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Abstract—Artificial Intelligence aims to mimic natural intelli-
gent learning by using lifelong-machine-learning, which allows an
AI to train and learn over it’s lifetime. Various algorithms have
been suggested and developed to allow lifelong learning, these
algorithms require deeper analysis, to evaluate and highlight
performance benefits. In this research, we will study with
three state-of-the-art algorithms for lifelong learning: Rehearsal,
elastic-weight-consolidation and synaptic-intelligence. We do an
analysis and evaluation of their performance in a multiple task
experiment, using different amounts of data, measuring several
performance metrics. We found that these algorithms are similar
in performance, but some algorithms perform better than others
with less data, or show good performance in task one, but not
subsequent tasks. These algorithms could be built upon and
improved in future research. The evaluation demonstrated in
this research are in the image classification context.

Index Terms—Continuous Learning, Image Classification, Life-
long Machine Learning , Non-Continuous Learning, Machine
Learning, Artificial Intelligence, Intelligent Agent

I. INTRODUCTION

Artificial Intelligence (AI) is commonly used across many
facets of daily life and numerous technology will use AI to
make decisions without human input. These decisions will
be made based on the previously collected data and this
can generally be formed into two categories of prediction:
classification and regression [1]. Classification prediction tasks
are most common and assign the agent a data instance. The
agent’s experience is used to predict where the data-point falls
into predefined categories, for instance, predicting cat, breed
from a photograph [2].

Regression prediction tasks the agent with optimising com-
plex systems involving linear and nonlinear multivariate re-
gression problems [2], for instance, to predict the price of a
given property over the coming decade.

Thus far, the typical method for machine learning is aptly
named: train-use-replace. This method of machine learning
defines the life-cycle of an agent as follows: the agent is
designed and trained using a curated dataset; the agent is put to
work, solving the problems for which it was trained; finally the
agent is replaced with a newly developed model, trained with
a newly developed dataset [3], [4]. This life-cycle means that
a model cannot change and grow during its working lifetime,
there is no opportunity for repairs or improvements.

Recent research demonstrates that it is possible to introduce
continuous updates and training to the AI during operation,
bringing benefits that include extension of lifespan and im-
provement in performance, and several algorithms have been
developed to accomplish this. Continuous learning could revo-
lutionise AI technology improving effectiveness and flexibility
across all applications.

Plenty of artificial intelligence techniques, including image
classification, utilise deep-learning [1], [5]. Deep-learning is
defined as the process by which a model independently forms
the rules that place a particular data-point into its class as this
is not defined by the developers [3]. This process is used for
image classification as manually defining these patterns can
be exceptionally difficult.

Lifelong-machine-learning (LML) is defined by [5] as a
sequence of N tasks used to train AI to do a particular set of
tasks during the lifetime. Also, further training is allowed as
explained by [1] to get multiple outcomes. Several algorithms
have been develop to suit various LML applications and the
main objectives are listed below [5], [6]: 1- To improve
performance by doing more training on current tasks. 2- To
expand the domain of the model by introducing new classes
or new tasks.

New Instances (NI) scenario is where new data is added
to the model which fits into familiar classes, this data is
structured in a similar way to the initial training set to support
the existing model with further training. This is especially
suitable for rare cases found so that the model expanded to
perform more reliably [6].

New Instances and Classes (NIC) is adding new data to the
model which does not fit into familiar classes, this means that
the domain of the models task is expanded, which can improve
utility [6].

New Tasks scenario is where the model is trained to perform
a task that is unfamiliar and, ideally, isolated from its original
task, meaning that the task domains do not overlap. With
careful training a model can perform well in many tasks [6].

The aim of this research is to demonstrate some algo-
rithms devised for NI and New Task scenarios to assess the
differences between algorithms using deep-learning methods.
Performance, cost and training dataset requirements will be
considered. This analysis will illustrate the existing situation



of LML and the other areas will be highlighted in this field
to do more studies on it to improve its performance.

