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Abstract

Vibrations on a high rise building often influence all elevator components and affect the ride
quality of the elevator car. The lateral and longitudinal vibrations of the suspension and
compensating ropes can occur and the lateral and longitudinal vibrations at the elevator car
may take place. The ropes in the elevator system can be characterized by low and high
frequency modes and they are lightly damped. The elevator system in a high rise building is
composed of suspension and compensating ropes, which are the pivotal components of the
elevator system. An important feature of the ropes in the elevator system is that they have a
time varying length. However, the rate in which the length changes can be considered as
small and as a result dynamic characteristics of the system vary slowly during the elevator car
travel. The design methodology of an elevator system requires a thorough dynamic analysis in
order to predict the dynamic loads and to evaluate the response of the system during various

operational modes. This response may be caused by a number of sources of excitation.

The main source of excitation this study is focused on is the excitation coming from the wind
loading on the high rise building. Wind loading on a building structure causes high
displacements at the top of the building structure, exciting all of the components of the
elevator system. The main excitation from the building structure to the suspension and
compensating ropes are the displacements at the machine room level. The other sources of
excitation are coming from the building interface which is used to guide the elevator car and
counterweight along the elevator shaft during travel. The building interface consists of guide
rails and roller guides. The lateral vibration of the elevator car can result from the roller guide
vibrations or due to the guide rail segments being misaligned. These various sources of
excitation may lead to an adverse dynamic behaviour of the elevator system due to its

nonlinear and nonstationary nature.

Due to the time varying length of the ropes in the elevator system the mass and the stiffness of
the system change and consequently its dynamic characteristics such as frequencies, damping

ratios and mode shapes are affected.

The aim of this research is to develop and to validate a computer model of the elevator system
to predict the dynamic responses of the ropes in an elevator system due to the vibrations of a
high-rise building under wind loading, when the elevator system is stationary and in motion.
The three objectives of this thesis are to develop a mathematical and computer model of the
elevator system to understand the behaviour of the ropes in the elevator system under the
influence of the building vibrations caused by wind action, to develop an experimental
programme involving a lift testing tower facilities and/or alternative tall building sites, in

order to validate the computer model through experimental testing, and to develop a computer



software tool as an executable program on Windows operating system to predict the
behaviour of the ropes in the elevator system based on the final mathematical models of a

stationary and moving elevator system.

The experimental testing was conducted at the National Lift Tower in Northampton using an
experimental rig. A set of experiments were developed and various measurements were
carried out. The equations that accurately describe the motion of the mass-rope suspension
system in the rig were derived. The mathematical model takes into account the stationary and
nonlinear nature of the mass rope suspension system in the rig. The linear and nonlinear
resonance phenomena were predicted through simulation and they were compared with the

experimental results.

The equations of motion that describe the elevator system comprised of the elevator car,
compensating sheave, and counterweight connected by the suspension and compensating
ropes were derived. A method to account for the nonstationary and nonlinear nature of the
elevator system was developed. The linear and nonlinear phenomena were observed. The
nonstationary and nonlinear behaviour of the ropes in the elevator system was demonstrated
through simulation. The results showed that nonlinear coupling in the lateral in plane and out
of plane directions of the suspension and compensating ropes can generate modal interaction
between the elevator car, compensating sheave, and counterweight. Thus, the displacements

of the elevator car, compensating sheave, and counterweight can be predicted.



CHAPTER 1

1. INTRODUCTION

1.1 Background

The trend in metropolitan cities is to expand vertically instead of horizontally. More demand
is applied to architects and structural engineers to design taller, safer, more economical, and
aesthetic buildings. In the past great effort has been placed in the structural design of the
building to be able to withstand adverse environmental loads which may cause the building to
vibrate and/or collapse affecting the residents of the building at that moment in the building.
Recently Kijewski-correa (2003)a; Kijewski-correa (2003)b, studied the sway and torsional
response of high rise buildings in full scale monitoring projects under real wind loads in order
to better understand the in-situ dynamic response of these structures and to compare design
conditions with in-situ response of a high rise building. Under the action of wind, high rise
buildings suffer from coupled vibrations in the alongwind, crosswind and torsional directions,
see Figure 1.1. These coupled vibrations are due to the different gust patterns of wind in the
windward side of the building and the turbulence at the leeward side of the building, see
Figure 1.1. In many structures the crosswind and torsional response may exceed the
alongwind response in terms of both serviceability and survivability designs. Also, Kwon et
al. (2008); Zhou et al. (2003) developed a database and analysis procedure for the crosswind

and torsional loads of wind on tall buildings.
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Figure 1.1: Effect of wind in a building. (Mendis et al. 2007)

Due to all of these and past efforts to better understand and analyse the behaviour of tall
buildings under the action of alongwind, crosswind, and torsional wind loads, currently high
rise buildings are being designed and constructed in metropolitan cities with a considerable

level of safety.



There has been considerable number of studies to determine the frequency of occupant
comfort in high rise buildings. According to Burton et al. (2015), if a building is vibrating at 5
milli-g is unlikely to cause significant adverse response, provided that the building motion
does not occur frequently or continuously for an extended period of time. However, if a
building is vibrating at 10 milli-g will be perceptible to the vast majority of occupants; this

type of building may not be acceptable to some occupants.

However, inside a high rise building there is another structure that also suffers from the
effects of wind and earthquakes loads on the building and this is the elevator system. The
elevator system is an integral part of high rise buildings to transport the occupants in a very
short period of time. This electro-mechanical system can be treated like a structure, which is
supported at the top end by a concrete slab where the elevator machine is positioned to drive
the elevator car up or down using the suspension means through tractive forces developed
between the grooves of the traction sheave and the suspension ropes. In high rise buildings,
compensating ropes are installed at the bottom of the elevator car and counterweight to take
into account the transfer of mass of the suspension ropes from the car side to the
counterweight side and vice versa. To control the loop of the compensating ropes below the
elevator car and counterweight a compensating sheave is placed at the pit floor of the elevator
shaft. The compensating sheave is constrained horizontally at the pit floor and is only
permitted to move vertically. The elevator car and counterweight when traveling along the
elevator shaft have a guiding interface between the building structure. Thus, the elevator
motor traction sheave at the top, the compensating sheave at the bottom, and the guiding
interface of the elevator car and counterweight between the building structure are the four
points of contact where the elevator system is affected by the action of wind on the building

and seismic action.

All building structures vibrate under the action of wind and in special circumstances when an
earthquake strikes a building. Therefore, this study is focused on the analysis of the lateral
vibrations of the suspension and compensation structural elements such as ropes, belts and
cables and the elevator components when the suspension and compensation structural
elements are excited by the displacements of the high rise building due to the wind loading on
the building.

When a building vibrates at its natural frequency and this frequency matches the natural
frequency of the ropes, resonance phenomena take place, that result in high amplitude

motions of the rope. These high amplitudes cause the ropes to impact between them and on



the elevator shaft, which causes damage to the elevator components and disturb building

residents due to the noise of each impact.

According to Strakosch (1998), if an elevator car is in the upper part of a building when the
building starts to vibrate and excites the compensating ropes so that they vibrate, once the car
starts to descend at full speed, centrifugal forces are induced. These forces are proportional to
the square of the speed of the elevator car. As a result the centrifugal forces cause more
violent vibrations of the decreasing compensating rope length when the elevator car is
approaching the bottom landing level. The increased vibrations of the compensating ropes

may cause Serious rope or compensating sheave damage.

The new technology currently being developed by Thyssenkrupp Elevator AG (2014), will
facilitate the implementation of ropeless propulsion in lift systems. However, conventional
traction driven elevators will remain in dominant use. The conventional steel wire ropes used
in the elevator industry has a travel height limitation up to 1200 m which is already being
used to its limit, according to Drako et al. (2011). However, according to KONE (2013),
advancements in rope technology are leading to a new lightweight rope made of carbon fiber
core with a special high friction coating making twice the travel height limitation currently

feasible.

Building vibration causes lateral in-plane, lateral out of plane, and longitudinal vibrations at
the ropes which are then transferred to the car, counterweight, and compensating sheave
making ride quality of the elevator car inadequate. According to Arrasate et al. (2012), lateral
vibrations of the compensating ropes can be induced by vertical vibrations of the suspension

ropes caused by torque ripple effects generated at the drive system of the elevator motor.

Another form of lateral excitation to the ropes results from the roller guides and guide rails,
which are the guiding interface between the building and the elevator car and counterweight.
The guiding interface ensures the relative position of the elevator car and counterweight along
the height of travel. A misalignment of the guide rails will produce an additional form of
excitation at the car which will transfer to the elevator ropes, as discussed in Andrew and
Kaczmarczyk (2011).

In all of these cases, the compensating ropes are highly affected by lateral displacements of

the building structure.

All of these sources of excitations may lead to an adverse dynamic behaviour of the elevator
system due to its nonlinear and nonstationary nature. As a result of the varying length of the

elevator ropes, according to Kaczmarczyk (2005) the mass and stiffness of the system change,
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and all of its dynamic characteristics like frequencies, damping ratios and mode shapes are
affected.

In order to better understand the dynamic behaviour of the elevator system, a mathematical
model comprising differential equations of motion of a complete elevator system should be
developed. When the equations of motion are solved an insight into the dynamic behaviour of

the elevator system and its components is obtained.

1.2 Aims and objectives

The aim is to develop and to validate a computer model of the elevator system to predict the
dynamic responses of ropes and cables in an elevator system due to the vibrations of a high-

rise building under wind loading, when the elevator system is stationary and in motion.

In order to achieve the above aim the following objectives have been identified and
accomplished:

e To develop a mathematical and computer model of the elevator system to understand the
behaviour of the ropes in the elevator system under the influence of the building

vibrations caused by wind action.

e To develop an experimental programme involving lift testing tower facilities and/or
alternative tall building sites, in order to validate the computer model through

experimental testing.

1.3 Publications

The findings of this study were published in conferences and international journals.

Furthermore, a report of a potential patent was presented to ThyssenKrupp Elevator AG.

1.3.1 Conference Publications

e Sanchez Crespo, R., Kaczmarczyk, S., Picton, P., and Su, H. (2014) Modelling and
Simulation of a nonstationary high-rise elevator system to predict the dynamic
interactions between its components. In: 4" Symposium on Lift and Escalator

Technologies. Northampton, UK.



Sanchez Crespo, R. Kaczmarczyk, S., Picton, P., and Su, H. (2014) The coupled
nonlinear dynamics of a lift system. In: International Conference in Nonlinear

Problems in Aviation and Aerospace ICNPAA World Congress. Narvik, Norway.

Sanchez Crespo, R., Kaczmarczyk, S., Picton, P., Su, H., and Jetter, M. (2013)
Modelling and simulation of a high-rise elevator system to predict the dynamic
interactions between its components. In: 3" Symposium on Lift and Escalator

Technologies. Northampton, UK.

1.3.2 Report of Potential Patent

Sanchez Crespo, R. (2015) Real-Time Vibration Measurements of Steel Wire Ropes in
Elevator System with Embedded Fiber Bragg Gratings Sensors in a Fibre Optic
Cable. Report to ThyssenKrupp Elevator AG. Northampton: The University of
Northampton.



1.4 Configuration of an elevator system
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Figure 1.2: Traction elevator system.

A schematic configuration of a traction drive elevator system is shown in Figure 1.2. The
elevator system consists of a traction sheave, diverter pulley, car, compensating sheave, and
counterweight. The traction sheave is a part of the elevator motor and is located in the

machine room of the high rise building.

The suspension ropes are connected at the upper section of the elevator car-sling assembly

and pass through the traction sheave grooves and over the diverter pulley to be connected at



the top of the counterweight. The compensating ropes are connected at the bottom section of
the elevator car-sling assembly and pass through the grooves of the compensating sheave to
be connected at the bottom of the counterweight.

As the elevator car is travelling up and down along the elevator shaft at the car side the
counterweight will be travelling in the opposite direction at the counterweight side. The mass
of the counterweight is typically equal to the mass of the car-sling assembly plus 40 — 50% of
the capacity of the elevator car. The car and counterweight are equipped with roller guides
and are guided by rails in the elevator shaft.



