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Abstract 

Vibrations on a high rise building often influence all elevator components and affect the ride 

quality of the elevator car. The lateral and longitudinal vibrations of the suspension and 

compensating ropes can occur and the lateral and longitudinal vibrations at the elevator car 

may take place. The ropes in the elevator system can be characterized by low and high 

frequency modes and they are lightly damped. The elevator system in a high rise building is 

composed of suspension and compensating ropes, which are the pivotal components of the 

elevator system. An important feature of the ropes in the elevator system is that they have a 

time varying length. However, the rate in which the length changes can be considered as 

small and as a result dynamic characteristics of the system vary slowly during the elevator car 

travel. The design methodology of an elevator system requires a thorough dynamic analysis in 

order to predict the dynamic loads and to evaluate the response of the system during various 

operational modes. This response may be caused by a number of sources of excitation.  

The main source of excitation this study is focused on is the excitation coming from the wind 

loading on the high rise building. Wind loading on a building structure causes high 

displacements at the top of the building structure, exciting all of the components of the 

elevator system. The main excitation from the building structure to the suspension and 

compensating ropes are the displacements at the machine room level. The other sources of 

excitation are coming from the building interface which is used to guide the elevator car and 

counterweight along the elevator shaft during travel. The building interface consists of guide 

rails and roller guides. The lateral vibration of the elevator car can result from the roller guide 

vibrations or due to the guide rail segments being misaligned. These various sources of 

excitation may lead to an adverse dynamic behaviour of the elevator system due to its 

nonlinear and nonstationary nature.  

Due to the time varying length of the ropes in the elevator system the mass and the stiffness of 

the system change and consequently its dynamic characteristics such as frequencies, damping 

ratios and mode shapes are affected. 

The aim of this research is to develop and to validate a computer model of the elevator system 

to predict the dynamic responses of the ropes in an elevator system due to the vibrations of a 

high-rise building under wind loading, when the elevator system is stationary and in motion. 

The three objectives of this thesis are to develop a mathematical and computer model of the 

elevator system to understand the behaviour of the ropes in the elevator system under the 

influence of the building vibrations caused by wind action, to develop an experimental 

programme involving a lift testing tower facilities and/or alternative tall building sites, in 

order to validate the computer model through experimental testing, and to develop a computer 



software tool as an executable program on Windows operating system to predict the 

behaviour of the ropes in the elevator system based on the final mathematical models of a 

stationary and moving elevator system. 

The experimental testing was conducted at the National Lift Tower in Northampton using an 

experimental rig. A set of experiments were developed and various measurements were 

carried out. The equations that accurately describe the motion of the mass-rope suspension 

system in the rig were derived. The mathematical model takes into account the stationary and 

nonlinear nature of the mass rope suspension system in the rig. The linear and nonlinear 

resonance phenomena were predicted through simulation and they were compared with the 

experimental results. 

The equations of motion that describe the elevator system comprised of the elevator car, 

compensating sheave, and counterweight connected by the suspension and compensating 

ropes were derived. A method to account for the nonstationary and nonlinear nature of the 

elevator system was developed. The linear and nonlinear phenomena were observed. The 

nonstationary and nonlinear behaviour of the ropes in the elevator system was demonstrated 

through simulation. The results showed that nonlinear coupling in the lateral in plane and out 

of plane directions of the suspension and compensating ropes can generate modal interaction 

between the elevator car, compensating sheave, and counterweight. Thus, the displacements 

of the elevator car, compensating sheave, and counterweight can be predicted. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Background 

The trend in metropolitan cities is to expand vertically instead of horizontally. More demand 

is applied to architects and structural engineers to design taller, safer, more economical, and 

aesthetic buildings. In the past great effort has been placed in the structural design of the 

building to be able to withstand adverse environmental loads which may cause the building to 

vibrate and/or collapse affecting the residents of the building at that moment in the building. 

Recently Kijewski-correa (2003)a; Kijewski-correa (2003)b, studied the sway and torsional 

response of high rise buildings in full scale monitoring projects under real wind loads in order 

to better understand the in-situ dynamic response of these structures and to compare design 

conditions with in-situ response of a high rise building. Under the action of wind, high rise 

buildings suffer from coupled vibrations in the alongwind, crosswind and torsional directions, 

see Figure 1.1. These coupled vibrations are due to the different gust patterns of wind in the 

windward side of the building and the turbulence at the leeward side of the building, see 

Figure 1.1. In many structures the crosswind and torsional response may exceed the 

alongwind response in terms of both serviceability and survivability designs. Also, Kwon et 

al. (2008); Zhou et al. (2003) developed a database and analysis procedure for the crosswind 

and torsional loads of wind on tall buildings.  

 

Figure 1.1: Effect of wind in a building. (Mendis et al. 2007) 

 

Due to all of these and past efforts to better understand and analyse the behaviour of tall 

buildings under the action of alongwind, crosswind, and torsional wind loads, currently high 

rise buildings are being designed and constructed in metropolitan cities with a considerable 

level of safety. 
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There has been considerable number of studies to determine the frequency of occupant 

comfort in high rise buildings. According to Burton et al. (2015), if a building is vibrating at 5 

milli-g is unlikely to cause significant adverse response, provided that the building motion 

does not occur frequently or continuously for an extended period of time. However, if a 

building is vibrating at 10 milli-g will be perceptible to the vast majority of occupants; this 

type of building may not be acceptable to some occupants.  

However, inside a high rise building there is another structure that also suffers from the 

effects of wind and earthquakes loads on the building and this is the elevator system. The 

elevator system is an integral part of high rise buildings to transport the occupants in a very 

short period of time. This electro-mechanical system can be treated like a structure, which is 

supported at the top end by a concrete slab where the elevator machine is positioned to drive 

the elevator car up or down using the suspension means through tractive forces developed 

between the grooves of the traction sheave and the suspension ropes. In high rise buildings, 

compensating ropes are installed at the bottom of the elevator car and counterweight to take 

into account the transfer of mass of the suspension ropes from the car side to the 

counterweight side and vice versa. To control the loop of the compensating ropes below the 

elevator car and counterweight a compensating sheave is placed at the pit floor of the elevator 

shaft. The compensating sheave is constrained horizontally at the pit floor and is only 

permitted to move vertically. The elevator car and counterweight when traveling along the 

elevator shaft have a guiding interface between the building structure. Thus, the elevator 

motor traction sheave at the top, the compensating sheave at the bottom, and the guiding 

interface of the elevator car and counterweight between the building structure are the four 

points of contact where the elevator system is affected by the action of wind on the building 

and seismic action. 

All building structures vibrate under the action of wind and in special circumstances when an 

earthquake strikes a building. Therefore, this study is focused on the analysis of the lateral 

vibrations of the suspension and compensation structural elements such as ropes, belts and 

cables and the elevator components when the suspension and compensation structural 

elements are excited by the displacements of the high rise building due to the wind loading on 

the building. 

When a building vibrates at its natural frequency and this frequency matches the natural 

frequency of the ropes, resonance phenomena take place, that result in high amplitude 

motions of the rope. These high amplitudes cause the ropes to impact between them and on 
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the elevator shaft, which causes damage to the elevator components and disturb building 

residents due to the noise of each impact.  

According to Strakosch (1998), if an elevator car is in the upper part of a building when the 

building starts to vibrate and excites the compensating ropes so that they vibrate, once the car 

starts to descend at full speed, centrifugal forces are induced. These forces are proportional to 

the square of the speed of the elevator car. As a result the centrifugal forces cause more 

violent vibrations of the decreasing compensating rope length when the elevator car is 

approaching the bottom landing level. The increased vibrations of the compensating ropes 

may cause serious rope or compensating sheave damage.   

The new technology currently being developed by Thyssenkrupp Elevator AG (2014), will 

facilitate the implementation of ropeless propulsion in lift systems. However, conventional 

traction driven elevators will remain in dominant use. The conventional steel wire ropes used 

in the elevator industry has a travel height limitation up to 1200 m which is already being 

used to its limit, according to Drako et al. (2011). However, according to KONE (2013), 

advancements in rope technology are leading to a new lightweight rope made of carbon fiber 

core with a special high friction coating making twice the travel height limitation currently 

feasible. 

Building vibration causes lateral in-plane, lateral out of plane, and longitudinal vibrations at 

the ropes which are then transferred to the car, counterweight, and compensating sheave 

making ride quality of the elevator car inadequate. According to Arrasate et al. (2012), lateral 

vibrations of the compensating ropes can be induced by vertical vibrations of the suspension 

ropes caused by torque ripple effects generated at the drive system of the elevator motor.  

Another form of lateral excitation to the ropes results from the roller guides and guide rails, 

which are the guiding interface between the building and the elevator car and counterweight. 

The guiding interface ensures the relative position of the elevator car and counterweight along 

the height of travel. A misalignment of the guide rails will produce an additional form of 

excitation at the car which will transfer to the elevator ropes, as discussed in Andrew and 

Kaczmarczyk (2011).  

In all of these cases, the compensating ropes are highly affected by lateral displacements of 

the building structure. 

All of these sources of excitations may lead to an adverse dynamic behaviour of the elevator 

system due to its nonlinear and nonstationary nature. As a result of the varying length of the 

elevator ropes, according to Kaczmarczyk (2005) the mass and stiffness of the system change, 
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and all of its dynamic characteristics like frequencies, damping ratios and mode shapes are 

affected. 

In order to better understand the dynamic behaviour of the elevator system, a mathematical 

model comprising differential equations of motion of a complete elevator system should be 

developed. When the equations of motion are solved an insight into the dynamic behaviour of 

the elevator system and its components is obtained. 

 

1.2 Aims and objectives 

The aim is to develop and to validate a computer model of the elevator system to predict the 

dynamic responses of ropes and cables in an elevator system due to the vibrations of a high-

rise building under wind loading, when the elevator system is stationary and in motion.  

In order to achieve the above aim the following objectives have been identified and 

accomplished: 

 To develop a mathematical and computer model of the elevator system to understand the 

behaviour of the ropes in the elevator system under the influence of the building 

vibrations caused by wind action. 

 To develop an experimental programme involving lift testing tower facilities and/or 

alternative tall building sites, in order to validate the computer model through 

experimental testing.  

 

1.3 Publications 

The findings of this study were published in conferences and international journals. 

Furthermore, a report of a potential patent was presented to ThyssenKrupp Elevator AG. 

1.3.1 Conference Publications 

 Sanchez Crespo, R., Kaczmarczyk, S., Picton, P., and Su, H. (2014) Modelling and 

Simulation of a nonstationary high-rise elevator system to predict the dynamic 

interactions between its components. In: 4th Symposium on Lift and Escalator 

Technologies. Northampton, UK. 
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 Sánchez Crespo, R. Kaczmarczyk, S., Picton, P., and Su, H. (2014) The coupled 

nonlinear dynamics of a lift system. In: International Conference in Nonlinear 

Problems in Aviation and Aerospace ICNPAA World Congress. Narvik, Norway. 

 Sanchez Crespo, R., Kaczmarczyk, S., Picton, P., Su, H., and Jetter, M. (2013) 

Modelling and simulation of a high-rise elevator system to predict the dynamic 

interactions between its components. In: 3rd Symposium on Lift and Escalator 

Technologies. Northampton, UK. 

1.3.2 Report of Potential Patent 

 Sánchez Crespo, R. (2015) Real-Time Vibration Measurements of Steel Wire Ropes in 

Elevator System with Embedded Fiber Bragg Gratings Sensors in a Fibre Optic 

Cable. Report to ThyssenKrupp Elevator AG. Northampton: The University of 

Northampton. 
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1.4 Configuration of an elevator system 

 

Figure 1.2: Traction elevator system. 

 

A schematic configuration of a traction drive elevator system is shown in Figure 1.2. The 

elevator system consists of a traction sheave, diverter pulley, car, compensating sheave, and 

counterweight. The traction sheave is a part of the elevator motor and is located in the 

machine room of the high rise building. 

The suspension ropes are connected at the upper section of the elevator car-sling assembly 

and pass through the traction sheave grooves and over the diverter pulley to be connected at 
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the top of the counterweight. The compensating ropes are connected at the bottom section of 

the elevator car-sling assembly and pass through the grooves of the compensating sheave to 

be connected at the bottom of the counterweight. 

As the elevator car is travelling up and down along the elevator shaft at the car side the 

counterweight will be travelling in the opposite direction at the counterweight side. The mass 

of the counterweight is typically equal to the mass of the car-sling assembly plus 40 – 50% of 

the capacity of the elevator car. The car and counterweight are equipped with roller guides 

and are guided by rails in the elevator shaft. 
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1.5 Literature review  

Rope dynamics has attracted interest of many researchers, especially in mine hoist ropes, 

cable suspension bridges, and suspended cables. In all of these areas have been the subject of 

many academic papers and both of their linear and nonlinear, stationary and nonstationary 

aspects have been researched. The work reported in this thesis is a continuation of Salamaliki-

Simpson (2009) research conducted at the University. This research consisted in establishing 

the methodology to be used to derive the mathematical models of a stationary and 

nonstationary rope and mass system having a specified velocity, acceleration, and jerk 

according to the kinematic profile of an elevator drive control algorithm. The experimental 

validation of the stationary model was developed in a test rig with an aramid rope connected 

at one end to a shaker passing through the grooves of a pulley, which is the inclined section. 

From the pulley to the end termination of the rope a mass was suspended to tension the rope. 

The methodology developed by Salamaliki-Simpson (2009) is taken to derive the 

mathematical models presented in this research of the full elevator system taking into account 

the lateral displacements of the suspension and compensating ropes at the car and 

counterweight side with the interactions between the elevator car, compensating sheave, and 

counterweight. Therefore, the literature review section will be expanded from the publications 

that originated from previous research. 

1.5.1 Rope dynamics in the elevator system 

Kawaguti et al. (2007) studied the dynamic behaviour and passage through resonance of a 

cable of time varying length during its extension and retraction. The transient fluctuation of 

the motion amplitudes were studied and compared with the corresponding steady state 

motions and the results are compared with experimental results. Emory et al. (2009) analysed 

a simplified aramid suspension rope and elevator car system. Finite element and analytical 

methods were used to model the longitudinal and bending modes of the system and the results 

from the finite element and analytical methods were compared with experimental results. The 

results show that two rope sections separated by the sheave are coupled in the longitudinal 

motion and almost decoupled in the bending motion. Zhang et al. (2013) developed a model 

consisting of a rope of time-varying length and a mass attached to the end considering the 

longitudinal movement and flexural deformation of the rope. Kaczmarczyk et al. (2009) 

developed a non-stationary model of a building-compensating rope system to predict the 

dynamic response. The excitation is represented by a harmonic process and also as a narrow-

band stochastic process. The results lead to recommendations concerning the selection of the 



9 

 

weight of the compensating assembly to minimize the effects of an adverse dynamic response 

of the system. Kaczmarczyk (2011) analysed the lateral dynamic behaviour of long non-

stationary ropes, taking into account the longitudinal elastic stretching of the ropes coupled 

with their transverse motions which results in cubic nonlinear terms. Arrasate et al. (2013) 

studied the vertical vibrations caused by torque ripple generated at the elevator drive system 

by developing a mathematical model to validate the numerical results obtained with 

experimental testing. Both results show the car frame vibrates at the excitation frequencies 

close to the natural frequencies of the elevator system model. Kaczmarczyk et al. (2013) 

studied the nonlinear modal interactions taking place in a model of an aramid suspension rope 

system. The model consisted of an aramid suspension rope, a pulley assembly and a rigid 

suspended mass. The mathematical model of the system was validated with laboratory tests, 

the results show the nonlinear couplings may lead to adverse modal interactions in the system. 

Nakazawa et al. (2013) studied the effects of the compensating sheave assembly on the 

compensating rope winding shape around the sheave affecting the lateral vibrations of the 

compensating rope. An analytical model is presented to calculate the static and dynamic 

behaviour of the compensation rope. The model is derived as a lumped mass-spring model by 

using the multi-body dynamics theory. The rope bending stiffness and the contact force 

against the sheave are validated by several sheave weight conditions. Watanabe et al. (2013) 

investigated the vertical motion of the compensating sheave in an elevator dynamic model. 

The behaviour of the compensating sheave in different emergency cases, such as brake 

activation and buffer strike was studied to evaluate the maximum upward motion of the 

sheave. As a result, the maximum upward motion during emergency brake operation occurs in 

the no-loaded condition with the downward traveling near the lowest floors. Zhu and Ren 

(2013) first part and Ren and Zhu (2013) second part developed a spatial discretization and 

substructure method to accurately calculate the dynamic responses of one-dimensional 

structural systems, which consist of length-variant distributed-parameter components. The 

dependent variables of a distributed-parameter component are decomposed into boundary-

induced terms and internal terms. In the first part was developed the methodology and in the 

second part the longitudinal, transverse, and their coupled vibrations of moving elevator 

cable-car systems is applied with different choices of boundary motions. Sandilo (2013), 

studied the vibrations of a vertical rope of changing length and applied the multiple time-

scales perturbation method to construct a formal asymptotic approximations of the solutions 

to show the complicated dynamical behaviour of the rope. It was demonstrated that the 

Galerkin truncation method cannot be applied in certain type of rope problems to obtain 

approximations valid on a long time scales. 
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1.5.2 Rope impact with an obstacle 

The impact of a rope without any external force and vibrating against a rigid wall, parallel to 

the position of the same rope at rest was studied by Amerio (1978). The set of impact points 

of the wall have an essential role in the study of the rope motion. Also, the elastic impact law 

is formulated to be used in a wider concept.  Bamberger and Schatzman (1983) give an 

explicit formula which describes the solution of the linear elastic rope vibrating against a 

plane obstacle without loss of energy. Proving the dependence of the initial data and a 

numerical scheme is deduced from the explicit formula. Frontini and Gotusso (1990) studied a 

rope vibrating against an obstacle using a discrete model in the absence of obstacles. Stability 

conditions are analysed and numerical results are presented. Valkering (1994) analysed the 

impact of a string that is fixed at one end and at the other end is forced to move periodically 

transversely to the string. The point of impact is positioned near the string and symmetrically 

with respect to the endpoints. When the string impacts the obstacle the dynamics become non-

linear. Hysteresis, resonance, bifurcations and chaos phenomena are analysed by changing the 

parameters of excitation. Han and Grosenbaugh (2004) studied the impact of a rope against a 

straight obstacle for 3 cases: a nearly taut string, an extensible shallow-sag cable, and an 

inextensible deep-sag cable. The results were accurate when compared with an analytical 

solution. It was found that the ratio between the initial amplitude and the equilibrium position 

have an important relation on how the obstacle will behave at impact. A more comprehensive 

model was developed by Ahn (2007), with the transverse motion of a vibrating string with 

fixed ends impacting a stationary rigid obstacle. The conservation of energy is also 

investigated. The numerical model is implemented using a numerical method solved using 

Fischer-Burmeister function. Additionally a rope wrapping and unwrapping around an 

obstacle is studied by Alsahlani and Mukherjee (2010), consisting of a string fix ends and the 

obstacle is located at one of the boundaries and the rope wraps and unwrap around the 

obstacle during vibration. However, the impacts are modelled by a series of perfectly inelastic 

collisions between the obstacle and adjacent segments, the unwrapping is assumed to be 

energy conserving. The energy during wrapping is considered to dissipate energy through 

inelastic collision. The obstacle serves as a passive mechanism for damping the vibrations of 

the rope and can be positioned anywhere to increase its effectiveness and for greater 

wrapping.     
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1.5.3 Experimental testing of rope dynamics 

The majority of rope vibration measurements that has been conducted in the past have been 

done with piezoelectric transducers. It was of interest of this research to develop a new 

measuring sensor to be able to measure impact between the ropes and the elevator shaft. This 

literature review presents the different types of technologies that were considered for this 

research and discusses the difficulties encountered in the implementation of this technology.  

The vibration measurements on ropes has been conducted in cable-stayed bridges using an 

interferometry laser system, according to Cunha and Caetano (1999). In this research a laser 

system was used to perform dynamic tests of the Vasco da Gama cable-stayed bridge, in 

Portugal, with a non-contact measuring device and with good accuracy when compared with a 

more conventional approach. Nassif et al. (2005) used non-contact laser Doppler vibrometer 

system with two types of contact sensors, which were linear variable differential transducer 

and geophone sensors to measure vibration in a girder of a bridge. The laser Doppler 

vibrometer provided measurements of vibration and deflection with good accuracy as the 

contact sensors and provides more versatility in the output. Kohut et al. (2013) compared two 

noncontact measurement methods applied to a civil structure. One system consists of high-

resolution digital cameras and the second system consist of radar interferometer both measure 

deflections on the structure. Both systems can measure several points on a structure in a single 

measurement. One of the difficulties of using a laser system to measure the displacements of 

the ropes of the elevator system are the high amplitudes in which the ropes vibrate in the 

elevator shaft, which the measured point on the rope by the laser will be out of focus when it 

starts vibrating at high amplitudes. Also, another difficulty when using laser sensors is the 

limited available space between the elevator shaft walls and the elevator car when moving up 

or down with the elevator shaft. 

Another technology considered to measure the vibrations on the ropes are high speed cameras 

as it is proposed in Mas et al. (2011). High speed cameras were used for measuring small 

vibrations in a column of a building structure after impact. Vibrations with amplitudes smaller 

than 0.1 mm can be registered with good accuracy. The proposed method can be applied on 

standard commercial cameras, thus resulting in a reliable cost-effective method. Lee and Rhee 

(2013) proposed a methodology to measure dynamic vibrational displacements of structures 

by using digital close-range photogrammetry. The displacements can be captured in various 

locations of the structure in 3-dimensional space, both planar and in-depth displacements 

relative to the cameras. The difficulties when using both high speed cameras or digital close-

range photogrammetry is the short distance from the elevator shaft walls to the ropes, the 
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repetitive impacts of the ropes to the shaft walls, and the dark area in which the cameras will 

be placed. For both systems to be useful to measure the rope vibrations in the elevator shaft it 

would require a good source of artificial light inside the elevator shaft. 

The use of fibre optic technology for vibration measurements can be employed to monitor 

strain. According to Martín-Pérez et al. (2010), the fibre optic sensor technology that could be 

used in monitoring strain of a reinforced concrete slab under service loads was based on 

Brillouin principle. As the result, fibre optic sensor based on Brillouin principle are capable of 

capturing concrete deformations and distinguish measurements between regions of tension 

and compression along the entire length of the sensor. Galindez-Jamioy and López-Higuera 

(2012) described the different applications in which fibre optic technology based on Brillouin 

principle has been applied to monitor loading, deflections, and material failure in civil 

infrastructure was used in monitoring the full length of bridges by embedding the fibre optic 

cable in the structure, measure deflections and fatigue during a long period of time, in rail 

monitoring, geotechnical structures monitoring, pipelines monitoring and material structure 

monitoring. The difficulties encountered with the Brillouin principle to monitor the vibrations 

at the ropes of the elevator system, is that at this stage is not possible to apply this principle in 

dynamic measurements. However, under the fibre optic technology there is the fibre Bragg 

principle which is used for static and dynamic measurements. Zhu et al. (2011) studied the 

dynamic failure signals emitted in fiber reinforced polymer stay cable using fiber Bragg 

gratings comparing two types of demodulation techniques for the fibre optic technology used 

in the study. The results of the experiment suggest that both demodulation systems may be 

suitable for monitoring high frequency mechanical strains in civil structures, to determine 

local structural damage detection. The advantage of using fiber Bragg gratings in the fibre 

optic cable makes it an acceptable system to measure the vibrations of the ropes in the 

elevator system. 

1.5.4 Measurement and monitoring of the dynamic behaviour of high-rise 

buildings 

The vibrations produced by the building along the elevator shaft and at the machine room 

level are the ones that give the excitation to the ropes of the elevator system. Thus, it is 

important to measure the displacements at different heights of the building to determine the 

maximum displacement and the frequency in which the building is vibrating at that moment. 

According to Bashor et al. (2012), developed a full scale monitoring system for buildings to 

evaluate the performance of dynamically sensitive structures that are under wind excitation. 
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The building is instrumented with four Columbia SA-107 LN high-sensitivity force-balance 

accelerometers that are capable of accurately measuring accelerations down to 0 Hz with a 15 

V/g sensitivity. The accelerometers were installed in orthogonal pairs at opposite corners of 

the ceiling at the highest possible floor of each building. The data outputs of the 

accelerometers are sampled every 0.12s by data loggers to yield an overall system resolution 

of approximately 0.001 milli-g. The data logger automatically begins to capture continuous 

hour-long time histories of data for as long as the threshold level is exceeded. The buildings 

were also equipped with global positioning system to monitor its displacements, as well as 

wind speed sensors, according to Kijewski-Correa and Kochly (2007).  

For this study global positioning system and wind speed sensors will not be required as only 

the displacements of the building are the ones that are affecting the ropes of the elevator 

system to impact on the elevator shaft and between each rope. A similar system adopted by 

Bashor et al. (2012) will be adopted to monitor the displacements of the high rise building at 

the machine room.    

 

1.5.5 Mitigation of the adverse dynamic responses of elevator ropes 

Robertson (1992) proposed the use of a retractable semaphore type or wire type limiting 

members positioned in the elevator shaft. The system was equipped with sensors, actuator and 

control unit to move the semaphore type member between the extended and retracted 

positions. According to Strakosch (1998), in some cases in high rise buildings a car follower 

rope guide is used to prevent compensation ropes and traveling cables from large-amplitude 

swing during high wind weather conditions. Roped 2:1, the follower rope guide travels at half 

the speed of the elevator car. Its purpose is to divide the free length of the hanging ropes in 

half, irrespective of the position of the car, thus changing the natural frequency of the ropes 

and cables. It is pulled upward by the elevator car and lowered by gravity of its own weight. 

Important factors taken into account in the design of the follower rope guide is to have 

sufficient weight to enable it to track properly as it rides on the car guide rails and to have 

proper relationship between the vertical and horizontal distances between the roller guides of 

the follower. The disadvantage of using a car follower system is that includes relatively high 

cost and the introduction of additional design members into the system.  

Barker and Erlandsen (1999) designed a mechanism to control tension in compensating ropes 

selectively when an elevator car is parked in a critical position along the elevator shaft height. 
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This method is aimed at shifting the natural frequencies of the compensating ropes by 

increasing their tension which might not always be effective.  

The application of active tendon control by Preumont and Seto (2008) could be further 

researched. This method has been successfully used to control vibrations in cable-stayed 

bridges. The tendon control of a cable structure consists of placing an actuator at one end of 

the cable and controlling its motion according to the control law to counteract the incoming 

vibrations. This method extracts the energy from the vibrating cable through axial motion. 

Watanabe (2012) developed a mechanism for the elevator system which consists of rope 

protectors in the shaft and special emergency operation for long-period ground motion. Smith 

et al. (2012) designed a system and method for minimizing compensation rope vibrations by 

altering the natural frequency of the compensating ropes using servo actuators. The lateral 

vibrations of the compensating ropes may be minimized by moving the compensation sheave 

to adjust the tension of the compensation ropes. Smith and Kaczmarczyk (2012) proposed a 

shape memory alloy for dampening the vibrations in tensioned members such as ropes and 

cables. The frequency of the rope can be modulated by heating the shape memory alloy, thus 

preventing the ropes from impacting the walls of the elevator shaft. An active stiffness control 

of transverse vibrations of the ropes, involving the application of a longitudinal action at the 

rope end, is proposed by Kaczmarczyk and Picton (2012). 
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2. Methodology 

2.1 Mathematical modelling 

2.1.1 Distributed parameter system analysis 

Hamilton’s principle is used to derive the mathematical models and to predict the dynamic 

interactions between the suspension and compensating ropes in the lateral in plane, lateral out 

of plane, and longitudinal direction and the car, compensating sheave, and counterweight 

motion. The displacements are analysed in terms of the rigid body motion and the elastic 

deformations. Hamilton’s principle can be employed to give a complete description of the 

dynamic behaviour on the mechanical systems. It is an integral principle which considers the 

entire motion of the system between the time instances t1 and t2. The principle considers the 

time integral of the difference between the kinetic and the potential with the sum of the non-

conservative energies to be stationary. According to Meirovitch (2001), Hamilton principle is 

defined by Eq. (2.1). 

