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Abstract

Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely
believed that climate plays an important role in determining specialization. As climate-driven range dynamics should
diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined
by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict
that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns
of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in
plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the
Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20–22% of the spatial variation
in plant-hummingbird specialization. Potential drivers of specialization - contemporary climate, Quaternary climate-change
velocity, and species richness - had superior explanatory power, together explaining 53–64% of the variation in
specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary
precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary
temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological
and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of
contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks.
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Introduction

Plant and animal assemblages do not live and evolve in

isolation, but are entangled in networks of generalized and

specialized biotic interactions [1–4]. Biotic specialization plays a

central role in species coexistence and possible speciation [5,6],

and spatial variation in biotic specialization may therefore drive

fundamental biodiversity patterns, such as the latitudinal species
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richness gradient [5–11]. Despite its importance, the underlying

mechanisms that cause large-scale geographical differences in

biotic specialization remain poorly understood [5–10]. Even the

paradigm that biotic specialization is stronger in tropical than in

sub-tropical and temperate assemblages is based on weak and

contrasting quantitative evidence [6–9,12–16].

Here we use mutualistic plant-hummingbird interaction net-

works to assess latitudinal patterns in contemporary specialization

and, in order to move beyond the descriptive latitudinal

specialization gradient, test whether contemporary specialization

is most strongly associated with species richness, Quaternary

climate-change velocity or contemporary climates [6–10,17–21].

Mutualistic plant-hummingbird networks are ecologically impor-

tant and well suited for such a large-scale comparative analysis.

First of all, hummingbirds and their nectar plants are mutually

dependent and biotic specialization plays an important role in

structuring both local assemblages [19–27] and large-scale

biodiversity patterns [11,17,21]. Second, hummingbirds and their

nectar plants are relatively easy to observe and identify and studies

of their interaction networks are therefore well resolved. In

particular, studies typically report link strength between plants and

hummingbirds, a surrogate for the mutualistic importance of an

interaction [28]. Link strength is essential for a comparative

analysis, as specialization indices computed from binary presence/

absence networks - such as connectance [13,14] - are sensitive to

sampling effort and network size [29,30].

Historical and evolutionary factors have been shown to affect

species specialization level and the web of species with which

species interact [31–33]. This suggests that contemporary

mutualistic networks may be affected by their evolutionary history,

and cannot be fully explained by contemporary ecological

mechanisms [32,33]. Extant hummingbirds radiated in the Early

Miocene ,17 Ma [17], giving ample time for long-term historical

effects to accumulate in contemporary plant-hummingbird

networks. However, contemporary plant-hummingbird assem-

blages, and their associated interaction networks, do not

necessarily consist of species that have co-occurred and co-evolved

over millions of years [17]. One factor that may have broken up

species pairs is range-size dynamics associated with Quaternary

climate fluctuations, which has long been considered important in

shaping contemporary patterns of plant and animal diversity

[6,34–43]. Therefore, although plant-hummingbird associations

per se have existed for millions of years - and age of plant-

hummingbird associations may differ geographically (e.g., related

to orogenic activity, such as the Andean uplift) [17] - climatic

stability on Quaternary time scales may still capture important

ecological and evolutionary processes in local plant-hummingbird

networks. Traditionally, Quaternary climate change has been

described as climatic anomaly (i.e., the change in mean climate at

a given location), but it has recently been demonstrated that

Quaternary climate-change velocity, incorporating both the

climatic anomaly and topographic relief, and thus estimating the

speed at which climates have moved across landscapes, is more

biologically meaningful [43,44]. Because Quaternary climate-

change velocity combines information on both global patterns of

climate change and local spatial gradients in climate, it provides a

globally consistent description of climate instability that is scaled to

local conditions. Furthermore, it captures the ability of topo-

graphic heterogeneity to buffer ecological communities from the

effects of climate change. For example, a 1uC temperature

increase has very different biological effects depending on the

local topography. In mountainous areas, a short movement uphill

would be sufficient to track a 1uC temperature increase, whereas

relatively long distance movement would be needed in flat areas

[43,44]. Thus, we use climate-change velocity to describe climatic

stability and test the hypothesis that climate-change velocity since

the Late Quaternary (Last Glacial Maximum ,21 ka) is negatively

related to biotic specialization [6] in contemporary plant-

hummingbird networks.