In Section II, the related work on development of lifelong
machine learning is summarized, and used to select an ap-
propriate dataset and the LML algorithms. In Section III, we
experiment to evaluate and analyse the selected algorithms.
In Section IV, we discuss comparable solutions and evaluate
performance. Finally, we conclude and highlight future work
in Section V.

II. LITERATURE REVIEW

Typically, a classification model is trained on a single
task and will perform only this task for its lifetime [7]; this
means that the training process, and training data, need to be
completed in full before deployment and that model cannot be
modified during deployment, replacement is required.

This constitutes the train-use-replace life-cycle, devised to
maximise performance before the advent of LML. Achieving
high reliability in an AI has been shown to have many
difficulties; safety-critical applications necessitate scrutiny of
an AI, as a false prediction could be dangerous. Adoption
of the train-use-replace life-cycle has enabled developers
to guarantee that the agent sustains acceptable performance
throughout its lifetime, introduction of LML creates risk of the
agent becoming less competent, thereby increasing the chances
of failure, unacceptable in safety-critical scenarios. Safety-
critical applications can include: Medical diagnostics [4] and
Autonomous vehicles [8], the risk of an agent’s performance
declining discourages use of LML in these fields.

Some AI, including image classification models [3], utilise
deep-learning [1], [5]. Deep-learning allows a model to inde-
pendently form the rules for patterns that place a particular
data-point into it’s class as this is not defined by the designer
[3].

Deep-learning generally accelerates model architecture pe-
riods and encourages better model performance for such data
as images or video-feeds [3]. This is achieved by a removal of
designer participation in the class definition process, allowing
the model to perform this at lower cost and higher reliability.
One such model type designed for deep-learning is a Convo-
lutional Neural Network (CNN), which will be discussed in
this research.

LML is an approach to model training that can allow the
model to continuously learn, independently, to perform tasks
outside of its initial domain [1], [5]. LML can therefore be
utilised to improve model performance, utility or lifespan.

The LML research aims to develop a method of training
that allows an agent to emulate a natural intelligence [1],
in that it can learn new information or skills without limit
and improve performance in these skills through ’practice’.
Potential applications are explained in [6] as one of these
types: new tasks, new instances (NI) and new instances and
classes (NIC).

LML comes with two major problems beyond what is typi-
cally seen by an AI, both being related to the longer length of
training that can be undertaken by the LML algorithm. These

problems are called overfitting and catastrophic forgetting,
both characterised by poor prediction accuracy. Overfitting is
the process wherein a model, in training for a task, becomes
too fixated on finer details in instances of the training data
[3]. This gives the model a tendency to focus on details
and debilitates the models ability to recognise more general
patterns, causing the model perform badly on unseen data [3].
This is typically characterised as good training performance
and significantly poorer testing performance [3].

A model is typically constituted by a series of weights
that define how it makes predictions. Each weight may be
more important to particular predictions than others [5], [9]
and training a model means brute-force and trial-and-error
modification of weights to achieve better performance [3].

Catastrophic forgetting (CF) is the phenomenon where a
model’s performance may degrade with training, this can be
caused by changing weights in training for a new task where
these weights are important to a previous task, and so the new
task knowledge effectively overwrites old knowledge, causing
performance of old tasks to degrade [1], [4]–[6], [9].

Methods to address and alleviate CF can reduce changing of
the weights that are most relevant to an old task, by preventing
change, limiting change or reversing change of the weights
involved in the performance degradation [5], [9], [10], or some
combination of these three. In performing this it is critical to
know which weights are important to old tasks, so that these
weights can be selected and controlled [5], [9], [10].

An analysis of a competition conducted by [11], where
competitors demonstrated LML solutions utilising computer
vision, suggests that current LML algorithms are sufficient
for deployment in video-stream applications. The analysis,
however, also found that over-engineered solutions where com-
monplace and manual performance evaluations of solutions are
taxing.

Future research into Evolved Plastic Artificial Neural Net-
works (EPANN) are encouraged by advances in neural network
research and developments in computational power. EPANN
is a machine learning method designed to emulate natural
intelligence, with the aim to autonomously create new learning
schemes as detailed by [12].

