (Table I). This was 
~lie~ed to be due to the simulated response being time 
Invartant. They were produced by taking the target responses, 
repeating it several times, and adding recorded noise. This 
means that the WlderJying response was not changing between 
the responses. ht the recorded data, the underlying response can 
vary between the responses. An assumption has to be made 
about the response that the frequency components were the 
same throughout the response, i.e. that it is statioruuy. A visual 
inspection of the responses suggests this is not true, as does the 
work by various groups using high-pass filtering to extract short 
latency components (e.g. Rossini et aI. [6], Maccabee et al. [2]). 
Therefore, further work is needed to design time variant filters. 
which could also be done using evolutionary algorithms 
possibly in combination with wavelets. 
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Selecting Filter Banks to Enhance Evoked Potentials 
Recordings Using Evolutionary Algorithms 

SI Turner, PO Picton, lA Campbell 
University College Northampton, Northampton, NN2 610, UK 

scott.tumer@nene.ac.uk 

Abstncl Evoked potentials are electrical signals produced by the body in 
response to a stimulus. In general these signals are noisy with a low signal to 
noise ratio. In this paper a method is proposed that uses sets of filters, whose 
cut~ff frequencies are selected by an evolutionary algorithm. An evolutionary 
algorithm was investigated to limit the asswnptions that were made about the 
signals. The set of filters separately filter the evoked potentials, and are 
combined as a weighted sum of the filter outputs. The evolutionary algorithm 
also selects the weights. Inputs to the filters are sets of averaged signal, 4 or 
10 signals per average. Even though there is likely to be variations between 
the signals •. this process can improve the extraction of potentials. . 

1. Introduction 

Evoked potentials (or evoked responses) are electrical signals recorded from a 
human body in response to a stimulus to the nervous system Somatosensory evoked 
potentials in particular are recorded at sites such as the scalp or spine, ordinarily due 
to direct electrical stimulation of the nerves in the arms or legs. The features looked 
for are negative or positive peaks at certain known values, e.g. at 20msec or 
300msec. TIle main problem with evoked potentiaIs is the presence of noise from, for 
example, other sources within the body, recording equipment, or the local 
environment [1]. Noise can dominate the recorded signal, leading to a very low 
signal to noise ratio. There are several difficulties with this noise, one of which is 
that the spectral components of the noise overlap the same region as those of the 
evoked potential. This means that just applying a bandpass filter will not extract the 
evoked potential, and the noise components are s>ften larger than those of the evoked 
potential Ensemble averaging is the most commonly used method of reducing the 
noise in evoked potential recordings. The main disadvantage of this method is that to 
produce a reasonably noise-free signal, a large number of signals need to be 
averaged. Collection of a large number of signals means that signals need to be 
collected over relatively long periods of time. Taking a long time to collect the data 
may be undesirable for the subject under going the tests, or even impractical, and 
variations between signals can lead to distortion of features in the averaged signal. 
After ensemble averaging, a single bandpass filter is often applied. The aim of this 
work is to investigate using a set of bandpass filters to reduce the number of signals 
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that are needed to extract the evoked potential. The searching abilities of 
evolutionary algorithms were used to select appropriate filter parameters and 
weights. 

2. Method 

2.1 Equipment And Data 

All the signals were recorded on FM tape; using a STORE 4 FM tape recorder 
(RACAL Recorders), from spinal recorded evoked potentials in response to 
stimulation of the median nerve at the wrist. The data was collected using a Gateway 
2000 Pentium P90 computer via an interface card and data acquisition software 
(PC30F, Eagle Technology). All the filters and evolutionary algorithms were 
developed and implemented in MATLAB (MathWorks, USA). Before being 
recorded the signals were passed through a bandpass filter (0.0 16-750Hz). 

Recorded data COnsisting of 222 responses were collected from the tape: A total of 38 
responses were excluded from the experiments as they were found to contain artifacts such 
as 'clipping.' Using the remaining 184 recorded responses, two sets of data with 92 
responses in each were fonned into a test and a training set These sets are referred to 
here, as the recorded data. An average of the 184 recorded responses was used to foon a 
reference signal which was the target signal that the filters aim to ex1ract. In addition it 
was possible to make simulated data by adding noise to tIns reference signal. Pre-stimulus 
recordings, i.e. electrical activity recorded just before stimulation occurred, was the source 
of the added noise. This was chosen as it represents electIical activity recorded at the same 
site as where tIle evoked responses were to be recorded and should therefore contain 
similar kinds of electrical activity as the background noise on the evoked response 
recordings. This simulated data (target signal + noise) set was split into a training set (55 
responses) and a test set (56 responses). 