1.5 Literature review

Rope dynamics has attracted interest of many researchers, especially in mine hoist ropes,
cable suspension bridges, and suspended cables. In all of these areas have been the subject of
many academic papers and both of their linear and nonlinear, stationary and nonstationary
aspects have been researched. The work reported in this thesis is a continuation of Salamaliki-
Simpson (2009) research conducted at the University. This research consisted in establishing
the methodology to be used to derive the mathematical models of a stationary and
nonstationary rope and mass system having a specified velocity, acceleration, and jerk
according to the kinematic profile of an elevator drive control algorithm. The experimental
validation of the stationary model was developed in a test rig with an aramid rope connected
at one end to a shaker passing through the grooves of a pulley, which is the inclined section.
From the pulley to the end termination of the rope a mass was suspended to tension the rope.
The methodology developed by Salamaliki-Simpson (2009) is taken to derive the
mathematical models presented in this research of the full elevator system taking into account
the lateral displacements of the suspension and compensating ropes at the car and
counterweight side with the interactions between the elevator car, compensating sheave, and
counterweight. Therefore, the literature review section will be expanded from the publications

that originated from previous research.

1.5.1 Rope dynamics in the elevator system

Kawaguti et al. (2007) studied the dynamic behaviour and passage through resonance of a
cable of time varying length during its extension and retraction. The transient fluctuation of
the motion amplitudes were studied and compared with the corresponding steady state
motions and the results are compared with experimental results. Emory et al. (2009) analysed
a simplified aramid suspension rope and elevator car system. Finite element and analytical
methods were used to model the longitudinal and bending modes of the system and the results
from the finite element and analytical methods were compared with experimental results. The
results show that two rope sections separated by the sheave are coupled in the longitudinal
motion and almost decoupled in the bending motion. Zhang et al. (2013) developed a model
consisting of a rope of time-varying length and a mass attached to the end considering the
longitudinal movement and flexural deformation of the rope. Kaczmarczyk et al. (2009)
developed a non-stationary model of a building-compensating rope system to predict the
dynamic response. The excitation is represented by a harmonic process and also as a narrow-

band stochastic process. The results lead to recommendations concerning the selection of the



weight of the compensating assembly to minimize the effects of an adverse dynamic response
of the system. Kaczmarczyk (2011) analysed the lateral dynamic behaviour of long non-
stationary ropes, taking into account the longitudinal elastic stretching of the ropes coupled
with their transverse motions which results in cubic nonlinear terms. Arrasate et al. (2013)
studied the vertical vibrations caused by torque ripple generated at the elevator drive system
by developing a mathematical model to validate the numerical results obtained with
experimental testing. Both results show the car frame vibrates at the excitation frequencies
close to the natural frequencies of the elevator system model. Kaczmarczyk et al. (2013)
studied the nonlinear modal interactions taking place in a model of an aramid suspension rope
system. The model consisted of an aramid suspension rope, a pulley assembly and a rigid
suspended mass. The mathematical model of the system was validated with laboratory tests,
the results show the nonlinear couplings may lead to adverse modal interactions in the system.
Nakazawa et al. (2013) studied the effects of the compensating sheave assembly on the
compensating rope winding shape around the sheave affecting the lateral vibrations of the
compensating rope. An analytical model is presented to calculate the static and dynamic
behaviour of the compensation rope. The model is derived as a lumped mass-spring model by
using the multi-body dynamics theory. The rope bending stiffness and the contact force
against the sheave are validated by several sheave weight conditions. Watanabe et al. (2013)
investigated the vertical motion of the compensating sheave in an elevator dynamic model.
The behaviour of the compensating sheave in different emergency cases, such as brake
activation and buffer strike was studied to evaluate the maximum upward motion of the
sheave. As a result, the maximum upward motion during emergency brake operation occurs in
the no-loaded condition with the downward traveling near the lowest floors. Zhu and Ren
(2013) first part and Ren and Zhu (2013) second part developed a spatial discretization and
substructure method to accurately calculate the dynamic responses of one-dimensional
structural systems, which consist of length-variant distributed-parameter components. The
dependent variables of a distributed-parameter component are decomposed into boundary-
induced terms and internal terms. In the first part was developed the methodology and in the
second part the longitudinal, transverse, and their coupled vibrations of moving elevator
cable-car systems is applied with different choices of boundary motions. Sandilo (2013),
studied the vibrations of a vertical rope of changing length and applied the multiple time-
scales perturbation method to construct a formal asymptotic approximations of the solutions
to show the complicated dynamical behaviour of the rope. It was demonstrated that the
Galerkin truncation method cannot be applied in certain type of rope problems to obtain

approximations valid on a long time scales.



1.5.2 Rope impact with an obstacle

The impact of a rope without any external force and vibrating against a rigid wall, parallel to
the position of the same rope at rest was studied by Amerio (1978). The set of impact points
of the wall have an essential role in the study of the rope motion. Also, the elastic impact law
is formulated to be used in a wider concept. Bamberger and Schatzman (1983) give an
explicit formula which describes the solution of the linear elastic rope vibrating against a
plane obstacle without loss of energy. Proving the dependence of the initial data and a
numerical scheme is deduced from the explicit formula. Frontini and Gotusso (1990) studied a
rope vibrating against an obstacle using a discrete model in the absence of obstacles. Stability
conditions are analysed and numerical results are presented. Valkering (1994) analysed the
impact of a string that is fixed at one end and at the other end is forced to move periodically
transversely to the string. The point of impact is positioned near the string and symmetrically
with respect to the endpoints. When the string impacts the obstacle the dynamics become non-
linear. Hysteresis, resonance, bifurcations and chaos phenomena are analysed by changing the
parameters of excitation. Han and Grosenbaugh (2004) studied the impact of a rope against a
straight obstacle for 3 cases: a nearly taut string, an extensible shallow-sag cable, and an
inextensible deep-sag cable. The results were accurate when compared with an analytical
solution. It was found that the ratio between the initial amplitude and the equilibrium position
have an important relation on how the obstacle will behave at impact. A more comprehensive
model was developed by Ahn (2007), with the transverse motion of a vibrating string with
fixed ends impacting a stationary rigid obstacle. The conservation of energy is also
investigated. The numerical model is implemented using a numerical method solved using
Fischer-Burmeister function. Additionally a rope wrapping and unwrapping around an
obstacle is studied by Alsahlani and Mukherjee (2010), consisting of a string fix ends and the
obstacle is located at one of the boundaries and the rope wraps and unwrap around the
obstacle during vibration. However, the impacts are modelled by a series of perfectly inelastic
collisions between the obstacle and adjacent segments, the unwrapping is assumed to be
energy conserving. The energy during wrapping is considered to dissipate energy through
inelastic collision. The obstacle serves as a passive mechanism for damping the vibrations of
the rope and can be positioned anywhere to increase its effectiveness and for greater

wrapping.
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1.5.3 Experimental testing of rope dynamics

The majority of rope vibration measurements that has been conducted in the past have been
done with piezoelectric transducers. It was of interest of this research to develop a new
measuring sensor to be able to measure impact between the ropes and the elevator shaft. This
literature review presents the different types of technologies that were considered for this

research and discusses the difficulties encountered in the implementation of this technology.

The vibration measurements on ropes has been conducted in cable-stayed bridges using an
interferometry laser system, according to Cunha and Caetano (1999). In this research a laser
system was used to perform dynamic tests of the Vasco da Gama cable-stayed bridge, in
Portugal, with a non-contact measuring device and with good accuracy when compared with a
more conventional approach. Nassif et al. (2005) used non-contact laser Doppler vibrometer
system with two types of contact sensors, which were linear variable differential transducer
and geophone sensors to measure vibration in a girder of a bridge. The laser Doppler
vibrometer provided measurements of vibration and deflection with good accuracy as the
contact sensors and provides more versatility in the output. Kohut et al. (2013) compared two
noncontact measurement methods applied to a civil structure. One system consists of high-
resolution digital cameras and the second system consist of radar interferometer both measure
deflections on the structure. Both systems can measure several points on a structure in a single
measurement. One of the difficulties of using a laser system to measure the displacements of
the ropes of the elevator system are the high amplitudes in which the ropes vibrate in the
elevator shaft, which the measured point on the rope by the laser will be out of focus when it
starts vibrating at high amplitudes. Also, another difficulty when using laser sensors is the
limited available space between the elevator shaft walls and the elevator car when moving up

or down with the elevator shaft.

Another technology considered to measure the vibrations on the ropes are high speed cameras
as it is proposed in Mas et al. (2011). High speed cameras were used for measuring small
vibrations in a column of a building structure after impact. Vibrations with amplitudes smaller
than 0.1 mm can be registered with good accuracy. The proposed method can be applied on
standard commercial cameras, thus resulting in a reliable cost-effective method. Lee and Rhee
(2013) proposed a methodology to measure dynamic vibrational displacements of structures
by using digital close-range photogrammetry. The displacements can be captured in various
locations of the structure in 3-dimensional space, both planar and in-depth displacements
relative to the cameras. The difficulties when using both high speed cameras or digital close-
range photogrammetry is the short distance from the elevator shaft walls to the ropes, the
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repetitive impacts of the ropes to the shaft walls, and the dark area in which the cameras will
be placed. For both systems to be useful to measure the rope vibrations in the elevator shaft it
would require a good source of artificial light inside the elevator shaft.

The use of fibre optic technology for vibration measurements can be employed to monitor
strain. According to Martin-Pérez et al. (2010), the fibre optic sensor technology that could be
used in monitoring strain of a reinforced concrete slab under service loads was based on
Brillouin principle. As the result, fibre optic sensor based on Brillouin principle are capable of
capturing concrete deformations and distinguish measurements between regions of tension
and compression along the entire length of the sensor. Galindez-Jamioy and Lopez-Higuera
(2012) described the different applications in which fibre optic technology based on Brillouin
principle has been applied to monitor loading, deflections, and material failure in civil
infrastructure was used in monitoring the full length of bridges by embedding the fibre optic
cable in the structure, measure deflections and fatigue during a long period of time, in rail
monitoring, geotechnical structures monitoring, pipelines monitoring and material structure
monitoring. The difficulties encountered with the Brillouin principle to monitor the vibrations
at the ropes of the elevator system, is that at this stage is not possible to apply this principle in
dynamic measurements. However, under the fibre optic technology there is the fibre Bragg
principle which is used for static and dynamic measurements. Zhu et al. (2011) studied the
dynamic failure signals emitted in fiber reinforced polymer stay cable using fiber Bragg
gratings comparing two types of demodulation techniques for the fibre optic technology used
in the study. The results of the experiment suggest that both demodulation systems may be
suitable for monitoring high frequency mechanical strains in civil structures, to determine
local structural damage detection. The advantage of using fiber Bragg gratings in the fibre
optic cable makes it an acceptable system to measure the vibrations of the ropes in the

elevator system.

1.5.4 Measurement and monitoring of the dynamic behaviour of high-rise

buildings

The vibrations produced by the building along the elevator shaft and at the machine room
level are the ones that give the excitation to the ropes of the elevator system. Thus, it is
important to measure the displacements at different heights of the building to determine the
maximum displacement and the frequency in which the building is vibrating at that moment.
According to Bashor et al. (2012), developed a full scale monitoring system for buildings to

evaluate the performance of dynamically sensitive structures that are under wind excitation.
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The building is instrumented with four Columbia SA-107 LN high-sensitivity force-balance
accelerometers that are capable of accurately measuring accelerations down to 0 Hz with a 15
V/g sensitivity. The accelerometers were installed in orthogonal pairs at opposite corners of
the ceiling at the highest possible floor of each building. The data outputs of the
accelerometers are sampled every 0.12s by data loggers to yield an overall system resolution
of approximately 0.001 milli-g. The data logger automatically begins to capture continuous
hour-long time histories of data for as long as the threshold level is exceeded. The buildings
were also equipped with global positioning system to monitor its displacements, as well as
wind speed sensors, according to Kijewski-Correa and Kochly (2007).