2

1

ˆ( ) 0

t

nc

t

Q W dt                           (2.1) 

where Q̂ , , and Wnc are the kinetic energy, potential energy, and work done by the non-

conservative forces of the system respectively. Salamaliki-Simpson (2009) described the 

entire mass and rope suspension system based on Hamilton’s principle. Therefore, the entire 

elevator system can be described by equation (2.1) assuming that all components are acting 

together as a single system due to the constraints between nearby subsystems. Additionally, 

the system is nonstationary, which is when the elevator car and counterweight are traveling 

along the elevator shaft according to the kinematic profile dictated by the drive control 

algorithm. The response of the system can be represented in the longitudinal, lateral in plane 

and lateral out of plane motions respectively for the rope as a system of partial differential 

equations as the following: 

0u u u u

tt tmU B U K U N F                       (2.2) 

0v v v v

tt tmV B V K V N F                       (2.3) 

0w w w w

tt tmW B W K W N F                       (2.4) 

where 
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   

 

U x,t ,V x,t ,

W x,t
  are the dynamic displacements in the longitudinal, lateral in 

plane and lateral out of plane direction 

x      is the Eulerian spatial coordinate and 0 x L( t )   

t      is the time 

m  is the mass of the rope 

L( t )     is the time variant length of the rope 

u v wK ,K ,K   are stiffness operators in the longitudinal, lateral in plane and 

lateral out of plane direction respectively 

u v wN ,N ,N  represent the nonlinear couplings in the system and are 

operators that acts upon displacement 

u v wB ,B ,B     are the damping operators 

u v wF ,F ,F     are the excitation functions  

and t()  designates partial derivatives with respect to time 

 

2.1.2 Discretization method 

The Galerkin method defined in Nayfeh and Mook (1979) as a method for converting a 

continuous system to a discrete problem. The method is applied to formulate the discrete 

mathematical models of the elevator system. The orthogonality conditions and modal shapes 

are applied and an ordinary differential equation that governs the temporal behaviour of the 

elevator system are derived, using Galerkin method the approximate solution of the system is 

given as 

1

N

n n

n

U( x,t; ) ( x; )p ( t )  


                    (2.5) 

 
1

, ; ( ; ) q ( )
N

n n

n

V x t x t  


                    (2.6) 

 
1

, ; ( ; ) ( )
N

n n

n

W x t x z t  


                     (2.7) 
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where n n np ( t ),q ( t ),z ( t )  are generalised coordinated and N is the number of modes 

respectively,      n n nx; , x; , x;      are the linear natural modes of the system which are 

varying slowly in time in the longitudinal, lateral in plane and lateral out of plane direction 

respectively. The time varying length of the system is represented by L(t). When the variation 

of L(t) is small over a time interval corresponding to the fundamental natural frequency of the 

system considered as fixed values of these parameters, the length is said to vary slowly with 

time, according to Kaczmarczyk (1997). The variation of L(t) is then observed on a slow time 

scale defined as T  , where T is a non-dimensional fast time scale and   is a small 

parameter. Thus, the length of the rope can be represented by L(). In order to represent the 

slow variability of L the fast non-dimensional time scale is defined as defined as 
0

T t , 

where 
0

 is the initial fundamental natural frequency of the system and t is the time. The 

small parameter   can be defined as equation (2.8). 

 

0 0

v t

L



                      (2.8) 

where L0 is the initial lengths of the rope corresponding to 0. According to Kaczmarczyk 

(2005), for high rise elevator system the terms identified as being of the order  0   or higher 

are neglected. 

The frequency equations lead to an infinite sequence of eigenvalues  Long

n  ,  Lin

n  , and

 Lout

n   that are slowly varying in time. The longitudinal, lateral in plane, lateral out of 

plane eigenvalues are related to the natural frequencies  Long

n  ,  Lin

n  , and  Lout

n   and 

each corresponds to a value of L( ) .  

When the Galerkin method is applied in the equations (2.5) - (2.7), the response of the system 

in the longitudinal, lateral in plane and lateral out of plane direction can be represented in the 

form of matrices as:  

     y K t; y N t; F t;                        (2.9) 

where  

 T T T T T Ty p ,q ,z , p ,q ,z                  (2.10) 

is a  2 3 N  dimensional modal state vector, with  
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 
T

1 2 3 Np p , p , p ,..., p                  (2.11) 

 
T

1 2 3 Nq q ,q ,q ,...,q                   (2.12) 

 
T

1 2 3 Nz z ,z ,z ,...,z                   (2.13) 

and where dots represent differentiation with respect to time. 

 K t;  is a slowly time variant matrix of dimension    2 3 N 2 3 N   ,  N t;  represents 

the vector of the slowly time variant nonlinear coupling terms with dimensions  2 3 N 1   

and  F t;  is the  2 3 N 1   dimensional external excitation vector slowly varying in time. 

Equation (2.9) represents a system of nonlinear differential equations with slowly varying 

terms. This system is a multi-degree of freedom with quadratic and cubic nonlinear terms.  

 

2.2 Numerical Integration Techniques 

The dynamics of the lift car-rope suspension system is a stiff problem. Stiff problems are the 

problems where the solution to be computed is slowly varying but that perturbations exist 

which are rapidly damped according to Söderlind et al. (2014). The numerical integration 

methods not designed for stiff problems are ineffective on intervals where the solution 

changes slowly because they use small time steps which unable to resolve fast changing 

solutions. These type of integrations may lead to unstable results. The numerical simulation of 

an elevator system is to return transient response of the system over a long time interval; the 

integration must be performed using a relatively large time step to cover the slow 

components. This time step should also be small to capture the fast components and keep the 

numerical integration within the acceptable boundaries according Kaczmarczyk et al. (2009), 

this type of problem has attracted considerable attention for research. Currently there are 

several numerical methods that can be implemented as Ordinary Differential Equations 

(ODE) solvers to give a continuous solution over the interval of integration. At each step of 

the integration, the ODE solver estimates the error of the solution.  

 

2.3 Damping Estimation on steel wire ropes 

Many studies have been done to estimate damping ratio in steel wire rope. Yamaguchi & 

Adhikari (1995) studied modal damping in structural cables. The modal damping ratio was 



19 

 

defined in terms of the modal potential energy ratios and the loss factors for the axial and 

bending deformations. Kaczmarczyk and Ostachowicz (2003) converted the lateral and 

longitudinal damping in steel wire ropes by equivalent viscous damping for purposes of 

analysis according to Inman (2001). Foss (2006) estimated modal damping ratio of wire rope 

isolators using quasi-static load deflection curves. The damping ratios measured from quasi-

static load were compared with damping estimates from the frequency response functions. 

The method agreed with small amplitudes of displacement when compared with the frequency 

response function. Qiu and Maji (2014) estimated analytically the modal damping ratio of a 

carbon fibre cable through friction energy dissipation between helical wires, the stored strain 

energy and the initial stored energy due to the applied tension. The results obtained from the 

model were compared experimentally and with the logarithmic decrement method arriving to 

the conclusion that the accuracy of the model is affected by the manufacturing process. 

The logarithmic decrement method is used in this study to determine the damping ratio of the 

steel wire rope used on the experimental rig in the lateral in plane and lateral out of plane 

directions. The logarithmic decrement method corresponds to the rate in which the amplitude 

of a free-damped vibration decreases. According to Rao (2005), it is defined as the natural 

logarithm of the ratio of any two successive amplitudes, as shown in Figure 2.1. 

 

Figure 2.1 Logarithmic decrement method 

The logarithmic decrement  can be obtained using Eq. (2.14) 

 1

2

ln
x

x
                     (2.14) 

The logarithmic decrement is dimensionless and is related to the dimensionless damping ratio 

. One case of modal damping ratio is when  < 1, thus the modal damping ratio can be 

obtained by solving Eq. (2.15) and this type of system is called underdamped. 

2





                   (2.15) 
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For successive displacements separated by one cycle the logarithmic decrement can be 

obtained by solving Eq. (2.16), where n is an integer representing the total number of 

displacements used to calculate the logarithmic decrement.   

1

1
ln n

n

x

n x




 
  

 
                  (2.16) 

Another case of modal damping ratio is when  = 1, this happens when the system returns to 

the position of rest in the shortest possible time without overshooting. This type of damping is 

called critical damping, according to Rao (2005).    

 

2.4 Vibration Measurements and Testing 

A typical vibration measurement system is usually composed of an exciter, transducer, a 

signal conditioning amplifier, and a dynamic signal analysis system, Rao (2005). The exciter 

provides an input displacement to the rope. The two most commonly used exciters in the 

experimental modal testing are a shaker/actuator and an impact hammer.  

To effectively estimate experimental parameters from a test rig, the modal analysis is used in 

this study to determine the fundamental natural frequency of a steel frame structure. 

According to Herlufsen (2012), modal analysis is based on measuring  input/output signal 

responses from accelerometers. There are different techniques to determine the modal 

parameters but for this study a dual-channel measurement is employed, using an impact 

hammer. The modal parameters that describe the modes of a structure are the natural 

frequency, modal damping, and mode shape. According to Ewins (1994), the fundamental 

natural frequency and damping ratio can be obtained from any Frequency Response Function 

measurement on the structure. For an impact hammer excitation, each accelerometer is fixed 

and reflects the response of the degrees of freedom. The hammer is then moved around the 

structure to excite every degree of freedom.  The displacements of the structure are then 

captured by the sensor which are converted into electric impulses and interpreted. The 

acceleration response from the sensor are transformed from the time domain to the frequency 

domain using a Fast Fourier Transform (FFT) according to Avitabile (2002). If a structure is 

lightly damped the frequency response can be split up into individual modes, each mode 

behaving as a single degree of freedom system, as shown in Figure 2.2 as shown by Gade et 

al. (2005). The modal parameters of a structure can be determined using Brüel & Kjaer 

PULSE Multi-analyzer System Type 3560 in conjunction with an impact hammer. 
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Figure 2.2 Frequency response of a simple structure from Gade et al. (2005) 

 

Vibration measurement is useful to determine the modal parameters of a structure and to 

select the appropriate sensor to avoid any resonant condition or dampening of the signal. A 

transducer is required to transform the values of physical variables into equivalent electrical 

signals transducers. For the vibration measurement conducted in this research piezoelectric, 

piezoresistive, and linear variable displacement transducers were used. According to Rao 

(2005), Piezoelectric transducers work by using a natural material like quartz, tourmaline, 

lithium sulfate, and Rochelle salt which generate electrical charge when subjected to a 

deformation or mechanical stress. The electrical charge disappears when the mechanical 

loading is removed. Piezoresistive transducers work by measuring the change in electrical 

resistance of a wire using a Wheatstone bridge, potentiometer circuit, or voltage divider when 

a DC voltage is applied. The linear variable displacement transducer (LVDT) consists of a 

primary coil at the center, two secondary coils at the ends, and a magnitude core that can 

move freely inside the coils in the axial direction. When an AC input voltage is applied to the 

primary coil, the output voltage will be equal to the difference of the voltages induced in the 

secondary coils. The secondary coils are connected in phase opposition. When the magnetic 

core is in the exact middle position, the voltages in the two coils will be equal and out of 

phase. When the core is moved from either side of the zero position the magnetic coupling 

will be increased in one secondary coil and decreased in the other coil. 

The piezoresistive and piezoelectric transducers were connected to portable data acquisition 

(DAQ) systems type 3050-A-040 from Bruel & Kjaer to acquire and store the sensor data. 

The LVDT transducer was connected to the Compensation Rope Test (CRT) Unit as reported 

by Anderson (2015). The CRT unit was then connected to the National Instruments (NI) 

CompactRio 9024 using NI module 9219. The signal was then converted from a voltage 

signal data to displacement signal data in NI LabView. 

To excite the rope at different frequencies a ball screw actuator was used due to the low 

frequency of excitation and the applied thrust load to the rope. A ball screw actuator is a 
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linear actuator that translates rotational motion to linear motion with little friction. A threaded 

shaft provides a helical raceway for ball bearings which act as a precision screw. This type of 

actuator is used in high precision applications. According to Möhring & Bertram (2012), in 

order to avoid backlash during operation ball screw drives are preloaded. In a double nut 

system, preload can be applied by pre-tensioning the two nuts using spacers or by twisting the 

nuts against each other. The thrust is provided when a servomotor is connected at the top end. 

The manufacturer of the actuator used in the experimental testing was Kollmorgen (2014), 

which provides a drive control unit which is configured to operate the actuator. The actuator 

was connected to the CRT unit where the drive control unit for the actuator was positioned. 

The CRT unit provided the required voltage for the actuator to operate. The connection from 

the CRT unit for the actuator was made to the NI CompactRio 9024 using NI module 9263. 

The actuator was given a specified displacement and frequency using the NI LabView 

software which controlled the actuator to the specified parameters. 

According to Anderson (2015), the configuration and design of the CRT unit with the 

configuration of the Kollmorgen actuator, LVDT transducer, and NI LabView software was 

done by Keith Anderson a ThyssenKrupp Elevator AG member. 

To analyse the signal from the sensor the time signal is converted to a frequency domain. 

According to Inman (2001), the frequency response show one or more discrete frequencies 

around which the energy is concentrated. To analyse the signal in the frequency domain a 

frequency analyser is used by separating the energy of the signal into various frequency 

bands. The most common frequency analyser is a Fast Fourier Transform (FFT) which is 

useful for a constant bandwidth analysis. 
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3. Experimental Setup, Mathematical Model, Numerical Simulation, 

and Validation 

3.1 Experimental rig system and components 

In this Chapter the experimental testing components of a test rig are described in detail. The 

derivation of the mathematical model according to the test rig configuration setup is 

presented. The numerical comparison of the experimental and simulation data is shown.  

The experimental testing was conducted at the National Lift Tower and is a research and 

testing facility located in Northampton, UK National Lift Tower (2015). The rig used in the 

experimental testing in this research was designed and fabricated by Kaczmarczyk (2010) to 

test the concept of active control theory to mitigate the vibrations of the compensating ropes. 

The rig was located in a void between Levels 4 and 9 of the test tower, as shown in Figure 

3.1, which had a height of approximately 50.0 m. The rig was equipped with 3 cameras. The 

first camera was positioned at Level 4 to visualize the mass attached at the end of the rope. 

The second camera was positioned at the bottom of the concrete slab of Level 9 to visualize 

the full length of the rope during excitation. The third camera was positioned at Level 9 to 

capture the actuator exciting the rope. The cameras were connected to the network of the test 

tower. To visualize worldwide in real time all three cameras of the test rig, remote access was 

granted via web link when a password was provided.  

The rig consisted of the following components: 

a) Bruel & Kjaer AC and DC accelerometers connected to LAN-XI data acquisition 

hardware from Bruel & Kjaer. 

b) LVDT displacement transducer model DCTH 18500C. 

c) Kollmorgen actuator type EC4-AKM42G-C2R-20-25B-600-MF2 with the drive control 

unit type S60600. 

d) National Instruments Compact Rio DAQ and control system is provided with a CRIO-

9024 with the respective modules. 

e) Pfeifer Drako rope. 

f) Mass attached at the end. 

g) Guiding rails / steel frame to restrict the motion of the mass in the lateral directions. 
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All of the components of the experimental test rig are discussed in full detail in this Chapter 

and are depicted in Figure 3.1.  

 

Figure 3.1 Experimental rig components 

 

3.1.1 Vibration measurement and actuators 

The Bruel & Kjaer sensors used in the experimental testing consisted of two types 

piezoresistive DC sensors type 4575 and piezoelectric AC sensors type 4507 B. Piezoresistive 

accelerometers work by measuring the electrical resistance of a material when a mechanical 

stress is applied, the lowest measured frequency is 0 Hz. However they have a limited high 

frequency response. DC sensors were used to measure low frequency vibration down to 0 Hz 

on the experimental rig. According to Brüel & Kjær (2015), these sensors have a nominal 

sensitivity of 1000 mV/g (approx. 100 mV/ms-2), with a frequency range of 0 Hz to 300 Hz.  

The piezoelectric accelerometer is based on piezoelectric materials, typically Quartz, which 

generates an electric charge output proportional to the applied force. According to 

Wilcoxon_Research (2009), the sensitivity of these sensors vary. Based on Brüel & Kjær 
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(2015), specifications the sensitivity of the sensors used for testing was 9.635 mV/g (0.9825 

mV/ms-2), with a frequency range of 0.1 Hz to 6 kHz. 

The calibration of the sensors was done by attaching the sensors to an electrodynamic shaker 

from LDS model V400 series with a power amplifier from LDS model PA500 which is 

connected to Brüel & Kjær Pulse Front End with Brüel & Kjær Pulse Labshop software 

version 18.1. To control the excitation frequency of the shaker, a swept sine function was 

used with a frequency range from 0 Hz to 200 Hz. The typical frequency response from a 

piezoresistive DC sensors type 4575 is shown in Figure 3.2 according to Brüel & Kjær 

(2015). Similar frequency response was obtained during the calibration tests. 

 

 

Figure 3.2 Frequency response for piezoresistive DC sensors type 4575 from Brüel & Kjær 

(2015). 

 

The accelerometers were connected to Brüel & Kjær LAN-XI modules type 3050-A-040 with 

4 input channels each, as shown in Figure 3.3 , with interchangeable front panel connector 

plate having one plate four BNC connector type UA-2100-040 and another plate LEMO 

connector type UA-2101-040. According to Brüel & Kjær (2013), the frequency range of this 

type of module is between 0 Hz to 51.2 kHz. 

 

Figure 3.3 Bruel & Kjaer LAN – XI module type 3050-A-040 
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The modules have internal memory that stored the sensor data in WAV file format. This file 

was imported in Pulse Reflex Base 8700 – N version 18.1 for post processing the data and for 

exporting the post process sensor data in ASCII file format to be used in MATLAB.  

To measure the vibrations at the mass in the lateral in plane, out of plane and longitudinal 

direction, DC sensors type 4575 were used. The sensors were attached to the mass using 

Bruel and Kjaer beeswax for mounting sensors, as shown in Figure 3.4 (a). At the rope, 11.0 

m from the mass in the lateral in plane and out of plane direction, AC sensors type 4507B was 

used in each direction, as shown in Figure 3.4 (b). The sensors were attached to the rope using 

beeswax and tightened using plastic cable ties to avoid any detachment during testing. At the 

point of excitation of the actuator in the lateral in plane and out of plane direction, DC sensors 

type 4575 in each direction and a LVDT transducer in the lateral in plane direction was used 

as shown in Figure 3.4 (c).  

A DC sensor was attached using beeswax, in the lateral in plane direction, in a steel metal that 

was positioned between the rope and the actuator to connect the LVDT transducer. In this 

way the LVDT would be following the displacement in the lateral in plane direction of the 

actuator. The distance between the LVDT and the actuator was approximately 15.0 cm, thus 

the bending of the steel plate can be neglected. Another DC sensor type 4575 was attached at 

the anchor of the rope and actuator using beeswax and tightened using a Velcro strap to avoid 

any detachment during testing. 
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(a) In all three directions DC sensors type 

4575 

 
(b) In both directions AC sensors type 

4507 B 

 
 (c)  

Figure 3.4 (a) Position of sensors on the mass (b) Position of sensors on the rope 11.0m away 

from the mass (c) Position of sensors and LVDT at the armature end/connection end with the 

rope 

 

According to RDP Electronics (2014), the Linear Variable Differential Transformer (LVDT) 

displacement transducer used in the experimental rig was model DCTH 18500C with a 

measurement range of +470mm. According to Mcdonald and Iosifescu (1998), an LVDT 

comprises 3 coils a primary, two secondary, and a magnetic core that can move freely inside 

the coils in the axial direction. When an a.c. input voltage is applied to the primary coil, the 

output voltage will be equal to the difference of the voltages induced in the secondary coils. 

This output voltage depends on the magnetic coupling between the coils and the core, which 

in turn depends on the axial displacement of the core. The secondary coils are connected in 

phase opposition so that when the magnetic core is in the exact middle position, the voltages 

in the two coils will be equal and out of phase. This makes the output voltage of the LVDT as 

zero. When the core is moved to either side of the middle position, the magnetic coupling will 

be increased in one secondary coil and decreased in the other coil. A diagram of an LVDT 

transducer is shown in  

Lateral in 

plane  Lateral out of 

plane  

Longitudinal 

direction  

Lateral in 

plane  

Lateral out of 

plane  

Lateral out of plane 
(DC sensor type 

4575)  

Lateral in plane 

(LVDT)  

Lateral in plane (DC 

sensor type 4575)  
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Figure 3.5 Diagram of a LVDT transducer from Rao (2005) 

 

The actuator used as excitation at the top end of the rope was a Kollmorgen actuator type 

EC4-AKM42G-C2R-20-25B-600-MF2 with the drive control unit S60600. Based on 

Kollmorgen (2014) the actuator range are composed of different series. The EC4 series 

actuator is an electric cylinder that provides thrust when a servomotor is connected at the top 

end. The driving principle of the electric cylinder is a high precision ball screw drive which 

translates rotational motion to linear motion with little friction, as shown in Figure 3.6. A 

threaded shaft provides a helical raceway for ball bearings which act as a precision screw. 

This type of actuator is used in high precision applications. 

 

Figure 3.6 Diagram of the different part for the Kollmorgen electric cylinder from 

Kollmorgen (2014) 

 

The connection between the electric cylinder and servo motor is by means of a timing belt and 

geared drives. The EC4 has a maximum stroke of 1500mm. The brushless servomotor 

attached was an AKM42G which has continuous torque of 3.51 Nm and a peak torque of 11.0 
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Nm according to manufacturer specifications. The AKM42G uses a drive control type AKD-

X00606. The Kollmorgen drive control unit was configured using Kollmorgen Workbench 

software.  

As reported by Anderson (2015), the Kollmorgen actuator was connected to the 

Compensation Rope Test (CRT) unit where the Kollmorgen drive control unit was also 

connected. The CRT unit provided the required voltage for the actuator to operate. The CRT 

unit was connected to the National Instruments (NI) CompactRio 9024 using NI module 9263 

with a power supply of NI PS-15. According to National-Instruments (2010), the NI Compact 

Rio 9024 is an embedded real-time programmable controller that contains an industrial 800 

MHz real-time freescale processor for real-time applications with 512 MB of DDR2 RAM 

and 4 GB storage for holding programs and logging data. The NI 9024 processor is connected 

to the NI Compact Rio 9111. According to National-Instruments (2014) specifications the NI 

Compact Rio 9111 is a reconfigurable chassis with capacity of 4 slots to insert NI modules. 

Based on National Instruments (2009) specifications, the NI 9263 is a four channel module 

with +10 V 16 Bit analog output +10 V channel to COM. 

To be able to control the Kollmorgen actuator cylinder from the NI LabView software, the 

Kollmorgen drive control unit had to be set to remote from the Kollmorgen Handheld 

Machine Interface (HMI). The HMI was also connected to the CRT unit. The actuator was 

given a sine wave with a specified amplitude and frequency using the NI LabView software 

which controlled the actuator to the specified parameters. The NI LabView software tool 

developed by Anderson (2015), where the amplitude and frequency are specified to the 

actuator and the output signal from the LVDT can be compared with the prescribed sine wave 

of the actuator in real time during an experimental testing.  

The LVDT transducer was also connected to the CRT unit which provided the required 

voltage. The CRT unit cables with the LVDT input signal were connected to the NI 9219 

module. According to National-Instruments (2009) specifications the NI 9219 is a four 

channel analog input module. The input voltage signal was converted to displacement using a 

given factor. 

The configuration and design of the CRT unit with the configuration of the Kollmorgen 

actuator, LVDT transducer, and NI LabView software was done by Keith Anderson a 

ThyssenKrupp Elevator AG member. 

The prescribed sine wave was then compared with the LVDT displacement signal and shown 

in the NI LabView software to the user. 
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The configuration setup used at the top end of the rope with the Kollmorgen actuator cylinder 

and LVDT transducer is shown in Figure 3.7 (a) and the cabinet where the drive control unit 

and power supply for the actuator were placed is shown in Figure 3.7 (b). 

 
(a) 

 
(b) 

Figure 3.7 (a) Kollmorgen actuator and LVDT transducer at the excitation point (b) Portable 

cabinet to connect the Kollmorgen actuator and LVDT transducer 

 

The setup at the control room for the experimental rig is shown in Figure 3.8.  

 

  

Figure 3.8 Control room for the experimental rig 
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3.1.2 Pfeifer Drako rope properties 

The Pfeifer Drako rope used in the experimental rig is the 180B compensating rope with a 

synthetic fibre core (SFC), according to Drako et al. (2011). The rope length was L=32.70m, 

with a diameter d=19.10mm, and a measured mass per unit length of m=1.25kg/m. Due to the 

synthetic fibre core and the gaps between each strand and wire, the effective area taken for the 

experiment is approximately half of the nominal cross section area. The nominal cross section 

area is 286.5mm2, therefore the effective cross section is 148 mm2. A sample of the cross 

section of the Pfeifer Drako 180B is shown in Figure 3.9 

 

Figure 3.9 Cross section of the Pfeifer Drako rope as shown in Drako (2011) 

 

3.1.2.1 Estimation of the modal damping ratio  

The estimation of the lateral modal damping ratio with an end mass of 66 kg was determined 

by displacing a section of the rope. An AC sensor type 4507 B using beeswax and cable ties 

to secure the sensors on the rope was used to measure the displacement of the rope in the 

lateral in plane and out of plane direction. The sensor data was post processed in Pulse Reflex 

Base software using a band pass filter with the frequency range between 0.35 Hz – 0.45 Hz, 

shown in Figure 3.10. 
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Figure 3.10 Band pass filtered sensor data for (a) the Lateral in plane (b) the Lateral out of 

plane 

 

The first column in Table 3.1 (a) and (b) are shown the maximum positive acceleration peaks 

for the lateral in plane and out of plane direction, respectively. The acceleration values are 

taken from the maximum acceleration peaks inside the dashed blue square of Figure 3.10 for 

the lateral in plane and out of plane direction. 

The second column in Table 3.1 (a) and (b) are the results when the n peak acceleration value 

is divided by the n+1 peak acceleration value. The modal damping ratio was calculated using 

equations (2.16) and (2.15) when successive data from the experimental testing is available. 

 

(a) Lateral in plane 

Acceleration 

(m/s2) 
1

n

n

x

x


 

1.557132 1.067745705 

1.458336 1.091232345 

1.336412 1.065970065 

1.253705 1.133169735 

1.10637 1.092565436 

1.012635 1.03906934 

(b) Lateral out of plane 

Acceleration 

(mm/s2) 
1

n

n

x

x


 

119.6444 1.067433935 

112.086 1.092080405 

102.6353 1.100460426 

93.26578 1.020270465 

91.4128 1.082112428 

84.47625 0.996637614 

(a) 

(b) 

t (s) 

t (s) 
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0.9745596 1.093416855 

0.8912974 1.011719889 

0.8809725 1.072382869 

0.8215093 1.102324328 

0.7452519 1.04989337 

0.7098358 1.122096359 

0.6325979 1.139241284 

0.55528 1.176243308 

0.4720792 0.940651838 

0.5018639 1.297904299 

0.3866725 1.038661533 

0.3722796 1.103795361 

0.3372723 1.112220125 

0.3032424 1.115873435 

0.2717534 1.203645394 

0.2257753 1.106772591 

0.2039943 0.737747889 

0.2765095 1.13522043 

0.2435734 0.993942248 

0.2450579 1.13958581 

0.2150412 1.041552905 

0.2064621 1.382867381 

0.1493 1.115358555 

0.1338583 0.80463564 

0.1663589 0.743864841 

0.2236413 1.47470452 

0.1516516 1.377989474 

0.1100528 0.62031842 

0.1774134 1.364865447 

0.129986  

1
Lin = 0.010891156 

 

 

84.76125 1.068061855 

79.35987 1.020318068 

77.77954 1.004763029 

77.41083 1.08681908 

71.22697 1.011346504 

70.42786 1.052729399 

66.90025 1.092600574 

61.23029 0.977582759 

62.63438 1.013652194 

61.7908 1.031762994 

59.88856 0.979918951 

61.11583 0.966676336 

63.22264 1.027808187 

61.5121 1.04684822 

58.75933 1.056521677 

55.61583 0.902461168 

61.62684 0.972424214 

63.37444 1.01147433 

62.65551 1.016830349 

61.61845 0.946641244 

65.09166 1.029384876 

63.23355 0.937689904 

67.43546 1.046581279 

64.43404 0.911190193 

70.71415 1.056419279 

66.93758 1.039287223 

64.4072  

1
Lout = 0.00305658 

 

Table 3.1 Determining the lateral modal damping ratio for the (a) Lateral in plane (b) Lateral 

out of plane 

 

As a result the estimated lateral modal damping ratio in the lateral in plane direction was 1
Lin 

= 0.010891156 and in the lateral out of plane direction 1
Lout = 0.00305658. It was assumed 

the same lateral modal damping across all modes when doing simulation with the 

mathematical model. 

For the estimation of the longitudinal damping ratio of the rope was determined by hitting the 

mass with a rubber hammer. DC sensor type 4575 was used to measure the displacements of 
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the rope-mass system in the longitudinal direction. The sensor was attached to the mass in the 

longitudinal direction using beeswax. The acceleration response without any filtering is 

shown in Figure 3.11  

 

Figure 3.11 Acceleration signal from the sensor in the longitudinal direction 

 

As it can be seen in Figure 3.11 the mass and rope system return to zero displacement in a 

very short period of time approximately in 0.2 seconds. According to Rao (2005), a system 

that returns to rest in a very short period of time usually have a critically damped ratio of 1. 

Therefore, the longitudinal modal damping ratio of the mass and rope system was assumed to 

be critically damped, (U = 1), for a case with a mass of 66 kg. 

 

3.1.2.2 Lateral Natural Frequencies of the rope 

The lateral natural frequencies of the rope were determined by displacing a section of the rope 

and letting the rope vibrate freely. An AC sensor type 4507 B using beeswax and cable ties to 

secure the sensors on the rope was used to measure the displacement of the rope in the lateral 

in plane and out of plane direction. The sensor data was post processed in Pulse Reflex Base 

software using a Fast Fourier Transform (FFT) to determine the lateral natural frequencies of 

the rope as shown in Figure 3.12 (using a mass of 66 kg is attached at the lower end of the 

rope). 
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Figure 3.12 Lateral natural frequencies of the rope with a mass attached at the end of 66 kg 

 

The fundamental natural frequency with a mass of 66 kg was identified as 0.395 Hz.  

3.1.2.3 Estimation of the rope modulus of elasticity 

According to Rao (2005), the governing equation of the longitudinal vibration of a bar with an 

end mass M attached at one end is given by equation (3.1) with a fixed end at x=0 the 

boundary condition is  0, 0U t  .  

   , ,
x tt

EAU L t MU L t                      (3.1) 

The longitudinal natural frequency of a bar with an end mas can be expressed as equation 

(3.2). 

2

0

EA

LM
                       (3.2) 

To calculate the modulus of elasticity of a rope, the rope – mass system from the experimental 

rig is considered as a solid bar having a modulus of elasticity E, an effective cross sectional 

area Aeff and a length L. The mass of the rope should be taken into account as it is of 

considerable mass. According to Rao (2005), to take into account the mass of the spring can 

be accounted for by adding one third of its mass. The effective mass of the rope – mass 

system can be represented by equation (3.3). 