Contemporary climatic conditions provide a competing, or

complementary, putative driver of contemporary plant-humming-

bird specialization. Local and regional studies in South- and

Central- America and the West Indies have addressed the role of

contemporary climate on plant-hummingbird interactions

[17,19,21,26,45–47]. These show that contemporary climates

favorable for hummingbird-pollination are high precipitation

[21,45,46], or the combination of high precipitation and relatively

low temperatures [17,19,26,47]. Such environments provide poor

flying conditions for insects, resulting in inefficient insect-

pollination [19,26,47]. Hummingbirds are physiologically less

affected by environmental conditions than most insect-pollinators,

which may lead to greater interdependence and specialization

between plants and hummingbirds in areas of high precipitation

and low temperatures [17,19,26,45–47]. However, theory also

suggests that areas of high productivity may offer greater

opportunities for specialization [7,10], and therefore predicts that

both precipitation and temperature should be positively related to

biotic specialization. A recent analysis of the phylogenetic

structure of hummingbird assemblages along environmental

gradients in the Ecuadorian Andes also indicated that biotic

interactions may play a noticeable role in structuring humming-

bird assemblages in the humid lowlands, whereas ecological

filtering appeared to be relatively more important in the cool

highlands [20]. Hence, studies of pollination ecology, productivity

and hummingbird phylogenetic structure all predict that precip-

itation should be positively related to specialization, whereas they

differ on the role of temperature. Furthermore, contemporary

seasonality may also affect specialization [18,21]. In areas with low

precipitation seasonality or temperature seasonality, resources may

be more constant and plant-hummingbird assemblages may

therefore show increased specialization to these local conditions

[18,21]. In addition to Quaternary climate-change velocity and

contemporary climate, a long-standing tenet in evolutionary

ecological theory is the positive relationship between species

richness and biotic specialization, i.e., that large plant-humming-

bird assemblages are more specialized than small assemblages due

to finer division of resources [5,13,15,48].

To gain insight into geographical patterns of contemporary

plant-hummingbird specialization and its drivers, we compiled 31

quantitative plant-hummingbird interaction networks, spanning a

wide range of elevation and climate regimes across the Americas

(Figure 1; Table S1). First, we tested whether each network was

more specialized than expected at random. We then examined

whether specialization in plant-hummingbird networks was

negatively correlated with latitude, i.e., whether tropical plant-

hummingbird assemblages are more specialized than sub-tropical

and temperate assemblages. Finally, we tested whether network

size, contemporary climate and/or climate-change velocity since

the Quaternary determines contemporary plant-hummingbird

specialization. As introduced species may distort potential

relationships between specialization and latitude, network size,

contemporary climate and Quaternary climate-change velocity,

we conducted the entire analysis twice: once just for native plant-

hummingbird networks, excluding introduced species, and once

for networks where introduced plant species were included.

Specialization across the Americas
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Results

For each of the 31 plant-hummingbird networks, we measured

network-level contemporary specialization (H), and assessed

whether the level of specialization was higher than expected at

random [29]. Irrespective of whether introduced plant species

were included or excluded, specialization was higher than

expected in all except the smallest plant-hummingbird networks

(P,0.05; Table S1).

Latitudinal patterns of specialization
Spatially, we first examined how contemporary specialization

correlates with latitude. We corrected significance level for spatial

autocorrelation, using Dutilleul’s method [49]. Specialization was

significantly negatively related to latitude both for native plant-

hummingbird networks (Figure 2; H: n = 31, R2 = 0.22, Dutilleul’s

P,0.05) and when introduced plants were included (H: n = 31,

R2 = 0.20, Dutilleul’s P,0.05).

Determinants of specialization
In order to determine what may cause low/high contemporary

plant-hummingbird specialization, for the geographical locality of

each network we obtained estimates of climate-change velocity

since Last Glacial Maximum (VELOCITY), and four variables

describing the contemporary climate: mean annual temperature

(MAT), mean annual precipitation (MAP), temperature seasonal-

ity (SEAST), and precipitation seasonality (SEASP). In addition, we

included the species richness of the plant-hummingbird network

(SIZE) and the length of the study period (DAYS) as observed

specialization may be affected by seasonal phenological displace-

ment ([50]; Materials and Methods; Table S1).