For this study global positioning system and wind speed sensors will not be required as only
the displacements of the building are the ones that are affecting the ropes of the elevator
system to impact on the elevator shaft and between each rope. A similar system adopted by
Bashor et al. (2012) will be adopted to monitor the displacements of the high rise building at

the machine room.

1.5.5 Mitigation of the adverse dynamic responses of elevator ropes

Robertson (1992) proposed the use of a retractable semaphore type or wire type limiting
members positioned in the elevator shaft. The system was equipped with sensors, actuator and
control unit to move the semaphore type member between the extended and retracted
positions. According to Strakosch (1998), in some cases in high rise buildings a car follower
rope guide is used to prevent compensation ropes and traveling cables from large-amplitude
swing during high wind weather conditions. Roped 2:1, the follower rope guide travels at hal f
the speed of the elevator car. Its purpose is to divide the free length of the hanging ropes in
half, irrespective of the position of the car, thus changing the natural frequency of the ropes
and cables. It is pulled upward by the elevator car and lowered by gravity of its own weight.
Important factors taken into account in the design of the follower rope guide is to have
sufficient weight to enable it to track properly as it rides on the car guide rails and to have
proper relationship between the vertical and horizontal distances between the roller guides of
the follower. The disadvantage of using a car follower system is that includes relatively high

cost and the introduction of additional design members into the system.

Barker and Erlandsen (1999) designed a mechanism to control tension in compensating ropes

selectively when an elevator car is parked in a critical position along the elevator shaft height.
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This method is aimed at shifting the natural frequencies of the compensating ropes by

increasing their tension which might not always be effective.

The application of active tendon control by Preumont and Seto (2008) could be further
researched. This method has been successfully used to control vibrations in cable-stayed
bridges. The tendon control of a cable structure consists of placing an actuator at one end of
the cable and controlling its motion according to the control law to counteract the incoming
vibrations. This method extracts the energy from the vibrating cable through axial motion.

Watanabe (2012) developed a mechanism for the elevator system which consists of rope
protectors in the shaft and special emergency operation for long-period ground motion. Smith
et al. (2012) designed a system and method for minimizing compensation rope vibrations by
altering the natural frequency of the compensating ropes using servo actuators. The lateral
vibrations of the compensating ropes may be minimized by moving the compensation sheave
to adjust the tension of the compensation ropes. Smith and Kaczmarczyk (2012) proposed a
shape memory alloy for dampening the vibrations in tensioned members such as ropes and
cables. The frequency of the rope can be modulated by heating the shape memory alloy, thus
preventing the ropes from impacting the walls of the elevator shaft. An active stiffness control
of transverse vibrations of the ropes, involving the application of a longitudinal action at the

rope end, is proposed by Kaczmarczyk and Picton (2012).
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2. Methodology
2.1 Mathematical modelling

2.1.1 Distributed parameter system analysis

Hamilton’s principle is used to derive the mathematical models and to predict the dynamic
interactions between the suspension and compensating ropes in the lateral in plane, lateral out
of plane, and longitudinal direction and the car, compensating sheave, and counterweight
motion. The displacements are analysed in terms of the rigid body motion and the elastic
deformations. Hamilton’s principle can be employed to give a complete description of the
dynamic behaviour on the mechanical systems. It is an integral principle which considers the
entire motion of the system between the time instances t: and to. The principle considers the
time integral of the difference between the kinetic and the potential with the sum of the non-
conservative energies to be stationary. According to Meirovitch (2001), Hamilton principle is
defined by Eq. (2.1).

f (5Q —STT+6W.,)dt =0 (2.1)

%}

where Q, II, and Wx are the kinetic energy, potential energy, and work done by the non-

conservative forces of the system respectively. Salamaliki-Simpson (2009) described the
entire mass and rope suspension system based on Hamilton’s principle. Therefore, the entire
elevator system can be described by equation (2.1) assuming that all components are acting
together as a single system due to the constraints between nearby subsystems. Additionally,
the system is nonstationary, which is when the elevator car and counterweight are traveling
along the elevator shaft according to the kinematic profile dictated by the drive control
algorithm. The response of the system can be represented in the longitudinal, lateral in plane
and lateral out of plane motions respectively for the rope as a system of partial differential

equations as the following:

mU, +B'U,+K'U+N"+F" =0 (2.2)
mV, +B"V, + KV +N"+F" =0 (2.3)
mW, +B"W, + K"W +N"+F" =0 (2.4)
where

15



U (x,t).V(xt), L : . ,
are the dynamic displacements in the longitudinal, lateral in

W (x,t
plane and lateral out of plane direction

X is the Eulerian spatial coordinate and 0 < x < L(t)

{ is the time

m is the mass of the rope

L(t) is the time variant length of the rope

K" K", K" are stiffness operators in the longitudinal, lateral in plane and
lateral out of plane direction respectively

N“ NY N" represent the nonlinear couplings in the system and are
operators that acts upon displacement

B",B",B" are the damping operators

F' F' F" are the excitation functions

and (), designates partial derivatives with respect to time

2.1.2 Discretization method

The Galerkin method defined in Nayfeh and Mook (1979) as a method for converting a
continuous system to a discrete problem. The method is applied to formulate the discrete
mathematical models of the elevator system. The orthogonality conditions and modal shapes
are applied and an ordinary differential equation that governs the temporal behaviour of the

elevator system are derived, using Galerkin method the approximate solution of the system is

given as

EEDE PACTIAC 25
V(X7t?7)=nZNll¢n(x;r)qn(t) (2.6)
W(x,t;r):ian(x;r)zn(t) @.7)
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where p (t),q,(t),z,(t) are generalised coordinated and N is the number of modes
respectively, »,(x;7).4,(X;7).e, (x;7)are the linear natural modes of the system which are

varying slowly in time in the longitudinal, lateral in plane and lateral out of plane direction
respectively. The time varying length of the system is represented by L(t). When the variation
of L(t) is small over a time interval corresponding to the fundamental natural frequency of the
system considered as fixed values of these parameters, the length is said to vary slowly with
time, according to Kaczmarczyk (1997). The variation of L(t) is then observed on a slow time
scale defined as =T, where T is a non-dimensional fast time scale and ¢ is a small
parameter. Thus, the length of the rope can be represented by L(7). In order to represent the

slow variability of L the fast non-dimensional time scale is defined as defined as T =at,
where e, is the initial fundamental natural frequency of the system and t is the time. The
small parameter &£ can be defined as equation (2.8).

st
g = oL (2.8)

where Lo is the initial lengths of the rope corresponding to «n. According to Kaczmarczyk

(2005), for high rise elevator system the terms identified as being of the order 0(z) or higher

are neglected.

The frequency equations lead to an infinite sequence of eigenvalues 8° (z), A" (7). and

n

B, (z) that are slowly varying in time. The longitudinal, lateral in plane, lateral out of

n

plane eigenvalues are related to the natural frequencies @,° (z), @, (7), and o**(7) and

n n

each corresponds to a value of L(z).

When the Galerkin method is applied in the equations (2.5) - (2.7), the response of the system
in the longitudinal, lateral in plane and lateral out of plane direction can be represented in the

form of matrices as:

y=K(t;2)y+N(t;7)+F (t;7) 2.9)
where
y=(p".6".2".p".4".7") (2.10)

isa 2(3>< N) dimensional modal state vector, with
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B=(Py Py Py Py ) (2.11)
5]=(q1,q2,q3,--.,qN )T (2.12)
Z:(zl,22,23,...,zN)T (2.13)

and where dots represent differentiation with respect to time.

K(t;7) is a slowly time variant matrix of dimension 2(3xN)x2(3xN), N(t;z) represents

the vector of the slowly time variant nonlinear coupling terms with dimensions 2(3x N)x1

and E(t;r) is the 2(3x N)x1 dimensional external excitation vector slowly varying in time.

Equation (2.9) represents a system of nonlinear differential equations with slowly varying
terms. This system is a multi-degree of freedom with quadratic and cubic nonlinear terms.

2.2 Numerical Integration Techniques

The dynamics of the lift car-rope suspension system is a stiff problem. Stiff problems are the
problems where the solution to be computed is slowly varying but that perturbations exist
which are rapidly damped according to Soderlind et al. (2014). The numerical integration
methods not designed for stiff problems are ineffective on intervals where the solution
changes slowly because they use small time steps which unable to resolve fast changing
solutions. These type of integrations may lead to unstable results. The numerical simulation of
an elevator system is to return transient response of the system over a long time interval; the
integration must be performed using a relatively large time step to cover the slow
components. This time step should also be small to capture the fast components and keep the
numerical integration within the acceptable boundaries according Kaczmarczyk et al. (2009),
this type of problem has attracted considerable attention for research. Currently there are
several numerical methods that can be implemented as Ordinary Differential Equations
(ODE) solvers to give a continuous solution over the interval of integration. At each step of

the integration, the ODE solver estimates the error of the solution.

2.3 Damping Estimation on steel wire ropes

Many studies have been done to estimate damping ratio in steel wire rope. Yamaguchi &

Adhikari (1995) studied modal damping in structural cables. The modal damping ratio was

18



defined in terms of the modal potential energy ratios and the loss factors for the axial and
bending deformations. Kaczmarczyk and Ostachowicz (2003) converted the lateral and
longitudinal damping in steel wire ropes by equivalent viscous damping for purposes of
analysis according to Inman (2001). Foss (2006) estimated modal damping ratio of wire rope
isolators using quasi-static load deflection curves. The damping ratios measured from quasi-
static load were compared with damping estimates from the frequency response functions.
The method agreed with small amplitudes of displacement when compared with the frequency
response function. Qiu and Maji (2014) estimated analytically the modal damping ratio of a
carbon fibre cable through friction energy dissipation between helical wires, the stored strain
energy and the initial stored energy due to the applied tension. The results obtained from the
model were compared experimentally and with the logarithmic decrement method arriving to
the conclusion that the accuracy of the model is affected by the manufacturing process.

The logarithmic decrement method is used in this study to determine the damping ratio of the
steel wire rope used on the experimental rig in the lateral in plane and lateral out of plane
directions. The logarithmic decrement method corresponds to the rate in which the amplitude
of a free-damped vibration decreases. According to Rao (2005), it is defined as the natural

logarithm of the ratio of any two successive amplitudes, as shown in Figure 2.1.
Xl
wll
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Figure 2.1 Logarithmic decrement method

The logarithmic decrement 6 can be obtained using Eq. (2.14)

S=IhX (2.14)
XZ

The logarithmic decrement is dimensionless and is related to the dimensionless damping ratio
. One case of modal damping ratio is when ¢ < 1, thus the modal damping ratio can be

obtained by solving Eg. (2.15) and this type of system is called underdamped.

=2 (2.15)
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For successive displacements separated by one cycle the logarithmic decrement can be
obtained by solving Eq. (2.16), where n is an integer representing the total number of
displacements used to calculate the logarithmic decrement.

5=1|n( % J (2.16)

n Xn +1

Another case of modal damping ratio is when ¢ =1, this happens when the system returns to
the position of rest in the shortest possible time without overshooting. This type of damping is
called critical damping, according to Rao (2005).

2.4Vibration Measurements and Testing

A typical vibration measurement system is usually composed of an exciter, transducer, a
signal conditioning amplifier, and a dynamic signal analysis system, Rao (2005). The exciter
provides an input displacement to the rope. The two most commonly used exciters in the

experimental modal testing are a shaker/actuator and an impact hammer.