III. PROPOSED EXPERIMENT

To improve our understanding of existing continual learning
algorithms, we propose an experiment to objectively measure
comparable metrics for each algorithm. Data collected in
this experiment will allow for direct comparison between
algorithms. The experiment should consist of a test that is
applicable to all the algorithms to enable fair comparison of
results.

Algorithms selected for this experiment are: Rehearsal,
elastic-weight-consolidation (EWC) and synaptic-intelligence
(SI). The reasons for this decision are discussed in this section.
Rehearsal, as it’s name suggests, is designed to retrain for old
tasks during training for new tasks, to reverse the effects of
catastrophic forgetting. EWC and SI both aim to regularise



weight changes, to reduce catastrophic forgetting, during train-
ing. These three algorithms compared to a Naive approach, and
this algorithm is not designed for continual learning; this will
highlight the utility of specialised algorithms.

Google Colab services will be used to execute the exper-
iment. Outsourced GPU training should reduce the required
time span for the experiment, this outsourcing is made possible
by Colabs service, which provides remote access to a virtual
machine with allocated GPU.

The proposed experiment necessitates a considerable vol-
ume of data, this will introduce a long training time, so
the dataset should minimise the size of each data instance
to mitigate this effect. The selected dataset is MNIST [13],
a dataset composed of 60,000 28x28 greyscale images of
handwritten Arabic numerals, this dataset is open-source and
suited to AI applications. Data for new tasks will be a
created by permuting MNIST. MNIST was chosen as it has a
considerable volume of small data instances. A large number is
necessary to enable the dataset to be split into differently sized
sections with a significant margin, so that the the performance
difference visible between dataset size used for training is
beyond margin-of-error.

Small size of data instances is a crucial feature of the dataset
to mitigate the increased training time caused by a larger
volume of instances. Due to the small size of each instance, the
data within its capacity will be more primitive, thereby making
it not necessarily representative of real-world applications,
however, this should not matter; The tested machine-learning
algorithms act as a modification of a given CNN, meaning that
the absolute results are less important than the difference in
results between algorithms. This difference in results should
be replicable when the tested LML solutions are applied to
another scenario, for example, a more complex CNN and
dataset, representative of real-world applications.

Training methods for each algorithm were specially de-
signed for this experiment; data collection during training is
required to enable evaluation and analysis, training processes
have been designed to effectively facilitate this collection. Data
collected for each test is: for each size of data set, for each
task, for each epoch, training-loss, loss, accuracy, total training
time in seconds and final accuracy.

Each training process is modeled as a series of nested
loops to ensure that training can be performed in various
configurations can be tested and measured, the results are
saved in Dictionary datatype.

Results are graphed using the collected data, each graph will
include one line for each LML algorithm to enable accurate
comparison and will show various axes configurations so that
all the data can contribute to analysis.

[14] demonstrates examples of Naive and Rehearsal al-
gorithms and these have been largely appropriated for this
experiment; we hope to be able to understand in more detail
some of the intricacies and challenges of LML by testing a
wider array of algorithms.

A Naive approach to LML problems has been shown by [5]
to be largely ineffective; Naive is used in this experiment as

a ’control sample’ to demonstrate the necessity of specialised
algorithms. Naive refers to a ’Traditional’ machine learning
approach when applied to scenarios better suited to specialised
LML algorithms, including NIC or new task scenarios. Naive,
being by definition not suited to LML, is likely to demonstrate
poor performance in this experiment.

[14] also demonstrate EWC, this implementation was
appropriated and modified for this experiment. The modifi-
cations covered the training process to better suit the nature
of the experiment, which necessitates testing on various sizes
of dataset. Synaptic-intelligence (SI) is designed as a direct
modification come upgrade to EWC [5], which is thought to
be the most effective algorithm for this application, and as
such will serve as a good comparison.