3
e

mL
m M                       (3.3) 

To calculate the modulus of elasticity of the rope equation (3.2) can be rewritten as equation 

(3.4). 
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2

0 e

eff

Lm
E

A


                      (3.4) 

The natural frequency in the longitudinal direction was determined by hitting the mass with a 

rubber hammer. The accelerometer was attached to the mass in the longitudinal direction of 

the rope. The longitudinal natural frequency of the rope – mass system was 0=14.88 Hz, as 

shown in Figure 3.13.  

 

Figure 3.13 FFT spectra of the acceleration response for longitudinal natural frequency with a 

mass of 68 kg. Test 1 (red line), Test 2 (blue line), Test 3 (green line) 

 

The effective mass of the rope – mass system is me=79.63 kg, the length of the rope is 

L=32.70 m, the effective cross sectional area of the rope is Aeff = 1.433x10-4 m2. The estimated 

modulus of elasticity of the rope was E=1.5378x1011N/m2 (EA=2.276x107N). 

 

3.1.3 Mass attached at the end 

The mass attached at the end consisted of a steel frame which two steel blocks were added to 

the sides. Sliding guide shoes were added to the sides of the mass, as shown on Figure 3.14. 

The connection to the rope was attached on the top part of the mass and a drawing with the 

dimensions of the mass is shown in Figure 3.14. 

Freq. = 14.875 Hz. 
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Figure 3.14 Mass attached at the end of the rope in the experimental test rig 

 

 

Figure 3.15 Drawing of the mass assembly attached at the end of the rope with measured 

dimensions 

 

3.1.4 Steel frame properties 

The steel frame consisted of four beams with the dimensions as shown in Figure 3.16. For 

section T1 the mass of the two beams are m1=3.52kg and m3=2.80kg with a length of 

L1=0.80m. For section T2 the mass of the two beams are m2=7.42kg and m4=7.38kg with a 

length of L2=1.80m. 
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Figure 3.16 Dimensions of the steel frame 

 

3.1.4.1 Estimation of k1 and k2 

The attachment support to the wall and slab for sections T1 and T2 are considered as simply 

supported with torsional stiffness / spring, which are identified as k1 and k2. To determine k1 

and k2 for the experimental test rig configuration, a preliminary approach was developed to 

determine all parameters of all four beams. First, all beams were individually clamped firmly 

from one end to a solid support to have the beam as a cantilever beam to determine the 

fundamental natural frequency and then to estimate the modulus of elasticity. Then each beam 

is anchored to the floor and wall with a single bolt, according to the support provided as it 

was originally. The angular natural frequency is again determined and compared with an 

approximate model. Afterwards, the horizontal and vertical beams of the same side are joined 

together by a bolt and the combined angular natural frequency is determined and compared 

with an approximate model.  

Beams with flexible supports such as torsional (rotatory) supports with translational supports 

were studied by Silva et al. (2015) and Silva and Maia (2011), a beam is attached a rotatory 

mass (disc) at the end, the Euler Bernoulli equation was used to determine the mode shapes of 

the beam taking into account the flexibility of the supports by finding Rayleigh’s quotient. 

Maiz et al. (2007) studied an Euler Bernoulli beam carrying multiple masses with 
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translational and rotary support ends taking into account the rotatory inertia of the mass was 

studied. A comparison was made when the beam has only translational supports and when 

having translational and torsional supports and the natural frequencies of the beam decrease 

when the torsional stiffness was introduced. A tapered beam with flexible supports 

considering as translational and rotational were studied by Rosa and Auciello (1996) and 

Auciello (1996) considering varying linearly the cross-section inertia of the beam the 

differential equation of the beam is solved using Bessel functions. 

 

3.1.4.2 Determining the torsional stiffness at the support points of sections T1 

and T2 

Sections T1 and T2 were attached to the wall or slab with one bolt at the support end as a 

result it was not perfectly fixed or pinned, as it is shown in Figure 3.17 (a,b). Two Bruel & 

Kjaer DC accelerometers type 4575 were attached to the beam using beeswax. The two DC 

accelerometers were connected to a Bruel & Kjaer data acquisition system module type 3050-

A-040. The beam was hit ones with a rubber hammer to excite the beam at the fundamental 

natural frequency.  

 
(a) 

 
(b) 

Figure 3.17 (a) Bolt for section T1 (b) Bolts for sections T2 

 

Section T1 was bolted to the wall without being bolted to section T2. Section T1 was struck 

with a hammer and the acceleration response for three tests are shown in Figure 3.18(a,b,c). 

The section T1 was struck with a hammer and the FFT spectrum from the three tests are 

shown in Figure 3.18 (d). The Frequency Response Functions (FRF) when using the impact 

hammer test section T1 is bolted to the wall are shown in Figure 3.19 (a,b,c). A table 

comparing both the FFT and the FRF tests is shown in Table 3.2. 
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Figure 3.18 (a,b,c) Acceleration response from the accelerometers for 3 tests for section T1 

bolted to the wall. (d) FFT spectrum from the acceleration response of the accelerometers for 

section T1 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.19 (a,b,c). Frequency response functions using the impact hammer test when bolted 

to wall section T1 

 

 

 

Freq. = 40.25 Hz 

(c) (a) (b) 

(d) 

Freq. = 40.63 Hz 

Freq. = 40.63 Hz 

Freq. = 40.63 Hz 
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Beam 1 

Cross Section T1  

Natural Frequency  

 (Hz) 

Average Natural 

Frequency  (Hz) 

From FFT spectrum 40.25 40.44 

From FRF 40.63 

Table 3.2 Comparison FFT and FRF for section T1 

 

The beam was considered as a rod of length L1 and mass m1, with axis of rotation at the end of 

the rod, where the mass moment of inertia is calculated using equation (3.5). The torsional 

stiffness at the support end is calculated using equation (3.6) as kθ1=4.848x104Nm. 

2

1 1
1

3
T

m L
J                       (3.5) 

 
2

1 1 12 r Tk J                      (3.6) 

Section T2 was bolted to the slab without being bolted to section T1. Section T2 was struck 

with a hammer and the acceleration response from the sensors are shown in Figure 3.20 

(a,b,c) and the FFT spectrum from the three tests is shown in Figure 3.20 (d). The Frequency 

Response Functions (FRF) is shown in Figure 3.21 (a,b,c) when using the impact hammer test 

on section T2 bolted to the slab. A table comparing both FFT and FRF test are shown in Table 

3.3. 

 

Figure 3.20 (a,b,c) Acceleration response from the accelerometers for 3 tests for section T2 

bolted to the slab. (d) FFT spectrums from the acceleration response of the accelerometers for 

section T2. 

 

(a) (b) (c) 

(d) Freq. = 60.75 Hz 

Freq. = 77.00 Hz 
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(a) 

 
(b)  

 
(c) 

Figure 3.21 (a,b,c). Frequency response functions using the impact hammer test when bolted 

to wall section T2 

 

Beam Section T2  Natural Frequency  

 (Hz) 

Average Natural 

Frequency  (Hz) 

From FFT spectrum 60.75 60.69 

From FRF  60.63 

Table 3.3 Comparison of FFT and FRF for section T2 

 

The second peak shown in Figure 3.20 and Figure 3.21 according to the frequency response 

function is the second natural frequency of the beam with torsional spring at the support end. 

The beam was considered as a rod of length L2 and mass m2, with axis of rotation at the end of 

the rod, where the mass moment of inertia is calculated using equation (3.7). The torsional 

stiffness is calculated using equation (3.8) as kθ2=1.1653x106Nm. 

2

2 2
2

3
T

m L
J                       (3.7) 

 
2

2 2 22 r Tk J                      (3.8) 

When both sections are connected with a bolt as shown in Figure 3.16 (circled in red). To 

determine the natural frequency when both sections are bolted together can be determine 

using equation (3.9). 

Freq. = 60.63 Hz 

Freq. = 60.63 Hz 

Freq. = 60.63 Hz 

Freq. = 77.00 Hz 

Freq. = 77.00 Hz 

Freq. = 77.00 Hz 
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eq

eq

k

m
                       (3.9) 

The equivalent mass is determined by summing the kinetic energy as shown in equation 

(3.10).  

2 2 2

1 1 2 2

1 1 1

2 2 2
T T T T eq eq

J J m                     (3.10) 

The angular displacements can be converted into linear displacements by using the following 

transformations 
1

1

T

x

L
   and 

2

2

T

x

L
  . Equation (3.10) can be rewritten as equation (3.11). 

1 2

2 2

1 2

T T

eq

J J
m

L L
                    (3.11) 

Similarly the equivalent stiffness is obtained by summing the potential energy and is shown in 

equation (3.12). 

1 2

2 2

1 2

eq

k k
k

L L

                      (3.12) 

The fundamental frequency of the combined beam was 54.99Hz  , according to Eq. (3.9). 

The equivalent linear stiffness estimated using equation (3.12), was 54.354 10 /eqk x N m . 

From the experimental testing when the beams are struck with a hammer the acceleration 

response from the sensors are shown in Figure 3.22 (a,b,c). The sensors were attached as 

close as possible where both are connected using beeswax. The FFT spectrum from the three 

tests is shown in Figure 3.22 (d). The Frequency Response Function (FRF) is shown in Figure 

3.23 (a,b,c), when using the impact hammer test with both sections bolted together. A table 

comparing both test results are shown in Table 3.4. 
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Figure 3.22 Acceleration response from the accelerometers for 3 tests when both beams are 

connected together with a bolt. (d) FFT spectrums from the acceleration response 

 

  

 

Figure 3.23 Frequency response functions using the impact hammer test when both sections 

are bolted together 

 

Freq. = 60.25 Hz 

Freq. = 60.63 Hz 

Freq. = 60.63 Hz 

Freq. = 60.63 Hz 
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The first prominent peak in Figure 3.22 and Figure 3.23 was approximately 20.0 Hz which is 

approximately equivalent when only the stiffness of section T1 is taken into account as shown 

in equation (3.13) with the equivalent mass, which is 
1

14.79Hz


  . 

1
1 2

1 eq

k

L m


                     (3.13) 

Sections T1 – T2 

connected  

Natural Frequency  

 (Hz) 

Average Natural 

Frequency  (Hz) 

From FFT spectrum 60.25 60.44 

From FRF 60.63 

Table 3.4 Comparison of FFT and FRF of sections T1 and T2 are bolted together 

 

The error when comparing the estimated fundamental natural frequency of the combined 

beam was 54.99Hz   with the experimental frequency of exp 60.44Hz   was 9.91%, 

which shows a good agreement with the measured value. 

 

3.2 Derivation of the mathematical model 

The model of the experimental rig is shown in Figure 3.24. It consists of a vertical suspension 

rope of length L and a mass per unit length m, modulus of elasticity E, and effective cross 

section area A. The rope is fixed at the top end to a support and at the bottom end is a mass M. 

The mass is constrained to move by a steel frame structure in the longitudinal direction and in 

the lateral in plane direction. The equivalent linear stiffness in the lateral in plane direction is 

represented by keq which was deducted in section 3.1.4.1. The mass is constrained to move in 

the longitudinal direction by sliding guide shoes shown in Figure 3.14. The response of the 

rope is subjected to displacements at the top represented by Sv(t) and Sw(t) in the lateral in 

plane and out of plane directions. 
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Figure 3.24 The model of the experimental rig 

 

To develop the mathematical model the following assumptions were taken into account: 

a) The rope has a constant modulus of elasticity E, constant cross sectional area A, constant 

mass per unit length m.  

b) The spatial coordinate x is measured from the top support. 
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c) Damping of the rope and mass is considered. 

d) The lateral damping of the rope in all modes is equal to the first lateral modal damping 

ratio. 

e) The longitudinal damping of the mass across all modes is equal to the critical modal 

damping ratio. 

f) Lateral in-plane V(x,t), lateral out of plane W(x,t), and longitudinal U(x,t) displacements 

of the rope are considered.  

g) The longitudinal displacements of the mass UM, the lateral in plane displacements of the 

mass V(L,t) of the rope are considered. 

h) Equations (3.14) and (3.15) represent displacements applied to the rope at the top support 

in the lateral in plane and out of plane directions. The amplitudes in the lateral in plane 

and out of plane directions are represented by Av and Aw, respectively. The frequency of 

excitation in the lateral in plane and out of plane direction are represented as 
v and 

w , 

respectively. 

S ( ) sint A tvv v  
 
 

                  (3.14) 

 S ( ) sint A tww w                   (3.15) 

i) Elastic strain measure of the rope given in terms of Green’s symmetric strain tensor as 

equation (3.16) where the expression x()  denotes partial derivatives with respect to x . 

 1 2 2

2
U V Wx x x                                (3.16) 

j) The displacements of the rope relative to the configuration of the rope when it is stretched 

by the structure motion is represented by V( x,t )  and W( x,t ) . 

k) The constant g is the acceleration of gravity which is equal to 9.81 m/s2. 

l) The rope length L is constant. 

m) The mass at the bottom considered as a point mass which is constrained to vibrate in the 

lateral in plane direction V(L,t) and in the longitudinal direction UM. 

n) The longitudinal natural frequencies of the rope are higher than the lateral natural 

frequencies of the rope. Thus, the longitudinal inertia of the rope is neglected. 

o) The bending stiffness of the rope is neglected. 
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p) The rope model is a nonlinear string model. 

 

Hamilton’s principle is used to derive the equations of motion. According to Meirovitch 

(2001), Hamilton’s principle is one of the most powerful variational principle of mechanics, 

from which the equations of motion of a continuous system are derived. The Hamilton’s 

principle is an integral principle which means that it considers the entire motion of a system 

between time t1 and t2. The instantaneous configuration of the system is described by n 

generalized coordinates q1,…, qn, which corresponds to a particular point in the spatial 

coordinates. As time evolves, the system point moves in a configuration space, tracing out a 

curve. This curve describes the path of motion of the system. Thus Hamilton’s principle can 

be defined as equation (3.17): 

2

1

ˆ( ) 0

t

nc

t

Q W dt      , 0
k

q  , 1, 2,...,k n , 
1 2
,t t t               (3.17) 

where Q̂ ,  and Wnc denote the kinetic energy, the potential energy and the work due to non-

conservative forces acting upon the system, respectively.  

The work done by the nonconservative forces is neglected so that ( , ) 0ncW x t   between t1 

and t2 which are the initial and final time. The virtual work of the nonconservative forces in 

this mathematical model represents the virtual work of damping forces which are considered 

as modal damping ratio. 

The total potential energy   is given by the following equation  

e g K                        (3.18) 

In the above expression e  is the cable elastic strain energy, g  is the gravitational energy, 

and K  is the potential energy of the spring. The kinetic energy of the system is expressed as 

follows 

      
L

m t t t M t t

0

Q̂ Q U ,V ,W dx Q U L,t ,V L,t                (3.19)  

The subscript t represent the partial derivative with respect to time. The kinetic energy density 

of the rope is expressed as   

2 2 2
1

2
m

U V W
Q m

t t t

        
        

         

               (3.20) 
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The kinetic energy of the mass is given as  

   
2 2

, ,1

2
M

V L t U L t
Q M

t t

     
     

      

               (3.21) 

Assuming that the constant energy accumulated into the system during the initial static 

deflection is neglected, the elastic strain energy of the rope and the energy of the equivalent 

spring element, between the mass and steel frame in the lateral direction, are given by 

equations (3.22) and (3.23). 

L

e e x x x

0

ˆ (U ,V ,W )dx                    (3.22) 

 V

K K
ˆ V L,t                        (3.23) 

where  

1ˆ ( )
2

e T x EA 
 

   
 

                 (3.24) 

  
21ˆ 2 ,

2

V

K eqk V L t
 

   
 

                 (3.25) 

The mean quasi static rope tension is represented by  T x .The  is the Green symmetric 

strain tensor measure of the rope which is defined in equation (3.16). The gravitational 

potential energy is given in terms of the dynamic deflections as  

L

g g M

0

ˆ (U )dx MgU                    (3.26) 

Potential Energy due to gravity of the rope 

g mgU


                      (3.27) 

Hamilton principle requires that any virtual displacement, arbitrary between two time instants 

1t  and 2t , vanishes at the end of the time interval such as 

     U x,t V x,t W x,t 0      for 0 x L               (3.28) 

Applying into (3.17) equations (3.19), (3.22), and (3.23) the following equations results 
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      

       

2

1

K

L

t
m t t t g e x x x

0

t V

M t t M

ˆ ˆQ U ,V ,W U U ,V ,W dx
dt 0

Q U L,t ,V L,t Mg U V L,t

  

  

 
   

 
   


             (3.29) 

where 

m m m
m t t t

t t t

Q Q Q
Q U V W

U V W
   

       
       

       
              (3.30) 

 
 

 
 M M

M t t

t t

Q Q
Q U L,t V L,t

U L,t V L,t
  

    
           

             (3.31) 

e e e
e x x x

x x x

U V W
U V W

  
   

       
       

       
              (3.32) 

g
ˆ mg U                         (3.33) 

 
 

V
V K
K V L,t

V L,t


 





                 (3.34) 

Integrating equation (3.30) in respect to t and x the following equation is derived 

2 2

1 1

t tL L

m m m
m t t t

t t tt 0 t 0

Q Q Q
Q dx dt U V W dx dt

U V W
   

           
                        

               (3.35) 

and 

     
2 2

1 1

t t

m m m
m

t t tt t

Q Q Q
Q dt U V W dt

U t V t W t
   

     
   

      
              (3.36) 

can be written as  

2 22 2 2

1 1 11 1

2 2

11

t tt t t

m m m m
m

t t t tt t tt t

t t

m m

t ttt

Q Q Q Q
Q dt Udt Vdt

U t U V t V

Q Q
Wdt

W t

U

W
W

V 



  



           
         

            

    
    

     

  



           (3.37) 

According to equation (3.28) the terms in red in equation (3.37) are the virtual displacements 

which are 0 when evaluated between t1 and t2. Thus, equation (3.37) can be rewritten as 

equation (3.38). 
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2 2 2 2

1 1 1 1

t t t t

m m m
m

t t tt t t t

Q Q Q
Q dt Udt Vdt Wdt

t U t V t W
   

         
        

          
                (3.38) 

Similarly 

 
 

 
 

2 2 2

1 1 1

t t t

M M
M

t tt t t

Q Q
Q dt U L,t dt V L,t dt

t U L,t t V L,t
  

     
              

              (3.39) 

L LL L L

e e e e
e

x x x x0 0 00 0

L L

e e

x x00

ˆ ˆ ˆ ˆ
ˆ dx U Udx V Vdx

U x U V x V

ˆ ˆ
W Wdx

W x W

   
    

 
 

           
         

            

    
    

     

  



          (3.40) 

 
 

2 2

1 1

t t V
V K
K

t t

ˆ
dt V L,t dt

V L,t


 


 

                  (3.41) 

The boundary conditions are as follows: 

U(0,t ) V(0,t ) W(0,t ) 0                     (3.42) 

W( L,t ) 0                     (3.43) 

Applying into Equation (3.29) Equations (3.33) - (3.34) and Equations  (3.38) - (3.43) the 

following equation is obtained 

   

0

ˆ ˆ

ˆ

, ,

m e m e

L
t x t x

m e

t x

V
ekM

t x
x L

Q Q
V mg U

t V x V t U x U
dx

Q
W

t W x W

Q

t V L t V L t V

 







                
               
                    

 
      

               


             





 

 
 

2

1

, 0

,
,

t

t

eM

t x
x L

V L t dt

Q
Mg U L t

t U L t U









 
 
 
 
 
 
 
 

 
  
 
 

  
                

 
 
 
 

        (3.44) 

The virtual displacement    U , V , W , U L,t , V L,t      are arbitrary and the above equation 

can only be valid for all the values of the virtual displacement if  
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ˆ
0m e

t x

Q

t V x V

    
   

      
                 (3.45) 

ˆ
0m e

t x

Q
mg

t U x U

    
    

      
                (3.46) 

ˆ
0m e

t x

Q

t W x W

    
   

      
                 (3.47) 

   

ˆ
0

, ,

V

e kM

t x xx L

Q

t V L t V V L t


   
        

               (3.48) 

 

ˆ
0

,

eM

t x x L

Q
Mg

t U L t U


  
       

                (3.49) 

Substituting the equations (3.20) - (3.25) into equations (3.45) - (3.49) the nonlinear equations 

of motion are derived. 

     

 

2 2

2 2

1

2

1
0

2

tt x x x x x xxx
x

x x x xx

x

mV T x V EA U V W V T x V

EA U V W V

 
     

 

 
    

 

             (3.50) 

 2 21
( ) 0

2
tt x x x x

x

mU T x EA U V W mg
 

      
 

              (3.51) 

     

 

2 2

2 2

1

2

1
0

2

tt x x x x x xxx
x

x x x xx

x

mW T x W EA U V W W T x W

EA U V W W

 
     

 

 
    

 

             (3.52) 

   

 

2 21
, (L)

2

2 , 0

x x x x x L

x L

eq

MV L t T EA U V W V

k V L t





  
     

  

 

             (3.53) 

   2 21
, (L) 0

2
x x xtt

x L

MU L t T EA U V W Mg


 
      

 
             (3.54) 

The equations (3.50) to (3.52) describe the dynamics of the rope and the equations (3.53) to 

(3.54) the boundary conditions at x=L in the lateral in plane and longitudinal direction 

respectively. 
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From Figure 3.24 the tension is derived by balance of forces which is represented by equation 

(3.55). 

 ( )T x Mg mg L x                    (3.55) 

The rope system is excited at the top by displacements in the lateral in plane and out of plane 

direction represented by equations (3.14) and (3.15). The absolute displacements in the lateral 

in plane and out of plane direction can be represented as equations (3.56) - (3.57). 

V( , ) ( , ) 1v

x
x t V x t S

L

 
   

 
                 (3.56) 

W( , ) ( , ) 1w

x
x t W x t S

L

 
   

 
                 (3.57) 

respectively, where V  and W  represent elastic deformations measured relative to the rigid-

body motions of the system. 

The partial derivative for x and t for the lateral in plane and out of plane direction are shown 

in equations (3.58) to (3.65). 

1v

tt tt tt

x
V V S

L

 
   

 
                  (3.58) 

v
x x

S
V V

L
                     (3.59) 

xx xxV V                    (3.60) 

1w

tt tt tt

x
W W S

L

 
   

 
                  (3.61) 

w
x x

S
W W

L
                     (3.62) 

xx xxW W                    (3.63) 

   , , v

x x

S
V L t V L t

L
                   (3.64) 

   , ,
v

tt

x x

S
V L t V L t

L
                   (3.65) 

Substituting equation (3.55) into equation (3.51) results in equation (3.66)  
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 2 21
0

2
tt x x x

x

mU EA U V W
 

    
 

                (3.66) 

The longitudinal natural frequency of the rope are much higher than the lateral natural 

frequencies of the rope, thus the inertia in the longitudinal direction can be neglected, 

resulting in equation (3.67). 

 2 21
0

2
x x x

x

U V W
 

   
 

                 (3.67) 

The internal terms inside the parenthesis is represented by e(t), which is shown in equation 

(3.68). 

   2 21

2
x x xe t U V W                    (3.68) 

Equation (3.68) is integrated with respect to x, giving equation (3.69). 

 
2 2

2 2

2 20 0 0

1 1
2 2

2 2

L L L
v v w w

x x x x x

S S S S
Le t U dx V V dx W W dx

L L L L

   
         

   
             (3.69) 

Substituting equation (3.68) and (3.55) into equations (3.50) to (3.54) gives 

   1 0v v
tt tt x xx xx xx

Sx
mV mS mgV mg Mg mgL V mgxV EAe t V

L L

 
         

 
          (3.70) 

 

 

1

0

w
w

tt tt x xx

xx xx

x S
mW mS mgW mg Mg mgL W

L L

mgxW EAe t W

 
      

 

  

             (3.71) 

           , , , 2 , 0v v
x x eqtt

S S
MV L t MgV L t Mg EAe t V L t EAe t k V L t

L L
                (3.72) 

   , (L) 0
tt

MU L t T EAe t Mg                   (3.73) 

The boundary conditions at x 0 , read U(0,t ) V (0,t ) W(0,t ) 0   . The linear natural 

modes of the lateral in plane and lateral out of plane motion are given as lin

n nsin( x )   and 

n

n
sin x

L




 
  

 
where lin

n  and 
n

L


 are the eigenvalues for the lateral in plane and the lateral 

out of plane modes, respectively. The eigenvalues for the lateral in plane direction can be 

determined from the frequency equation expressed by equation (3.74). 
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 
2

Lin Lin Lin Lin0
0 eq

MT
T cos L k sin L 0

m
   

 
   
 

     (3.74) 

The natural modes and the derivation of the frequency equations are analysed in Appendices 

A and B. 

Equations (3.69) to (3.72) can be discretised by applying the Galerkin method. In this 

procedure the dynamic response of the system is approximated in the lateral in plane and 

lateral out of plane directions by the following expansions  

 
1

, ( ) q ( )
N

n n

n

V x t x t


                  (3.75) 

 
1

, ( ) c ( )
N

n n

n

W x t x t


                  (3.76) 

respectively, where n nq ,c  represent the generalized (modal) coordinates and N represent the 

number of modes taken into account in the expansion. For the longitudinal direction the 

substitution ( , )
M

U L t U  is applied. Substituting expansions (3.75) and (3.76) into equations 

(3.69) to (3.73) by applying the orthogonality conditions with respect to the linear modes a 

system of nonlinear ordinary differential equations results as follows.  

 
2

2

2 30 0 0
1 1

2

2

2 30 0 0
1 1

1 1
( )q ( ) ( )q ( )

2 2

1 1 1
( )c ( ) ( ) c ( )

2 2

N NL L L
vM

j j j j v

n n

N NL L L

j j w j j w

n n

SU
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The upper subscript prime represents the total derivative with respect to x. Finding the 

solution of each integral from equation (3.77) can be represented as equation (3.78). 
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Where Gjp is represented as the following 
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           (3.81) 

The modal damping coefficients have been added into the above equations in the lateral in 

plane, out of plane, and longitudinal direction expressed as , ,Lin Lout

r r UM
   , respectively. The 

undamped natural frequencies in the lateral in plane, out of plane direction, and longitudinal 

directions are represented as , ,Lin Lout

r r UM
   , respectively. The coefficients resulting from the 

Galerkin method are defined. The terms for equation (3.79) which are for the lateral in plane 

direction of the rope are shown in equations (3.82) to (3.90). 
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The coefficient 1Lin

rn
k is defined in equation (3.84) which represents the lateral in plane linear 

stiffness coefficient. 
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The coefficients 
1 2,Lin Lin

jnr nr
D D  defined in equations (3.85) and (3.86) represent the quadratic 

lateral in plane nonlinear terms. 
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The coefficient Lin

r
F  defined in equation (3.87) represent the excitation coefficient for the 

lateral in plane direction.  
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The coefficients 
1Lin

jnpr
R  and 

2 Lin

jnpr
R  defined in equations (3.89) and (3.90) represent the lateral in 

plane cubic nonlinear terms. 

1

0
( ) ( ) (L) (L)

2 2

L
Lin

jnpr jp n r jp n rLin Lin

rr rr

EA EA
R G x x dx G

Lm Lm
                    (3.89) 

2 2

2

0
( ) ( ) (L) (L)

4 4

L
Lin

jnpr n r n rLin Lin

rr rr

EA j EA j
R x x dx

m L m L

 
   

   
      

   
             (3.90) 

The terms for equation (3.80) which are for the lateral out of plane direction of the rope are 

shown in equations (3.91) to (3.97). 
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The coefficient Lout

rn
k  is defined in equation (3.93) which represents the lateral out of plane 

linear stiffness coefficient. 
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The coefficient 
1Lout

jnr
D  defined in equation (3.94) represent the quadratic lateral out of plane 

nonlinear terms. 
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R  defined in equations (3.95) and (3.96) represent the lateral 

out of plane cubic nonlinear terms. 
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The coefficients Lout

r
F  defined in equation (3.97) represent the excitation coefficients for the 

lateral out of plane direction. 
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The terms for equation (3.81) which are for the longitudinal direction are shown in equations 

(3.98) to (3.102). 
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The coefficient 1u

n
k  defined in equation (3.99) represent linear coupling involving the lateral 

in plane modal displacements acting in the longitudinal direction. 
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The coefficients 
1 2,u u

np n
D D  defined in equations (3.100) and (3.101) represent the quadratic 

nonlinear coupling involving the lateral modal displacements acting in the longitudinal 

direction. 
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The coefficients 
U

F  defined in equation (3.102) represent the excitation coefficient for the 

longitudinal direction. 
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3.3 Experimental Validation  

As a summary the test data that has been presented in this chapter is shown in Table 3.5. 

Mass attached at 

the end of the rope 

[kg] 

M = 68 kg 

Mass per unit 

length of the rope 

[kg/m] 

m = 1.25 kg/m 

Length of the rope 

[m] 

L = 32.70 m 

Lateral in plane 

modal damping 

coefficient 

1
Lin = 0.01 

Lateral out of plane 

modal damping 

coefficient 

1
Lout = 0.003 

Longitudinal 

modal damping 

coefficient 

Long = 1 

Product of Young 

Modulus  of 

Material 

EA=2.276x107 N 

Linear stiffness of 

springs 

Keq=4.354x105 N/m 

Table 3.5 Summary of estimated experimental data to validate the mathematical model 

 

The total mass attached at the bottom end of the rope has been added half of meq to take into 

account the mass of the spring in the lateral in plane direction resulting in M=68.0 kg as it is 

shown in Table 3.5. 
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From the Galerkin method the nonlinear ordinary differential equations are given for N 

number of modes and the ODE45 solver is used in MATLAB. The solver requires that the set 

of differential equations be truncated to a specific number of modes to find the solution. For 

this validation presented with the experimental data the model was truncated at n=4 modes. In 

Appendix C are shown the comparison of the displacements of the rope in the lateral in plane 

and out of plane direction for n=1, n=2, and n=3.  