To effectively estimate experimental parameters from a test rig, the modal analysis is used in
this study to determine the fundamental natural frequency of a steel frame structure.
According to Herlufsen (2012), modal analysis is based on measuring input/output signal
responses from accelerometers. There are different techniques to determine the modal
parameters but for this study a dual-channel measurement is employed, using an impact
hammer. The modal parameters that describe the modes of a structure are the natural
frequency, modal damping, and mode shape. According to Ewins (1994), the fundamental
natural frequency and damping ratio can be obtained from any Frequency Response Function
measurement on the structure. For an impact hammer excitation, each accelerometer is fixed
and reflects the response of the degrees of freedom. The hammer is then moved around the
structure to excite every degree of freedom. The displacements of the structure are then
captured by the sensor which are converted into electric impulses and interpreted. The
acceleration response from the sensor are transformed from the time domain to the frequency
domain using a Fast Fourier Transform (FFT) according to Avitabile (2002). If a structure is
lightly damped the frequency response can be split up into individual modes, each mode
behaving as a single degree of freedom system, as shown in Figure 2.2 as shown by Gade et
al. (2005). The modal parameters of a structure can be determined using Briel & Kjaer

PULSE Multi-analyzer System Type 3560 in conjunction with an impact hammer.
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Figure 2.2 Frequency response of a simple structure from Gade et al. (2005)

Vibration measurement is useful to determine the modal parameters of a structure and to
select the appropriate sensor to avoid any resonant condition or dampening of the signal. A
transducer is required to transform the values of physical variables into equivalent electrical
signals transducers. For the vibration measurement conducted in this research piezoelectric,
piezoresistive, and linear variable displacement transducers were used. According to Rao
(2005), Piezoelectric transducers work by using a natural material like quartz, tourmaline,
lithium sulfate, and Rochelle salt which generate electrical charge when subjected to a
deformation or mechanical stress. The electrical charge disappears when the mechanical
loading is removed. Piezoresistive transducers work by measuring the change in electrical
resistance of a wire using a Wheatstone bridge, potentiometer circuit, or voltage divider when
a DC voltage is applied. The linear variable displacement transducer (LVDT) consists of a
primary coil at the center, two secondary coils at the ends, and a magnitude core that can
move freely inside the coils in the axial direction. When an AC input voltage is applied to the
primary coil, the output voltage will be equal to the difference of the voltages induced in the
secondary coils. The secondary coils are connected in phase opposition. When the magnetic
core is in the exact middle position, the voltages in the two coils will be equal and out of
phase. When the core is moved from either side of the zero position the magnetic coupling

will be increased in one secondary coil and decreased in the other coil.

The piezoresistive and piezoelectric transducers were connected to portable data acquisition
(DAQ) systems type 3050-A-040 from Bruel & Kjaer to acquire and store the sensor data.
The LVDT transducer was connected to the Compensation Rope Test (CRT) Unit as reported
by Anderson (2015). The CRT unit was then connected to the National Instruments (NI)
CompactRio 9024 using NI module 9219. The signal was then converted from a voltage

signal data to displacement signal data in NI LabView.

To excite the rope at different frequencies a ball screw actuator was used due to the low

frequency of excitation and the applied thrust load to the rope. A ball screw actuator is a
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linear actuator that translates rotational motion to linear motion with little friction. A threaded
shaft provides a helical raceway for ball bearings which act as a precision screw. This type of
actuator is used in high precision applications. According to Mohring & Bertram (2012), in
order to avoid backlash during operation ball screw drives are preloaded. In a double nut
system, preload can be applied by pre-tensioning the two nuts using spacers or by twisting the
nuts against each other. The thrust is provided when a servomotor is connected at the top end.
The manufacturer of the actuator used in the experimental testing was Kollmorgen (2014),
which provides a drive control unit which is configured to operate the actuator. The actuator
was connected to the CRT unit where the drive control unit for the actuator was positioned.
The CRT unit provided the required voltage for the actuator to operate. The connection from
the CRT unit for the actuator was made to the NI CompactRio 9024 using NI module 9263.
The actuator was given a specified displacement and frequency using the NI LabView
software which controlled the actuator to the specified parameters.

According to Anderson (2015), the configuration and design of the CRT unit with the
configuration of the Kollmorgen actuator, LVDT transducer, and NI LabView software was
done by Keith Anderson a ThyssenKrupp Elevator AG member.

To analyse the signal from the sensor the time signal is converted to a frequency domain.
According to Inman (2001), the frequency response show one or more discrete frequencies
around which the energy is concentrated. To analyse the signal in the frequency domain a
frequency analyser is used by separating the energy of the signal into various frequency
bands. The most common frequency analyser is a Fast Fourier Transform (FFT) which is

useful for a constant bandwidth analysis.
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3. Experimental Setup, Mathematical Model, Numerical Simulation,

and Validation

3.1 Experimental rig system and components

In this Chapter the experimental testing components of a test rig are described in detail. The
derivation of the mathematical model according to the test rig configuration setup is

presented. The numerical comparison of the experimental and simulation data is shown.

The experimental testing was conducted at the National Lift Tower and is a research and
testing facility located in Northampton, UK National Lift Tower (2015). The rig used in the
experimental testing in this research was designed and fabricated by Kaczmarczyk (2010) to
test the concept of active control theory to mitigate the vibrations of the compensating ropes.
The rig was located in a void between Levels 4 and 9 of the test tower, as shown in Figure
3.1, which had a height of approximately 50.0 m. The rig was equipped with 3 cameras. The
first camera was positioned at Level 4 to visualize the mass attached at the end of the rope.
The second camera was positioned at the bottom of the concrete slab of Level 9 to visualize
the full length of the rope during excitation. The third camera was positioned at Level 9 to
capture the actuator exciting the rope. The cameras were connected to the network of the test
tower. To visualize worldwide in real time all three cameras of the test rig, remote access was

granted via web link when a password was provided.
The rig consisted of the following components:

a) Bruel & Kjaer AC and DC accelerometers connected to LAN-XI data acquisition

hardware from Bruel & Kjaer.
b) LVDT displacement transducer model DCTH 18500C.

c) Kollmorgen actuator type EC4-AKM42G-C2R-20-25B-600-MF2 with the drive control
unit type S60600.

d) National Instruments Compact Rio DAQ and control system is provided with a CRIO-

9024 with the respective modules.
e) Pfeifer Drako rope.
f) Mass attached at the end.

g) Guiding rails / steel frame to restrict the motion of the mass in the lateral directions.
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All of the components of the experimental test rig are discussed in full detail in this Chapter

and are depicted in Figure 3.1.

Experimental Rig — National Lift Tower

NLT Network

Figure 3.1 Experimental rig components

3.1.1 Vibration measurement and actuators

The Bruel & Kjaer sensors used in the experimental testing consisted of two types
piezoresistive DC sensors type 4575 and piezoelectric AC sensors type 4507 B. Piezoresistive
accelerometers work by measuring the electrical resistance of a material when a mechanical
stress is applied, the lowest measured frequency is 0 Hz. However they have a limited high
frequency response. DC sensors were used to measure low frequency vibration down to 0 Hz
on the experimental rig. According to Briel & Kjeer (2015), these sensors have a nominal

sensitivity of 1000 mV/g (approx. 100 mV/ms2), with a frequency range of 0 Hz to 300 Hz.

The piezoelectric accelerometer is based on piezoelectric materials, typically Quartz, which
generates an electric charge output proportional to the applied force. According to

Wilcoxon_Research (2009), the sensitivity of these sensors vary. Based on Briel & Kjeer
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(2015), specifications the sensitivity of the sensors used for testing was 9.635 mV/g (0.9825
mV/ms?), with a frequency range of 0.1 Hz to 6 kHz.

The calibration of the sensors was done by attaching the sensors to an electrodynamic shaker
from LDS model V400 series with a power amplifier from LDS model PA500 which is
connected to Bruel & Kjer Pulse Front End with Briel & Kjer Pulse Labshop software
version 18.1. To control the excitation frequency of the shaker, a swept sine function was
used with a frequency range from 0 Hz to 200 Hz. The typical frequency response from a
piezoresistive DC sensors type 4575 is shown in Figure 3.2 according to Briel & Kjeer
(2015). Similar frequency response was obtained during the calibration tests.

Typical Frequency Response
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Figure 3.2 Frequency response for piezoresistive DC sensors type 4575 from Briel & Kjer
(2015).

The accelerometers were connected to Briel & Kjer LAN-XI modules type 3050-A-040 with
4 input channels each, as shown in Figure 3.3 , with interchangeable front panel connector
plate having one plate four BNC connector type UA-2100-040 and another plate LEMO
connector type UA-2101-040. According to Briel & Kjeer (2013), the frequency range of this
type of module is between 0 Hz to 51.2 kHz.

Figure 3.3 Bruel & Kjaer LAN — XI module type 3050-A-040
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The modules have internal memory that stored the sensor data in WAV file format. This file
was imported in Pulse Reflex Base 8700 — N version 18.1 for post processing the data and for
exporting the post process sensor data in ASCII file format to be used in MATLAB.

To measure the vibrations at the mass in the lateral in plane, out of plane and longitudinal
direction, DC sensors type 4575 were used. The sensors were attached to the mass using
Bruel and Kjaer beeswax for mounting sensors, as shown in Figure 3.4 (a). At the rope, 11.0
m from the mass in the lateral in plane and out of plane direction, AC sensors type 4507B was
used in each direction, as shown in Figure 3.4 (b). The sensors were attached to the rope using
beeswax and tightened using plastic cable ties to avoid any detachment during testing. At the
point of excitation of the actuator in the lateral in plane and out of plane direction, DC sensors
type 4575 in each direction and a LVDT transducer in the lateral in plane direction was used
as shown in Figure 3.4 (c).

A DC sensor was attached using beeswax, in the lateral in plane direction, in a steel metal that
was positioned between the rope and the actuator to connect the LVDT transducer. In this
way the LVDT would be following the displacement in the lateral in plane direction of the
actuator. The distance between the LVDT and the actuator was approximately 15.0 cm, thus
the bending of the steel plate can be neglected. Another DC sensor type 4575 was attached at
the anchor of the rope and actuator using beeswax and tightened using a Velcro strap to avoid

any detachment during testing.
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Figure 3.4 (a) Position of sensors on the mass (b) Position of sensors on the rope 11.0m away
from the mass (c) Position of sensors and LVDT at the armature end/connection end with the
rope

According to RDP Electronics (2014), the Linear Variable Differential Transformer (LVDT)
displacement transducer used in the experimental rig was model DCTH 18500C with a
measurement range of +470mm. According to Mcdonald and losifescu (1998), an LVDT
comprises 3 coils a primary, two secondary, and a magnetic core that can move freely inside
the coils in the axial direction. When an a.c. input voltage is applied to the primary coil, the
output voltage will be equal to the difference of the voltages induced in the secondary coils.
This output voltage depends on the magnetic coupling between the coils and the core, which
in turn depends on the axial displacement of the core. The secondary coils are connected in
phase opposition so that when the magnetic core is in the exact middle position, the voltages
in the two coils will be equal and out of phase. This makes the output voltage of the LVDT as
zero. When the core is moved to either side of the middle position, the magnetic coupling will
be increased in one secondary coil and decreased in the other coil. A diagram of an LVDT

transducer is shown in
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Figure 3.5 Diagram of a LVDT transducer from Rao (2005)

The actuator used as excitation at the top end of the rope was a Kollmorgen actuator type
EC4-AKM42G-C2R-20-25B-600-MF2 with the drive control unit S60600. Based on
Kollmorgen (2014) the actuator range are composed of different series. The EC4 series
actuator is an electric cylinder that provides thrust when a servomotor is connected at the top
end. The driving principle of the electric cylinder is a high precision ball screw drive which
translates rotational motion to linear motion with little friction, as shown in Figure 3.6. A
threaded shaft provides a helical raceway for ball bearings which act as a precision screw.

This type of actuator is used in high precision applications.

polished stainless steel Metric (ISO 6431) and English
contaminants out rod ends available

inless steel thrust tube for
and corrosion resistance

Ground
ong w

Front sleeve bearing supports side
loads and minimizes runout

provi
jariet

Angular contact beal
long life with minima

Figure 3.6 Diagram of the different part for the Kollmorgen electric cylinder from
Kollmorgen (2014)

The connection between the electric cylinder and servo motor is by means of a timing belt and
geared drives. The EC4 has a maximum stroke of 1500mm. The brushless servomotor
attached was an AKM42G which has continuous torque of 3.51 Nm and a peak torque of 11.0
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Nm according to manufacturer specifications. The AKM42G uses a drive control type AKD-
X00606. The Kollmorgen drive control unit was configured using Kollmorgen Workbench

software.