SI, like EWC, is designed to regularise weights when
training, specifically, after the initial batch [5]. Regularisation
reduces CF by limiting weight changes when these weights
are important to previous tasks. SI differs from EWC in its
calculations for regularisation.

The SI was implemented in Colab for this experiment, as an
existing solution was not found to be available. SI and EWC
are similar in construction and as such, the implementation of
SI was formed to keep coherence with the EWC implementa-
tion [14].

L = Lcross (ŷ, t = ŷ1 h) +
λ

2
·
∑
k

Fk (θk − θk
∗)

2 (1)

∆Lk = ∆θk · ∂L

∂θk
(2)

Fk =

∑
∆Lk

T 2
k + ξ

(3)

Zenke et al. proposed the EWC implementation in [10], and
then in 2019, Maltoni et al. worked on this implementation [5].
Now, in this research, we are going to use the same algorithms
for experimentation.

The mechanisms of SI are described in these equations.
As SI is a modification of EWC [5], start with the equation

to calculate the EWC Loss. The loss function of the EWC
described in equation 1. Lcross is cross-entropy loss and ŷ is
network predictions, which evolve as the model changes, but
it is out of our scope for now.
λ is the regularisation constraint (constant). θk denotes the

value of a given weight and θk∗ describes the optimal weight
value from the previous task.
Fk is the kth element of the fisher matrix, which describes

the importance of the weight θk. [10] theorised that calculating
the fisher matrix is expensive and unnecessary and developed
SI by calculating Fk directly as opposed to reading from the
matrix, hence giving performance gains.

This was achieved using equation 3. Σ∆Lk is defined as
the total change in loss over update steps of one weight as is
shown in equation 3 and calculated using equation 2.



T 2
k is described as the total movement of weight θk during

training on one batch and ξ is a small constant, 1× 10−3 for
[10], to avoid division by zero.

This means that Fk, as described in the equation 3, can be
substituted into the Loss calculation as is shown in equation
1, eliminating the process of calculating the complete fisher
matrix, forming the substance of the loss algorithm which
characterises Synaptic Intelligence (SI).

IV. RESULT AND DISCUSSION

A. SIT Scenario

The SI compared and demonstrated to a naive New In-
stances (NI) in a single incremental task (SIT) application as
is shown in Fig 1. This comparison shows that SI is not suited
to an SIT scenario.

The two methods display similar results across all metrics,
though SI shows consistently slightly better performance,
although this variation is mostly within the margin of error.

Fig. 1. Graphed Results for SIT

In terms of performance, a remarkable difference is visible
in smaller dataset increments, showing NI performing better
at this end of the spectrum. Both algorithms display weak
performance in small dataset increments, as there was little
training data used, although this could be mitigated with more
epochs by the training stage.

Furthermore, SI regularly suffers in training time com-
pared to NI. With the single incremental task schema, non-

continuous learning CNN is better for new instances rather
than continuous learning through SI.

B. Continuous Learning Algorithms - Metrics by Epoch

Fig. 2. Accuracy by epoch for datasize 1

Accuracy, shown in Fig 2 is generally weaker for later
tasks, task two being the weakest across algorithms with three
algorithms hovering around twenty percent, poor performance
when a random guess would produce ten percent accuracy.
Rehearsal is however shown to be an outlier, superior to other
algorithms, consistently in excess of sixty-five percent.

Despite exhibiting best performance, rehearsal suffers from
a drop in accuracy in later tasks, similar to other algorithms,
reaching a maximum value of ninety-five percent in task one,
but achieving only up to eighty-five percent across two and
three.

Fig. 3. Accuracy by epoch for datasize 4



Moving to dataset size 4, performance has improved across
the board, as expected. The differences between algorithms
encourage variance in performance, which emerges at this
dataset size. Rehearsal continues to be a the best performing,
as shown in Fig 3, increasing task one performance by two
percent and tasks two and three performance by five percent.
All algorithms however have approached the performance of
rehearsal in all tasks, with exception of SI, who is amongst
other models in task one, but far behind in other tasks in terms
of accuracy.