The experimental validation was accomplished by actuating the rope in the lateral in plane 

direction represented by Sv(t), where 
v  was tuned to the fundamental natural frequency of 

the rope with a prescribed amplitude Av using the Kollmorgen actuator. The frequency of 

excitation for the experimental test was 0.40Hzv  with Av=0.005m of displacement. The 

duration of the experiment is approximately 3 minutes and 50 seconds. The objective of this 

validation is to demonstrate that the mathematical model presented can be used to have an 

accurate estimation of the displacements of the rope. The sensors attached to the rope to 

measure the lateral in plane and out of plane displacements of the rope were positioned at a 

height of 11.0 m from the mass. 

3.3.1 Free vibration analysis 

From the mathematical model the lateral in plane eigenvalues are obtained by finding the 

roots of equation (3.74) shown in Table 3.6. There are several numerical methods used to 

determine the roots of a function, the most common numerical method used is the bisection 

method. According to Dauhoo and Soobhug (2003) the method divides into two parts an 

interval and then selects a subinterval in which a root must lie for further processing. Equation 

(3.74) according to the eigenvalues is shown in Figure 3.25. 

 1 2 3 4 
Lin  0.0961 0.1921 0.2882 0.3843 

Table 3.6 The first four eigenvalues obtained with equation (3.74) 
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Figure 3.25 Equation (3.74) vs the eigenvalues 

 

The natural modes shapes of the lateral in plane and lateral out of plane motion are given as 

lin

n nsin( x )   and 
n

n
sin x

L




 
  

 
 using the corresponding eigenvalues, and are shown in 

Figure 3.26 and Figure 3.27 respectively. 

 

Figure 3.26 1st and 2nd mode shape for the lateral in plane direction 

 

1 

2 

3 

4 
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Figure 3.27 1st and 2nd mode shape for the lateral out of plane direction 

 

The linear natural frequencies in the lateral in plane direction are obtained with the (lin) 

eigenvalues by using equation (3.103) 

Lin Lin Mg

m
                  (3.103) 

Resulting in the first four natural frequencies in the lateral in plane direction shown in Table 

3.7. 

 

 1 N. F.  

[Hz] 

2 N. F. 

[Hz]  

3 N. F. 

[Hz] 

4 N. F. 

[Hz] 
Lin  0.3532 0.7064 1.0597 1.4129 

Table 3.7 The first four linear natural frequencies when using Eq. (3.103). 

 

The natural frequencies of the rope and mass system can also be calculated when taking into 

account all linear terms that are not time dependent in the lateral in plane direction as shown 

in equation (3.104). 
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Resulting in the first four natural frequencies in the lateral in plane direction shown in Table 

3.8, similar to the estimated in the previous sections of this chapter  

 1 N. F.  

[Hz] 

2 N. F. 

[Hz]  

3 N. F. 

[Hz] 

4 N. F. 

[Hz] 
Lin  0.4039 0.8071 1.2075 1.6234 

Table 3.8 The first four natural frequencies of the rope in the lateral in plane direction using 

Eq. (3.104). 

 

The natural frequencies of the rope and mass system in the lateral out of plane direction when 

using the linear terms that are not time dependent as shown in equation (3.105) are similar 

when using equation (3.104) for the lateral in plane direction.
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                (3.105) 

Resulting in the first four natural frequencies in the lateral out of plane direction shown in 

Table 3.9, similar to the estimated in the previous sections of this chapter  

 1 N. F.  

[Hz] 

2 N. F. 

[Hz]  

3 N. F. 

[Hz] 

4 N. F. 

[Hz] 
Lout  0.4039 0.8071 1.2075 1.6234 

Table 3.9 The first four natural frequencies of the rope in the lateral out of plane direction 

using Eq. (3.105). 

The approximate value of the first (fundamental) natural frequency in the longitudinal 

direction is given by Eq. (3.98) resulting in 16.10UM Hz  , which is much higher than the 

lateral natural frequencies of the rope. The fundamental natural frequency in the longitudinal 

direction of 16.10UM Hz   agrees with the longitudinal frequency obtained from 

experimental testing of a rope and mass system shown in section 3.1.2.3 which was 0=14.88 

Hz used to estimate the modulus of elasticity of the rope. 

 

3.3.2 Simulation Results 

The signal data obtained after post processing from the LVDT in the lateral in plane direction 

and from the DC accelerometer in the lateral out of plane direction at the excitation point of 

the rope is shown in Figure 3.28. The main excitation was in the lateral in plane direction with 
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+0.005m, which was the amplitude provided by the Kollmorgen actuator and was prescribed 

in the National Instruments LabView software program. The displacements for the lateral out 

of plane were initially small but near 100 seconds increase to +0.002m which is when the 

lateral out of plane displacements of the rope start to increase due to the transfer of energy 

from the lateral in plane direction to the lateral out of plane direction when the whirling 

motion of the rope appear. 

 

Figure 3.28 Signal data after post processing in the lateral in plane and out of plane direction 

 

The FFT spectrum over the entire time span of the signal is shown in Figure 3.29 for the 

lateral in plane and out of plane direction. In both the dominant frequency is 0.40 Hz which is 

the prescribed frequency of the Kollmorgen actuator. 

 

Figure 3.29 Frequency of excitation in the lateral in plane and out of plane direction 
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The sensor data from the experiment shown in dotted black line and the data determined from 

the simulation shown in blue line are compared with the displacement shown in Figure 3.30 

for both the lateral in plane and out of plane direction. 

 

Figure 3.30 Comparison of the rope displacement at the sensor attachment height from the 

experiment and the simulation 

 

Figure 3.31 FFT spectrum of the lateral in plane displacements of the rope comparing the 

simulation and experimental testing 
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Figure 3.32 FFT spectrum of the lateral in plane displacements of the rope comparing the 

simulation and experimental testing 

 

The FFT spectrum over the entire time span of the displacements of the rope in the lateral in 

plane direction are shown in Figure 3.31 and for the lateral out of plane direction are shown in 

Figure 3.32 comparing both simulation and experimental testing. 

According to Nayfeh and Mook (1979), the whirling motion of the rope is an interesting 

phenomena which is a consequence of internal resonance. The whirling motion of a rope 

occurs when the energy of the rope is transferred from the lateral in plane direction to the 

lateral out of plane direction. The whirling motion of the rope is a direct consequence of the 

fact that the frequency of the motion in the plane of the excitation is the same as the frequency 

of the motion in the plane perpendicular to the plane of the excitation. Thus, the two 

components of motion are strongly coupled. 

The whirling motion of the rope can be seen when the lateral in plane and out of plane 

displacements are graphed together. In Figure 3.33 shows the whirling motion of the rope 

recorded at the sensor height when comparing the displacement from the sensor represented 

by a dotted black line and the displacement determined from the simulation represented by a 

blue line during the entire time span. 
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Figure 3.33 Comparison of the displacements in the lateral in plane and out of plane direction 

 

The whirling motion of the rope is shown in different time spans between 50 seconds and 100 

seconds, 100 seconds and 150 seconds, 150 seconds and 200 seconds, and 200 seconds until 

the end of the experiment are shown in Figure 3.34, Figure 3.35, Figure 3.36, and Figure 3.37 

respectively. The blue line represents the displacements determined from the simulation and 

the dotted black line is the sensor data. 

 

Figure 3.34 Comparison of the displacements in the lateral in plane and out of plane direction 

between 50 seconds and 100 seconds 
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Figure 3.35 Comparison of the displacements in the lateral in plane and out of plane direction 

between 100 seconds and 150 seconds 

 

 

Figure 3.36 Comparison of the displacements in the lateral in plane and out of plane direction 

between 150 seconds and 200 seconds 
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Figure 3.37 Comparison of the displacements in the lateral in plane and out of plane direction 

between 200 seconds and final time of the experiment 

 

As it can be seen the response from the simulation model starts to correlate better with the 

experimental testing after the initial 100.0 seconds when the whirling phenomena on the rope 

starts to occur. 

The model accommodates the lateral in plane and longitudinal motion of the mass. The lateral 

out of plane motion of the mass are neglected, due to the high stiffness in the lateral out of 

plane direction of the frame structure at the mass assembly. The displacements of the mass in 

the lateral out of plane direction after the initial transient phenomena were very small in the 

range of 0.2x10-4m, as it can be seen in Figure 3.38. The high amplitudes in the lateral out of 

plane direction are due to the transient phenomena possibly caused by misalignment in the 

system. According to Meirovitch (2001), transient phenomena are initial excitations that come 

to rest in a system with damping, which are caused by a sudden change of state. 
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Figure 3.38 Displacement of the mass in the lateral out of plane direction 

 

The lateral in plane displacements of the mass are shown in Figure 3.39 showing the results 

from the simulation in blue line and the experimental testing in black line. The displacements 

shown for the simulation model are much smaller than the experimental testing as the model 

does not accommodate the rotation of the mass during the whirling motion of the rope. The 

displacements from the experimental testing start increasing up to 2x10-4m due to the whirling 

motion of the rope. 

 

Figure 3.39 Displacement of the mass in the lateral in plane direction from the simulation and 

the experimental testing 
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The FFT spectrum of the mass in the lateral in plane over the entire time span for the 

simulation and the experimental testing are shown in Figure 3.40, where the predominant 

frequency of 0.40 Hz is shown. 

 

Figure 3.40 Frequency of the mass of the lateral in plane displacements of the simulation and 

experimental testing 

 

The displacements of the mass in the longitudinal direction are shown in Figure 3.41 

comparing the response from the simulation represented by a blue line and the response from 

the experimental model. The high amplitudes in the sensor data is due to the transient 

phenomena possibly caused by misalignment in the system. As it can be seen from the results 

after the initial 100.0 seconds the transient vanishes and the measured response amplitudes are 

within the range of the response predicted by the simulation. The steel frame was lubricated 

before every test exactly at the sliding guiding system of the mass and steel frame. After 100 

seconds the longitudinal displacements of the mass in the experimental testing got lowered 

because the lateral in plane displacement of the mass started to appear. 
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Figure 3.41 Mass displacement in the longitudinal direction comparing the response from the 

simulation represented by a blue line and the experimental testing represented by a black line 

 

The FFT spectrum over the entire time span from the displacement of the mass in the 

longitudinal direction of the simulation and the experimental testing are shown in Figure 3.42.  

 

Figure 3.42 FFT spectrum over the entire time span from the longitudinal displacements of 

the mass of the simulation and experimental testing 

 

The predominant frequency is 0.80 Hz which is twice the frequency of excitation to the rope, 

which is coming from equation (3.102) in the longitudinal direction. Thus, the mass is excited 

at 2 v  due to primary external resonance. 

As it was seen in the experimental testing the rotation of the mass does have influence in the 

lateral in plane, out of plane, and longitudinal displacements of the mass. Simplifications were 

made to track and understand the fundamental features and the behaviour of the system. 
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However, the rotational mode of the mass was observed. The imperfections or misalignment 

at the mass assembly, that are responsible for any additional looseness or misalignment have 

been difficult to eliminate and to accommodate in the current model due to project 

constraints. Future work is planned to improve the model.  

In a real elevator system due to ever increasing efforts to achieve good ride quality 

characteristics, the imperfections in the elevator car mass and its guiding system are 

negligible. Thus, the proposed model assumptions can be applied in a full elevator system to 

predict the behaviour of the suspension and compensating ropes with the influence of the 

elevator car, compensating sheave, and counterweight. 
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4. Stationary Model of a High – Rise Elevator System 

4.1 Description of the vibration model 

 

Figure 4.1 Drawing of the full stationary elevator system 

 

In Chapter 3 was developed a mathematical model of a rope and mass system considering the 

lateral in plane and out of plane displacements of the rope and the lateral in plane and 
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longitudinal displacements of a mass attached to the end of the rope. The results obtained 

from the mathematical model were in the same range as with the experimental results. The 

mathematical model had certain limitations in predicting the rotational motion of the mass 

due to the imperfections or misalignments at the mass assembly that are responsible for any 

additional looseness or misalignment. Interesting events were discussed like the interaction 

between the lateral displacements of the rope coupled with the longitudinal and lateral 

displacements of the mass, the whirling motion of the rope through the auto parametric terms, 

the lateral external frequency in which the rope was excited at the top, excited the mass in the 

longitudinal direction at twice the frequency which is primary external excitation. Thus, the 

proposed assumptions to develop the mathematical model can be applied to a full elevator 

system to predict the behaviour of the suspension ropes, compensating ropes, elevator car, 

compensating sheave, and counterweight. 

The model of an elevator system with an elevator car of mass M1, compensating sheave of 

mass M2, and counterweight of mass M3, is depicted in Figure 4.1. The suspension and 

compensating ropes have mass per unit length m1 and m2, constant elastic modulus EA1 and 

EA2, respectively. The parameter b1 represents the distance measured from the bottom landing 

level to the center of the compensating sheave. The parameter b2 denotes the distance 

measured from the center of the traction sheave to the center of the diverter pulley and h0 

represents the distance measured from the bottom landing level to the center of the traction 

sheave. The parameter htrav is the height of travel of the elevator car. The elevator car, 

compensating sheave and counterweight are considered as point masses, thus the height is 

neglected. The parameter ht is the position of the elevator car measured from the bottom 

landing level to the elevator car. 

The lengths of the suspension rope and of the compensating rope are defined as follows. The 

length of the suspension rope at the car side measured from the center of the traction sheave 

to the termination at the car crosshead beam is denoted by L1. The length of the compensating 

rope at the car side measured from the termination at the car bottom to the center of the 

compensating sheave is denoted as L2. The length of the compensating rope at the 

counterweight side measured from the termination at the counterweight to the center of the 

compensating sheave is denoted by L3. The length of the suspension rope at the counterweight 

side measured from the center of the diverter pulley to the termination at the counterweight 

end is denoted by L4. The mass moment of inertia of the diverter pulley and the short stretch 

of the suspension rope between the pulley and the traction sheave is neglected in the 

simulation model. 
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The response of the elevator ropes subjected to dynamic loading due to the building sway are 

represented by the lateral in-plane and lateral out of plane displacements denoted as Vi(xi,t) 

and Wi(xi,t) where the subscript i=1,2,3,4 corresponds to the sections of the ropes of length L1, 

L2, L3, and L4, respectively. The displacements of the ropes relative to the configuration of the 

ropes when they are stretched by the structure motion are represented by  ,
i i

V x t  and 

 ,
i i

W x t . The lateral in-plane and lateral out of plane motions of the ropes are coupled with 

the longitudinal motions of the ropes that are denoted as Ui(xi,t). The parameter xi is the 

spatial coordinate of each rope measured from the top support of each rope. The longitudinal 

motions of the car, compensating sheave and counterweight are denoted as UCR(t), UCS(t), and 

UCW(t), respectively. The lateral in plane and out of plane motions of the car denoted as 

VCR(t)=V1(L1,t)=V2(0,t) and WCR(t)=W1(L1,t)=W2(0,t). The lateral motions of the 

counterweight are not considered in this mathematical model. More emphasis was placed at 

the car side due to see the effects to the ride quality of the elevator car. The compensating 

sheave and counterweight are restricted to move in the longitudinal direction. The parameter 

k1 and k2 represents the combined stiffness of the roller guides and guide rails in the lateral in 

plane and the lateral out of plane direction, respectively. The parameters k1 and k2 can be 

estimated as it was discussed in Salamaliki-Simpson (2009). The lateral displacements of the 

structure corresponding to the top of the building at the machine room level and to the 

position of the car and counterweight are represented as 0(t), 1(t), 2(t), and 3(t).  

 

To develop the mathematical model the following assumptions were taken into account: 

a) All ropes are treated as strings. 

b) The elastic modulus EA of the ropes is considered constant. 

c) The bending stiffness of all ropes is neglected. 

d) No interactions between the ropes are accounted for in the mathematical model. 

e) The elevator car, compensating sheave and counterweight are treated as concentrated 

mass elements. 

f) The elevator system does not affect the dynamics of the building. 

g) Lateral damping of suspension and compensating ropes in all modes is equal to the first 

lateral modal damping ratio. 
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h) Longitudinal damping of the elevator car, compensating sheave, and counterweight are 

considered with longitudinal damping ratios. 

i) The S ( ) sint A tvv v  
 
 

  and  S ( ) sint A tww w   are the displacement applied by the 

building at the machine room level in the lateral in plane and out of plane directions. 

j) The building displacements are considered as a cantilever beam. 

k) Elastic Green strain measure of the ith rope considered as equation (4.1). 

 1 2 2

2
U V Wi ix ix ix                       (4.1) 

l) The constant g is gravity which is equal to 9.81 m/s2. 

m) The coupling between the suspension and compensating ropes at the car side due to the 

constraints at the elevator car by the springs k1 and k2 in both lateral in plane and out of 

plane directions are considered.  

n) The elastic interface with the building at the counterweight side is neglected. 

o) This is a stationary model, thus the elevator car is not subjected to an overall transport 

motion. A typical scenario is when the elevator car is positioned at a given height and the 

electromechanical brake is applied at the machine room level and the elevator car is 

stationary. 

 

4.2 Derivation of the mathematical model 

Hamilton’s principle is used to derive the equations of motion, according to equation (3.17). 

The total potential energy is given by equation (3.18). The kinetic energy of the system is 

expressed as follows 

        

     

i

1

2 3

L4

i it it it i M CR 1t 1 1t 1t
i 1 0

M CS M CWt t

Q̂ Q U ,V ,W dx Q U ,V L ,t ,W L ,t

Q U Q U



 

 


               (4.2) 

The kinetic energy density of the ith rope are expressed as 

2 2 2
1

2

i i i
i i

U V W
Q m

t t t

        
        

         

                 (4.3) 

The kinetic energy of each mass are given as  
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   
1

2 22

1 1 1 1

1

, ,1

2

CR
M

V L t W L tU
Q M

t t t

      
       

        

               (4.4) 

2

2

2

1

2

CS
M

U
Q M

t

  
   

   

                   (4.5) 

3

2

3

1

2

CW
M

U
Q M

t

  
   

   

                   (4.6) 

Assuming that the constant energy accumulated into the system during the initial static 

deflection is neglected, the elastic strain energy of the rope and the equivalent spring element 

between elevator car and guide rails in the lateral directions is given by equations (4.7) (4.8), 

respectively. 

iL4

e ie ix ix ix i

i 1 0

ˆ (U ,V ,W )dx 


                   (4.7) 

   V W

K K 1 1 K 1 1V L ,t W L ,t                           (4.8) 

where  

1ˆ ( )
2

ie i i i i iT x EA 
 

   
 

                   (4.9) 

  
2

1 1 1 5

1
2 ,

2

V v

K k V L t f
 

   
 

                (4.10) 

  
2

2 1 1 5

1
2 ,

2

W w

K k W L t f
 

   
 

                     (4.11) 

The mean quasi static rope tension is represented by  i iT x  and the rope strain measure is 

given in terms of Green’s symmetric strain tensor represented in equation (4.1), where the 

expression x()  denotes partial derivatives with respect to x . The absolute lateral in plane and 

out of plane displacements of the elevator car are represented as  1 1
,V L t  and  1 1

,W L t , 

respectively. The displacements of the spring attachment of the elevator car and the building 

structure in lateral in plane and out of plane direction are represented as 
5

vf  and 
5

wf , defined 

as    5 1 A sinv

v vf t t   and    5 1 A sinw

w wf t t   are derived further in the mathematical 

model. This type of base excitation to the springs is due to the interaction between the guide 
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rails and roller guides that are being excited by the building displacements according to 

position of the elevator car in the shaft. The gravitational potential energy is given in terms of 

the dynamic deflections as 

iL4

g ig i i 1 CR 2 CS 3 CW

i 1 0

ˆ (U )dx M gU M gU M gU 


                  (4.12) 

Potential Energy due to gravity of the ith rope 

ig i im gU


                        (4.13) 

Hamilton principle requires that any virtual displacement, arbitrary between two instants 1t  

and 2t , vanishes at the end of the time interval, so that 

 
     

   

i i i i i i

CR CS CW 1 1 1 1

U x ,t V x ,t W x ,t 0

U U U V L ,t W L ,t 0

  

    

  

    
 for 0 i ix L   at 1t , 2t            (4.14) 

Applying into (3.17) equations (4.2), (4.7), (4.8), and (4.12) the following equation result 

      

         

  

     

i

2

1 2

1

3

K K

L4

i it it it ig i ie ix ix ix i

i 1 0
t

M 1t 1 1t 1 CR M CSt t

t

M CW 1 CR 2 CS 3 CWt

V W

1 1 1 1

ˆ ˆQ U ,V ,W U U ,V ,W dx

Q V L ,t ,W L ,t , U Q U dt 0

Q U M g U M g U M g U

V L ,t W L ,t

  

 

   

 



 
   

 
 

  
 
    
 
   



            (4.15) 

where 

i i i
i it it it

it it it

Q Q Q
Q U V W

U V W
   

       
       

       
               (4.16) 

 
 

 
 

 
 1 1 1

1

M M M

M CR 1t 1 1t 1t
CR 1t 1 1t 1t

Q Q Q
Q U V L ,t W L ,t

U V L ,t W L ,t
   

       
                 

            (4.17) 

 
 2

2

M

M CS t
CS t

Q
Q U

U
 

 
  
  

                 (4.18) 

 
 3

3

M

M CW t
CW t

Q
Q U

U
 

 
  
  

                 (4.19) 
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ie ie ie
ie ix ix ix

ix ix ix

ˆ ˆ ˆ
ˆ U V W

U V W

  
   

       
       

       
                (4.20) 

ig i i
ˆ m g U                      (4.21) 

 
 

V
V K
K 1 1

1 1

V L ,t
V L ,t


 





                 (4.22) 

 
 

W
W K
K 1 1

1 1

W L ,t
W L ,t


 





                 (4.23) 

Integrating equation (4.16) in respect to t and x the following equation is derived 

i i2 2

1 1

L Lt t

i i i
i it it it

it it itt 0 t 0

Q Q Q
Q dx dt U V W dx dt

U V W
   

           
                          

               (4.24) 

and  

     
2 2

1 1

t t

i i i
i i i i

it it itt t

Q Q Q
Q dt U V W dt

U t V t W t
   

     
   

      
              (4.25) 

Can be written as  

2 22 2 2

1 1 11 1

2 2
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t tt t t
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W dt
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

           
         

            

   
           

  



          (4.26) 

According to equation (4.14) the terms in red in equation (4.26) are the virtual displacements 

which are 0 when evaluated between t1 and t2. Thus, equation (4.26) can be rewritten as 

equation (4.27). 

2 2 2 2

1 1 1 1

t t t t

i i i
i i i i

it it itt t t t

Q Q Q
Q dt U dt V dt W dt

t U t V t W
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         
        

          
               (4.27) 
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           (4.28) 
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 

2 2

2

2

1 1

t t

M

M CS

CSt t t

Q
Q dt U dt

t U
 
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 
 
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1 1

t t w
w K
K 1 1

1 1t t

dt W L ,t dt
W L ,t


 


 
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The boundary conditions are as follows: 

1 1 0V (0,t ) W (0,t )                    (4.34) 

1 2 2 2 2 3 3 3 3 4U (0,t ) V ( L ,t ) W ( L ,t ) V ( L ,t ) W ( L ,t ) U (0,t ) 0                  (4.35) 

1 1 2 CRU ( L ,t ) U (0,t ) U                   (4.36) 

   1 1 2 1 1 2 1V ( L ,t ) V 0,t W ( L ,t ) W 0,t                    (4.37) 

2 2 3 3 CSU ( L ,t ) U ( L ,t ) U                   (4.38) 

3 3 4 4 4 4 2V (0,t ) W (0,t ) V ( L ,t ) W ( L ,t )                   (4.39) 

3 4 4 CWU (0,t ) U ( L ,t ) U                   (4.40) 

4 4 3V (0,t ) W (0,t )                    (4.41) 

Applying into equation (4.15) equations (4.21), (4.27) to (4.41) the following equation is 

obtained 
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          (4.42) 

The virtual displacement    i i i CR CS CW 1 1 1 1U , V , W , U , U , U , V L ,t , W L ,t         are arbitrary 

and the above equation can only be valid for all the values of the virtual displacement if  

ˆ
0i ie

it ix

Q

t V x V

    
   

      
                 (4.43) 
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    
    

      
                        (4.44) 

ˆ
0i ie
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Q

t W x W
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   
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                              (4.45) 
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                     (4.46) 
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M e e K
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                   (4.47) 
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                       (4.48) 
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                    (4.50) 

Substituting the equations (4.3) to (4.11) into equations (4.43) to (4.50) the stationary and 

nonlinear equations of motion are derived. The equations (4.51) to (4.53) describe the 

dynamics of the ith rope in the elevator system, where i=1,2,3, and 4. 
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                                (4.51) 
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                           (4.52) 
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 

      
 

                    (4.53) 

The equations (4.54) and (4.55) are the boundary conditions at x1=L1 in the lateral in plane 

and lateral out of plane direction for the elevator car. 
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                (4.55) 
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The equations (4.56) to (4.58) are the boundary conditions at x1=L1 and x2=0, x2=L2 and 

x3=L3, x3=0, and x4=L4 in the longitudinal direction for the elevator car, compensating 

sheave, and counterweight respectively. 
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                       (4.58) 

From Figure 4.1 all tensions are derived by balance of forces which are represented by 

equations (4.59) to (4.62). 
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                    (4.62) 

The elevator system is excited by the displacements at the machine room level in the lateral in 

plane and out of plane direction represented by equations (4.63) and (4.64). 

 sinv v vS A t                        (4.63) 

 sinw w wS A t                      (4.64) 
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The overall lateral in plane displacements of each rope are represented by equations (4.65) to 

(4.68). 
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                         (4.68) 

The overall lateral out of plane displacements of each rope are represented by equations (4.69)

to (4.72).  
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                         (4.72) 

where    , , ,
i i i i

V x t W x t  are the displacements of the rope relative to the configuration of 

each rope when it is stretched by the structure motion. Furthermore, 1, 2, 3, 4, and 5 are 

the deformations obtained from the shape function (z) of a cantilever beam which is 

assumed to be related to the fundamental mode of the high rise building and is approximated 

by a cubic polynomial representing the lateral displacements of the structure corresponding to 

the top of the structure and to the position of the car and counterweight estimated by 

equations (4.73) to (4.77).  
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The partial derivative with respect to t for the lateral in plane are shown in equations (4.78) to 

(4.82). 
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The partial derivative with respect to x for the lateral in plane are shown in equations (4.83) to 

(4.91). 
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1 1xx xxV V                              (4.88) 

2 2xx xxV V                       (4.89) 

3 3xx xxV V                         (4.90) 

4 4xx xxV V                            (4.91) 

Similarly, the lateral out of plane direction derivative with respect to x and t can be deducted. 

Substituting equations (4.59) to (4.62) into equation (4.53) results in equation (4.92). 
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                   (4.92) 

Considering that the longitudinal natural frequencies of the ropes are much higher than the 

lateral natural frequencies of the ropes, thus the inertia in the longitudinal direction can be 

neglected, resulting in equation (4.93). 

 2 21
0

2
i ix ix ix

x

EA U V W
 

   
 

                     (4.93) 

The internal terms inside the parenthesis is represented by ei(t), which is shown in equation 

(4.94)  

   2 21

2
i ix ix ixe t U V W                       (4.94) 

Substituting equation (4.94) into equation (4.51) to (4.58) gives 

  0i itt ix ix i ixx i i ixxmV T V TV EAe t V                    (4.95) 

  0i itt ix ix i ixx i i ixxmW T W TW EAe t W                   (4.96) 

     

     

1 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 1 1 1

, (L ) (L )

(0) (0) 2 , 0

v v v

x xtt

v v

x x

M V L t M S T V T f EAe t V EAe t f

T V T f EA e t V EA e t f k V L t

    

     
           (4.97) 

     

     

1 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 1 1 1

, (L ) (L )

(0) (0) 2 , 0

w w w

x xtt

w w

x x

M W L t M S T W T f EAe t W EAe t f

T W T f EA e t W EA e t f k W L t

    

     
           (4.98) 
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     1 1 1 1 1 2 2 2 1(L ) (0) 0CR tt
M U T EAe t T EA e t M g                      (4.99) 

     2 2 2 2 2 3 3 2 3 2(L ) (L ) 0CS tt
M U T EA e t T EA e t M g                   (4.100) 

     3 4 4 1 4 3 2 3 3(L ) (0) 0CW tt
M U T EAe t T EA e t M g                  (4.101) 

The boundary conditions at 1x 0 are 
1 1V (0,t ) W (0,t ) 0  , at 1 1x L  or 2x 0  are 

   1 1 2V L ,t V 0,t  and    1 1 2W L ,t W 0,t , and at 2 2x L  are 
2 2 2 2V ( L ,t ) W ( L ,t ) 0  . The 

linear natural modes of the lateral in plane and lateral out of plane motion for the suspension 

rope at the car side (rope 1) are given as equations (4.102) and (4.103). 

  Lin

1n 1 1n 1x sin( x )                  (4.102) 

   Lout

1n 1 1n 1x sin x                 (4.103) 

The linear natural modes of the lateral in plane and lateral out of plane motion for the 

compensating rope at the car side (rope 2) are represented by equations (4.104) and (4.105).  