We then determined the role of Quaternary climate-change

velocity and contemporary climate as determinants of contempo-

rary specialization, taking into account network size and length of

the study period. We did this by comparing several ordinary-least-

squares (OLS) multiple regression models grouped into three

types: 1) a ‘‘velocity’’ model, with VELOCITY as predictor of

specialization; 2) ‘‘contemporary climate’’ models, with various

likely combinations of MAP, MAT, SEAST, and SEATP as

predictors; and 3) ‘‘velocity and contemporary climate’’ models,

incorporating likely combinations of VELOCITY, MAP, MAT,

SEAST, and SEATP into the same models (Materials and

Methods; Tables S2, S3). In all models, we also included network

size (SIZE) and length of study period (DAYS), controlling for

these potentially confounding factors. Our main analysis focused

on plant-hummingbird networks containing only native species

(Figures 1–2; Table S2). In addition, we checked the sensitivity of

the obtained results when including introduced species (Table S3).

Based on the initially identified best-fit models (Tables S2, S3), we

subsequently used an Akaike information criterion (AICc) forward-

selection procedure to reduce the number of predictors until all

predictors in the best-fit models were significant (i.e., P#0.05),

forming the basis of our discussion (Table 1). It was not necessary

to correct for spatial autocorrelation in any of our multiple

regression models, as the residuals in no case exhibited significant

positive spatial autocorrelation (Tables 1 and S2, S3). See

Materials and Methods for a detailed description of the analytical

approach.

In the best-fit models for native plant-hummingbird networks,

contemporary specialization (H) was positively related to network

size and mean annual precipitation, and negatively to Quaternary

climate-change velocity (Figure 2; Table 1). For networks

including introduced plant species, we obtained similar results to

those containing native species only (Table 1). Neither mean

annual temperature, seasonality nor the length of the study period

were included in any of the best-fit models. Across all analyses,

network size was the most important predictor of specialization,

followed by Quaternary climate-change velocity and contempo-

rary mean annual precipitation (Table 1).

Discussion

While the majority of mutualistic plant-pollinator interactions are

believed to be moderately generalized [13,16,51], we show that

plant-hummingbird mutualistic networks are more specialized than

expected at random (Table S1). With respect to latitude, our data

Figure 1. Geographical patterns of contemporary plant-hummingbird specialization. Map of the Americas showing degree of
specialization (H) in native plant-hummingbird networks. Arrows indicate studies that are difficult to see due to low specialization. The network to the
left depicts an extremely specialized network (H = 0.78, P,0.05) from the Costa Rican highlands at latitude 9uN. The red nodes to the left illustrate
plant species, and the green nodes to the right hummingbird species. The widths of links are scaled to interaction frequency, and node sizes to total
interaction frequency. It illustrates how low Quaternary climate-change velocity, high contemporary precipitation and high species richness may
cause strong contemporary biotic specialization. See Table S1 for specialization estimates for networks containing both native and introduced
species.
doi:10.1371/journal.pone.0025891.g001

Specialization across the Americas
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confirm that tropical plant-hummingbird networks are more

specialized than sub-tropical and temperate networks. However,

latitude only explained a maximum of 22% of the spatial variation

in specialization. This is consistent with the weak and mixed results

of previous studies evaluating the latitudinal specialization gradient

in plant-pollinator assemblages [8,12–16], and echoes the call of

some biogeographers for a more mechanistic approach, seeking to

understand the underlying environmental drivers - many of which

are components of climate [52]. In accordance with this, we show

that contemporary climate and Quaternary climate-change velocity

together with species richness performed much better than latitude

as predictors of specialization, explaining up to 64% of the variation

in plant-hummingbird specialization.