2.2 Filter Banks 

The arrangement of the filter bank· is shown in Figure 1. The signal was passed 
through each filter separately. TIle output of tllis system was tIle response produced by a 
weighted swn of tIle individual filter outputs. 
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JIg. 1. Modeling the response as a set of x parallel filters 

The results shown in this paper are those obtained using 3 filters in the filter 
r bank. The filters were 4th order Butterworth bandpass filters, implemented using the 
MA TLAB command FIL TFll.. T. This command produced a zero-phase shift filter, 
which means that the filter itself did not produce a phase shift in the signal. 
Butterworth filters were selected because of their relatively smooth pass-band. 

, All the filters were set up randomly so that initially the low frequency cut -off was 
within the range 0-200Hz, and the high frequency cut-off was selected to be up to 
300Hz higher than the low frequency cut-of[ Subaverages (averaging small sets of 
signals) of the input sets were created to reduce the noise level. Again, the results 
shown in this paper are those obtained when 10 responses were used in each sub­
average. The stimulation rate was set at two stimulations per second, so sub-averages 
of 10 responses equate to 5 seconds worth of evoked responses. In the training 
process every example in the sub-averaged training set was used to measure the 
fitness of the 'individual' set of filters and weightings in the population of possible 
solutions. The mean of all the example fitness values for that individual solution was 
used. Both simulated data and recorded data were used to develop and test the filter 
banks. 

2.3 E\'OIutionary Algorithm 

TIle filter parameters were encoded as a sequence of floating point numbers on the 
chromosomes. Michalewicz [3] suggests that floating point values are "intuitively 
closer to the problem space. " 

Fitness Function. The fitness function used here was the Mean Squared Error 
(MSE) between the results of the evolutionary algorithm and the known target response. 

(1) 
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The error is the difference between the target signal and the test sequence at a point in 
time, e(k). 

Selection and Mutation After the fitness of each of the filter banks has been 
calculated the top quarter of the original population go through to the next generation 
Wlchanged i.e. those with the highest fitness (Le. lowest MSE values). The remaining 
three quarters of the population in the next generation were produced by a selection 
process using crossover. The selection process used in this work is the roulette wheel 
approach where the higher the fitness of an individual sequence, the greater the 
probability that the sequence's genes will be used in the next generation. A set of pairs of 
random numbers, ranging from 1 to the sum of all portions of roulette wheel, was used to 
select the sequences that were the 'parents' of the next generation. A third random 
number was produced that determines where along the sequence the swapping occurs, so 
the two original sequences produce two new sequences. A second matrix was formed that 
was the same size and shape as the population matrix, and contained values in the range 0 
to 1. If the value in the matrix was less than or equal to the mutation rate, then a change 
was made to the value in the population matrix at the corresponding position. The value 
in the population matrix was altered by up to +/- 12.5% of the .current value. The 
population size was chosen as 80 and the mutation rate was set at 0.05. The evolutionary 
algorithms were all stopped after 200 generations. 

3. Results 

Figure 2 shows the averaged signal used both as the underlying signal of the 
simulated data sets and as the target signal. . 
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This spinal recording was chosen as it has small but important early components 
and much larger later components which were more time invariant. It therefore 
combines many of the features that need to be taken into account in the extraction of 
the evoked potentials from the background noise. 

Five unfiltered sub-averages of simulated test data and the effects of filtering are 
shown in Figure 3. The signals have been shifted along the voltage axis to aid the 
visual presentation. Three filters were developed using the simulated training set. 
Comparing the results of the set of filters and the target si~al, resemblance between 
the target signal and these filters can be seen. The most noticeable feature of these 
filtered signals is that they have negative peaks at around 50ms and 200ms. Two 
positive peaks in the region lOO-200ms were also observed. These peaks are present 
in the target signal (Figure 2). Later components around 250, 300, 350ms do not 
appear in the majority of the signals. At the beginning of the signal, features are not 
present or have been 'flattened.' 
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Fig. 3. (a) Averages of simulated activity (10 simulated evoked response per average). (b) 
The signals in (a) after being passed through a set of filters whose parameters were selected 
by an evolutionary algorithm, based on training with a different set of simulated responses. 