Lin Lin
Lin Lin Lin1n 1 2n 2

2n 2 1n 1 2n 2 2n 2Lin

2n 2

sin L cos L
( x ) sin L cos x sin x

sin L

 
   


                (4.104) 

Lout Lout
Lout Lout Lout1n 1 2n 2

2n 2 1n 1 2n 2 2n 2Lout

2n 2

sin L cos L
( x ) sin L cos x sin x

sin L

 
   


                (4.105) 

The derivation of the linear natural modes of rope 1 and 2 are analysed in Appendix D. Where

Lin Lin Lout

1n 2n 1n, , ,    and Lout

2n  are the eigenvalues in lateral in plane and lateral out of plane 

direction for the suspension and compensating ropes at the car side, respectively. The natural 

frequency for the lateral in plane direction of both ropes can be obtained from equation 

(4.106), which is derived in Appendix D and in Appendix E are the orthogonality of modes. 

 

2 1
2 2 2 1

2 1

2 1
1 2 1

2 1

2 1
1 1 2 1

2 1

2
2 1

1 2 1

2 1

cos sin

2 sin sin

sin cos

sin sin 0

Lin Lin Lin

Lin Lin

Lin Lin Lin

Lin Lin Lin

m m
T m L L

L L

m m
k L L

L L

m m
T m L L

L L

m m
M L L

L L

  

 

  

  

   
      
   

   
       

   

   
       

   

   
       

   

                      (4.106) 
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The natural frequency for the lateral out of plane direction of both ropes can be obtained from 

equation (4.107), which is derived in Appendix D and in Appendix E are the orthogonality of 

modes. 

 

2 1
2 2 2 1

2 1

2 1
2 2 1

2 1

2 1
1 1 2 1

2 1

2
2 1

1 2 1

2 1

cos sin

2 sin sin

sin cos

sin sin

Lout Lout Lout

Lout Lout

Lout Lout Lout

Lout Lout Lout

m m
T m L L

L L

m m
k L L

L L

m m
T m L L

L L

m m
M L L

L L

  

 

  

  

   
      
   

   
       

   

   
       

   

 
   

 
0

 
  

 

           (4.107) 

The eigenvalues for the lateral in plane and out of plane direction for the suspension and 

compensating ropes at the counterweight side can be determined from equations (4.108) to 

(4.111). 

Lin Lin 1
1n n

1

m

T
                      (4.108) 

Lin Lin 2
2n n

2

m

T
                      (4.109) 

Lout Lout 1
1n n

1

m

T
                    (4.110) 

Lout Lout 2
2n n

2

m

T
                     (4.111) 

Similarly, the boundary conditions at 3x 0 , 3 3x L , 4x 0 , and 4 4x L  are 

               3 3 3 3 3 3 4 4 4 4 4 4V 0,t W 0,t V L ,t W L ,t V L ,t W L ,t V 0,t W 0,t 0        . The 

linear natural modes of the lateral in plane and lateral out of plane motion are given as 

in in

i

n
sin x

L


 

 
   

 
 where 

i

n

L


 are the eigenvalues in lateral in plane and lateral out of plane 

direction for the suspension and compensating rope at the counterweight side, respectively. 

The natural frequencies in the lateral in plane and out of plane direction are determined by 

equation (4.112) for ropes i=3,4. 
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Lin Lout i
in in

i i

Tn

L m


                  (4.112) 

The equations of motion in (4.51) to (4.58) can be discretised by applying the Galerkin 

method. In this procedure the dynamic response of the system is approximated in the lateral in 

plane and lateral out of plane directions by the following expansions  

 
1

, ( )q ( )
N

i i in i in

n

V x t x t


                 (4.113) 

 
1

, ( ) c ( )
N

i i in i in

n

W x t x t


                (4.114) 

respectively, where in inq ,c  represent the generalized (modal) coordinates. For the suspension 

and compensating ropes at the car side the time dependent functions are q1n(t)=q2n(t) due to 

the boundary conditions in (4.37). Substituting expansions (4.113) and (4.114) into equation 

(4.94) which can be expanded into equations (4.115) to (4.118). 

         
 

       
 

2

11 1
1 1 1 1 1 1

1 1 11 1 1

2

11 1
1 1 1 1 1

1 1 11 1

1
sin

2 2

1
sin

2 2

vvN N N
Lin LinCR

jp j p j j

j p j

wwN N N
Lout Lout

jp j p j j

j p j

fU f
e t G q t q t q t L

L L L

ff
G c t c t c t L

L L





  

  

   

  

 

 

          (4.115) 

         
 

       
 

2

22 2
2 2 2 2 2 2

1 1 12 2 2

2

22 2
2 2 2 2 2

1 1 12 2

1
sin

2 2

1
sin

2 2

vvN N N
Lin LinCS CR

jp j p j j

j p j

wwN N N
Lout Lout

jp j p j j

j p j

fU U f
e t G q t q t q t L

L L L

ff
G c t c t c t L

L L





  

  


   

  

 

 

     (4.116) 

   
 

 
 

2 22 2

3 32 2

3 3 3

1 13 3 3

1 1

4 2 4 2

v w
N N

CS CW
j j

j j

f fU U j j
e t q t c t

L L L

 

 

   
       

   
             (4.117) 

   
 

 
 

2 22 2

4 42 2

4 4 4

1 14 4 4

1 1

4 2 4 2

v w
N N

CW
j j

j j

f fU j j
e t q t c t

L L L

 

 

   
       

   
           (4.118) 

Where 1 1 2, ,Lin Lout Lin

jp jp jp
G G G  and 2 Lout

jp
G  are shown in Appendix F. 

Substituting expansions (4.113) and (4.114) into (4.95) to (4.101) applying the orthogonality 

conditions with respect to the linear modes a system of nonlinear ordinary differential 

equations results as follows.  
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 

       

   

2
1 3 4

1 1 1 1 1 1 1 1 1 1

1

2 1 2

1 1 1 1 1 1 1

1 1 1 1 1

3

1 1 1 1

1 1

q ( ) 2 q ( ) q ( ) q ( )

( )

1

N
Lin Lin Lin Lin Lin Lin

r r rr r r r rn n rn CR rn CS

n

N N N N N
Lin Lin Lin

rn n irn j n rn j n

n n j n j

N N
Lin Lin

rn j n rnjp

n j

t t t k t k U k U

k c t D q t q t D c t q t

D c t c t R

  


    

 

    

  

 



  

      

     

1 1 1

1 1 1

1 1 1 1 1

1 1 1

2 0

N N N

j p n

n j p

N N N
Lin Lin

rnjp j p n r

n j p

q t q t q t

R c t c t q t F

  

  

  





         (4.119) 

 

       

   

2
1 3 4

1 1 1 1 1 1 1 1 1 1

1

2 1 2

1 1 1 1 1 1 1

1 1 1 1 1

3

1 1 1

1 1

( ) 2 ( ) ( ) ( )

( )

N
Lout Lout Lout Lout Lout Lout

r r rr r r r rn n rn CR rn CS

n

N N N N N
Lout Lout Lout

rn n irn j n rn j n

n n j n j

N N
Lout

rn j n

n j

c t c t c t k c t k U k U

k q t D q t c t D c t c t

D q t q t

  


    

 

    

  

 



  

      

     

1 1 1 1

1 1 1

1 1 1 1 1

1 1 1

1

2 0

N N N
Lout

rnjp j p n

n j p

N N N
Lout Lout

rnjp j p n r

n j p

R q t q t c t

R c t c t c t F

  

  

  





        (4.120) 

and for i=3,4 

 

       

2

1

2 2

1 1 1 1 1 1

q ( ) 2 q ( ) q ( ) q ( )

1 2 0

N
Lin Lin Lin Lin

ir ir irr in ir ir irn in

n

N N N N N N
Lin Lin Lin

irnjp ij in irnjp ij in ir

n j p n j p

t t t k t

R q t q t R z t q t F

  


     

  

   



 
                   (4.121) 

   

       

2
1

1

2 2

1 1 1 1 1 1

( ) 2 ( ) ( )

1 2 0

N
Lout Lout Lout Lout

ir ir irr ir ir ir irn in

n

N N N N N N
Lout Lout Lout

irnjp ij in irnjp ij in ir

n j p n j p

c t c t c t k c t

R q t c t R c t c t F

  


     

  

   



 
                   (4.122) 

The coefficients
1 1

, , ,Lin Lout Lin Lout

r r ir ir
     represent the modal damping ratios for the ith rope in the 

lateral in plane and out of plane direction. 

         

       

1 1 1 1

1 1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 2 3 4

1 2 0

N N
u u u u

CR CR CS n n n ntt
n n

N N N N
u u

jp j p jp j p CR

j p j p

M U k U t k U t k q t k c t

R q t q t R c t c t f

 

   

   

   

 

 
                  (4.123) 
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       

       

       

2 2 2

2

2 2 2

1 1 1 1

1 1 1 1

2 2 2 2 2

1 1 3 3

1 1 1 1

1 2 3

4 5 1

2 3 4 0

u u u

CS CR CS CWtt

N N N N
u u u

n n n n jp j p

n n j p

N N N N
u u u

jp j p n n n n CS

j p n n

M U k U t k U t k U t

k q t k c t R q t q t

R c t c t R q t R c t f

   

   

  

  

    

  

  

                   (4.124) 

       

     

3 3 3 2

3 3

1

3 2 3 2 3 2

3 4 4

1 1 1

1 2 1

2 3 4 0

N
u u u

CW CS CW n ntt
n

N N N
u u u

n n n n n n CW

n n n

M U k U t k U t R q t

R c t R q t R c t f



  

  

    



  
                                     (4.125) 

The equations of motion (4.123) to (4.125) for the elevator car, compensating sheave, and 

counterweight are transformed into the modal coordinates using the transformation  U Y S  

where  
T

CR CS CWU U U U  and  
T

CR CS CWS S S S  is a vector of  modal-coordinates 

corresponding  to the system comprising the car, compensating sheave, and counterweight, 

respectively. If [Y] is the mass-normalized mode shape matrix, the following set of equations 

describing the vertical response of the car, compensating sheave and counterweight in terms 

of the modal parameters represented as (4.126) to (4.128) 

               1 12

1 22 0
T T

CR CR CR CR CR CRS t S t S t Y Y F                     (4.126) 

               2 22

1 22 0
T T

CS CS CS CS CS CSS t S t S t Y Y F                     (4.127) 

               3 32

1 22 0
T T

CW CW CW CW CW CWS t S t S t Y Y F                    (4.128) 

where , ,
CR CS CW

    represent the longitudinal natural frequencies of the elevator car, 

compensating sheave and counterweight, which can be estimated by finding the eigenvalues 

from the stiffness matrix represented in (4.129) and mass matrix represented in (4.130). The 

coefficients , ,
CR CS CW

    represent the longitudinal modal damping ration of the elevator car, 

compensating sheave and counterweight.  

1 1

2 2 2

3 3

1 2 0

1 2 3

0 1 2

u u

u u u

u u

k k

k k k

k k

 
 
 
 
 
 

                (4.129) 



93 

 

1

2

3

0 0

0 0

0 0

M

M

M

 
 
 
  

                 (4.130) 

The coefficients 
1 2
, , ,F    are shown in equations (4.131) to (4.134).  

 

 

1

1

1

2

1 1

1

3

4

0

N
u

n n

n

N
u

n n

n

k q t

k q t





 
 
 
 

  
 
 
 
 



                 (4.131) 

 

 

1
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The coefficients , ,
CR CS CW

    are the quadratic terms from the equations of motion of the 

elevator car, compensating sheave, counterweight represented in equations (4.135) to (4.137). 
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Similarly in equations (4.119) and (4.120) the coefficients of the elevator car, compensating 

sheave and counterweight are transformed and rewritten as equations (4.138) and (4.139) 
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where lin

u  and lout

u  are represented by  

3 4

1 1 0lin lin lin

u r rk k                            (4.140) 

3 4

1 1 0lout lout lout

u r rk k                           (4.141) 

All coefficients are shown in Appendix F. 

 

4.3 Simulation Results 

Three case study results are shown to verify the proposed mathematical model of a stationary 

elevator system with a comparison on each case study with a high and low stiffness for k1 and 

k2. 

The parameters taken to analyse the dynamic performance of an elevator system in the three 

case studies consist of six ( 1 6n  ) steel wire suspension ropes and six ( 2 6n  ) steel wire 

compensating ropes, both suspension and compensating ropes have a mass of 1 2 2.15m m   
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kg/m with a constant elastic modulus of 
1 2 95276193EA EA   N. The modal damping ratios 

for the ropes are assumed as 1% across all modes and 30% for the lumped mass of the 

elevator car, compensating sheave and counterweight. The height measured from the ground 

floor level to the centre of the traction sheave is 
0 248h   m, travel height 236.00travh  m, the 

car mass with full load is 
1 8600M  kg, the mass of the compensating sheave is 

2 8000M 

kg, and the mass of the counterweight is 
3 7800M  kg. The height measured from the bottom 

landing level to the centre of the compensating sheave is given as 
1 8.30b  m and the height 

from centre of the traction sheave to the centre of the diverter pulley is 
2 0.50b  m. Assuming 

that the high rise building has a circular cross section, the fundamental natural frequency is 

1.885v  rad/s (0.30 Hz) in the lateral in plane direction and in the lateral out of plane 

direction is 1.5708w  rad/s (0.25 Hz). Assuming, the high rise building is excited by wind 

harmonically, the displacement at the machine room level in the lateral in plane direction is 

0.90vA  m and in the lateral out of plane direction is 0.35wA  m. From the Galerkin method 

the nonlinear ordinary differential equations are given for N number of modes and the ODE45 

solver is used in MATLAB. For the simulation results presented in this Chapter, the number 

of modes taken into account are N=4, considered for all simulations of Chapter 4. The 

stiffness of the springs that are connected to the elevator car in the lateral in plane direction 

and in the lateral out of plane direction is of 
1 2

80000k k   N/m considered as high spring 

stiffness and 
1 2

30000k k   N/m considered as low spring stiffness. The simulation is started 

from the initial instant 
0 0t  s until 200ft  s.  

4.3.1 Frequency Analysis 

The variation of frequency in the lateral direction of the car, suspension and compensating 

ropes at the car side due to different positions of the elevator car along the travel height is 

determined with the eigenvalues of equation (4.142).  
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The variation of frequency corresponding to all lateral modes of the elevator car, suspension, 

and compensating ropes at the car side according to the position of the elevator car in the 

hoistway measured from the bottom landing level are shown in Figure 4.2, with 

1 2
80000k k   N/m. 

 

 

Figure 4.2 Variation of frequency with the position of the elevator car (car side) 

 

In Figure 4.2 the solid blue, orange, yellow, purple line are the variation of frequency of the 

first four lateral in plane natural frequencies at the car side of the elevator car, suspension and 

compensating ropes. The dashed magenta and black line are the fundamental natural 

frequency of the suspension and compensating ropes when the lateral stiffness of the elevator 

car is neglected according to the change of position of the elevator car, calculated using 
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equations (4.143) and (4.144). The dashed red and blue lines are the excitation of the building 

structure in the lateral in plane and out of plane direction with 0.30 Hz and 0.25 Hz, 

respectively. In Figure 4.2 can be seen that the suspension ropes will be excited at the 

fundamental natural frequency and compensating ropes will be excited at twice the 

fundamental natural frequency in the lateral in plane direction due to the frequency of 

excitation of the building structure in the lateral in plane direction of 0.30 Hz. For the lateral 

out of plane direction the suspension and compensating ropes will be excited at the 

fundamental natural frequency due to the frequency of excitation of the building structure in 

the lateral out of plane direction of 0.25 Hz. 
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In Figure 4.2 the curve veering phenomena is observed which is when two eigenvalues 

approach each other closely and suddenly veer away again, each one taking on the trajectory 

of the other. The curve veering phenomena is also known as mode localization, according to 

Giannini and Sestieri (2015) investigated curve veering with a two degrees of freedom system 

to analysed the adverse conditions in coupling between elastic, inertial or gyroscopic. Du Bois 

et al. (2011) and Bendiksen (2000) defined the veering phenomena as smooth change of 

normal parametric variation of two modes approaching each other but, instead of crossing, 

they veer away and finally diverge. The curve veering phenomena is the effect caused by 

modal interaction, a group of frequencies joining together and mode shape localization. The 

importance of eigenvalue veering and mode shape localization was demonstrated in a 

structural buckling case in Pierre and Plaut (1989).  

The point where both the fundamental natural frequency of the suspension and compensating 

ropes match each other occur when the elevator car is positioned at 84.0 m from the bottom 

landing level with a frequency of 0.317 Hz. 
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The effect on the variation of frequency and veering phenomena when using high and low 

stiffness parameter is shown in Figure 4.3. In Figure 4.3 the solid blue, orange, yellow, and 

purple line for the first four natural frequencies in the lateral direction at the car side when 

using a stiffness parameter of k1=80 kN/m considered as high stiffness and the dashed green, 

cyan, red, and blue lines represent the first four natural frequencies in the lateral direction at 

the car side when using a stiffness parameter of k1=30kN/m considered as low stiffness 

parameter. The dashed red and blue lines are the excitation of the building structure in the 

lateral in plane and out of plane direction with 0.30 Hz and 0.25 Hz, respectively.  

It should be noted as the stiffness parameter is lowered the variation of frequency becomes 

smooth and the sharp peak for the fundamental natural frequency is reduced. The point where 

both the fundamental natural frequency of the suspension and compensating ropes match each 

other was reduced from a frequency of 0.317 Hz to 0.305 Hz. 

 

Figure 4.3 Variation of frequency with the position of the elevator car (car side) when 

comparing stiffness parameter of k1=80 kN/m and k1=30kN/m 

 

Thus, the three case studies that will be presented consist of positioning the elevator car at the 

bottom landing level as case study one, when the elevator car is positioned at the veering 

point at a height of 84.0 m from the bottom landing level as case study two, and when the 

elevator car is positioned at the top landing level at a height of 236.0 m from the bottom 

landing level as case study three. 
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Similarly, the variation of the compensating and suspension ropes at the counterweight side 

and the variation of the longitudinal natural frequencies of the elevator car, compensating 

sheave, and counterweight according to the position of the car in the hoistway measured from 

the bottom landing level are shown in Figure 4.4 and Figure 4.5. The solid blue, orange, 

yellow, purple line represent the first four natural frequencies of the compensating and 

suspension ropes at the counterweight side, calculated using equations (4.145) and (4.146). 

The dashed green, magenta, and black lines represent the change of frequency in the 

longitudinal direction of the elevator car, compensating sheave, and counterweight according 

to the position of the elevator car, estimated by finding the eigenvalues from the stiffness 

matrix represented in (4.129) and mass matrix represented in (4.130). The dashed red and 

blue lines represent the frequency of excitation from the building structure at 0.30 Hz and 

0.25 Hz in the lateral in plane and out of plane direction. The compensating rope at the 

counterweight side will be excited at twice the fundamental natural frequency due to the 

frequency of excitation of the building structure. Similarly, the suspension ropes at the 

counterweight side will be excited at higher than the fundamental natural frequency due to the 

frequency of excitation of the building structure. 

 

Figure 4.4 Variation of the frequency according to the position of the car (compensating ropes 

at the counterweight side) 
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Figure 4.5 Variation of the frequency according to the position of the car (suspension ropes at 

the counterweight side) 
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4.3.2 Mode shapes 

The mode shapes corresponding to the vertical vibrations of the car, compensating sheave and 

counterweight are shown in Figure 4.6 (a), (b) and (c), respectively for case study one. In the 

first mode (1.074 Hz) the elevator car and compensating sheave have similar displacements 

and are in phase than the counterweight. The second mode (5.3085 Hz) is the displacements 

of the elevator car and compensating sheave are in phase and the counterweight is out of 

phase. In the third mode (8.4475 Hz) the elevator car, compensating sheave, and 

counterweight motions are all out of phase. 
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Figure 4.6 The mode shape displacements of the car, compensating sheave and counterweight 

for case study one 

 

The mode shapes corresponding to the vertical vibrations of the car, compensating sheave and 

counterweight are shown in Figure 4.7 (a), (b) and (c), respectively for case study two. In the 

first mode (1.147 Hz) the elevator car and compensating sheave have greater displacements 

than the counterweight and they are in phase. The second mode (2.2491 Hz) the 

displacements of the elevator car, compensating sheave, and counterweight are all out of 

phase. In the third mode (2.9492 Hz) the elevator car and counterweight motions are in phase 

and the compensating sheave is out of phase. 

 

Figure 4.7 The mode shape displacements of the car, compensating sheave and counterweight 

for case study two 
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The mode shapes corresponding to the vertical vibrations of the car, compensating sheave and 

counterweight are shown in Figure 4.8 (a), (b) and (c), respectively for case study three. In the 

first mode (1.1007 Hz) the compensating sheave and counterweight are in phase and the 

elevator car is out of phase. The second mode (4.9549 Hz) the displacements of the 

compensating sheave and counterweight are in phase. The displacements of the elevator car 

are out of phase. In the third mode (8.6533 Hz) the elevator car, compensating sheave and 

counterweight motions are all out of phase. 

 

Figure 4.8 The mode shape displacements of the car, compensating sheave and counterweight 

for case study three 

 

The lateral mode shapes of the system at the car side composed of the suspension and 

compensating rope and the elevator car when the car is at the bottom landing level as in case 

study one where the elevator car is positioned at the bottom landing level is shown in Figure 

4.9 comparing stiffness parameters of k1=80 kN/m and k1=30 kN/m. The solid and dashed 

line represent the 1st and 2nd mode shapes of the system at the car side, where the blue and red 

line represent the suspension and compensating ropes and the connection point of the ropes is 

the elevator car considered as a lumped mass. The small linewidth represent the mode shapes 

calculated with a stiffness parameter of k1=80 kN/m and the bigger linewidth represent the 

mode shapes calculated with a stiffness parameter of k1=30kN/m. The mode shapes can be 

determined with equations (4.102) and (4.104). 
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The mode shape of the compensating rope is linear due to the short length of the 

compensating rope. The mode shape function is scaled so that the maximum amplitude is 1. 

The effect of having a low stiffness parameter would increase the amplitude in the lateral 

direction for the elevator car. 

 

Figure 4.9 1st and 2nd mode shapes of the system at the car side with different stiffness 

parameters as k1=80 kN/m and k1=30kN/m 

 

The lateral mode shapes of the system at the car side composed of the suspension and 

compensating rope and the elevator car when the car is positioned at 84.0 m from the bottom 

landing level as in case study two is shown in Figure 4.10 comparing stiffness parameters of 

k1=80 kN/m and k1=30 kN/m. The elevator car is positioned at 84.0 m from the bottom 

landing level at the veering point where the fundamental natural frequencies of the suspension 

and compensating ropes match. The solid and dashed line represent the 1st and 2nd mode 

shapes of the system at the car side, where the blue and red line represent the suspension and 

compensating ropes and the connection between the ropes is the elevator car considered as a 

lumped mass. The small linewidth represent the mode shapes calculated with a stiffness 
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parameter of k1=80 kN/m and the bigger linewidth represent the mode shapes calculated with 

a stiffness parameter of k1=30kN/m. The mode shapes can be determined with equations 

(4.102) and (4.104). 

 

Figure 4.10 1st and 2nd mode shapes of the system at the car side with different stiffness 

parameters as k1=80 kN/m and k1=30kN/m for case study two 

 

Similarly, the mode shapes for case study three when the car is positioned at the top landing 

level and the mode shapes for the three case studies in the lateral out of plane direction can be 

deducted. 

In Figure 4.11 the 1st and 2nd mode shapes of the compensating ropes at the counterweight 

side for case study one are represented by a solid and dashed blue line, respectively. The 

mode shapes of the compensating rope at the counterweight side are scaled to show the 

maximum amplitude as 1. Similarly, the mode shapes for case studies two and three can be 

determined by using 
in in

i

n
sin x
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Figure 4.11 1st and 2nd mode shapes of the compensating rope at the counterweight side for 

case study one 

 

4.3.3 Response of the ropes 

The behaviour of all ropes of the elevator system are obtained from the mathematical model. 

The response of the compensating ropes at the car side for case study one, two, and three are 

shown in Figure 4.12, Figure 4.13, and Figure 4.14 comparing a high stiffness parameter of 

k1=k2=80kN/m represented by a blue line and a low stiffness parameter of k1=k2=30kN/m 

represented by a red line. The response of the compensating rope at the car side in the lateral 

in plane direction is obtained from equation (4.66) and in the lateral out of plane direction is 

obtained from equation (4.70). The response of the compensating ropes in the lateral direction 

at the car side is higher due to the effect of using a low spring parameter in the lateral 

direction of the elevator car. In case study one the elevator car is positioned at the bottom 

landing level, thus the compensating ropes at the car side have small displacements in the 

lateral directions when compared with the other two case studies. 
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Figure 4.12 The mid span length displacements of the compensating rope at the car side with 

respect to time (a) Lateral in plane direction (b) Lateral out of plane direction for case study 

one comparing k1=k2=80kN/m represented as blue line and k1=k2=30kN/m represented as 

red line 

 

 

Figure 4.13 The mid span length displacements of the compensating rope at the car side with 

respect to time (a) Lateral in plane direction (b) Lateral out of plane direction for case study 

two comparing k1=k2=80kN/m represented as blue line and k1=k2=30kN/m represented as red 

line 
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Figure 4.14 The mid span length displacements of the compensating rope at the car side with 

respect to time (a) Lateral in plane direction (b) Lateral out of plane direction for case study 

three comparing k1=k2=80kN/m represented as blue line and k1=k2=30kN/m represented as 

red line 

 

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span 

of 100.0 seconds – 180.0 seconds for case study one are shown in Figure 4.15 (a) and (b), 

respectively. It is evident that the dominant frequencies are 0.30 Hz and 0.25 Hz which is the 

frequencies in which the building structure is exciting the ropes in the lateral in plane and out 

of plane directions shown in Figure 4.15 (a) and (b). The frequencies of 0.30 Hz and 0.25 Hz 

from the lateral in plane and out of plane directions are coming from the parametric terms 

located in the lateral in plane and out of plane equations in the stiffness coefficients of 
1

1

Lin

rn
K  

and 
1

1

Lout

rn
K  from equations (4.119) and (4.120). This parametric excitation is coming from the 

kinematic forcing terms that are exciting the ropes at the machine room level. Due to the short 

length of the ropes no interaction between the lateral in plane and out of plane directions is 

taking place. 
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Figure 4.15 The FFT frequency spectrum of the compensating rope in the lateral in plane 

direction between 100 seconds and 180 seconds (a) Lateral in plane direction (b) Lateral out 

of plane direction for case study one 

 

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span 

of 140.0 seconds – 180.0 seconds for case study three are shown in Figure 4.16 (a) and (b), 

respectively. It is evident that the dominant frequency is 0.30 Hz which is the frequency in 

which the building structure is exciting the ropes in the lateral in plane direction is shown in 

Figure 4.16 (a) and (b). In the lateral out of plane direction the second predominant frequency 

is 0.25 Hz which is the lateral out of plane excitation frequency of the building structure. 

Thus, 1:1 autoparametric interaction is taking place between the lateral in plane and out of 

plane directions, through the quadratic and cubic nonlinear terms of equations (4.138) and 

(4.139) from coefficients 2 1

1 1 1 1
, 2 , , 1Lin Lin Lout Lout

rn rnjp rn rnjp
D R D R  where the coupling between the lateral in 

plane and out of plane modes occur. 

 

Freq. = 0.30 Hz 

Freq. = 0.25 Hz 
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Figure 4.16 The FFT frequency spectrum of the compensating rope in the lateral in plane 

direction between 140 seconds and 180 seconds (a) Lateral in plane direction (b) Lateral out 

of plane direction for case study three 

 

For case study two the elevator car is positioned at the veering point where the fundamental 

natural frequencies of the suspension and compensating ropes match and are excited at the 

fundamental natural frequency in the lateral in plane direction by the building structure. Thus, 

the response of the suspension ropes at the car side will be showing high displacements as 

shown in Figure 4.17. 

 

Figure 4.17 The displacements of the suspension rope at the mid span length at the car side 

with respect to time (a) Lateral in plane direction (b) Lateral out of plane direction for case 

study two comparing k1=k2=80kN/m represented as blue line and k1=k2=30kN/m represented 

as red line 

Freq. = 0.30 Hz 

Freq. = 0.30 Hz Freq. = 0.25 Hz 
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The whirling motions at the mid span length of the compensating ropes at the car side for case 

studies one, two, and three are shown in Figure 4.18 with k1=k2=80kN/m using the total time 

span. In Figure 4.18 (a) the displacements of the rope in both directions are small due to the 

short length of the rope in case study one. In Figure 4.18 (b) and (c) the compensating rope at 

the car side is showing the whirling motion. Similarly the whirling motion of the 

compensating ropes at the car side with k1=k2=30kN/m can be obtained. 