As reported by Anderson (2015), the Kollmorgen actuator was connected to the
Compensation Rope Test (CRT) unit where the Kollmorgen drive control unit was also
connected. The CRT unit provided the required voltage for the actuator to operate. The CRT
unit was connected to the National Instruments (NI) CompactRio 9024 using NI module 9263
with a power supply of NI PS-15. According to National-Instruments (2010), the NI Compact
Rio 9024 is an embedded real-time programmable controller that contains an industrial 800
MHz real-time freescale processor for real-time applications with 512 MB of DDR2 RAM
and 4 GB storage for holding programs and logging data. The NI 9024 processor is connected
to the NI Compact Rio 9111. According to National-Instruments (2014) specifications the NI
Compact Rio 9111 is a reconfigurable chassis with capacity of 4 slots to insert NI modules.
Based on National Instruments (2009) specifications, the NI 9263 is a four channel module
with +10 V 16 Bit analog output +10 V channel to COM.

To be able to control the Kollmorgen actuator cylinder from the NI LabView software, the
Kollmorgen drive control unit had to be set to remote from the Kollmorgen Handheld
Machine Interface (HMI). The HMI was also connected to the CRT unit. The actuator was
given a sine wave with a specified amplitude and frequency using the NI LabView software
which controlled the actuator to the specified parameters. The NI LabView software tool
developed by Anderson (2015), where the amplitude and frequency are specified to the
actuator and the output signal from the LVDT can be compared with the prescribed sine wave

of the actuator in real time during an experimental testing.

The LVDT transducer was also connected to the CRT unit which provided the required
voltage. The CRT unit cables with the LVDT input signal were connected to the NI 9219
module. According to National-Instruments (2009) specifications the NI 9219 is a four
channel analog input module. The input voltage signal was converted to displacement using a

given factor.

The configuration and design of the CRT unit with the configuration of the Kollmorgen
actuator, LVDT transducer, and NI LabView software was done by Keith Anderson a

ThyssenKrupp Elevator AG member.

The prescribed sine wave was then compared with the LVDT displacement signal and shown

in the NI LabView software to the user.
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The configuration setup used at the top end of the rope with the Kollmorgen actuator cylinder

and LVDT transducer is shown in Figure 3.7 (a) and the cabinet where the drive control unit

and power supply for the actuator were placed is shown in Figure 3.7 (b).
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Figure 3.7 (a) Kollmorgen actuator and LVDT transducer at the excitation point (b) Portable

cabinet to connect the Kollmorgen actuator and LVDT transducer

The setup at the control room for the experimental rig is shown in Figure 3.8.
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Figure 3.8 Control room for the experimental rig
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3.1.2 Pfeifer Drako rope properties

The Pfeifer Drako rope used in the experimental rig is the 180B compensating rope with a
synthetic fibre core (SFC), according to Drako et al. (2011). The rope length was L=32.70m,
with a diameter d=19.10mm, and a measured mass per unit length of m=1.25kg/m. Due to the
synthetic fibre core and the gaps between each strand and wire, the effective area taken for the
experiment is approximately half of the nominal cross section area. The nominal cross section
area is 286.5mm?, therefore the effective cross section is 148 mm?2. A sample of the cross
section of the Pfeifer Drako 180B is shown in Figure 3.9

6x25F - FC

Figure 3.9 Cross section of the Pfeifer Drako rope as shown in Drako (2011)

3.1.2.1 Estimation of the modal damping ratio

The estimation of the lateral modal damping ratio with an end mass of 66 kg was determined
by displacing a section of the rope. An AC sensor type 4507 B using beeswax and cable ties
to secure the sensors on the rope was used to measure the displacement of the rope in the
lateral in plane and out of plane direction. The sensor data was post processed in Pulse Reflex
Base software using a band pass filter with the frequency range between 0.35 Hz — 0.45 Hz,

shown in Figure 3.10.
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Figure 3.10 Band pass filtered sensor data for (a) the Lateral in plane (b) the Lateral out of
plane

The first column in Table 3.1 (a) and (b) are shown the maximum positive acceleration peaks
for the lateral in plane and out of plane direction, respectively. The acceleration values are
taken from the maximum acceleration peaks inside the dashed blue square of Figure 3.10 for

the lateral in plane and out of plane direction.

The second column in Table 3.1 (a) and (b) are the results when the n peak acceleration value
is divided by the n+1 peak acceleration value. The modal damping ratio was calculated using

equations (2.16) and (2.15) when successive data from the experimental testing is available.

(a) Lateral in plane (b) Lateral out of plane
Acceleration X, Acceleration X,
2 2
(m/s°) X, (mm/s9) X,
1.557132 1.067745705 119.6444 1.067433935
1.458336 1.091232345 112.086 1.092080405
1.336412 1.065970065 102.6353 1.100460426
1.253705 1.133169735 93.26578 1.020270465
1.10637 1.092565436 91.4128 1.082112428
1.012635 1.03906934 84.47625 0.996637614
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0.9745596 1.093416855 84.76125 1.068061855
0.8912974 1.011719889 79.35987 1.020318068
0.8809725 1.072382869 77.77954 1.004763029
0.8215093 1.102324328 77.41083 1.08681908
0.7452519 1.04989337 71.22697 1.011346504
0.7098358 1.122096359 70.42786 1.052729399
0.6325979 1.139241284 66.90025 1.092600574
0.55528 1.176243308 61.23029 0.977582759
0.4720792 0.940651838 62.63438 1.013652194
0.5018639 1.297904299 61.7908 1.031762994
0.3866725 1.038661533 59.88856 0.979918951
0.3722796 1.103795361 61.11583 0.966676336
0.3372723 1.112220125 63.22264 1.027808187
0.3032424 1.115873435 61.5121 1.04684822
0.2717534 1.203645394 58.75933 1.056521677
0.2257753 1.106772591 55.61583 0.902461168
0.2039943 0.737747889 61.62684 0.972424214
0.2765095 1.13522043 63.37444 1.01147433
0.2435734 0.993942248 62.65551 1.016830349
0.2450579 1.13958581 61.61845 0.946641244
0.2150412 1.041552905 65.09166 1.029384876
0.2064621 1.382867381 63.23355 0.937689904
0.1493 1.115358555 67.43546 1.046581279
0.1338583 0.80463564 64.43404 0.911190193
0.1663589 0.743864841 70.71415 1.056419279
0.2236413 1.47470452 66.93758 1.039287223
0.1516516 1.377989474 64.4072

0.1100528 0.62031842 girout = 0.00305658
0.1774134 1.364865447

0.129986

4N = 0.010891156

Table 3.1 Determining the lateral modal damping ratio for the (a) Lateral in plane (b) Lateral
out of plane

As a result the estimated lateral modal damping ratio in the lateral in plane direction was ¢4-™"
= 0.010891156 and in the lateral out of plane direction ¢i-°“t = 0.00305658. It was assumed
the same lateral modal damping across all modes when doing simulation with the

mathematical model.

For the estimation of the longitudinal damping ratio of the rope was determined by hitting the

mass with a rubber hammer. DC sensor type 4575 was used to measure the displacements of
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the rope-mass system in the longitudinal direction. The sensor was attached to the mass in the
longitudinal direction using beeswax. The acceleration response without any filtering is
shown in Figure 3.11

40
30~

T T T T T T
1245 125 1285 126 1265 127

Figure 3.11 Acceleration signal from the sensor in the longitudinal direction

As it can be seen in Figure 3.11 the mass and rope system return to zero displacement in a
very short period of time approximately in 0.2 seconds. According to Rao (2005), a system
that returns to rest in a very short period of time usually have a critically damped ratio of 1.
Therefore, the longitudinal modal damping ratio of the mass and rope system was assumed to

be critically damped, (<0 = 1), for a case with a mass of 66 kg.

3.1.2.2 Lateral Natural Frequencies of the rope

The lateral natural frequencies of the rope were determined by displacing a section of the rope
and letting the rope vibrate freely. An AC sensor type 4507 B using beeswax and cable ties to
secure the sensors on the rope was used to measure the displacement of the rope in the lateral
in plane and out of plane direction. The sensor data was post processed in Pulse Reflex Base
software using a Fast Fourier Transform (FFT) to determine the lateral natural frequencies of
the rope as shown in Figure 3.12 (using a mass of 66 kg is attached at the lower end of the

rope).
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Figure 3.12 Lateral natural frequencies of the rope with a mass attached at the end of 66 kg

The fundamental natural frequency with a mass of 66 kg was identified as 0.395 Hz.

3.1.2.3 Estimation of the rope modulus of elasticity

According to Rao (2005), the governing equation of the longitudinal vibration of a bar with an
end mass M attached at one end is given by equation (3.1) with a fixed end at x=0 the

boundary condition is U (0,t) =0.
EAU, (L,t)=-MU, (L,t) (3.1)

The longitudinal natural frequency of a bar with an end mas can be expressed as equation
(3.2).

, EA

o, =—— 3.2
=T (32)

To calculate the modulus of elasticity of a rope, the rope — mass system from the experimental
rig is considered as a solid bar having a modulus of elasticity E, an effective cross sectional
area Aerf and a length L. The mass of the rope should be taken into account as it is of
considerable mass. According to Rao (2005), to take into account the mass of the spring can
be accounted for by adding one third of its mass. The effective mass of the rope — mass

system can be represented by equation (3.3).
m=M+— (3.3)

To calculate the modulus of elasticity of the rope equation (3.2) can be rewritten as equation
(3.4).
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2
E= “’;tme (3.4)
ff

The natural frequency in the longitudinal direction was determined by hitting the mass with a

rubber hammer. The accelerometer was attached to the mass in the longitudinal direction of
the rope. The longitudinal natural frequency of the rope — mass system was «v=14.88 Hz, as
shown in Figure 3.13.
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Display6
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Freq. = 14.875 Hz.
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[Hz]

Figure 3.13 FFT spectra of the acceleration response for longitudinal natural frequency with a
mass of 68 kg. Test 1 (red line), Test 2 (blue line), Test 3 (green line)

The effective mass of the rope — mass system is me=79.63 kg, the length of the rope is
L=32.70 m, the effective cross sectional area of the rope is Aerr = 1.433x10™* m?. The estimated
modulus of elasticity of the rope was E=1.5378x10'!N/m? (EA=2.276x10'N).

3.1.3 Mass attached at the end

The mass attached at the end consisted of a steel frame which two steel blocks were added to
the sides. Sliding guide shoes were added to the sides of the mass, as shown on Figure 3.14.
The connection to the rope was attached on the top part of the mass and a drawing with the

dimensions of the mass is shown in Figure 3.14.
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Figure 3.15 Drawing of the mass assembly attached at the end of the rope with measured
dimensions

3.1.4 Steel frame properties

The steel frame consisted of four beams with the dimensions as shown in Figure 3.16. For
section T1 the mass of the two beams are m;=3.52kg and m3=2.80kg with a length of
L1=0.80m. For section T2 the mass of the two beams are m;=7.42kg and ms=7.38kg with a
length of L>=1.80m.
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Figure 3.16 Dimensions of the steel frame

3.1.4.1 Estimation of ki and ko

The attachment support to the wall and slab for sections T1 and T2 are considered as simply
supported with torsional stiffness / spring, which are identified as k; and k2. To determine ki
and k» for the experimental test rig configuration, a preliminary approach was developed to
determine all parameters of all four beams. First, all beams were individually clamped firmly
from one end to a solid support to have the beam as a cantilever beam to determine the
fundamental natural frequency and then to estimate the modulus of elasticity. Then each beam
is anchored to the floor and wall with a single bolt, according to the support provided as it
was originally. The angular natural frequency is again determined and compared with an
approximate model. Afterwards, the horizontal and vertical beams of the same side are joined
together by a bolt and the combined angular natural frequency is determined and compared

with an approximate model.