Recorded evoked potentials were passed through the filters used previously. 
Figure 4 shows both the unfiltered and filtered responses. As in Figure 3, some of the 
features can be seen, but the similarities with the target signal are not as clear as 
when the simulated test data were filtered. Figure 5 shows the unfiltered averaged 
test recorded data again, but this time the signals are passed through a set of filters 
developed using the recorded data training set. In comparison with Figure 4, these 
are essentially the same shape but smoother. Table I contains the filter parameters 
and weightings for both sets of filters. Table 2 contains the minimum, maximum, 
mean and standard deviations of the MSE values. 
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Fig. 4. (a) Averages of recorded activity (10 recorded evoked response per average). (b) The 
signals in (a) after being passed through a set of filters whose parameters were selected by an 
evolutionary algorithm (same filters as used in figure 3.) 
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signals in (a) after being passed through a set of filters whose parameters were selected by an 
evolutionary algoritlun, based on training with a different set of recorded responses. 



107 

Cut-off (Hz) 
frequencies 

fx fx+l weight 
0-

3 filter bank 4.022 26.9667 0.9307 
(simulated) 66.751 576.816 0.2848 

133.398 637.093 0.0563 
3 filter bank 3.71 18.4259 0.6253 
(recorded) 52.788 55.649 031 

42.545 260.143 0.086 

,Table 1. Filter parameters selected using the evolutionary approach 

min max. mean sm 
Training Test Data 1003 10-3 10-3 10-3 

Data 

simulated simulated 0.39 0.81 0.61 0.18 
recorded 1.6 5.9 2.7 1.4 

recorded simulated 1.0 1.4 1.2 0.2 
recorded 0.6 3.8 1.7 1.1 

Table 2 Mean Squared Error values for the two filters. 

4. Discussion 

Evolutionary algorithms enable less specific assumptions to be made about the 
frequency properties of the signal beforehand. Using an evolutioruuy algorithm the 
algorithm can select cut-offfrequencies for the filter, and weights, based on how well 
the filtered signal matches the shape of the target signal. A filter bank approach was 
selected so that spectral areas that are not important to extracting the evoked 
potential are less likely to be included in the filtered result. 

A noticeable feature of all the processed responses, whether from simulated or 
recorded data, was that features at the beginning of the response were not as large as 
they are in the target signal The reason for this was that these components were 
small compared with the rest of the response, and have higher frequency components 
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than those in the rest of the response. The dominant features were therefore these 
larger components, and this was the feature the algorithms have found. Changes in 
the larger low frequency components produced larger changes in MSE than the 
higher frequency components of the smaller early components. In Table 1, a list of 
the cut-offfrequencies of the filter banks developed are given. Common to both set of 
filters is a high weighting on low frequencies, which would help to explain why 
components at the beginning of the response were smoothed out or reduced. This fits 
with groups such as Rossini et al. (1981) [4], who used a bandpass filter with 
relatively high frequency parameters (Le. 150-3000 Hz) to extract short latency 
components (early components of the responses). The idea of a bandpass filter to 
extract these components does therefore seem relevant. Increasing the number of 
filters was investigated, but the results were no better, and so did not justify the extra 
processing needed. A reduction in the number of responses per average was tried, but 
the combination of the 'noisier' inputs signals and filters produced were not as 
effective as those where 10 responses were used. 

5. Conclusions 

Filtering simulated responses produced better results than filtering recorded 
responses (Table 2). This was believed to be due to the simulated response being 
time invariant. They were produced by taking the target responses, repeating it 
several times, and adding recorded noise. This means that the underlying response 
was not changing between the responses. In the recorded data, the underlying 
response can vary between the responses. The results of the filter developed using 
recorded data suggest that it was better than the filter developed using simulated 
data, for filtering recorded data (Table 2), at least for the later components of the 
signals. An assumption has to be made about the response that the frequency 
components were the same throughout the response, i.e. that it is stationary. A visual 
inspection of the responses suggests this is not true, as does the work by various 
groups using high-pass filtering to extract short latency components (e.g. Rossini et 
al. (1981) [4], McCabee et al. (1983)[2]). A possible way around this problem is to 
allow the filters to contribute to the overall final response at different times. These 
are time-varying filters, and work is on-going to investigate these. The effects of 
using other sets of intraspinal recordings and scalp recordings are also needed to 
investigate the effects of variations in recordings between subjects. A particular 
problem area is that the later components of the signals are likely to vary more than 
the earlier components. It is possible that other data sets may have signals that vary 
more than these, but this would also be a problem for the conventional ensemble 
average method. 
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