 

Figure 4.18 Whirling motions of the compensating ropes at the car side for (a) case study one 

(b) case study two (c) case study three at the mid span length of the rope with k1=k2=80kN/m 

 

In Figure 4.19 and Figure 4.20 show the maximum displacements of the compensating ropes 

at the car side in the lateral in plane and out of plane direction, compared with a stiffness 

parameter of k1=k2=80kN/m represented by a dashed blue line and k1=k2=30kN/m 

represented by a dashed red line. The compensating rope length is measured from center of 

the compensating sheave to the elevator car considered as lumped mass where the height is 

not considered according to the assumption made at the beginning. In Figure 4.19 and Figure 

4.20 the shapes of the ropes display the second mode shape due the excitation frequency of 

the building in the lateral in plane and out of plane direction is exciting the rope at twice the 

fundamental natural frequency of the rope as it can be seen in Figure 4.2. 
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Figure 4.19 Behaviour of the compensating rope at the car side in the lateral in plane direction 

for case study three comparing k1=k2=80kN/m represented as dashed blue line and 

k1=k2=30kN/m represented as dashed red line 

 

 

Figure 4.20 Behaviour of the compensating rope at the car side in the lateral out of plane 

direction for case study three comparing k1=k2=80kN/m represented as dashed blue line and 

k1=k2=30kN/m represented as dashed red line 

 

The response of the suspension ropes at the car side and counterweight side and the 

compensating ropes at the counterweight side can be obtained, similar figures can be 

obtained. 
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4.3.4 Lateral response of the elevator car 

The lateral in plane and out of plane displacements of the elevator car are shown in Figure 

4.21, Figure 4.22, and Figure 4.23 corresponding to the three case studies, compared with a 

stiffness parameter of k1=k2=80kN/m represented by a blue line and k1=k2=30kN/m 

represented by a red line. The maximum displacement of the elevator car in the lateral in 

plane and out of plane direction is in case study two shown in Figure 4.22 with a displacement 

in the lateral in plane of 0.75 m and in the lateral out of plane of 0.20 m. Due to the influence 

of the lateral in plane and out of plane displacements of the suspension and compensating 

ropes as shown in Figure 4.13 and Figure 4.17 at the mid span length of the rope for the 

compensating and suspension ropes at the car side. As the elevator car is positioned at the 

veering point where the fundamental natural frequencies of the suspension and compensating 

ropes match as shown in Figure 4.2. The lateral displacements of the mass are increased when 

a low spring parameter is used compared with a high stiffness parameter. 

 

Figure 4.21 Lateral displacements of the elevator car relative to the building structure in the 

lateral in plane and out of plane direction for case study one comparing stiffness parameters 

of k1=k2=80kN/m represented as blue line and k1=k2=30kN/m represented as red line 
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Figure 4.22 Lateral displacements of the elevator car relative to the building structure in the 

lateral in plane and out of plane direction for case study two comparing stiffness parameters 

of k1=k2=80kN/m represented as blue line and k1=k2=30kN/m represented as red line 

 

 

Figure 4.23 Lateral displacements of the elevator car relative to the building structure in the 

lateral in plane and out of plane direction for case study three comparing stiffness parameters 

of k1=k2=80kN/m represented as blue line and k1=k2=30kN/m represented as red line 
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4.3.5 Longitudinal response of the elevator car, compensating sheave, and 

counterweight 

 

The longitudinal displacements of the elevator car, compensating sheave, and counterweight 

for case studies one, two, and three are shown in Figure 4.24, Figure 4.25, and Figure 4.26 

compared when using a stiffness parameters of k1=k2=80kN/m represented as blue line and 

k1=k2=30kN/m represented as red line. When the elevator car is positioned at the bottom 

landing level and at the top landing level the longitudinal displacements of the elevator car, 

compensating sheave, counterweight the displacements when using high stiffness and low 

stiffness parameters are the same as in case studies one and three shown in Figure 4.24 and 

Figure 4.26. The highest displacements of the elevator car, compensating sheave, and 

counterweight are when the elevator car is at the veering point where the fundamental natural 

frequencies of the suspension and compensating ropes match as in case study two shown in 

Figure 4.25.  

 

 

Figure 4.24 Longitudinal displacements of (a) elevator car (b) compensating sheave (c) 

counterweight for case study one when using a stiffness parameters of k1=k2=80kN/m 

represented as blue line and k1=k2=30kN/m represented as red line 
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Figure 4.25 Longitudinal displacements of (a) elevator car (b) compensating sheave (c) 

counterweight for case study two when using a stiffness parameters of k1=k2=80kN/m 

represented as blue line and k1=k2=30kN/m represented as red line 

 

 

Figure 4.26 Longitudinal displacements of (a) elevator car (b) compensating sheave (c) 

counterweight for case study three when using a stiffness parameters of k1=k2=80kN/m 

represented as blue line and k1=k2=30kN/m represented as red line 
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The FFT frequency spectra of the elevator car, compensating sheave and counterweight over a 

time span of 100.0 seconds – 160.0 seconds from the longitudinal displacement response for 

case study one are shown in Figure 4.27 (a) (b) (c), compared when using a stiffness 

parameters of k1=k2=80kN/m represented as blue line and k1=k2=30kN/m represented as red 

line. 

The predominant frequency shown Figure 4.27 is 0.60 Hz which is double the frequency of 

excitation in the lateral in plane direction of the building structure. This type of frequency is 

coming in the longitudinal direction of each mass by the coefficients , ,
CR CS CW

f f f  that appear 

in equations (4.123) - (4.125) and are defined in equations (F.57), (F.67), and (F.74), 

respectively, and is primary external excitation. 

 

 

Figure 4.27 FFT frequency spectra of (a) elevator car (b) compensating sheave (c) 

counterweight between the time span of 100.0 seconds – 160.0 seconds for case study one 

with stiffness parameters of k1=k2=80kN/m represented as blue line and k1=k2=30kN/m 

represented as red line 

 

The longitudinal displacements of the elevator car, compensating sheave and counterweight 

when the elevator car is positioned at the bottom and top landing level when compared with a 

high and low stiffness parameters there is no change in the displacement response of each 

mass. The high displacements were predicted when using a low spring parameter when 

compared with a high stiffness parameter when the elevator car is positioned at the height of 

84.0m from the bottom landing level, which is where both the suspension and compensating 

ropes at the car side are excited at the fundamental natural frequency as shown in Figure 4.2.   

Freq. = 0.60 Hz 

Freq. = 0.60 Hz 

Freq. = 0.60 Hz 
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As it was presented in this Chapter, when the elastic interface between the elevator car and the 

building structure in the lateral directions is considered the veering phenomena appear. The 

simulation results were compared when the elevator car is positioned at the bottom landing 

level, at a height where the eigenvalues of the suspension and compensating ropes at the car 

side for the fundamental natural frequency match, and when the elevator car is positioned at 

the top landing level, with a comparison when using a high and low stiffness parameter in the 

lateral direction of the elevator car. On all three case studies the lateral response of the 

suspension ropes, compensating ropes, and the elevator car was higher when the fundamental 

natural frequency of the suspension and compensating rope match.  

Due to ride quality control on the elevator system, an elevator car with low lateral stiffness 

having high lateral vibrations as the ones shown in Figure 4.22 would not be suitable for 

service. This is why high stiffness springs are used in the elastic interface between the 

elevator car and the building structure in the lateral directions to minimize the lateral 

vibrations on the elevator car.  

The stationary mathematical model derived in this chapter can be used to predict the response 

of the suspension and compensating ropes with the interaction between the elevator car, 

compensating sheave, and counterweight in the longitudinal direction with the lateral elastic 

interface between the elevator car and the building structure. 

The mathematical model derived in this chapter has not yet been validated in a high rise 

building under wind loading. It is recommended that a full validation of the lateral 

displacements of the suspension and compensating ropes at the car and counterweight side be 

completed. 
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5. Nonstationary Model of a High – Rise Elevator System 

5.1 Description of the vibration model 

 

Figure 5.1 Drawing of the mathematical model taken into account. 

The model of an elevator system discussed in Chapter 4 with a car of mass M1 traveling up or 

down along the elevator shaft at the car side, a counterweight traveling in the opposite 

direction at the counterweight side, and a compensating sheave of mass M2 positioned at the 

bottom of the elevator shaft and not travelling along the elevator shaft, is referred to in this 

chapter as nonstationary and is shown in Figure 5.1. The parameters that will change with 

time are the lengths of the ropes that change with the position of the elevator car and 
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counterweight along the height of travel. The length of the suspension ropes and of the 

compensating ropes of the car and counterweight side denoted by L1(t), L2(t), L3(t), and L4(t) 

will be varying with time according to the kinematic profile dictated by the drive control 

algorithm, the equations were derived in Salamaliki-Simpson (2009).  

The response of the elevator ropes subjected to dynamic loading due to the building sway are 

represented by the lateral in-plane and lateral out of plane displacements denoted as

  i iV x t ,t  and   i iW x t ,t  where the subscript i=1,2,3,4 corresponds to the sections of the 

ropes of length L1, L2, L3, and L4, respectively. The displacements of the ropes relative to the 

configuration of the ropes when they are stretched by the structure motion are represented by 

  iV x t ,t and   i iW x t ,t . The lateral in-plane and lateral out of plane motions of the ropes 

are coupled with the longitudinal motions of the ropes that are denoted as   i iU x t ,t . The 

rest of the parameters remain unchanged.  

As discussed by Kaczmarczyk and Iwankiewicz (2006) and in Strakosch (1998), the lateral 

vibrations at the elevator car are induced by irregularities and imperfections of the rail guide 

system resulting from the accumulation of manufacturing error, which are transmitted to the 

suspension and compensating ropes resulting in adverse dynamic behaviour of the elevator 

system. According to Lopez et al. (2010), which proposed an adaptive control for active 

suspension of an elevator car to improve ride quality in high-rise buildings to minimize the 

lateral vibrations on an elevator car are used in high rise buildings. Thus, lateral vibrations of 

the elevator car and counterweight during travel were not considered in the derivation of the 

mathematical model of a complete elevator system. 

The time varying lengths of the system are represented by Li(t)for i=1,2,…,4. When the 

variation of Li(t) is small over a time interval corresponding to the fundamental natural 

frequency of the system considered as fixed values of these parameters, the length is said to 

vary slowly with time, according to Kaczmarczyk (1997). The variation of Li(t) is then 

observed on a slow time scale defined as T  , where T is a non-dimensional fast time 

scale and   is a small parameter. Thus, the length of the ropes can be represented by Li() In 

order to represent the slow variability of Li the fast non-dimensional time scale is defined as 

defined as 
0

T t , where 
0

 is the initial fundamental natural frequency of the system and t 

is the time. The small parameter   can be defined as equation (5.1). 

 

0 0

v t

L



                      (5.1) 



120 

 

where L0 is the initial lengths of the ropes corresponding to 0. According to Kaczmarczyk 

(2005), for high rise elevator system the terms identified as being of the order  0   or higher 

are neglected. 

The assumptions taken into account in Chapter 4 remain the same. The following assumptions 

were taken into account: 

a) The length of the ropes  i iL L   for i=1,2,…,4 are slowly varying in time.  

b) The Coriolis and centrifugal forces of the ropes are taken into account in the lateral 

direction. 

c) The Coriolis and centrifugal forces are not considered in the longitudinal direction for the 

elevator car, compensating sheave, counterweight, and all ropes. 

d) The travel kinematics is prescribed and the elevator car follows the time profile dictated 

by the drive control system, where the acceleration at the car and counterweight side are 

denoted as aCR and aCW=-aCR. When the elevator car is travelling up to the top landing 

level the aCR is considered with positive sign and travelling down to the bottom landing 

level the acceleration is considered with negative sign. 

e) The compensating sheave is positioned at the pit constrained to vibrate in the longitudinal 

direction. 

f) The longitudinal velocity of the rope section is given as  U v t  where v(t) is the 

transport velocity and  t xU U v t U  . Thus, the absolute longitudinal acceleration is 

given as            22t x tt xt xx x
d

U v t U v t U v t U v t U a t U a t
dt

         , where 

a(t) is the acceleration at the car or counterweight side. 

g) The elastic interface with the building at the car and counterweight side is neglected. 

 

5.2 Derivation of the Mathematical model 

The same procedure to derive the mathematical model of Chapter 4 using Hamilton principle 

is used to derive the nonstationary mathematical model of an elevator system on this chapter.   

The terms corresponding to the centrifugal and Coriolis effects are considered and thus total 

derivatives are used to express the absolute velocity in the lateral in plane and out of plane 

directions represented by equations (5.2) and (5.3), respectively.  
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   i i i ii
i

i

V x ,t V x ,tdV
V v( t )

dt t x

 
  

 
                  (5.2) 

   i i i ii
i

i

W x ,t W x ,tdW
W v( t )

dt t x

 
  

 
                 (5.3) 

The kinetic energy of the system is rewritten as in equation (5.4) 

       
1 2 3

L4

i i i i M CR M CS M CWt
i 1 0

Q̂ Q U ,V ,W dx Q U Q U Q U


                    (5.4) 

where the upper dot represents the total derivative with respect to t. The kinetic energy of the 

ropes are expressed as equation (5.5). 

      
2 2 21

2
i i i i iQ m U v t V W    

  
                 (5.5) 

The kinetic energy of the elevator car is rewritten as in equation (5.6). 

  
1

2

1

1

2
M CRQ M U v t  

  
                   (5.6) 

The kinetic energy of the compensating sheave is the same as in equation (4.5) and the kinetic 

energy of the counterweight is defined as in equation (5.7). 

  
3

2

3

1

2
M CWQ M U v t  

  
                                (5.7) 

Applying into (3.17) equations (5.4), (4.7), (4.12), and (4.13) the following equation results 

      

      

i

2

1 2 3

1

L4

i i i i ig i ie ix ix ix i

i 1 0
t

M CR M CS M CWt

t

1 CR 2 CS 3 CW

ˆ ˆQ U ,V ,W U U ,V ,W dx

Q U Q U Q U dt 0

M g U M g U M g U

  

  

  



 
   

 
 

   
   
 
 
 



              (5.8) 

Integrating the kinetic energy of the rope with respect to t and x the following equation is 

derived  

  

i i2 2

1 1

L Lt t

i i i
i i i i i i

i it 0 t 0 i

Q Q Q
Q dx dt U V W dx dt

V WU v t
   

        
       
           

                 (5.9) 

And 
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  
     

2 2

1 1

t t

i i i
i i i i

i it t i

Q Q Qd d d
Q dt U V W dt

dt V dt W dtU v t
   

   
   
   
 

             (5.10) 

Can be written as  

     

2
2 2

1 1
1

2 2

11

2 2

i

11

t
t t

i i
i i

t ti i
t

t t

i i
i

i itt

t t

i
i

i

i t

i

it

i

Q Qd
Q dt U dt

dtU v t U v t

Q Qd
V dt

V dt V

QQ d
W dt

d

U

W
W

t W

V





 



 

    
   
        

    
    

    

  
          

 





             (5.11) 

According to equation (4.14) the terms in red in equation (5.11) are the virtual displacements 

which are 0 when evaluated between t1 and t2. Thus, equation (5.11) can be rewritten as 

equation (5.12) 

  

2 2 2 2

1 1 1 1

t t t t

i i i
i i i i

i it t t ti

Q Q Qd d d
Q dt U dt V dt W dt

dt dt V dt WU v t
   

       
       
         

              (5.12) 

Similarly, the kinetic energy of the elevator car and counterweight are integrated with respect 

to t and represented in equations (5.13) and (5.14), respectively. 

  

2 2

1

1

1 1

t t

M

M CR

t t CR

Qd
Q dt U dt

dt U v t
 

 
  
  
 

                 (5.13) 

  

2 2

3

3

1 1

t t

M

M CW

t t CW

Qd
Q dt U dt

dt U v t
 

 
  
  
 

                 (5.14) 

Applying into equation (5.8) equations (4.21), (5.12) - (5.14), (4.29), (4.31) and boundary 

conditions (4.34) - (4.41) the following equation is obtained  
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  
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
 

 


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  
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2

2 3

3

4 3

1 2
1

1 2 0

2 3
2

2 3

4 3
3

4 3

ˆ ˆ

ˆ ˆ

ˆ ˆ

e e
CR

x xx L x

M e e
CS

CS x xt x L x L

M e e
CW

x xCW x L x L

M g U
U U

Qd
M g U

dt U U U

Qd
M g U

dt U UU v t







 

 

 














    
     

      

    
      

      

    
      

       

2

1

0

t

t

dt












 


 
 
 
 
 
 
 
 
 
 





                      (5.15) 

The virtual displacement i i i CR CS CWU , V , W , U , U , U       are arbitrary and the above equation 

can only be valid for all the values of the virtual displacement if  

ˆ
0i ie

i ix

Qd

dt V x V

   
   

     
                  (5.16) 

  
0i ie

i

ixi

Qd
m g

dt x UU v t

    
     
       

                   (5.17) 

0i ie

i ix

Qd

dt W x W

    
    

     
                               (5.18) 

  
1

1

1 2
1

1 2 0

ˆ ˆ
0

M e e

x xCR x L x

Qd
M g

dt U UU v t
 

   
     
    
 

             (5.19) 

 
2

2 3

2 3
2

2 3

ˆ ˆ
0

M e e

CS x xt x L x L

Qd
M g

dt U U U
 

   
    

    

              (5.20) 

  
3

4 3

4 3
3

4 3

ˆ ˆ
M e e

x xCW x L x L

Qd
M g

dt U UU v t
 

   
    
    
 

               (5.21) 
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Equations (5.16) - (5.21) can be rewritten as equations. (5.22) - (5.27). The equations (5.22) to 

(5.24) describe the dynamics of the ith rope in the elevator system, where i=1,2,3, and 4. 

 

 

2 2

2 2

1

2

1
0

2

i i ix ix i ix ix ix ix

x

i ixx i ix ix ix ixx

mV T V EA U V W V

TV EA U V W V

 
    

 

 
     

 

               (5.22) 

 

 

2 2

2 2

1

2

1
0

2

i i ix ix i ix ix ix ix

x

i ixx i ix ix ix ixx

mW T W EA U V W W

TW EA U V W W

 
    

 

 
     

 

               (5.23) 

    2 21
0

2
i i ix i ix ix ix i

x

m U a t T EA U V W m g
 

       
 

             (5.24) 

The equations (5.25) to (5.27) are the boundary conditions at  1 1
x L   and x2=0,  2 2

x L   

and  3 3
x L  , x3=0, and  4 4

x L   in the longitudinal direction for the elevator car, 

compensating sheave, and counterweight respectively. 

    

 

1 1

2

2 2

1 1 1 1 1 1 1

2 2

2 2 2 2 2 1

0

1
(L )

2

1
(0) 0

2

CR x x x

x L

x x x

x

M U a t T EA U V W

T EA U V W M g





 
     

 

 
      

 

             (5.25) 

   

 

2 2

3 3

2 2

2 2 2 2 2 2 2

2 2

3 3 2 3 3 3 2

1
(L )

2

1
(L ) 0

2

CS x x xtt

x L

x x x

x L

M U T EA U V W

T EA U V W M g





 
    

 

 
      

 

             (5.26) 

    

 

4 4

3

2 2

3 4 4 1 4 4 4

2 2

3 2 3 3 3 3

0

1
(L )

2

1
(0) 0

2

CW x x x

x L

x x x

x

M U a t T EA U V W

T EA U V W M g





 
     

 

 
      

 

             (5.27) 

The equations (4.59) to (4.62) of tension derived in Chapter 4 are rewritten as equations 

(5.28) to (5.31), which include the acceleration at the car and counterweight side. 

           2
1 1 1 1 1 1 2 2, ;

2
CR

M
T x t M m L x m L g a t g                    (5.28) 
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         2
2 2 2 2 2, ;

2
CR

M
T x t m L x g a t g                   (5.29) 

         2
3 3 2 3 3, ;

2
CW

M
T x t m L x g a t g                   (5.30) 

           2
4 4 3 1 4 4 2 3, ;

2
CW

M
T x t M m L x m L g a t g                    (5.31) 

where the acceleration at the car and counterweight side are defined as aCR and aCW=-aCR. 

Additionally of equations (4.78) to (4.91) for the partial derivatives with respect to x and t 

required for this model are shown in equations (5.32) to (5.35) for the lateral in plane 

direction.  

 

 
 1

1 1 1 1

1

1
A cos v

xt xt v v v xtV V t V J
L

 
 



 
     

 
                    (5.32) 

 

 
 2

2 2 2 2

2

A cos v

xt xt v v v xtV V t V J
L

 
 



 
     

 
                 (5.33) 

 

 
 3

3 3 3 3

3

A cos v

xt xt v v v xtV V t V J
L

 
 



 
     

 
                  (5.34) 

   

 
 4 5

4 4 4 4

4

A cos v

xt xt v v v xtV V t V J
L

   
 



 
     

 
                  (5.35) 

Similarly, the partial derivatives with respect to x and t for the lateral out of plane direction 

can be deducted. The deformations obtained with          1 2 3 4 5, , , ,           

change slowly in time. Thus, are determined with the same shape function as in Chapter 4. 

Substituting equations (5.28) to (5.31) into equation (5.24) results in equation (5.36). 

 2 21
0

2
i i i ix ix ix

x

mU EA U V W
 

    
 

                  (5.36) 

According to Kaczmarczyk et al. (2010), the entire longitudinal inertia from equation (5.36) 

can be neglected. Considering the longitudinal natural frequencies of the ropes are much 

higher than the lateral natural frequencies, resulting in equation (5.37) where ei(t;) have 

slowly varying terms in time corresponding to Li().  

   2 21
;

2
ix ix ixe t U V W                     (5.37) 
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For the longitudinal direction of the elevator car and counterweight equations (5.25) and 

(5.27) are simplified by neglecting the Coriolis and centrifugal forces in the longitudinal 

direction as   0xv t U   resulting in equations (5.38) and (5.40) respectively which are the 

same as equation (4.56) and (4.58) derived in Chapter 4. The equation (4.57) of the 

compensating sheave derived in Chapter 4 remains unchanged. 

     
1 1 2

2 2 2 2

1 1 1 1 1 2 2 2 2

0

1 1
0

2 2
CR x x x x x xtt

x L x

M U EA U V W EA U V W
 

   
         

   
          (5.38) 

     
2 3

2 2 2 2

2 2 2 2 2 2 3 3 3

1 1
0

2 2
CS x x x x x xtt

x L x L

M U EA U V W EA U V W
 

   
         

   
          (5.39) 

     
4 4 3

2 2 2 2

3 1 4 4 4 2 3 3 3

0

1 1
0

2 2
CW x x x x x xtt

x L x

M U EA U V W EA U V W
 

   
         

   
           (5.40) 

The absolute acceleration is derived by equations (5.2) and (5.3) given in equations (5.41) and 

(5.42) for the lateral in plane and lateral out of plane direction respectively. 

 
2 2 2

2

2 2
2i i i i i i i i

i

i i i

V ( x ,t ) V ( x ,t ) V ( x ,t ) V ( x ,t )d
(V ) v( t ) v ( t ) a t

dt t x t x x

   
   

    
           (5.41) 

 
2 2 2

2

2 2
2i i i i i i i i

i

i i i

W ( x ,t ) W ( x ,t ) W ( x ,t ) W ( x ,t )d
(W ) v( t ) v ( t ) a t

dt t x t x x

   
   

    
          (5.42) 

Equations (5.22) and (5.23) can be rewritten using equations (5.41) and (5.42) represented in 

equations (5.43) to (5.44). 

     

   

2

2 2 2 2

2

1 1
0
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i itt i ixt i ixx i ix ix ix
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x

mV m v t V m v t V m a t V T V

EA U V W V TV EA U V W V
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   
          

   

           (5.43) 

     

   

2

2 2 2 2

2

1 1
0
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i itt i ixt i ixx i ix ix ix

i ix ix ix ix i ixx i ix ix ix ixx

x

mW m v t W m v t W m a t W T W

EA U V W W TW EA U V W W
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   
          

   

           (5.44) 

The Galerkin method is applied with the expansions shown in equations (5.45) and (5.46). 

   
1

, ; ; q ( )
N

i i in i in

n

V x t x t  


                 (5.45) 

   
1

, ; ; c ( )
N

i i in i in

n

W x t x t  


                 (5.46) 
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The linear natural modes of the lateral in plane and out of plane motions for all ropes are 

shown in equations (5.47) and (5.48) with the slowly varying in time terms. 

 
 in i i

i

n
x ; sin x

L


 



 
   

 

 for i=1,… 4.               (5.47) 

 
 in i i

i

n
x ; sin x

L


 



 
   

 

 for i=1,… 4.               (5.48) 

According to Kaczmarczyk (1997), the lengths  iL   are changing slowly in time, the 

eigenvalues for the lateral in plane and out of plane direction for the ith rope can be 

determined as 
 i

n

L




, which are changing slowly in time. 

The lateral in plane and lateral out of plane natural frequencies represented by  Lin

in̂   and 

 Lout

in̂   corresponds to a value of
iL ( ) . The natural frequencies of ropes i=1,…,4 

represented by  Lin

in̂   and  Lout

in̂   for the lateral in plane and out of plane direction can be 

determined using equation (5.49) corresponding to a value of 
iL ( ) , respectively. 

   
 

 i iLin Lout

in in

i i

T x ,t;n
ˆ ˆ

L m


   


                 (5.49) 

Substituting expansions (5.47) and (5.48) into equation (5.37) which can be expanded into 

equations (5.50) to (5.53). 

 
   

 
  

 
 

  
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w

f tU j j
e t q t c t
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

  



 

   
         

   



 
           (5.50) 

 
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v
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w
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
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

 

   
         

   



 
          (5.51) 
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 
   

 
  

 
 
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w
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 
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

 
        (5.52) 

 
   
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

 

   
         

   



 
        (5.53) 

Substituting expansions (5.45) and (5.46) and equations (5.50) to (5.53) into (5.43) to (5.44)

and applying the orthogonality conditions with respect to the linear modes a system of 

nonlinear ordinary differential equations for the ith rope results as follows.  

      

           

 
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 
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 
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Equations (5.54) and (5.55) represent the equations of motion of the ith rope for i=1,…,4 in 

the lateral in plane and out of plane directions. 

The coefficients ˆ,
irn irn

B k  represent the damping and stiffness matrix for the lateral in plane and 

out of plane direction, respectively. The coefficients 
irn

R  are the cubic nonlinear terms for the 

lateral in plane and out of plane directions. The coefficients ˆ ˆ,Lin Lout

ir ir
F F  are the excitation terms 

for the lateral in plane and out of plane directions of rope ith. The equations (5.50) to (5.53) 

are substituted in equations (5.38) to (5.40) for the elevator car, compensating sheave, and 

counterweight resulting in equations (5.56) to (5.58). 
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Equations (5.56) to (5.58) represent the motion in the longitudinal direction of the elevator 

car, compensating sheave, and counterweight with slowly varying coefficients in time 

corresponding to  iL  . 

Equations (5.56) to (5.58) are transformed into the modal coordinates using the 

transformation      U t Y S t     where        
T

CR CS CWU t U t U t U t     and 

       
T

CR CS CWS t S t S t S t     is a vector of modal-coordinates corresponding  to the 

system comprising the car, compensating sheave, and counterweight, respectively. If  Y     

is the mass-normalized mode shape matrix slowly changing in time, the following set of 

equations describing the vertical response of the car, compensating sheave and counterweight 

in terms of the modal parameters are represented in equations (5.59) to (5.61). 

                   122 ; ; 0
T

CR CR CR CR CR CRS t S t S t Y F t t                       (5.59) 

                   222 ; ; 0
T

CS CS CS CS CS CSS t S t S t Y F t t                       (5.60) 

                   322 ; ; 0
T

CW CW CW CW CW CWS t S t S t Y F t t                       (5.61) 

The longitudinal natural frequencies of the elevator car, compensating sheave and 

counterweight represented as      , ,
CR CS CW

       are changing slowly in time 

corresponding to the lengths  iL   of the ith rope due to the change of position of the elevator 

car and counterweight. The longitudinal natural frequencies of the elevator car, compensating 
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sheave and counterweight can be estimated with the eigenvalues of the stiffness matrix shown 

in (5.62) changing slowly in time and the mass matrix represented in (4.130). 

   

     

   

1 1 2 1

1 2 2 2 3 2

1 3 2 3

ˆ ˆ 0

ˆ ˆ ˆ

ˆ ˆ0

u u

u u u

u u

k k

k k k

k k

 

  

 

 
 
 
 
 
 

                (5.62) 

The coefficients    ; , ;F t t    are shown in equations (5.63) and (5.64). 
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The coefficients      ; , ; , ;
CR CS CW

t t t       are the quadratic terms from the equations of 

motion of the elevator car, compensating sheave, counterweight represented in equations 

(5.65) to (5.67). 

                 1 1 2 1 1 2 2 1 2 2 1 2

1 1 2 2

1 1 1 1

;
N N N N

u u u u

CR n n n n n n n n

n n n n

t R q t R c t R q t R c t     
   

            (5.65) 

                 1 2 2 1 2 2 2 2 2 2 2 2

2 2 3 3

1 1 1 1

;
N N N N

u u u u

CS n n n n n n n n

n n n n

t R q t R c t R q t R c t     
   

          (5.66) 

                 1 3 2 1 3 2 2 3 2 2 3 2

3 3 4 4

1 1 1 1

;
N N N N

u u u u

CW n n n n n n n n

n n n n

t R q t R c t R q t R c t     
   

         (5.67) 

All coefficients appear in Appendix G, which are dependent of the slowly varying parameter 

  for  iL  . 

5.3 Simulation Results 

Two case study results are shown to verify the proposed mathematical model of a 

nonstationary elevator system through a comparison of each case study results when the 

elevator car is travelling along the travel height at high and low velocity, to demonstrate the 

influence of the Coriolis and centrifugal forces. 
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The parameters taken to analyse the dynamic performance of an elevator system in this 

chapter are exactly the same as the ones presented in Chapter 4 without considering the elastic 

interface with the building at the car in the lateral directions. The excitation of the building 

structure at the machine room level is also the same as in Chapter 4. 

It is assumed the elevator car is travelling at a rated acceleration of aCR(t)=1.80m/s2, and a 

rated jerk of j(t)=1.80m/s3. From the Galerkin method the nonlinear ordinary differential 

equations are given for N number of modes for the simulation results presented in this 

Chapter, the number of modes taken into account are N=4.  

According to Salamaliki-Simpson (2009), the solution for a nonstationary rope and mass 

mathematical model can be obtained with a stiff solver of integration algorithm. However, a 

non-stiff solver is used to find the solution of the dynamic response of a nonstationary full 

elevator system, such as ODE45. 