Our results agree with previous local and regional studies in

South- and Central- America and the West Indies that

contemporary climates that provide poor conditions for insect-

pollination (high precipitation) lead to greater interdependence

and specialization between plants and hummingbirds (Tables 1

and S2, S3; [17,19,21,26,45–47]). Besides contemporary climates,

we show that strong biotic specialization is tightly linked to species-

rich networks and low Quaternary climate-change velocity

(Tables 1 and S2, S3). Although the exact mechanism behind

the link between contemporary specialization and Quaternary

climate-change velocity cannot be determined by the present

study, our findings support the hypothesis that low Quaternary

climate-change velocity - and the associated persistence of species -

Figure 2. Relationship of contemporary specialization with latitude and underlying drivers. (A) Linear relationship between latitude and
specialization in plant-hummingbird networks (H: n = 31, R2 = 0.22, Dutilleul’s spatially corrected P,0.05). (B) Linear relationship between Log-
transformed network size and specialization in plant-hummingbird networks (H: n = 31, R2 = 0.28, Dutilleul’s spatially corrected P,0.01). (C) Linear
relationship between mean annual precipitation and specialization in plant-hummingbird networks (H: n = 31, R2 = 0.31, Dutilleul’s spatially corrected
P,0.01). (D) Linear relationship between Log-transformed Quaternary climate-change velocity and specialization in plant-hummingbird networks (H:
n = 31, R2 = 0.25, Dutilleul’s spatially corrected P,0.05). Each symbol represents a native plant-hummingbird network. See Tables 1 and S2 for
predictor estimates in ordinary-least-squares (OLS) multiple regression models. Likewise, see Tables 1 and S3 for predictor estimates in plant-
hummingbird networks containing both native and introduced species.
doi:10.1371/journal.pone.0025891.g002

Specialization across the Americas
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increases local adaptation and favor specialization in biotic systems

[6]. These results have significant impact on ecological and

evolutionary theory predicting geographic patterns of contempo-

rary biotic specialization [6], and may also help understand why

patterns of biodiversity are associated with Quaternary climate-

change velocity [6,34–43].

In regard to climate-change, our study shows that it may be

crucial to include Quaternary climate-change velocity as a

predictor of contemporary biotic specialization, also when

evaluating the effect of contemporary climate on mutualistic

systems – an important and recurrent exercise these days [30,53–

61]. In a global context, our results predict that biotic

specialization and co-evolution should be especially strong in

mountainous biomes (e.g., in the Andes and Central American

mountains as observed for plant-hummingbird networks) and

other areas with low Quaternary climate-change velocity, whereas

flatter landscapes particularly at high latitudes should consist of

mainly generalized mutualistic networks. However, it remains to

be tested whether the strong signal of Quaternary climate-change

velocity observed in plant-hummingbird networks across the

Americas can be extrapolated to a broad range of mutualistic

systems across the globe.

Materials and Methods

Plant-hummingbird networks
We compiled all published studies that have recorded plant-

hummingbird interactions for entire plant-hummingbird assem-

blages, as well as our own unpublished plant-hummingbird

interaction networks. We considered only mutualistic interactions,

excluding interactions in which hummingbirds acted as nectar

robbers without pollinating the plant. In order to be included in

the analysis, the plant-hummingbird networks had to fulfill three

quality criteria: 1) the link strength of each plant-hummingbird

interaction had to be reported, i.e., we discarded all binary

datasets considering only whether an interaction occurred or not.

We did this because specialization indices computed from binary

presence/absence networks are sensitive to sampling effort and

network size - making cross-network comparisons based on binary

networks unreliable [29,30]; 2) the link strength had to be based on

visitation rate, i.e., we did not include datasets measuring

interaction strength based solely on pollen load analysis; 3) the

assemblage had to contain at least two plant and two

hummingbird species. Hence, studies from southern Chile and

Argentina, where only one hummingbird species exists, were not

included in the analysis. Furthermore, one network was discarded

from the analysis as it had been sampled in a university campus

and contained 64% introduced plant species [62].

Of the networks included in the analysis, 14 contained on

average 11% introduced plant species. All the remaining networks

only contained native species. In order to assess the sensitivity of

the results to introduced species, we created two datasets - one

only including native plant species, and another one including

both native and introduced species. We checked plant origin using

the information provided in the original publication, if mentioned,

combined with various web resources, principally Tropicos (www.

tropicos.org), Grin Taxonomy for Plants (www.ars-grin.gov), and

Flora of West Indies at the Smithsonian National Museum of

Natural History (www.botany.si.edu/Antilles/WestIndies), as well

as other literature sources. In those cases where a plant was only

identified to genus level, it was included as a native species if the

genus is found naturally in the given locality; otherwise it was

coded as an introduced species. In total, we were able to obtain 31

high-quality, quantitative plant-hummingbird networks (Table

S1).