Beams with flexible supports such as torsional (rotatory) supports with translational supports
were studied by Silva et al. (2015) and Silva and Maia (2011), a beam is attached a rotatory
mass (disc) at the end, the Euler Bernoulli equation was used to determine the mode shapes of
the beam taking into account the flexibility of the supports by finding Rayleigh’s quotient.
Maiz et al. (2007) studied an Euler Bernoulli beam carrying multiple masses with
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translational and rotary support ends taking into account the rotatory inertia of the mass was
studied. A comparison was made when the beam has only translational supports and when
having translational and torsional supports and the natural frequencies of the beam decrease
when the torsional stiffness was introduced. A tapered beam with flexible supports
considering as translational and rotational were studied by Rosa and Auciello (1996) and
Auciello (1996) considering varying linearly the cross-section inertia of the beam the
differential equation of the beam is solved using Bessel functions.

3.1.4.2 Determining the torsional stiffness at the support points of sections T1
and T2

Sections T1 and T2 were attached to the wall or slab with one bolt at the support end as a
result it was not perfectly fixed or pinned, as it is shown in Figure 3.17 (a,b). Two Bruel &
Kjaer DC accelerometers type 4575 were attached to the beam using beeswax. The two DC
accelerometers were connected to a Bruel & Kjaer data acquisition system module type 3050-
A-040. The beam was hit ones with a rubber hammer to excite the beam at the fundamental

natural frequency.

(b)

Figure 3.17 (a) Bolt for section T1 (b) Bolts for sections T2

Section T1 was bolted to the wall without being bolted to section T2. Section T1 was struck
with a hammer and the acceleration response for three tests are shown in Figure 3.18(a,b,c).
The section T1 was struck with a hammer and the FFT spectrum from the three tests are
shown in Figure 3.18 (d). The Frequency Response Functions (FRF) when using the impact
hammer test section T1 is bolted to the wall are shown in Figure 3.19 (ab,c). A table
comparing both the FFT and the FRF tests is shown in Table 3.2.
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Figure 3.18 (a,b,c) Acceleration response from the accelerometers for 3 tests for section T1
bolted to the wall. (d) FFT spectrum from the acceleration response of the accelerometers for

section T1
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Figure 3.19 (a,b,c). Frequency response functions using the impact hammer test when bolted

to wall section T1
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Beam 1 Natural Frequency Average Natural
Cross Section T1 w (H2) Frequency w (Hz)
From FFT spectrum 40.25 40.44

From FRF 40.63

Table 3.2 Comparison FFT and FRF for section T1

The beam was considered as a rod of length L1 and mass mz, with axis of rotation at the end of
the rod, where the mass moment of inertia is calculated using equation (3.5). The torsional

stiffness at the support end is calculated using equation (3.6) as kp1=4.848x10*Nm.

2
3, =Mk (35)
3
ko = (2770,, )" 35, (3.6)

Section T2 was bolted to the slab without being bolted to section T1. Section T2 was struck
with a hammer and the acceleration response from the sensors are shown in Figure 3.20
(a,b,c) and the FFT spectrum from the three tests is shown in Figure 3.20 (d). The Frequency
Response Functions (FRF) is shown in Figure 3.21 (a,b,c) when using the impact hammer test
on section T2 bolted to the slab. A table comparing both FFT and FRF test are shown in Table
3.3.
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Figure 3.20 (a,b,c) Acceleration response from the accelerometers for 3 tests for section T2
bolted to the slab. (d) FFT spectrums from the acceleration response of the accelerometers for
section T2.
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Figure 3.21 (a,b,c). Frequency response functions using the impact hammer test when bolted
to wall section T2

Beam Section T2 Natural Frequency Average Natural

w (Hz) Frequency w (Hz)
From FFT spectrum 60.75 60.69
From FRF 60.63

Table 3.3 Comparison of FFT and FRF for section T2

The second peak shown in Figure 3.20 and Figure 3.21 according to the frequency response

function is the second natural frequency of the beam with torsional spring at the support end.

The beam was considered as a rod of length L, and mass my, with axis of rotation at the end of
the rod, where the mass moment of inertia is calculated using equation (3.7). The torsional

stiffness is calculated using equation (3.8) as kez=1.1653x10°Nm.

2
3y, =Tk (3.7)
3
kyo = (2720, ) 31, (3.8)

When both sections are connected with a bolt as shown in Figure 3.16 (circled in red). To
determine the natural frequency when both sections are bolted together can be determine

using equation (3.9).
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Keq
W, = (3.9)

m,,

The equivalent mass is determined by summing the Kinetic energy as shown in equation
(3.20).

Liels oo ln g (3.10)
2 2

T1VT1 T2YT2 2 eq eq

The angular displacements can be converted into linear displacements by using the following

. X X . : .
transformations 4., = E and 6., = T Equation (3.10) can be rewritten as equation (3.11).

2

T1 JTZ
M, = E+T§ (3.11)
Similarly the equivalent stiffness is obtained by summing the potential energy and is shown in
equation (3.12).

k, k
Ko, =% +—2% (3.12)
S

The fundamental frequency of the combined beam was @, =54.99Hz , according to Eqg. (3.9).
The equivalent linear stiffness estimated using equation (3.12), was k., = 4.354x10°N /m.

From the experimental testing when the beams are struck with a hammer the acceleration
response from the sensors are shown in Figure 3.22 (a,b,c). The sensors were attached as
close as possible where both are connected using beeswax. The FFT spectrum from the three
tests is shown in Figure 3.22 (d). The Frequency Response Function (FRF) is shown in Figure
3.23 (a,b,c), when using the impact hammer test with both sections bolted together. A table

comparing both test results are shown in Table 3.4.
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Figure 3.22 Acceleration response from the accelerometers for 3 tests when both beams are

connected together with a bolt. (d) FFT spectrums from the acceleration response
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Figure 3.23 Frequency response functions using the impact hammer test when both sections

are bolted together
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The first prominent peak in Figure 3.22 and Figure 3.23 was approximately 20.0 Hz which is
approximately equivalent when only the stiffness of section T1 is taken into account as shown

in equation (3.13) with the equivalent mass, which is «,, =14.79Hz .

k91
@y = | 3.13
01 Limeq ( )
Sections T1 -T2 Natural Frequency Average Natural
connected w (Hz) Frequency w (Hz)
From FFT spectrum 60.25 60.44
From FRF 60.63

Table 3.4 Comparison of FFT and FRF of sections T1 and T2 are bolted together

The error when comparing the estimated fundamental natural frequency of the combined

beam was @, =54.99Hz with the experimental frequency of @, , =60.44Hz was 9.91%,

Xp

which shows a good agreement with the measured value.

3.2 Derivation of the mathematical model

The model of the experimental rig is shown in Figure 3.24. It consists of a vertical suspension
rope of length L and a mass per unit length m, modulus of elasticity E, and effective cross
section area A. The rope is fixed at the top end to a support and at the bottom end is a mass M.
The mass is constrained to move by a steel frame structure in the longitudinal direction and in
the lateral in plane direction. The equivalent linear stiffness in the lateral in plane direction is
represented by keq which was deducted in section 3.1.4.1. The mass is constrained to move in
the longitudinal direction by sliding guide shoes shown in Figure 3.14. The response of the
rope is subjected to displacements at the top represented by Sy(t) and Sw(t) in the lateral in

plane and out of plane directions.
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Figure 3.24 The model of the experimental rig

To develop the mathematical model the following assumptions were taken into account:
a) The rope has a constant modulus of elasticity E, constant cross sectional area A, constant

mass per unit length m.

b) The spatial coordinate x is measured from the top support.
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9)

h)

)

Damping of the rope and mass is considered.

The lateral damping of the rope in all modes is equal to the first lateral modal damping

ratio.

The longitudinal damping of the mass across all modes is equal to the critical modal
damping ratio.

Lateral in-plane V(x,t), lateral out of plane W(x,t), and longitudinal U(x,t) displacements
of the rope are considered.

The longitudinal displacements of the mass Uy, the lateral in plane displacements of the
mass V(L,t) of the rope are considered.

Equations (3.14) and (3.15) represent displacements applied to the rope at the top support
in the lateral in plane and out of plane directions. The amplitudes in the lateral in plane
and out of plane directions are represented by Ay and Aw, respectively. The frequency of

excitation in the lateral in plane and out of plane direction are represented as ﬂvand Ay

respectively.
Sy(t) = Ay sin[At] (3.14)

Sw(®) = Ay sin(Ant) (3.15)

Elastic strain measure of the rope given in terms of Green’s symmetric strain tensor as

equation (3.16) where the expression (), denotes partial derivatives with respect to x.
1
e=U, Jra(vx2 +WX2) (3.16)

The displacements of the rope relative to the configuration of the rope when it is stretched

by the structure motion is represented by V(x,t) and W(x,t).

The constant g is the acceleration of gravity which is equal to 9.81 m/s2.
The rope length L is constant.

The mass at the bottom considered as a point mass which is constrained to vibrate in the

lateral in plane direction V(L,t) and in the longitudinal direction Upw.

The longitudinal natural frequencies of the rope are higher than the lateral natural

frequencies of the rope. Thus, the longitudinal inertia of the rope is neglected.

The bending stiffness of the rope is neglected.
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p) The rope model is a nonlinear string model.

Hamilton’s principle is used to derive the equations of motion. According to Meirovitch
(2001), Hamilton’s principle is one of the most powerful variational principle of mechanics,
from which the equations of motion of a continuous system are derived. The Hamilton’s
principle is an integral principle which means that it considers the entire motion of a system
between time t; and t>. The instantaneous configuration of the system is described by n
generalized coordinates Q,..., gn, Which corresponds to a particular point in the spatial
coordinates. As time evolves, the system point moves in a configuration space, tracing out a
curve. This curve describes the path of motion of the system. Thus Hamilton’s principle can
be defined as equation (3.17):

9}

[(6Q-aTT+0oW, )dt =0, 5q, =0, k=12,...,n, t=t

19

t (3.17)

2
%}

where Q, I7and Wi denote the kinetic energy, the potential energy and the work due to non-

conservative forces acting upon the system, respectively.

The work done by the nonconservative forces is neglected so that W .(x,t)=0 between t1

and t> which are the initial and final time. The virtual work of the nonconservative forces in
this mathematical model represents the virtual work of damping forces which are considered

as modal damping ratio.
The total potential energy I is given by the following equation

I =1T,+1T,+ 1T (3.18)

In the above expression 77, is the cable elastic strain energy, 77, is the gravitational energy,

g

and 77, is the potential energy of the spring. The kinetic energy of the system is expressed as

follows
Q= [Qn (U, VW, ) dx+Qy (U, (Lt V, (L.1)) (3.19)

The subscript t represent the partial derivative with respect to time. The kinetic energy density

of the rope is expressed as

~ 1 _|(auY (av) (WY
> =§”‘Haj {55 } 520
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The kinetic energy of the mass is given as

o —tu ﬂav (L,t)Jz +(au (L,t)ﬂ o)

2 ot ot

Assuming that the constant energy accumulated into the system during the initial static
deflection is neglected, the elastic strain energy of the rope and the energy of the equivalent
spring element, between the mass and steel frame in the lateral direction, are given by
equations (3.22) and (3.23).