Thus far, in this earlier stage, rehearsal shows a high
propensity for learning, but begins to plateau in learning rate
around stage four, with task one performance reaching this
point slightly earlier than other tasks, allowing competitors to
approach.

Fig. 4. Accuracy by epoch for datasize 9

This trend continues until the final stage of the experi-
ment: dataset size nine, where, as before, there is a great
improvement in performance in each algorithm, rehearsal has
reached a plateau and other algorithms are approaching, except
for SI which, curiously, performs best in task one, boasting
approximately ninety-eight percent accuracy, slightly better
than rehearsal, but by far weakest in tasks two and three,
achieving under sixty-five percent in task three, as evidenced
in Fig 4.

C. Continuous Learning Algorithms - Metrics by Task

Fig 5 illustrates, like previous examples Fig 2 and 3, re-
hearsal has a high learning gradient in earlier stages, reaching
high accuracy in earlier dataset sizes averaging eighty percent
in size one, and improving gradually for the remainder of
training. Rehearsals competitors average between twenty and
forty percent accuracy in dataset size one, notably below
rehearsal, but begin to close the gap moving into dataset size
four, with the exception of SI task two and three, which are,
as before, significantly weaker in performance.

Fig. 5. Accuracy by task number

Across all three sizes of the used dataset, we notice that
EWC and Naive get a great benefit when the size of the dataset
increases. The performance of EWC and Naive between
dataset sizes one and four jumps more than our expectation
and this jump is not displayed by SI and rehearsal. On the
other hand, from dataset sizes four to nine the performance
shows minor improvement across all tasks, whereas rehearsal
approaches that plateau even earlier.

SI demonstrated improvement in it’s performance, espe-
cially in tasks two and three; This suggests that SI may
require a bigger dataset to approach a plateau, similar to other
algorithms, beyond dataset size nine.

Fig. 6. Training time by task number

The training time is shown in Fig 6 which is measured
for each model along three epochs. The patterns here are



significantly differed from other metrics.
The time measured shows a lack of variance between algo-

rithms and between dataset size used, although one pattern that
is notable is a consistently higher training time for rehearsal.
This is as expected, repetitive training is used by the rehearsal
algorithm which means that extra training is needed per task,
meaning more time is taken. SI initially shows a significantly
increased time measured, possibly an anomalous result.

Achieving success in this research means reaching a verdict
on the details of, or lack of, performance benefits, introduced
by LML algorithms, when applied to an applicable scenario.
Ideally, the tested approaches will show at least one beneficial
aspect in an experimental setting, implying that LML could
prove useful under applicable circumstances. Beneficial as-
pects can include, but are not limited to: better final accuracy,
better accuracy using only certain volumes of training data,
rate of performance gain in seconds, minimum training data
to achieve a predefined performance threshold, vulnerability
to known machine learning problems including overfitting and
catastrophic forgetting.

V. CONCLUSION AND FUTURE WORK

The experiment has demonstrated the advantages and the
power of each LML approach. Rehearsal algorithm appears
to have the best performance across all tasks competing with
other algorithms when using a small dataset. SI performance
was extraordinary in the first task then the performance de-
creased in subsequent tasks. When the dataset size increased,
the performance increased as well which gives a good in-
dication that it can be better than a Naive CNN. For that
reason, as previously discussed, the Naive CNN is not suitable
for the LML scenarios. With new advancements, the LML
will prove useful for many applications, for example, medical
imaging, where the use of the LML would aid in maximising
reliability by teaching the model of new medical research as it
arises. The LML will also prove useful for autonomous vehicle
applications when dealing with new obstacle types, to maintain
the performance of the algorithm.

This paper highlights the LML field and the significant
progress made by the researchers in the literature and how we
can use it in computer vision, for example, video streaming or
autonomous vehicles. Future research will work on untested
scenarios to show the capability of the LML with various
algorithms using similar techniques to do the experiment.
Furthermore, computational power needs to be considered
when we work with the LML to accelerate the speed of
learning in an advanced way.
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