Predictor variables
For each of the 31 study localities we obtained the geographical

position (latitude and longitude) and corresponding estimates of

potential Quaternary and contemporary climate drivers of

specialization (Table S1). As a Quaternary climate predictor, we

estimated climate-change velocity (m/yr) since Last Glacial

Maximum (VELOCITY). Climate-change velocity describes the

rate at which climate conditions are moving over the Earth’s

surface at any particular point [43,44]. It is calculated by dividing

a temporal climate gradient (e.g., C/yr) by a spatial gradient (e.g.,

C/km) [43,44]; in this case our temporal gradient was the change

in mean annual temperature (MAT) for each grid cell since the

Last Glacial Maximum (LGM), while the spatial gradient was the

local slope of the current MAT surface. The slope of the MAT

surface at a particular grid cell was calculated using the average

maximum technique, accounting for latitudinal variation in cell

size. Using this technique, the slope value for a cell is determined

by the relative MAT values of the neighboring cells. Velocities

were calculated at 2.5 minute grid cell resolution (approximately

21.4 km2 at the equator) and then aggregated to a global 0.25

degree resolution map (approximately 770 km2 at the equator).

We calculated velocity at this fairly fine scale to capture potentially

important effects of small-scale topoclimate gradients [43,44].

Paleoclimate data were obtained from the Paleoclimate Modeling

and Intercomparison Project Phase II (PMIP-2; [63]) CCSM3 and

MIROC 3.2 models. We used the average of these two model

predictions as our estimate of LGM MAT. Because climate-

change velocity combines information on both global patterns of

climate change and local spatial gradients in climate, it provides a

globally consistent description of climate instability that is scaled to

Table 1. Multiple regression models predicting contemporary specialization in plant-hummingbird networks.

Origin SIZE MAP VELOCITY R2
adj Moran’s I VIF CN

Native species +0.38** +0.34* 20.34* 0.53** I#0.13NS #1.2 1.6

Native and introduced species +0.50** +0.29* 20.33* 0.64** I#0.16NS #1.2 1.6

Predictor estimates are for each model given as standardized regression coefficients. Predictors included in the best-fit multiple regression models are: network size, i.e,
species richness in the network (SIZE); mean annual precipitation (MAP); Quaternary climate-change velocity (VELOCITY). None of the other predictors included in the
analysis - length of study period (DAYS); mean annual temperature (MAT); precipitation seasonality (SEASP); temperature seasonality (SEAST) - were included in any of
the best-fit models, and are therefore not included here. Moran’s I and VIF/CN show that neither positive spatial autocorrelation nor multicollinearity was a problem in
our models. See Tables S2, S3 and Materials and Methods for modelling approach.
**P,0.01,
*P,0.05,
NSP.0.05.
doi:10.1371/journal.pone.0025891.t001
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local conditions. Furthermore, it captures, quantitatively, the

ability of topographic heterogeneity to buffer ecological commu-

nities from the effects of climate change. As contemporary climate

predictors we included mean annual temperature (C*10; MAT),

mean annual precipitation (mm; MAP), temperature seasonality

(standard deviation *100; SEAST) and precipitation seasonality

(coefficient of variation; SEASP). All contemporary climate data

were extracted with a 30 second resolution from WorldClim 1.4

([64]; http://www.worldclim.org/). In addition, we included the

species richness of the interacting plant-hummingbird assemblage

(SIZE), i.e., the number of plant and hummingbird species.

Furthermore, due to seasonal phenological displacement [50],

observed specialization may be related to the length of the study

period (1–365 days), which was therefore also included (DAYS).

For correlations between predictor variables, see Table S4.

Data analysis
We conducted the analysis for native plant-hummingbird

networks, excluding introduced species, but also repeated the

entire analysis when including introduced species. We emphasise

our results obtained for native plant-hummingbird networks more

than those obtained when introduced species were included. We

do this because only interactions between native species reflect co-

evolved associations potentially affected by historical factors, and

because some studies excluded introduced species. Hence, by

focusing on native plant-hummingbird networks, we ensure both a

co-evolutionary history between assemblages of hummingbirds

and their nectar plants and, equally importantly, we are not

introducing sampling bias between networks.