For case study one the elevator car is traveling at a rated velocity of v(t)=15.00m/s and a 

comparison is shown when the car is travelling from the bottom landing level to the top 

landing level and from the top landing level to the bottom landing level. The kinematic profile 

of the elevator car dictated by the drive control algorithm is shown in Figure 5.2 when the 

elevator is travelling from the bottom landing level to the top landing level. Similarly when 

the elevator car is traveling from the top landing level to the bottom landing level can be 

obtained. 

 

Figure 5.2 The kinematic profile of the elevator car for case study one when the car is going 

from the bottom landing level to the top landing level with a rated velocity of v(t)=15.00m/s 
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For case study two the elevator car is traveling at a rated velocity of v(t)=4.00m/s and a 

comparison is given when the car is travelling from the bottom landing level to the top 

landing level and from the top landing level to the bottom landing level. The kinematic profile 

of the elevator car dictated by the drive control algorithm is shown in Figure 5.3 when the 

elevator is travelling from the bottom landing level to the top landing level. Similarly when 

the elevator car is traveling from the top landing level to the bottom landing level can be 

obtained. 

 

Figure 5.3 The kinematic profile of the elevator car for case study two when the car is going 

from the bottom landing level to the top landing level with a rated velocity of v(t)=4.00m/s 

 

5.3.1 Frequency Analysis 

The variation of frequency in the lateral direction of the suspension ropes at the car side 

according to the position of the elevator car along the travel height is determined with the 

eigenvalues of equation (5.68).  
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The variation of frequency corresponding to all lateral modes of the suspension ropes 

dependent of   which are slowly changing in time due to  iL   at the car side according to 

the position of the elevator car in the hoistway is measured from the bottom landing level are 

shown in Figure 5.4 with a v(t)=15.00m/s as in case study one and in Figure 5.5 with a 

v(t)=4.00m/s as in case study two. In Figure 5.4 and Figure 5.5 the solid red, green, cyan, and 

purple line are the variation of frequency of the first four lateral natural frequencies at the car 

side of the suspension ropes, considering the Coriolis and centrifugal forces as shown in 

equation (5.68). The dashed dotted red, green, cyan, and purple line is when the Coriolis and 

centrifugal forces are not considered as shown in equation (5.69). The small step from the 

curves of the natural frequencies of the suspension ropes with the Coriolis and centrifugal 

forces is due to the high velocity considered in case study one. When the elevator car is 

traveling at a low velocity there is low influence of the Coriolis and centrifugal forces in the 

natural frequencies of the ropes. This can be demonstrated with case study two in Figure 5.5 

where the elevator car is traveling at a low velocity. 

In Figure 5.4, Figure 5.5, Figure 5.6, and Figure 5.7 the dashed black, blue, and cyan lines 

represent the change of frequency in the longitudinal direction of the elevator car, 

compensating sheave, and counterweight according to the position of the elevator car, 

estimated by finding the eigenvalues from the stiffness matrix represented in (5.62) and mass 

matrix represented in (4.130).  

In Figure 5.4, Figure 5.5, Figure 5.6, and Figure 5.7 the dashed magenta and blue horizontal 

lines represent the frequency of excitation from the building structure at 0.30 Hz and 0.25 Hz 

in the lateral in plane and out of plane directions.  

The suspension ropes will be passing through resonance, matching the fundamental natural 

frequency, when the elevator car is at a height of approximately 50.0 m from the bottom 

landing level. The passage through resonance occur when the ropes are changing length and 

one of the natural frequencies of the ropes matches the external excitation frequency as 

discussed by Kaczmarczyk (2012), Kaczmarczyk (1997), Terumichi et al. (1997), and 

Terumichi et al. (2003), thus the lateral displacement response of the ropes will start to 

increase and then decrease. During the passage through resonance, the elevator car travelling 

at high velocity the lateral displacements of the ropes will be smaller when compared when 

the elevator car is travelling at low velocity. 
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Figure 5.4 Variation of frequency of the suspension ropes according to the position of the 

elevator car (car side) for v(t)=15.00m/s for case study one 

 

 

Figure 5.5 Variation of frequency of the suspension ropes according to the position of the 

elevator car (car side) for v(t)=4.00m/s for case study two 
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            (5.69) 

 

The variation of frequency in the lateral direction of the compensating ropes at the car side 

according to the positions of the elevator car along the travel height is determined with the 

eigenvalues of equation (5.70) 
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The variation of frequency corresponding to all lateral modes of the compensating ropes at the 

car side dependent of   which are slowly changing in time due to  iL   according to the 

position of the elevator car in the hoistway measured from the bottom landing level are shown 

in Figure 5.6 with a v(t)=15.00m/s as in case study one and in Figure 5.7 with a v(t)=4.00m/s 

as in case study two. In Figure 5.6 and Figure 5.7 the solid red, green, cyan, and purple line 

are the variation of frequency of the first four laterals in plane natural frequencies at the car 

side of the compensating ropes, considering the Coriolis and centrifugal forces as shown in 

equation (5.70). The dashed dotted red, green, cyan, and purple line is when the Coriolis and 

centrifugal forces are not considered. 

The compensating ropes will be passing through resonance, matching the 1st and 2nd natural 

frequencies, at a height of approximately 100.0 m and 200.0 m from the bottom landing level, 

respectively. 
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Figure 5.6 Variation of frequency of the compensating ropes according to the position of the 

elevator car (car side) for v(t)=15.00m/s for case study one 

 

 

Figure 5.7 Variation of frequency of the compensating ropes according to the position of the 

elevator car (car side) for v(t)=4.00m/s for case study two 
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5.3.2 Mode shapes 

The mode shapes of the elevator car, compensating sheave, and counterweight are dependent 

of   which are slowly changing in time due to  iL  . In section 4.3.2 are shown the mode 

shapes of the elevator car, compensating sheave, and counterweight when the car is at the 

bottom landing level, at 84.0m from the bottom landing level, and at the top landing level. 

In Figure 5.8 are shown the mode shapes of the 1st and 2nd mode shapes of the suspension 

ropes at the car side for case study one represented by a solid and dashed blue line, 

respectively. The mode shapes of the suspension rope at the car side are scaled to show the 

maximum amplitude as 1. Similarly, the mode shapes for all ropes have the same shape which 

are coming from the trial function used in the Galerkin method defined in equations (5.47) 

and (5.48) which are changing according to the position of the elevator car while travelling 

along the travel height. 

 

Figure 5.8 1st and 2nd mode shapes of the suspension rope at the car side 
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going from the bottom landing level to the top landing level represented by a blue solid line 

and when traveling from the top to the bottom landing level represented by a red line are 

shown in Figure 5.9 for (a) in the lateral in plane direction and (b) in the lateral out of plane 

direction. Similarly, the displacement of the suspension ropes at the car side at the mid span 

length of the rope for case study two when the elevator car is travelling at a rated velocity of 

v(t)=4.00m/s is shown in Figure 5.10. 

 

Figure 5.9 Displacement of the suspension rope at the car side at the mid span length of the 

ropes in (a) Lateral in plane (b) Lateral out of plane directions when the elevator car is 

travelling with a rated speed of v(t)=15.00m/s as in case study one when the car is travelling 

up represented by a blue line and when going down is represented by a red line. 
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Figure 5.10 Displacement of the suspension rope at the car side at the mid span length of the 

ropes in (a) Lateral in plane (b) Lateral out of plane directions when the elevator car is 

travelling with a rated speed of v(t)=4.00m/s as in case study two when the car is travelling up 

represented by a blue line and when going down is represented by a red line 

 

As shown in Figure 5.9 and Figure 5.10 the passage of resonance of the suspension ropes at 

the car side when the elevator car is traveling at a rated velocity of 15.00m/s and 4.00m/s is 

observed when the elevator car is at a height of approximately 50.0 m from the bottom 

landing level. The response of the ropes in the lateral in plane and out of plane direction are 

higher when the car is travelling at a rated velocity of 4.00m/s, as discussed by Terumichi et 

al. (2003).  

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span 

of 30.0 seconds – 50.0 seconds for case study two are shown in Figure 5.11 (a) and (b), 

respectively. The maximum frequencies are 0.30 Hz and 0.25 Hz which are the frequencies in 

which the building structure is exciting the ropes in the lateral in plane and out of plane 

directions shown in Figure 5.11 (a) and (b). The frequencies of 0.30 Hz and 0.25 Hz from the 

lateral in plane and out of plane directions are coming from the kinematic forcing terms that 

are exciting the ropes at the machine room level. 
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Figure 5.11 The FFT frequency spectrum of the suspension rope in the lateral in plane 

direction between 30 seconds and 50 seconds (a) Lateral in plane direction (b) Lateral out of 

plane direction for case study two when the elevator is travelling to the top landing level with 

v(t)=4.00m/s 

 

In Figure 5.12 and Figure 5.13 show the maximum displacements of the suspension ropes at 

the car side in the lateral in plane when the elevator car is travelling from the bottom to the 

top landing level represented by a dashed blue line and when the car is travelling from the top 

to the bottom landing level represented by a dashed red line at a rated velocity of 

v(t)=15.00m/s and v(t)=4.00m/s, respectively. The suspension rope length is measured from 

center of the traction sheave to the top elevator car which is considered as a lumped mass 

where the height is neglected according to the assumption made in Chapter 4. As it can be 

seen maximum displacements are observed when the elevator car is travelling at a rated 

velocity of 4.00m/s. The suspension ropes are excited at the fundamental natural frequency 

thus the 1st mode shape is the maximum displacements of the suspension ropes at the car side. 
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Figure 5.12 Behaviour of the suspension rope at the car side in the lateral in plane direction 

for case study one comparing when the elevator car is travelling with a rated velocity of 

v(t)=15.00m/s when the car is going up represented by dashed blue line and when going down 

represented by dashed red line 

 

 

Figure 5.13 Behaviour of the suspension rope at the car side in the lateral in plane direction 

for case study two comparing when the elevator car is travelling with a rated velocity of 

v(t)=4.00m/s when the car is going up represented by dashed blue line and when going down 

represented by dashed red line 
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In Figure 5.14 and Figure 5.15 show the maximum displacements of the suspension ropes at 

the car side in the lateral out of plane when the elevator car is travelling from the bottom to 

the top landing level represented by a dashed blue line and when the car is travelling from the 

top to the bottom landing level represented by a dashed red line at a rated velocity of 

v(t)=15.00m/s and v(t)=4.00m/s, respectively. The maximum displacements are when the 

elevator car is travelling at a rated velocity of 4.00m/s. The suspension ropes are excited at the 

fundamental natural frequency thus the 1st mode shape is the maximum displacements of the 

suspension ropes at the car side. 

 

 

Figure 5.14 Behaviour of the suspension rope at the car side in the lateral out of plane 

direction for case study one comparing when the elevator car is travelling with a rated 

velocity of v(t)=15.00m/s when the car is going up represented by dashed blue line and when 

going down represented by dashed red line 
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Figure 5.15 Behaviour of the suspension rope at the car side in the lateral out of plane 

direction for case study two comparing when the elevator car is travelling with a rated 

velocity of v(t)=4.00m/s when the car is going up represented by dashed blue line and when 

going down represented by dashed red line 

 

In Figure 5.16 and Figure 5.17 show the maximum displacements of the compensating ropes 

at the car side in the lateral in plane when the elevator car is travelling from the bottom to the 

top landing level represented by a dashed blue line and when the car is travelling from the top 

to the bottom landing level represented by a dashed red line at a rated velocity of 

v(t)=15.00m/s and v(t)=4.00m/s, respectively. The compensating rope length is measured 

from the center of the compensating sheave to the bottom of the elevator car which is 

considered as a lumped mass where the height is neglected according to the assumption made 

in Chapter 4. The maximum displacements are when the elevator car is travelling at a rated 

velocity of 4.00m/s. The compensating ropes are excited at the second natural frequency thus 

the 2nd mode shape is the maximum displacements of the compensating ropes at the car side. 
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Figure 5.16 Behaviour of the compensating rope at the car side in the lateral in plane direction 

for case study one comparing when the elevator car is travelling with a rated velocity of 

v(t)=15.00m/s when the car is going up represented by dashed blue line and when going down 

represented by dashed red line 

 

Figure 5.17 Behaviour of the compensating rope at the car side in the lateral in plane direction 

for case study two comparing when the elevator car is travelling with a rated velocity of 

v(t)=4.00m/s when the car is going up represented by dashed blue line and when going down 

represented by dashed red line 
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In Figure 5.18 and Figure 5.19 show the maximum displacements of the compensating ropes 

at the car side in the lateral out of plane when the elevator car is travelling from the bottom to 

the top landing level represented by a dashed blue line and when the car is travelling from the 

top to the bottom landing level represented by a dashed red line at a rated velocity of 

v(t)=15.00m/s and v(t)=4.00m/s, respectively. The maximum displacements are when the 

elevator car is travelling at a rated velocity of 4.00m/s. The compensating ropes are excited at 

the second natural frequency, thus the 2nd mode shape is the maximum displacements of the 

compensating ropes at the car side. 

 

 

Figure 5.18 Behaviour of the compensating rope at the car side in the lateral out of plane 

direction for case study one comparing when the elevator car is travelling with a rated 

velocity of v(t)=15.00m/s when the car is going up represented by dashed blue line and when 

going down represented by dashed red line 
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Figure 5.19 Behaviour of the compensating rope at the car side in the lateral out of plane 

direction for case study two comparing when the elevator car is travelling with a rated 

velocity of v(t)=4.00m/s when the car is going up represented by dashed blue line and when 

going down represented by dashed red line 

 

The behaviour of the suspension and compensating ropes at the counterweight side can be 

obtained with the mathematical model. 
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5.3.4 Longitudinal response of the elevator car, compensating sheave, 

counterweight 

The longitudinal displacements of the elevator car, compensating sheave, and counterweight 

when the elevator car is traveling from the bottom to the top landing level represented by a 

blue line and from the top to the bottom landing level represented by a red line with a rated 

velocity of v(t)=15.00m/s shown in Figure 5.20 and with a rated velocity of v(t)=4.00m/s 

Figure 5.21. The highest displacements of the elevator car, compensating sheave, and 

counterweight are when the elevator car is travelling at a rated velocity of v(t)=4.00m/s.  

 

Figure 5.20 Longitudinal displacements of (a) elevator car (b) compensating sheave (c) 

counterweight for case study one when the elevator car is travelling with a rated velocity of 

v(t)=15.00m/s when the car is going up represented by blue line and when going down 

represented by red line 
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Figure 5.21 Longitudinal displacements of (a) elevator car (b) compensating sheave (c) 

counterweight for case study two when the elevator car is travelling with a rated velocity of 

v(t)=4.00m/s when the car is going up represented by blue line and when going down 

represented by red line 

 

The FFT frequency spectra of the elevator car and compensating sheave over a time span of 

40.0 seconds – 50.0 seconds from the longitudinal displacement response when the elevator 

car is travelling at a rated velocity of v(t)=4.00m/s shown in Figure 5.22 (a) and (b) when the 

elevator car is travelling from the bottom to the top landing level represented by a blue line 

and from the top to the bottom landing level represented by a red line. 

The predominant frequency shown in Figure 5.22 is 0.60 Hz which is double the frequency of 

excitation in the lateral in plane direction of the building structure. This type of frequency is 

coming in the longitudinal direction of each mass by the coefficients    , , ,
CR CS

f t f t   that 

appear in equations (5.59) - (5.60) and are defined in equations (G.22) and (G.28), is primary 

external excitation. 
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Figure 5.22 FFT frequency spectra of (a) elevator car (b) compensating sheave between the 

time span of 40.0 seconds – 50.0 seconds for case study two when the elevator car is 

travelling at v(t)=4.00m/s when the car is going up represented by blue line and when going 

down represented by red line 

 

The FFT frequency spectra of the compensating sheave and counterweight over a time span of 

20.0 seconds – 40.0 seconds from the longitudinal displacement response when the elevator 

car is travelling at a rated velocity of v(t)=4.00m/s shown in (a) and (b) when the elevator car 

is travelling from the bottom to the top landing level represented by a blue line and from the 

top to the bottom landing level represented by a red line. 

The predominant frequency shown in Figure 5.23 is 0.60 Hz which is double the frequency of 

excitation in the lateral in plane direction of the building structure. This type of frequency is 

coming in the longitudinal direction of each mass by the coefficients    , , ,
CS CW

f t f t   that 

appear in equations (5.60) - (5.61) and are defined in equations (G.28) and (G.33), is primary 

external excitation. 
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Figure 5.23 FFT frequency spectra of (a) compensating sheave (b) counterweight between the 

time span of 20.0 seconds – 40.0 seconds for case study two when the elevator car is 

travelling at v(t)=4.00m/s when the car is going up represented by blue line and when going 

down represented by red line 

 

5.4 Autoparametric resonance 2:1 

In the nonstationary mathematical model of a full elevator system which is described by the 

nonlinear equations (5.54) and (5.55) for the ith rope and (5.59) to (5.61) for the elevator car, 

compensating sheave and counterweight, autoparametric (2:1) resonance may occur due to 

coupling between the longitudinal displacements of the elevator car, compensating sheave and 

counterweight and the lateral in plane and out of plane displacements of the suspension and 

compensating ropes. 

The stiffness term of the ropes represented as  ˆ ;irnk t   contain the longitudinal displacements 

of the elevator car, compensating sheave, and counterweight defined in Appendix G in 

equations (G-2), (G-5), (G-9), and (G-13) provides parametric excitation to the lateral modal 

displacements of the rope, therefore the excitation of each mass provides autoparametric 

excitation to the rope, which gives a 2:1 resonance, according to Nayfeh and Mook (1979).  

This type of resonance was also studied by Salamaliki-Simpson and Kaczmarczyk (2006) in a 

rope and mass mathematical model where adverse situation arises due to the quadratic 
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done with a high and low rated velocity of the mass and concluding that at low velocity the 

lateral response of the rope is higher. 

In the following simulation the autoparametric (2:1) resonance has been studied in respect to 

the tuning between the longitudinal and lateral modes. In order for this type of resonance to 

take place the longitudinal natural frequency of the elevator car should be twice the lateral 

natural frequency of the suspension ropes at the car side ( CR 1rr2  ) and also the external 

excitation frequency of the building structure should coincide with the longitudinal natural 

frequency ( v CR  ). 

A four mode approximation in each direction of motion is applied. In order to demonstrate the 

principle features of the dynamic behaviour of the system, the first four lateral in plane and 

lateral out of plane modes are considered. Since the longitudinal natural frequency of the 

elevator car is the lowest between the elevator car, compensating sheave and counterweight. 

Thus, the longitudinal natural frequency of the elevator car was tuned to be CR 1rr2  .  

To demonstrate a 2:1 resonance through the autoparametric excitation terms of the elevator 

car. The mass of the compensating sheave is assumed to be 
2 20000M  kg, the elevator car is 

assumed to have a rated velocity of v(t)=2.00m/s, a rated acceleration of aCR(t)=1.00m/s2, and 

a rated jerk of j(t)=1.00m/s3. The rest of the parameters of the building and elevator ropes 

remain unchanged as defined in Chapter 4.  

It is assumed the fundamental natural frequency of the building structure is 5.4475v  rad/s 

(0.867 Hz) in the lateral in plane direction, where    12v CR rr       and in the lateral 

out of plane direction is 1.6336w  rad/s (0.26 Hz). Assuming, the high rise building is 

excited by wind harmonically, the displacement at the machine room level in the lateral in 

plane direction is 0.90vA  m and in the lateral out of plane direction is 0.35wA  m. 

A comparison is shown when the car is travelling from the bottom landing level to the top 

landing level and vice versa. 

The kinematic profile of the elevator car dictated by the drive control algorithm when 

traveling at a rated velocity of v(t)=2.00m/s from the bottom landing level to the top landing 

level is shown in Figure 5.24. Similarly when the elevator car is traveling from the top 

landing level to the bottom landing level can be obtained.  
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The variation of frequency corresponding to all lateral modes of the suspension ropes 

dependent of   which are slowly changing in time due to  iL   at the car side according to 

the position of the elevator car in the hoistway is measured from the bottom landing level are 

shown in Figure 5.25 with a v(t)=2.00m/s. In Figure 5.25 the solid red, green, cyan, and 

purple line are the variation of frequency of the first four lateral natural frequencies at the car 

side of the suspension ropes, considering the Coriolis and centrifugal forces as shown in 

equation (5.68).  

In Figure 5.25 the dashed black, blue, and cyan lines represent the change of frequency in the 

longitudinal direction of the elevator car, compensating sheave, and counterweight according 

to the position of the elevator car, estimated by finding the eigenvalues from the stiffness 

matrix represented in (5.62) and mass matrix represented in (4.130).  

In Figure 5.25 the dashed magenta and blue horizontal lines represent the frequency of 

excitation from the building structure at 0.867 Hz and 0.26 Hz in the lateral in plane and out 

of plane directions. The lateral in plane excitation frequency of the building structure will 

   12v CR rr       when the elevator car is approximately at a height of 100.0m from 

the bottom landing level, shown with a dashed yellow circle in Figure 5.24 and Figure 5.25. 

 

 

Figure 5.24 The kinematic profile of the elevator car when the car is going from the bottom 

landing level to the top landing level with a rated velocity of v(t)=2.00m/s 
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Figure 5.25 Variation of frequency of the suspension ropes according to the position of the 

elevator car (car side) for v(t)=2.00m/s 
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Figure 5.26 Displacement of the suspension rope at the car side at the mid span length of the 

ropes in (a) Lateral in plane (b) Lateral out of plane directions when the elevator car is 

travelling with a rated velocity of v(t)=2.00m/s from the bottom landing level to top landing 

level 

 

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span 

of 40.0 seconds – 60.0 seconds when the elevator car is travelling from the bottom landing 

level to the top landing level is shown in Figure 5.27 (a) and (b), respectively. The maximum 

frequencies are 0.30 Hz and 0.89 Hz which are approximately the frequencies in which the 

building structure is exciting the ropes in the lateral in plane and out of plane directions 

shown in Figure 5.27 (a) and (b). The frequencies of 0.30 Hz and 0.89 Hz from the lateral in 

plane and out of plane directions are coming from the kinematic forcing terms that are 

exciting the ropes at the machine room level. The two frequencies appear on both directions 

due to the coupling between the lateral in plane and out of plane direction from the terms irnR  

which are the cubic nonlinear terms of equations (5.54) and (5.55) defined for the ith rope. To 

better demonstrate the 2:1 auto parametric resonance of the suspension ropes at the car side, 

the response of the suspension ropes at the car side are shown when the elevator car is going 

down. 
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Figure 5.27 FFT frequency spectra of suspension ropes at the car side (a) Lateral in plane (b) 

Lateral out of plane between a time span of 40.0 seconds – 60.0 seconds when the elevator car 

is travelling at v(t)=2.00m/s when the car is going up. 

 

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span 

of 100.0 seconds – 120.0 seconds when the elevator car is travelling from the bottom landing 

level to the top landing level is shown in Figure 5.28 (a) and (b), respectively. The maximum 

frequencies are 0.30 Hz and 0.88 Hz which are approximately the frequencies in which the 

building structure is exciting the ropes in the lateral in plane and out of plane directions 

shown in Figure 5.28 (a) and (b). The frequencies of 0.30 Hz and 0.88 Hz from the lateral in 

plane and out of plane directions are coming from the kinematic forcing terms that are 

exciting the ropes at the machine room level. Due to the short length of the suspension rope 

the expected frequency from the building structure in the lateral in plane and out of plane 

direction are shown by the suspension rope in each direction and the transfer of energy from 

both directions is not present. 
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Figure 5.28 FFT frequency spectra of suspension ropes at the car side (a) Lateral in plane (b) 

Lateral out of plane between a time span of 100.0 seconds – 120.0 seconds when the elevator 

car is travelling at v(t)=2.00m/s when the car is going up. 

 

The displacement of the suspension ropes at the car side at the mid span length of the rope 

when the elevator car is travelling at a rated velocity of v(t)=2.00m/s when going from the top 

landing level to the bottom landing level is shown in Figure 5.29 in (a) the lateral in plane 

direction and (b) the lateral out of plane direction.  
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Figure 5.29 Displacement of the suspension rope at the car side at the mid span length of the 

ropes in (a) Lateral in plane (b) Lateral out of plane directions when the elevator car is 

travelling with a rated velocity of v(t)=2.00m/s from the top landing level to bottom landing 

level 

 

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span 

of 35.0 seconds – 45.0 seconds when the elevator car is travelling from the top landing level 

to the bottom landing level is shown in Figure 5.30 (a) and (b), respectively. The maximum 

frequency is 0.89 Hz which is approximately the frequency in which the building structure is 

exciting the suspension ropes in the lateral in plane direction shown in Figure 5.30 (a) and (b). 

The frequency of 0.89 Hz appear on both directions due to the coupling between the 

longitudinal direction with the lateral in plane and out of plane direction which are found at 

the stiffness term  ˆ ;irnk t   of equations (5.54) and (5.55) of the lateral in plane and out of 

plane direction of the suspension ropes at the car side defined in equation (G.2). Energy from 

the high frequency longitudinal direction is transferred to the low frequency lateral modes and 

the lower modes are strongly excited at half the frequency of the excitation in the lateral in 

plane direction, as discussed by Salamaliki-Simpson and Kaczmarczyk (2006). 
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Figure 5.30 FFT frequency spectra of suspension ropes at the car side (a) Lateral in plane (b) 

Lateral out of plane between a time span of 35.0 seconds – 45.0 seconds when the elevator car 

is travelling at v(t)=2.00m/s when the car is going down. 

 

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span 

of 90.0 seconds – 120.0 seconds when the elevator car is travelling from the top landing level 

to the bottom landing level is shown in Figure 5.31 (a) and (b), respectively. The maximum 

frequencies are 0.30 Hz and 0.89 Hz which are approximately the frequencies in which the 

building structure is exciting the ropes in the lateral in plane and out of plane directions 

shown in Figure 5.31 (a) and (b). The frequencies of 0.30 Hz and 0.89 Hz from the lateral in 

plane and out of plane directions are coming from the kinematic forcing terms that are 

exciting the ropes at the machine room level. The two frequencies appear on both directions 

due to the coupling between the lateral in plane and out of plane direction from the terms irnR  

which are the cubic nonlinear terms of equations (5.54) and (5.55) defined for the suspension 

rope at the car side. As the elevator car is going down the natural frequency of the suspension 

rope at the car side is lowered, thus the transfer of energy from the lateral in plane and out of 

plane direction is present. 
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Figure 5.31 FFT frequency spectra of suspension ropes at the car side (a) Lateral in plane (b) 

Lateral out of plane between a time span of 90.0 seconds – 120.0 seconds when the elevator 

car is travelling at v(t)=2.00m/s when the car is going down. 

5.4.2 Longitudinal response of the elevator car, compensating sheave, and 

counterweight 

The longitudinal displacements of the elevator car, compensating sheave, and counterweight 

when the elevator car is going up is shown in Figure 5.32 when the elevator car is travelling at 

a rated velocity of v(t)=2.00m/s.  

 

Figure 5.32 Longitudinal displacements of (a) elevator car (b) compensating sheave (c) 

counterweight when the elevator car is travelling at a rated velocity of v(t)=2.00m/s when 
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The FFT frequency spectra of the elevator car between a time span of 40.0 seconds – 60.0 and 

100.0 seconds – 120.0 seconds when the elevator car is travelling from the bottom landing 

level to the top landing level is shown in Figure 5.33 (a) and (b), respectively. The frequency 

of 1.75 Hz is approximately twice the frequency of excitation in the lateral in plane direction 

coming from the excitation term  ;CRf t   in the longitudinal direction which is defined in 

equation (G.22), which is primary external excitation. The frequency of 0.85 Hz is the 

frequency of excitation in the lateral in plane direction of the building structure at the machine 

room level. 

 

Figure 5.33 FFT frequency spectra of the elevator car between the time span (a) 40.0s to 60.0s 

(b) 100.0s to 120.0s when the elevator car is travelling at v(t)=2.00m/s when the car is going 

up. 

 

Similarly, the response in the longitudinal direction of the elevator car, compensating sheave, 

and counterweight when the elevator car is travelling from the top landing level to the bottom 

landing level can be determined. 

According to the simulation results presented in this Chapter by comparing when the elevator 

is travelling at a high and low rated velocity and when the elevator car is traveling from the 

bottom landing level to the top landing level and vice versa from the top landing level to the 
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the ropes and of the elevator car, compensating sheave, and counterweight are higher as the 

elevator is passing through resonance with a low rated velocity.  

The nonstationary mathematical model derived in this chapter has not yet been validated in a 

high rise building under wind loading. It is recommended that a full validation of the lateral 

displacements of the suspension and compensating ropes at the car and counterweight side be 

completed. 

A special case was shown where the longitudinal natural frequency of the elevator car is equal 

to twice the lateral natural frequencies of the suspension ropes at the car side, where this type 

resonance is called 2:1 autoparametric resonance. The excitation frequency in which the high 

rise building is exciting the elevator system is equal to the longitudinal natural frequency of 

the elevator car. In this case study the longitudinal mode of the elevator car excited the lateral 

modes of the suspension ropes due to the quadratic coupling in the coefficient  ˆ ;irnk t   in the  

equations of motion of the suspension rope at the car side (i=1) in equations (5.54) and (5.55) 

shown in Appendix G. The results showed better correlation when the elevator car was 

travelling at a very low rated velocity from the top landing level to the bottom landing level. 
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6. Conclusions 

This research addresses the linear and nonlinear phenomena that occur in the vibration 

problem of an elevator system in high rise buildings. The aim of this study was to develop and 

to validate a computer model of the elevator system to predict the dynamic responses of ropes 

and cables in an elevator system due to the vibrations of a high-rise building which is excited 

by the action of wind loading, when the elevator system is stationary and in motion. The wind 

loading is not represented in the mathematical models of the elevator system, due to 

considerable amount of time and resources during experimental testing. The vibrations of a 

high-rise building are considered as displacements which are caused by the wind loading on a 

high-rise building.  