1, = [ IT,(U, V, W, )x (3.22)
I, =11 [V (Lt)] (3.23)
where

11, :[T(x)+% EAejg (3.24)
I = 2(%) ko (V (L)) (3.25)

The mean quasi static rope tension is represented by T (x).The ¢is the Green symmetric

strain tensor measure of the rope which is defined in equation (3.16). The gravitational

potential energy is given in terms of the dynamic deflections as
L A

1, = [ I7,(U )dx—MgU,, (3.26)
0

Potential Energy due to gravity of the rope

M, = -mgU (3.27)

Hamilton principle requires that any virtual displacement, arbitrary between two time instants

t, and t,, vanishes at the end of the time interval such as
U (x,t)=06V (x,t)=06W (x,t)=0 for 0<x<L (3.28)

Applying into (3.17) equations (3.19), (3.22), and (3.23) the following equations results

49



t I(ac‘gm (U, NV W,) =61, (U)= 01T, (U, V, W, ) dx +

II: t=0 (3.29)
L 8Qy (U, (Lit) V (L.t))+Mgsu,, —or7" (V (L1))
where
5‘m:[a_mjgut{&}évt{aﬁm]m a0
8Ut 5Vt aWt
[ aQ,
oQy _(8Ut(L,t)J5U‘(L’t)+£avt(|_,t)]évt(l"t) (331)
5ne:[6He]wx+(aHeJé\/x+(éneJé\Nx a
8UX 6Vx aWX
o1y =~mes) (3.33)
v oIl
M=y Y (3.34)

Integrating equation (3.30) in respect to t and x the following equation is derived

J

JU&Q dedt—j(L([ngjwt+(‘2€m]é\/t+(g(\?\}“jéwtjdx}t (3.35)

and

o~ %aQ, o oQ, 0 oQ, 0
Ijédet :!(%g(whaiv?&(whaiv&:a(w)}dt (3.36)

can be written as

fotun-| L] -2( ],

{%a\/\/} j (8Q jé\th
oW, L Lot ow

According to equation (3.28) the terms in red in equation (3.37) are the virtual displacements

_ t, X _
J% T 2y
v, | jatl o,

(3.37)

which are 0 when evaluated between t1 and t>. Thus, equation (3.37) can be rewritten as
equation (3.38).
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%o~ aQ, o(oQ, 2o(oQ,
£§det— jat(au ]5Udt IE( ~ )a\/dt—ja(éw jéWdt

t t t, t

Similarly

j5QMdt_ jaat(aua%ﬁ t)J&J (L't)dt_jg(ﬁ\f((?tt)Jév(L’t)dt

L A L L A A L L A
[orTdx = o, s —ji O, | sudx+| 2e sy —jﬁ Ol | s\vdx
oU . pox|au v, |, soxlav,

X

The boundary conditions are as follows:
oU(0,t)=0V(0,t)=0W(0,t)=0

SW(L,t)=0

Applying into Equation (3.29) Equations (3.33) - (3.34) and Equations (3.38) -

following equation is obtained

E et R E R
et av, ) ax| av atlau, ) ax|au,

j dx
o3l
ot\ oW, | ox| oW,
9} i v a
I*‘i Qu_ | el 5 (Lt dt=0
g at\ oV (Lt) ) av(Lt) oV,

o aQ, ol
_ UM |4 Mg -
a aUt(L,t)JJr |

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
(3.43)

(3.43) the

(3.44)

The virtual displacement 6U,6V ,6W,8U (L,t),8V (L,t) are arbitrary and the above equation

can only be valid for all the values of the virtual displacement if
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0[0Qu|_0faL |_,

atl ov, ) ax| av,

2 & _i ane _mg—o

atl v, ) ox|au,

o(aQ, ) afaL)_,

ot ow, ) ox| aw,

of_eQ, | o) | ar

alov,(Lt) ) av,| av(Lt),
of_Qu | dL g
at{ au, (L)) au,|

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

Substituting the equations (3.20) - (3.25) into equations (3.45) - (3.49) the nonlinear equations

of motion are derived.

mvﬁ +T (X)XVX — EA(UX +%(VX2 +WX2 )j VX -T (X)Vxx
—EA(UX +1(VX2 +WX2)) vV, =0
2

X

mU, —T(x), - EA(UX WL%(VX2 +sz)j —mg=0

X

mwW, +T (X)XWX - EA(UX +%(Vx2 +sz)j W, -T (X)WXX

X

—EA(UX +1(vx2 +sz)j W, =0
2

X

M\7(L,t)+[T(L) + EA(UX +%(vx2 +WX2))

JVXL(—L
x=L

-Mg=0

x=L

+2k,V (L,t)=0

MU (L,t) +T(L)+ EA(UX +%(vx2 +sz)j

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

The equations (3.50) to (3.52) describe the dynamics of the rope and the equations (3.53) to

(3.54) the boundary conditions at x=L in the lateral in plane and longitudinal direction

respectively.
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From Figure 3.24 the tension is derived by balance of forces which is represented by equation
(3.55).

T(x)=Mg+mg(L—x) (3.55)

The rope system is excited at the top by displacements in the lateral in plane and out of plane
direction represented by equations (3.14) and (3.15). The absolute displacements in the lateral
in plane and out of plane direction can be represented as equations (3.56) - (3.57).

V(x,t) =V (x,t)+ S, (1-8 (3.56)

W(x,t) =W (x,t) + Sw(l—E) (3.57)

respectively, where V and W represent elastic deformations measured relative to the rigid-

body motions of the system.

The partial derivative for x and t for the lateral in plane and out of plane direction are shown
in equations (3.58) to (3.65).

Vi 2\711 + Sy (1_Ej (3.58)

Vv, =V, -2 (359)
L

Vi =V (3.60)

W :V\_ltt +Sy (1_Ej (3.61)

= S

W, =W, — v (3.62)
L

W, =W, (3.63)
_ S

V(Lt), =V (Lt), _fv (3.64)

. - sY

V(Lt) =V (Lt) - (3.65)

Substituting equation (3.55) into equation (3.51) results in equation (3.66)
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mu, — EA(UX +%(vx2 +W 2 )) =0 (3.66)

X

The longitudinal natural frequency of the rope are much higher than the lateral natural
frequencies of the rope, thus the inertia in the longitudinal direction can be neglected,
resulting in equation (3.67).

l 2 2
(ux+§(vx +W, )] =0 (3.67)

X

The internal terms inside the parenthesis is represented by e(t), which is shown in equation
(3.68).

1 2 2
e(t):UX+E(VX +W?) (3.68)

Equation (3.68) is integrated with respect to x, giving equation (3.69).

S, S? Sy S
jde —j V+— dx+ —j ~2 W+ dx (3.69)
L2 L
Substituting equation (3.68) and (3.55) into equations (3.50) to (3.54) gives
mV, +mS; (1—%} +mgV, —mg S—LV—(Mg +mgL )V, +mgxV,, — EAe(t)V, =0 (3.70)

w

mW, +mS,’ (1 Ej+mgW mgS——(Mg+mgL)

(3.71)
+mgxW,, — EAe(t)W,, =0
MV (L,t), + l\/lg\7X(L,t)—l\/IgS—LV+ EAe(t)V, (L,t)- EAe(t)S—LV+2keq\7(L,t):0 (3.72)
MU (L,t), +T (L) +EAe(t)-Mg =0 (3.73)

The boundary conditions at x=0, read U(0,t)=V(0,t)=W(0,t)=0. The linear natural

modes of the lateral in plane and lateral out of plane motion are given as ¢, =sin(3!"x) and

. nz . :
a, = sin(nT” xjwhere A" and T are the eigenvalues for the lateral in plane and the lateral

out of plane modes, respectively. The eigenvalues for the lateral in plane direction can be

determined from the frequency equation expressed by equation (3.74).
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T, 8" cos "L +(keq——MT° (,B“” )zjsin B"L=0 (3.74)
m

The natural modes and the derivation of the frequency equations are analysed in Appendices

A and B.

Equations (3.69) to (3.72) can be discretised by applying the Galerkin method. In this
procedure the dynamic response of the system is approximated in the lateral in plane and

lateral out of plane directions by the following expansions

7 (x8)= 24,009, (3.75)
W(x,t):ian(x)cn(t) (3.76)

respectively, where ¢, ,c, represent the generalized (modal) coordinates and N represent the
number of modes taken into account in the expansion. For the longitudinal direction the
substitution U (L,t) =U,, is applied. Substituting expansions (3.75) and (3.76) into equations
(3.69) to (3.73) by applying the orthogonality conditions with respect to the linear modes a

system of nonlinear ordinary differential equations results as follows.

UMLLN’ z_iLN, LLZ
e(t):T+2L O(nZ:;cfﬁ,- (x)q,-(t)j dx— 7% joéqﬁj (99, (Odx+ [ s dx+

2 (3.77)
1 ;o Q , 1 cL N ' 1.,
o) (nz_llaj (X)C,-(t)] dX_FIo Sw(nz_;aj (x)cj('[)jdx+ﬁ.|'0 S, dx

The upper subscript prime represents the total derivative with respect to x. Finding the

solution of each integral from equation (3.77) can be represented as equation (3.78).
U, 13 S, < . Lin
e(t)ZTszzszqu(t)qp(t)—Fqu(t)S'”(ﬂi L)

(3.78)

Where Gjp is represented as the following

_Lin 2|_ _Lin H 2 _LinL
j=p;(ﬁ‘2) N Smgﬂ’ )
G _
ip - - in(L Lin _ plLin in(L Lin Lin
204"-4")  2AB"+A")
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q (t)+2§’|'m Llnq (t)+zk1L|nq (t)+( Lm) g, (t k2L|nU +ZZD}rI]_r|n )

s 3.79
N N N N N ( ’ )
> DG+ 303 SRk, (1)a, ()0, (14 33 R (1)a, (1)+ 2 =0
n=1 j=1 p=1 n=1 j=1
¢ (t)+2§Lout LoutC (t)+( Lout) Cr (t)_l_ieroutC (t)+zz D}rl]_rout )
v o (3.80)
PR R 1), (1) 23D RE ()4, (16, (1) <0
n=1 j=1 n=l j=1 p=1
.o . N
Uy +28m@aumUy +Zkiuqn( %M U +ZZ pqn
s (3.81)

+ii DXci(t)+F, =0
=1 j=1

The modal damping coefficients have been added into the above equations in the lateral in
plane, out of plane, and longitudinal direction expressed as £, ¢, ¢, , respectively. The
undamped natural frequencies in the lateral in plane, out of plane direction, and longitudinal

directions are represented as o', o™, @,,, , respectively. The coefficients resulting from the

Galerkin method are defined. The terms for equation (3.79) which are for the lateral in plane

direction of the rope are shown in equations (3.82) to (3.90).

L'”_mj 2 (x)dx+Mg? (L) (3.82)
(") = () 22 (3.83)

The coefficient k'™ is defined in equation (3.84) which represents the lateral in plane linear

stiffness coefficient.

i = 0 [ 004 09008 [ 1006, 00 5 61004 000

r

EA(S 2 EA(S2+S. 2
gL—+ [} 400,00+ EASL,H¢(L)¢ L)+ %mmmu (3.89)
_EAU, EAUM

— j #0060+ (L (1)

The coefficients D", D" defined in equations (3.85) and (3.86) represent the quadratic

jor 1

lateral in plane nonlinear terms.
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D" = G O, 41008, 000122 (AL 04, 0
oA (3.85)
2L2 L|n Sv¢ (L)G
ST ¢( )( ] (3.86)

The coefficient F'" defined in equation (3.87) represent the excitation coefficient for the

lateral in plane direction.

Fln_ ”L‘m Snj (1 —jqﬁ (x)dx— i Svj @, (X)dx — I\/Igin o (L)
m,, Lm
oA (3.87)
o 2L3m:_|n ¢ (L) L3mrl_r|n V ¢ ( )
K2un EAS,4 (L) (3.88)

LZmLin
The coefficients R}." and R’ defined in equations (3.89) and (3.90) represent the lateral in

plane cubic nonlinear terms.

EA

R == 3oyt Oy #0000+ 256 (L4, (1 (389)
2Lin _ EA " jﬂ ’ '
Rinpr - 4m:}in ( j I ¢ (X)¢ (X)dx+ am L|n ( L j ¢n (L)¢r (L) (390)

The terms for equation (3.80) which are for the lateral out of plane direction of the rope are
shown in equations (3.91) to (3.97).

my =m| o (x)dx (3.92)

(a)rLrout)Z :(VT”J w (3.92)

The coefficient k:™ is defined in equation (3.93) which represents the lateral out of plane

linear stiffness coefficient.
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ki = e [ X 002, (e e [ (9, (0
(3.93)
EA Sv +SW Lo, EAU )
‘Z(LTW)L a, (X)e, (X)dx - = Loutj a’ (X)a, (X) dx

The coefficient D™ defined in equation (3.94) represent the quadratic lateral out of plane

jnr

nonlinear terms.