For each of the 31 quantitative plant-hummingbird networks

(Table S1), we measured network-level contemporary specializa-

tion (H), using the method and software of Blüthgen and co-

workers ([29]; http://rxc.sys-bio.net/). The degree of specializa-

tion was measured as two-dimensional Shannon entropy and

standardized to range between 0 and 1 for extreme generalization

and specialization, respectively (for equations, see [29]). We used a

null-model to assess whether specialization level was higher than

expected at random. In the null model, each species was assigned

the same total number of interactions as in the sampled matrix,

but interactions were assigned at random. The probability that the

sampled network had a higher specialization level than expected

by random (i.e., the significance level) was calculated as the

proportion of values obtained by random (10,000 permutations)

that were equal or larger than the specialization value for the

sampled network. For more information about the methods, see

the work by Blüthgen and co-workers ([29]; http://rxc.sys-bio.

net/).

We then correlated specialization with absolute latitude. The

significance level was calculated with the degrees of freedom and

significance level corrected for spatial autocorrelation, using

Dutilleul’s method [49]. We thereafter examined how Quaternary

climate-change velocity and contemporary climate relate to

specialization, taking into account network size and the length of

the study period. For this we compared seven ordinary-least-

squares (OLS) multiple regression models grouped into three

types: 1) a ‘‘velocity’’ model, with VELOCITY as predictor of

specialization; 2) three ‘‘contemporary climate’’ models increasing

in complexity. The simplest model only included MAP, following

pollination ecology studies that show that precipitation may affect

specialization [21,45,46]. The second model included MAP and

MAT, following those studies that suggest that both precipitation

and temperature may affect plant-hummingbird specialization

[17,19,26,47]. The most complex contemporary climate model

further included seasonality, i.e., variables MAT, MAP, SEAST,

and SEATP as predictors; and 3) three combined ‘‘velocity and

contemporary climate’’ models, increasing in complexity as the

contemporary climate models (e.g., Table S2). All models also

included network size (SIZE) and length of study period (DAYS),

controlling for these potentially confounding factors. Subsequent-

ly, based on the initially identified best-fit models (Tables S2-S3)

we used an Akaike information criterion (AICc) forward-selection

procedure to reduce the number of predictors until all predictors

were significant (i.e., P#0.05; Table 1). The variables SIZE,

VELOCITY and SEAST were log10 transformed as this improved

the assumptions of linearity and diminished potential problems

with outliers. We evaluated the likelihood of each of the models

using the Akaike information criterion AICc and R2
adj. We

assessed whether significant positive spatial autocorrelation

remained in the models based on Moran’s I with eight distance

classes and a permutation test (with 10,000 iterations) on the

residual spatial autocorrelation. Finally, we checked for multi-

collinearity using the condition number (CN) and the variance

inflation factor (VIF). Neither positive spatial autocorrelation nor

multicollinearity was a problem in our models (Tables 1 and S2-

S3). Hence, we did not build more complicated models. The

software Spatial Analysis in Macroecology SAM 4.0 ([65]; http://

www.ecoevol.ufg.br/sam/) was used for multiple regression and

spatial analysis tests.

Supporting Information

Table S1 Plant-hummingbird networks: response and
predictor variables.
(DOC)

Table S2 Models predicting contemporary specializa-
tion in native plant-hummingbird networks.

(DOC)

Table S3 Models predicting contemporary specializa-
tion in plant-hummingbird networks including intro-
duced species.

(DOC)

Table S4 Correlations between predictor variables.
(DOC)

Acknowledgments
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39. Ohlemüller R, Anderson BJ, Araújo MB, Butchart SHM, Kudrna O, et al.

(2008) The coincidence of climatic and species rarity: high risk to small-range
species from climate change. Biol Lett 4: 568–572.

40. Colwell RK, Rangel TF (2010) A stochastic, evolutionary model for range-shifts

and richness on tropical elevational gradients under Quaternary glacial cycles.
Phil Trans R Soc B 365: 3695–3707.

41. Graham CH, VanDerWal J, Phillips SJ, Moritz C, Williams SE (2010) Dynamic
refugia and species persistence: tracking spatial shifts in habitat through time.

Ecography 33: 1062–1069.
42. Nogués-Bravo D, Ohlemüller R, Batra P, Araújo MB (2010) Climate predictors
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