The mathematical methodology defined in Chapter 2 to predict the responses of the elevator 

steel wire ropes has been validated through experimental tests conducted using an 

experimental test rig described in Chapter 3. The mathematical model predictions have shown 

a good agreement with the experimental results.    

In Chapter 3 the techniques validated through the experimental tests were used to model the 

rope and mass assembly of an experimental test rig. A set of experiments were developed to 

estimate the modal damping ratio of the rope and mass assembly, the lateral natural 

frequencies, and the modulus of elasticity of the rope. The torsional linear stiffness of the 

steel frame used to restrict the mass to move in the longitudinal and lateral in plane direction 

was estimated. A methodology was developed to derive the mathematical model of the rope 

and mass assembly taking into account the stationary and nonlinear behaviour of the system. 

Linear and nonlinear resonances were predicted through simulation. The lateral and 

longitudinal natural frequencies of the rope and mass system obtained from the mathematical 

model agreed when compared with the natural frequencies obtained from the experimental 

testing. The whirling motion of the rope took place, due to the transfer of energy between the 

lateral in plane motion to the lateral out of plane motion. The numerical simulation was 

compared with experimental results and a good agreement was found for the displacements of 

the rope. However the rotation of the mass in the experimental testing has influence in the 

lateral in plane and longitudinal displacements of the mass. The imperfections or 

misalignment at the mass assembly, that are responsible for any additional looseness or 

misalignment were difficult to eliminate and to accommodate in the current model due to 

project constraints.  
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Due to good comparison of the rope lateral displacements between the experimental and 

numerical simulation results under different input parameters. The methodology used to 

derive the mathematical model of a rope and mass system was used to derive the 

mathematical model of a full elevator system for a high rise building to predict the motions of 

the ropes and the interaction between its components. 

In Chapter 4 a stationary mathematical model of a high rise elevator system that predicts the 

behaviour of the suspension and compensating ropes at the car and counterweight side with 

the influence of the lateral in plane and out of plane displacements of the elevator car and 

longitudinal displacements of the elevator car, compensating sheave, and counterweight was 

derived. The equations of motion for the entire system were derived. The stationary and 

nonlinear vibrations of the suspension and compensating ropes were taken into account. The 

numerical results were compared with a high and low lateral stiffness of the elevator car. 

When the elastic interface between the elevator car and the building structure in the lateral 

directions is considered the veering phenomena was discussed. The simulation results were 

compared when the elevator car is positioned at the bottom landing level, at a height where 

the eigenvalues of the suspension and compensating ropes for the fundamental natural 

frequency becomes equal, and when the elevator car is positioned at the top landing level. 

Among all three case studies the lateral response of the suspension ropes, compensating 

ropes, and the elevator car was higher when the elevator car is positioned at a height where 

the fundamental natural frequency of the suspension and compensating rope becomes equal. 

Due to good ride quality on the elevator car, an elevator car with lateral low stiffness of the 

guiding system and having lateral vibrations as the ones shown in Chapter 4 would not be 

suitable for service. This is why the lateral high stiffness of the guiding system are used in the 

elastic interface between the elevator car and the building structure in the lateral directions to 

minimize the lateral vibrations on the elevator car. Thus, the mathematical model derived in 

Chapter 5 the lateral stiffness of the elevator car was neglected. The mathematical model 

derived in Chapter 4 can be used to predict the response of the suspension and compensating 

ropes and the interaction between its components.  

In Chapter 5 an efficient nonstationary mathematical model of a high rise elevator system that 

predicts the behaviour of the suspension and compensating ropes at the car and counterweight 

side with the influence of the longitudinal displacements of the elevator car, compensating 

sheave, and counterweight while the elevator car is going up or down in the elevator shaft was 

derived. The equations of motion for the entire system were derived taking into account the 

kinematic profile of an elevator system dictated by the drive control algorithm. The equations 
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of motion of the entire system accommodate the Coriolis and centrifugal forces due to the 

nonstationary behaviour of the system. The nonstationary and nonlinear vibrations when the 

suspension and compensating ropes are changing length were taken into account. The change 

of length of the ropes was treated as slowly varying in time.  

The numerical results were discussed by comparing when the elevator is travelling at a high 

and low rated velocity and when the elevator car is traveling from the bottom landing level to 

the top landing level and vice versa. As the elevator car is travelling at a low rated velocity the 

response of the ropes and of the elevator car, compensating sheave, and counterweight are 

higher as slow passage through the resonance regions takes place. A special case was shown 

where the first longitudinal natural frequency equal to twice the lateral fundamental natural 

frequency of the suspension ropes at the car side leading to the nonlinear 2:1 autoparametric 

resonance. The external excitation frequency of the high rise building is equal to the first 

longitudinal natural frequency. In this case study the first longitudinal mode excited the lateral 

modes of the suspension ropes due to the quadratic coupling in the equations of motion of the 

suspension rope at the car side. The 2:1 autoparametric resonance was more evident when the 

elevator car was travelling at a very low rated velocity and when travelling from the top 

landing level to the bottom landing level. 

The mathematical models of a high rise elevator system presented in this research are the 

basis for the development of computer simulation tools for designers to predict unwanted 

resonance vibration by using the parameters of the elevator system such as number of steel 

wire suspension and compensating ropes, the mass per unit length, the elastic modulus, and 

the lateral modal damping ratios of the ropes, the height of the building structure at the 

machine room level, the travel height, the elevator car, compensating sheave, and 

counterweight full mass, with the longitudinal modal damping ratio of each mass. Designers 

would be able to configure the high rise elevator system and study which arrangements are 

better to prevent unwanted vibrations of the ropes and the components of the elevator system. 
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6.1 Future work 

There is scope for further developments in modelling and prediction of the dynamic 

behaviour of a full elevator system and experimental testing, such as: 

 The validation of the full elevator model presented in chapters 4 and 5 can be 

completed considering the stationary and nonstationary behaviour of the elevator 

system in a high rise building under wind loading. The full validation of the lateral 

displacements of the suspension and compensating ropes at the car and counterweight 

side can be accomplished. 

 As new elevator systems are being installed in open elevator shaft (without elevator 

shaft walls) the influence of aerodynamic effects on the dynamics of ropes in a full 

elevator system should be studied.  

 To expand the mathematical model derived in Chapter 4 future mathematical models 

could include the elastic interface between the building structure and the 

counterweight.  

 In the modern high-rise systems elevator cars are equipped with active roller guides 

when installed in high rise buildings, to mitigate the lateral vibrations from 

misalignment of the guide rails and to suppress the lateral vibrations of the elevator 

car. The new mathematical models of a high rise elevator system could be 

incorporated active roller guides, to predict the behaviour of the suspension and 

compensating ropes in a stationary and nonstationary elevator system and to predict 

the effects at the elevator car.  

 Impact between the shaft walls and the ropes and the interaction between the ropes of 

the elevator system should be included as this is another excitation to the elevator car 

during operation and stationary. 

 As it was presented in Chapter 3 the lateral damping ratios of the ropes were 

determined experimentally of a steel wire rope and were considered constant 

throughout all modes for a constant length of rope. A new research could arise to 

determine the damping ratios for different modes during travel of the elevator car and 

for different travel directions. 
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 For the mathematical model derived in Chapter 3, a future mathematical model could 

be derived by adding a rotational degree of freedom to the mass/car assembly 

dynamics in the lateral in plane direction. 

 A new type of sensor to monitor the vibrations of the ropes in the elevator system 

stationary and during travel should be studied. As it was reported in Chapter 1, a fibre 

optic sensor based on Fibre Bragg Grating technology could be used to measure the 

vibrations of the ropes.  

 The existing mathematical model results could be verified through the development of 

another model using an alternative software platform such as MSc Software Adams 

which is multibody dynamic software. A single rope can be characterized by segments 

of a specified length linked all together by joints and a mass can be attached at the 

bottom restricted to vibrate only in the longitudinal and lateral in plane directions. 

 The effects of the rope vibrations on the elevator car structure can be developed. The 

models could accommodate the geometry of the elevator car, compensating sheave, 

and counterweight. A more in depth analysis of the elevator car components in 

particular the deformations of the car frame/body and the materials being used can be 

developed. As certain components can be excited at their natural frequency. 

 High rise buildings are often being constructed in seismic areas. The mathematical 

models of a full elevator system in a high rise building with the excitation of wind 

loading can be included seismic excitation. To predict the behaviour of the suspension 

and compensating ropes at the car and counterweight side with the interaction of the 

elevator car, compensating sheave and counterweight, when the high rise building is 

being excited by wind and seismic loading.   
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Appendix A 

Orthogonality of Modes of one rope and a mass 

 

Figure A.1 Drawing of the model taken into account 

 

For the lateral in plane and out of plane motion of the model of Figure A.1, the differential 

equation of the stationary, unconstrained system can be written as: 

0 0tt xxmV T V                      (A.1) 



2 

 

Which must be satisfied in the domain 0 x L  . 

In addition V must satisfy the boundary conditions at x 0  and x L  which are described by 

the equations A.2 and A.3, respectively. 

 0, 0V t                       (A.2) 

     0, 2 , , 0eq xMV L t k V L t T V L t                   (A.3) 

Using the separation of variables technique the displacement V can be expressed as: 

V( x,t ) ( x )q( t )                    (A.4) 

where q(t) is a harmonic function with frequency , so that  

2

ttV ( x,t ) ( x )q( t )                     (A.5) 

where 
Lin 0T

m
  . The Eigenvalue problem of (A.1) is then reduced to 

2( ) ( ) ( ) 0Linx x                       (A.6) 

where the prime designates differentiation with respect to x . Equation A.6 can be re-written 

as  

2

0 ( ) ( )n nT x m x                        (A.7) 

The orthogonality property of (A.7) can be examined by considering modes n  and r  of the 

Eigenvalue problem as the following equations: 

2

0 ( ) ( )n n nT x m x                      (A.8a) 

2

0 ( ) ( )r r rT x m x                      (A.8b) 

Multiplying the (A.8a) by r( x )  and (A.8b) by n( x ) and integrating over the entire interval

[0 L ] . 

2

0

0 0

( ) ( ) ( ) ( )

L L

n r n n rT x x dx m x x dx                      (A.9a) 

2

0

0 0

( ) ( ) ( ) ( )

L L

r n r r nT x x dx m x x dx                      (A.9b) 

The second boundary condition at x L , for modes n  and r  can be written as the following 

expressions: 
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0( ) ( ) ( ( ) ( )) ( )n n r n eq n rM L L T L k L L                    (A.10a) 

0( ) ( ) ( ( ) ( )) ( )n r n r eq r nM L L T L k L L                    (A.10b) 

Subtracting (A.9a) and (A.9b) from the expressions (A.10a) and (A.10b) 

2

0 0

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

L L

n r n n r n n r n r

eq n r

T x x dx M L L m x x dx T L L

k L L

         

 

    



          (A.11a) 

2

0 0

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

L L

r n r r n r r n r n

eq r n

T x x dx M L L m x x dx T L L

k L L

         

 

    



          (A.11b) 

Evaluating the integrals of (A.11a) and (A11b) with the method of integration by parts the 

following equations are produced: 

2

0 0

0 0

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

L L

n r n r n n r n n r

n r eq n r

T L L T x x dx M L L m x x dx

T L L k L L

         

   

     

 

          (A.12a) 

2

0 0 1 2

0 0

0

( ) ( ) ( ) ( ) (0) (0) ( ) ( )

( ) ( ) ( ) ( )

L L

r n r n r r n r r n

r n eq r n

T L L T x x dx M m x x dx

T L L k L L

         

   

     

 

          (A.12b) 

Subtracting Equations (A.12a) and (A.12b), the resulting equation is  

2rm    if n r  

0

( ) ( ) ( ) ( )

L

r n r nM L L m x x dx                    (A.13) 

0    if n r  

Applying (A.12a) into (A.9a) 

2

2rr 2rrm    if n r  

0 0

0

( ) ( ) ( ) ( ) ( ) ( )

L

n r n r eq n rT x x dx T L L k L L                      (A.14) 

    0   if n r  
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Appendix B 

Lateral Eigenvalue Problem of one rope and a mass 

In the lateral motion the rope is being treated as a string governed by the equation 

0 0tt xxmV T V                     (B.1) 

The equation of the string (B.1) is solved using the technique of the separation of variables in 

order to determine the equation for the mode shapes. It is assumed that the displacement 

V( x,t )  can be written as a product of two functions one depending on length (x) and the other 

on time (t).  

V( x,t ) ( x )q( t )                   (B.2) 

and each function can be written separately as following 

Lin 2( x ) ( ) ( x ) 0                      (B.3) 

2q ( t ) q( t ) 0                     (B.4) 

The solution for each function is defined in Equations (B.5) and (B.6) respectively 

q( t ) Acos t B sin t                    (B.5) 

   Lin Lin( x ) C cos x D sin x                    (B.6) 

where A,B,C,D  are constants of integration. The boundary condition at x 0  is  

V(0,t ) 0                    (B.7) 

From the boundary condition (B.7) q( t ) (0 ) 0    and    Lin LinC cos x D sin x 0    and 

thus C 0   

Consequently  

 Lin( x ) D sin x                    (B.8) 

at x L   the boundary condition is   

tt 0 x eqx L x L x L
M V( x,t ) T V( x,t ) K V( x,t ) 0

  
                 (B.9) 

Equations (B.2), (B.4) are applied into Equation (B.9) resulting into a new Equation (B.10).  

2 Lin Lin Lin

eq 0( K M )sin L T cos L 0                    (B.10) 
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applying Equation (B.2), (B.3), (B.4) into (B.1) 

2 Lin 20T
( )

m
 

 
  
 

                (B.11) 

using Equation (B.11) into Equation (B.10)  

 
2

Lin Lin Lin2 Lin0
0 eq

MT
T cos L k sin L 0

m
   

 
   
 

            (B.12) 
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Appendix C 

Simulation Results for the Experimental Testing 

Running a simulation with a number of mode of N=1. 

A comparison between the experimental testing and the mathematical model of the 

displacements in the lateral in plane and out of plane direction is shown in Figure C.1 and the 

whirling motion of the rope appears in Figure C.2.  

 

Figure C.1 Comparison of the rope displacement at sensor height from the experiment and the 

mathematical model 

 

 

Figure C.2 Comparison of the displacements in the Lateral in plane and out of plane direction 
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Running a simulation with a number of mode of N=2. 

A comparison between the experimental testing and the mathematical model of the 

displacements in the lateral in plane and out of plane direction is shown in Figure C.3 and the 

whirling motion of the rope appears in Figure C.4. 

 

 

Figure C.3 Comparison of the rope displacement at sensor height from the experiment and the 

mathematical model 

 

 

Figure C.4 Comparison of the displacements in the Lateral in plane and out of plane direction 
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Running a simulation with a number of mode of N=3. 

A comparison between the experimental testing and the mathematical model of the 

displacements in the lateral in plane and out of plane direction is shown in Figure C.5 and the 

whirling motion of the rope appears in Figure C.6. 

 

Figure C.5 Comparison of the rope displacement at sensor height from the experiment and the 

mathematical model 

 

 

Figure C.6 Comparison of the displacements in the Lateral in plane and out of plane direction. 

 

As it can be seen the simulation with higher number of modes for the Galerkin method agrees 

better with the experimental testing. The contribution of the first three modes to compare the 

results with the experimental testing agrees better. Thus, the number of modes chosen in 

Chapter 3 to compare the simulation with the experimental testing will give an acceptable 

correlation. 
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Appendix D 

Lateral Eigenvalue Problem of two ropes and a mass 

 

Figure D.1. Drawing of the mathematical model taken into account. 

 

The lateral motion of the mathematical model of the ropes of Figure D.1, which are being 

treated as a string, are governed by the following equations 
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1 1 1 1 0tt xxmV TV                     (D.1) 

2 2 2 2 0tt xxm V T V                     (D.2) 

 1 0, 0V t                      (D.3) 

   1 1 2L , 0,V t V t                    (D.4) 

 2 2L , 0V t                      (D.5) 

       1 1 1 1 1 1 2 2 1 1 1, , 0, 2 , 0tt x xM V L t TV L t T V t k V L t                  (D.6) 

The equation of the string (D.1) and (D.2) are solved using the technique of the separation of 

variables in order to determine the equation for the mode shapes. The boundary conditions are 

defined from equations (D.3) to (D.5). It is assumed that the displacement 1V ( x,t )  and 

2V ( x,t )  can be written as a product of two functions one depending on length (x) and the 

other on time (t).  

1 1 1V ( x,t ) ( x )q( t )                    (D.7) 

2 2 2V ( x,t ) ( x )q( t )                    (D.8) 

The solution for each function is defined in equations (D.9) and (D.10) respectively 

1 1 1 1 1 1 1( x ) A cos x B sin x                     (D.9) 

2 2 2 2 2 2 2( x ) A cos x B sin x                   (D.10) 

Where 
1
  and 

2
  are defined as equations (D.11) and (D.12)  

1
1

1

m

T
                    (D.11) 

2
2

2

m

T
                    (D.12) 

From the boundary condition (D.3). 

1A 0  Thus, equation (D.9) can be rewritten as 

1 1 1 1( x ) B sin x                   (D.13) 

From boundary condition (D.4) 
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2 1 1 1A B sin L 0                   (D.14) 

From boundary condition (D.5) 

2 2 2 2 2 2A cos L B sin L 0                   (D.15) 

From boundary condition (D.6) and using equations (D.14) and (D.15) 

2

1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1sin cos sin 0M B L T B L T B k B L                      (D.16) 

Placing equations (D.14) to (D.15) in a matrix and finding the determinant of the matrix gives 

equation (D.17) 

2 1 2 1
2 2 2 1 1 2 1

2 1 2 1

22 1 2 1
1 1 2 1 1 2 1

2 1 2 1

cos sin 2 sin sin

sin cos sin sin 0

m m m m
T m L L k L L

L L L L

m m m m
T m L L M L L

L L L L

    

     

       
              

       

       
                

       

         (D.17) 

To determine B1, A2, and B2, assuming   

1B 1                    (D.18) 

Thus using B1 in equation (D.13) and (D.14) results in equation (D.19) and (D.20) 

2 1 1A sin L                   (D.19) 

1 1 2 2
2

2 2

sin L cos L
B

sin L

 


                  (D.20) 

Using equations (D.18) to (D.20) in (D.13) and (D.10) gives equations (D.21) and (D.22) 

1 1 1( x ) sin x                   (D.21) 

1 1 2 2
2 1 1 2 2 2 2

2 2

sin L cos L
( x ) sin L cos x sin x

sin L

 
   


              (D.22) 
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Appendix E 

Orthogonality of Modes of two ropes and a mass 

For the lateral in plane and out of plane motion of the mathematical model of Figure D.1, the 

differential equation of the stationary, unconstrained system can be written as: 

1 1 1 1 0tt xxmV TV   in the domain 
1 10 x L                   (E.1) 

2 2 2 2 0tt xxm V T V   in the domain 
2 20 x L                   (E.2) 

In addition V1 must satisfy the boundary conditions at 1x 0  and 1 1x L  and V2 must satisfy 

boundary conditions at 2x 0  and 2 2x L  which are described by the equations (E.3) to 

(E.6), respectively. 

 1 0, 0V t                       (E.3) 

   1 1 2L , 0,V t V t                     (E.4) 

 2 2L , 0V t                       (E.5) 

           1 1 1 1 1 1 1 2 2 1 1 1, , 0 0, 2 , 0tt x xM V L t T L V L t T V t k V L t                  (E.6) 

Using the separation of variables technique the displacement V1 and V2 can be expressed as 

1 1 1V ( x,t ) ( x )q( t )                     (E.7) 

2 2 2V ( x,t ) ( x )q( t )                     (E.8) 

 

 
2

q t

q t
                       (E.9) 

where the prime designates differentiation with respect to x. Equations (E.1) and (E.2) can be 

rewritten as  

2

1 1 1 1 1( ) ( )m x T x                      (E.10) 

2

2 2 2 2 2( ) ( )m x T x                     (E.11) 

The orthogonality property of equations (E.10) and (E.11) can be examined by considering 

modes n and r  of the Eigenvalue problem as the following equations: 

2

1 1 1 1 1( ) ( )n n nm x T x                     (E.12) 
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2

2 2 2 2 2( ) ( )n n nm x T x                     (E.13) 

2

1 1 1 1 1( ) ( )r r rm x T x                     (E.14) 

2

2 2 2 2 2( ) ( )r r rm x T x                     (E.15) 

Multiplying Equations (E.12) and (E.13) by 1r ( x )  and 2r ( x )  respectively and (E.14) and 

(E.15) by 1n( x )  and 2n( x )  and integrating over the interval 1[0 L ]  Equations (E.12) and 

(E.14) and 2[0 L ] equations (13) and (15). 

1 1

2

1 1 1 1 1 1

0 0

( ) ( ) ( ) ( )

L L

n n r n rm x x dx T x x dx                      (E.16) 

2 2

2

2 2 2 2 2 2

0 0

( ) ( ) ( ) ( )

L L

n n r n rm x x dx T x x dx                     (E.17) 

1 1

2

1 1 1 1 1 1

0 0

( ) ( ) ( ) ( )

L L

r n r r nm x x dx T x x dx                      (E.18) 

2 2

2

2 2 2 2 2 2

0 0

( ) ( ) ( ) ( )

L L

r n r r nm x x dx T x x dx                     (E.19) 

The boundary condition equation (E.6) and using equations (E.7), (E.8), (E.9), for modes n 

and r and multiplying by 1r ( x )  and 1n( x )  respectively, can be written as the following 

expressions: 

               2

1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 10 2n r n n r n r n rM L L T L L T L k L L                        (E.20) 

               2

1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 10 2r n r r n r n r nM L L T L L T L k L L                        (E.21) 

Evaluating the integrals of (E.16) to (E.19) by parts the following equations are produced: 

1 1

2

1 1 1 1 1 1 1 1 1 1 1 1 1

0 0

( ) ( ) (L ) (L ) ( ) ( )

L L

n n r n r n rm x x dx T T x x dx                        (E.22) 

2 2

2

2 2 2 2 2 2 2 2 2 2 2

0 0

( ) ( ) (0) (0) ( ) ( )

L L

n n r n r n rm x x dx T T x x dx                       (E.23) 

1 1

2

1 1 1 1 1 1 1 1 1 1 1 1 1

0 0

( ) ( ) (L ) (L ) ( ) ( )

L L

r n r r n n rm x x dx T T x x dx                        (E.24) 

2 2

2

2 2 2 2 2 2 2 2 2 2 2

0 0

( ) ( ) (0) (0) ( ) ( )

L L

r n r r n n rm x x dx T T x x dx                       (E.25) 
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Summing equation (E.22) and (E.23) and subtracting equations (E.20) for n. For r summing 

equations (E.24) and (E.25) and subtracting equation (E.21), and using the transformation 

   1 1 2L 0   gives equations (E.26) and (E.27)   

   

   

1 2

1 2

2 2 2

1 1 1 2 2 2 1 1 1 1 1

0 0

1 1 1 1 1 1 1 1 1 2 2 2 2 2

0 0

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( )

L L

n n r n n r r n n

L L

n r n r n r

m x x dx m x x dx M L L

T x x dx k L L T x x dx

        

     

  

    

 

 

           (E.26) 

   

   

1 2

1 2

2 2 2

1 1 1 2 2 2 1 1 1 1 1

0 0

1 1 1 1 1 2 2 2 2 2 1 1 1 1

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 2

L L

r n r r n r r n r

L L

n r n r r n

m x x dx m x x dx M L L

T x x dx T x x dx k L L

        

     

  

    

 

 

           (E.27) 

Substracting equation (E.26) and (E.27) gives the following solution 

1rrm    if n r  

   
1 2

1 1 1 2 2 2 1 1 1 1 1

0 0

( ) ( ) ( ) ( )

L L

n r n r r nm x x dx m x x dx M L L                     (E.28) 

0    if n r  

Applying (E.28) into (E.27) 

2

1rr rm          if n r  

   
1 2

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1

0 0

( ) ( ) ( ) ( ) 2

L L

n r n r r nT x x dx T x x dx k L L                       (E.29) 

    0      if n r  
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Appendix F 

Coefficients for the Stationary Model of a High Rise Elevator System 

Where 1Lin

jp
G  and 2 Lin

jp
G  are represented as equations (F.1) to (F.4) 

   

  
 

  
 

2

1 1 1 1 1

1

1 1 1 1 1 1

1 1

1 1 1 1

sin 2
;

2 4

sin sin
;

2 2

Lin Lin Lin

j j j

Lin

jp Lin Lin Lin Lin

j p j pLin Lin

j p Lin Lin Lin Lin

j p j p

L L
j p

G
L L

j p

  

   
 

   


  


          
  

                         (F.1) 

 

   

2
2 2

2 2 1 1 2 1 1 2 2 2 2

2 2

2 2 2 2

2

2 1 1 2 2 2 2

2 2 2

2 2
2

2 2

2 2

sin sin cos 2 sin 2

; 2sin 4sin

sin cos sin

sin
sin

1
;

Lin Lin Lin Lin Lin Lin
j j j j j j

Lin Lin

j j

Lin Lin Lin Lin

j j j j

Lin

j pLin

p
Lin

jp

Lin Lin

p j

L L L L L

j p L L

L L L

L
L

G

j p

     

 

   

 


 

 
 
 
 
  






 

 

 

 

2 1 2 1 2

2 2 2 2 2 2 1 1

2 2 2 2 1 2 1 2

2 2

2 2 2 1 1 2 2 2

2 2 1 2 1

cos

cos
cos

sin

Lin v v Lin v v

p j j p j

Lin Lin v v Lin v v

j p p j j p j

Lin Lin v v Lin v v

j j p j p p jLin

p
Lin Lin v v Lin v v

j p p j j p j

Lin v v Lin

j p j p

C C C C

L C C C C

L C C C C
L

L C C C C

C C C



  

  


  

 

 
  
  
 

 
  
  
 

 2

v v

p jC








 
 

  
  
  
  
  
  
  
  
  

 
 

  (F.2) 

Where 
1 2 1 1

sinv Lin Lin

p p p
C L  , 

1 2 1 1
sinv Lin Lin

j j j
C L   , 2 1 1 2 2

2

2 2

sin cos

sin

Lin Lin Lin

j j jv

j Lin

j

L L
C

L

  


 , and 

2 1 1 2 2

2

2 2

sin cos

sin

Lin Lin Lin

p p pv

p Lin

p

L L
C

L

  


 . 

Similarly 1Lout

jp
G  and 2 Lout

jp
G  can be deducted. 

The coefficients for the first rope in the lateral in plane direction are the following: 

     
1 22 2 2

1 1 1 1 1 1 1 1 2 2 2 2
0 0

L L
Lin

rr r r rm m x dx M L m x dx                     (F.3) 
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 

1

2

2
1 1 1 2 2 1 1 1 1 1

0

2
1 2 2 1 1 1 1

2

1 1

2 2
1 1 1 2 2 2 2 2 2 2

0

2
2 2 2 1 1

( ) ( )
2

(L ) (L )
2

/

2 (L ) ( ) ( )
2

(0) (L )
2

L

r r

r r

Lin

rr rr
L

r r r

r r

M
M m L m L g x x dx

M
M m L g

m
M

k m L g x x dx

M
m L g

 

 



  

 

  
     

  
  

    
  

  
    

  
  

   
  





Lin
              (F.4) 

    

 

      

1 1

1

1

1 1 1 1 1 1 1 1 1 1 1 1
0 0

2 2

1 1 1

1 1 1 1 1
0

1
1 1 1 1 1 1 1 1 1

0
1

2 2
2

1 1 1
1 1

1 1 1 1 1 1 1 1

11

1

( ) ( ) ( ) ( )

( ) ( )
2

( ) ( ) (L ) (L )

(L ) (L ) (L ) (L )
2

L L

n r n r

v w

L

n r

L
CR

n r n r

v w
v

n r n r

Lin

rn

m g x x x dx m g x x dx

EA f f
x x dx

EAU
x x dx

L

EA f f EA f

L
k

   

 

   

   

 




  


 



 





   

    

      

2

2

2 2

2

2 2 2 2 2 2 1 1
0

2

2 2

2 2 2

2 2 2 2 2
0

2 2
2

2 2 2
2 2

2 1 1 1 1 1 1

2

2 2 2 2 2 2 2 2 2 2 2 2 2
0 0

( ) ( ) (0) ( )

( ) ( )
2

(0) (L ) (L ) (L )
2

( ) ( ) ( ) ( )

L
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The coefficients for the third rope in the lateral in plane direction are the following 
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The coefficients for the fourth rope in the lateral in plane direction are the following 
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The coefficients for the third rope in the lateral out of plane direction are the following 
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The coefficients for the fourth rope in the lateral out of plane direction are the following 
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The coefficients of the elevator car in the longitudinal direction are the following 
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The coefficients of the compensating sheave in the longitudinal direction are the following 
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The coefficients of the counterweight in the longitudinal direction are the following 
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Appendix G 

Coefficients for the Nonstationary Model of a High Rise Elevator System 

The modified coefficients for the nonstationary model of a high rise elevator system are 

shown from equations (G.1) to (G.35). 

For rope i=1 in the lateral in plane direction 
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For rope i=2 in the lateral in plane direction 
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For rope i=3 in the lateral in plane direction 
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For rope i=4 in the lateral in plane direction 
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For rope i=1 in the lateral out of plane direction 
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For rope i=2 in the lateral out of plane direction 
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For rope i=3 in the lateral out of plane direction 
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For rope i=4 in the lateral out of plane direction 
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For the elevator car 
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For the compensating sheave  
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For the counterweight 
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