D = E%sin(B17L) [ ey (0a, () dx (3.94)

nr 2 .~ Lout
! L*m-

The coefficients R and RZ°" defined in equations (3.95) and (3.96) represent the lateral

Inpr Jnpr

out of plane cubic nonlinear terms.

guon ___EA )7 2] "o (N, () dx (3.95)
jor T 4mrl}om L o °n r .

ou EA "
R =~ 5 Lot G, [, @r(0a, () dx (3.96)

The coefficients F™" defined in equation (3.97) represent the excitation coefficients for the

lateral out of plane direction.

m

) [1 —ja(x)dx 05, 0o (3.97)

The terms for equation (3.81) which are for the longitudinal direction are shown in equations
(3.98) to (3.102).

EA

(@u )2 =

i (3.98)

The coefficient k;* defined in equation (3.99) represent linear coupling involving the lateral

in plane modal displacements acting in the longitudinal direction.

EAS

kv = ViR (B"L) (3.99)

The coefficients D,,,D;" defined in equations (3.100) and (3.101) represent the quadratic
nonlinear coupling involving the lateral modal displacements acting in the longitudinal

direction.
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EA
oML *

D _&(n_ﬂjz
" 4Mm\ L

u _
Djp -

(3.100)

(3.101)

The coefficients F, defined in equation (3.102) represent the excitation coefficient for the

longitudinal direction.

__EA(sj+s;)
I VIE

3.3 Experimental Validation

As a summary the test data that has been presented in this chapter is shown in Table 3.5.

Table 3.5 Summary of estimated experimental data to validate the mathematical model

Mass attached at
the end of the rope

[ka]

M =68 kg

Mass per unit
length of the rope
[kg/m]

m = 1.25 kg/m

Length of the rope
[m]

L=32.70m

Lateral in plane
modal damping
coefficient

ﬁLin =0.01

Lateral out of plane
modal damping
coefficient

ﬁLout =0.003

Longitudinal
modal damping
coefficient

dlong =1

Product of Young
Modulus of
Material

EA=2.276x10" N

Linear stiffness of
springs

Keq=4.354x10° N/m

(3.102)

The total mass attached at the bottom end of the rope has been added half of meq to take into

account the mass of the spring in the lateral in plane direction resulting in M=68.0 kg as it is

shown in Table 3.5.
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From the Galerkin method the nonlinear ordinary differential equations are given for N
number of modes and the ODEA45 solver is used in MATLAB. The solver requires that the set
of differential equations be truncated to a specific number of modes to find the solution. For
this validation presented with the experimental data the model was truncated at n=4 modes. In
Appendix C are shown the comparison of the displacements of the rope in the lateral in plane

and out of plane direction for n=1, n=2, and n=3.

The experimental validation was accomplished by actuating the rope in the lateral in plane

direction represented by S.(t), where A, was tuned to the fundamental natural frequency of

the rope with a prescribed amplitude Ay using the Kollmorgen actuator. The frequency of

excitation for the experimental test was 4, =0.40Hz with A,=0.005m of displacement. The

duration of the experiment is approximately 3 minutes and 50 seconds. The objective of this
validation is to demonstrate that the mathematical model presented can be used to have an
accurate estimation of the displacements of the rope. The sensors attached to the rope to
measure the lateral in plane and out of plane displacements of the rope were positioned at a
height of 11.0 m from the mass.

3.3.1 Free vibration analysis

From the mathematical model the lateral in plane eigenvalues are obtained by finding the
roots of equation (3.74) shown in Table 3.6. There are several numerical methods used to
determine the roots of a function, the most common numerical method used is the bisection
method. According to Dauhoo and Soobhug (2003) the method divides into two parts an
interval and then selects a subinterval in which a root must lie for further processing. Equation

(3.74) according to the eigenvalues is shown in Figure 3.25.

1 2 3 4
g | 0.0961 | 0.1921 | 0.2882 | 0.3843

Table 3.6 The first four eigenvalues obtained with equation (3.74)
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Figure 3.25 Equation (3.74) vs the eigenvalues

The natural modes shapes of the lateral in plane and lateral out of plane motion are given as

#, =sin(B"x) and o, = sin(nT” xj using the corresponding eigenvalues, and are shown in

Figure 3.26 and Figure 3.27 respectively.

Mode shapes of the rope
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Figure 3.26 1st and 2nd mode shape for the lateral in plane direction
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Mode shapes of the rope
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Figure 3.27 1st and 2nd mode shape for the lateral out of plane direction

The linear natural frequencies in the lateral in plane direction are obtained with the (8"
eigenvalues by using equation (3.103)

Mg
m

a)Lin :ﬁLin (3.103)

Resulting in the first four natural frequencies in the lateral in plane direction shown in Table
3.7.

IN.F. [2N.F. |3N.F. |4N.F.
[HZz] [HZ] [HZ] [HZ]
ot | 0.3532 | 0.7064 | 1.0597 |1.4129

Table 3.7 The first four linear natural frequencies when using Eq. (3.103).

The natural frequencies of the rope and mass system can also be calculated when taking into
account all linear terms that are not time dependent in the lateral in plane direction as shown
in equation (3.104).

(w&!“)z= MngL [ #1000, (0 + L.n¢(L)¢ O+

(3.104)

x¢”(x)¢ (x)dx +

[ (0, (x)dix

L|n L|n
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Resulting in the first four natural frequencies in the lateral in plane direction shown in Table

3.8, similar to the estimated in the previous sections of this chapter

1N.F 2N.F. 3N.F. 4 N.F.
[HZz] [HZ] [HZz] [HZz]
o | 0.4039 0.8071 1.2075 1.6234

Table 3.8 The first four natural frequencies of the rope in the lateral in plane direction using
Eq. (3.104).

The natural frequencies of the rope and mass system in the lateral out of plane direction when
using the linear terms that are not time dependent as shown in equation (3.105) are similar

when  using  equation  (3.104) for the lateral in  plane  direction.
out \2 Mg+mgL) L,
(™) =—% J, @ (9a, () dx
' (3.105)
mg b, » mg (L,
+ mrl_rgut IO xay (X)ex, (X) dx + mrLr?Ut IO al (X)a, (x)dx

Resulting in the first four natural frequencies in the lateral out of plane direction shown in

Table 3.9, similar to the estimated in the previous sections of this chapter

1N.F. 2N.F. 3N.F 4 N. F.
[HZz] [HZz] [HZz] [HZz]
ot | 0.4039 0.8071 1.2075 1.6234

Table 3.9 The first four natural frequencies of the rope in the lateral out of plane direction
using Eq. (3.105).

The approximate value of the first (fundamental) natural frequency in the longitudinal

direction is given by Eq. (3.98) resulting in @,,, =16.10Hz, which is much higher than the

lateral natural frequencies of the rope. The fundamental natural frequency in the longitudinal

direction of e, =16.10Hz agrees with the longitudinal frequency obtained from

experimental testing of a rope and mass system shown in section 3.1.2.3 which was «x=14.88

Hz used to estimate the modulus of elasticity of the rope.

3.3.2 Simulation Results

The signal data obtained after post processing from the LVDT in the lateral in plane direction
and from the DC accelerometer in the lateral out of plane direction at the excitation point of

the rope is shown in Figure 3.28. The main excitation was in the lateral in plane direction with
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+0.005m, which was the amplitude provided by the Kollmorgen actuator and was prescribed
in the National Instruments LabView software program. The displacements for the lateral out
of plane were initially small but near 100 seconds increase to +0.002m which is when the
lateral out of plane displacements of the rope start to increase due to the transfer of energy
from the lateral in plane direction to the lateral out of plane direction when the whirling
motion of the rope appear.

Displacement Lateral in plane excitation

E
- ‘ l]
2]
-0.005
-0.01 : : ’
0 50 100 150 200
t(s)
4 & 103  Displacement Lateral out of plane excitation
o |
E
: |
2]
2
-4 .
0 50 100 150 200

t(s)

Figure 3.28 Signal data after post processing in the lateral in plane and out of plane direction

The FFT spectrum over the entire time span of the signal is shown in Figure 3.29 for the
lateral in plane and out of plane direction. In both the dominant frequency is 0.40 Hz which is

the prescribed frequency of the Kollmorgen actuator.

6 %1073 Frequency - Excitation Lateral in plane
E
o 4T
°
=
S oot
g2
<
0 A L A L L L
0 0.5 1 1.5 2 25 3
Frequency (Hz)
15 X 1073 Frequency - Excitation Lateral out of plane
E
o 1T
©
2
ey
g 0.5
<
0 . . . .
0 0.5 1 1.5 2 25 3

Frequency (Hz)

Figure 3.29 Frequency of excitation in the lateral in plane and out of plane direction
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The sensor data from the experiment shown in dotted black line and the data determined from
the simulation shown in blue line are compared with the displacement shown in Figure 3.30
for both the lateral in plane and out of plane direction.

Dlsplacement of the rope at the height of the sensor Lateral In-plane
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UL ﬂlmf:l;::r:.r."nm

‘4‘w|lvv""' '||" M il "I ] IIJ ‘“I'\‘ ‘

(m

-0.05 -

e

-0.1

0 50 100 150 200
t(s)
Dlsplacement of the rope at the height of the sensor Lateral out-plane

S 11 mL‘iﬂ‘]iWz{ii..uaii."'."met

) ||¢4|||,1|“‘,‘ l' \ Iﬁ l Jlll i I|I i ‘n

-0.05 | ‘wl:il‘ “ ‘\” ‘1“”11 J‘]H‘

-0.1

0 50 100 150 200
t(s)

Figure 3.30 Comparison of the rope displacement at the sensor attachment height from the
experiment and the simulation
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Figure 3.31 FFT spectrum of the lateral in plane displacements of the rope comparing the
simulation and experimental testing
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Freq. of the rope Lateral Out of Plane (Model)
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Figure 3.32 FFT spectrum of the lateral in plane displacements of the rope comparing the
simulation and experimental testing

The FFT spectrum over the entire time span of the displacements of the rope in the lateral in
plane direction are shown in Figure 3.31 and for the lateral out of plane direction are shown in

Figure 3.32 comparing both simulation and experimental testing.

According to Nayfeh and Mook (1979), the whirling motion of the rope is an interesting
phenomena which is a consequence of internal resonance. The whirling motion of a rope
occurs when the energy of the rope is transferred from the lateral in plane direction to the
lateral out of plane direction. The whirling motion of the rope is a direct consequence of the
fact that the frequency of the motion in the plane of the excitation is the same as the frequency
of the motion in the plane perpendicular to the plane of the excitation. Thus, the two

components of motion are strongly coupled.

The whirling motion of the rope can be seen when the lateral in plane and out of plane
displacements are graphed together. In Figure 3.33 shows the whirling motion of the rope
recorded at the sensor height when comparing the displacement from the sensor represented
by a dotted black line and the displacement determined from the simulation represented by a

blue line during the entire time span.
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Disgl1acement in the lateral in plane and out of plane - height of the sensor
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Figure 3.33 Comparison of the displacements in the lateral in plane and out of plane direction

The whirling motion of the rope is shown in different time spans between 50 seconds and 100
seconds, 100 seconds and 150 seconds, 150 seconds and 200 seconds, and 200 seconds until
the end of the experiment are shown in Figure 3.34, Figure 3.35, Figure 3.36, and Figure 3.37
respectively. The blue line represents the displacements determined from the simulation and

the dotted black line is the sensor data.

0 (I)Rsope displacement at the sensor height between t=50s and t=100s
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Figure 3.34 Comparison of the displacements in the lateral in plane and out of plane direction
between 50 seconds and 100 seconds
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(I)Q?pe displacement at the sensor height between t=100s and t=150s
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Figure 3.35 Comparison of the displacements in the lateral in plane and out of plane direction
between 100 seconds and 150 seconds

(I)'\’?pe displacement at the sensor height between t=150s and t=200s
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Figure 3.36 Comparison of the displacements in the lateral in plane and out of plane direction
between 150 seconds and 200 seconds

68



Rope displacement at the sensor height between t=200s and =t .
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Figure 3.37 Comparison of the displacements in the lateral in plane and out of plane direction
between 200 seconds and final time of the experiment

As it can be seen the response from the simulation model starts to correlate better with the
experimental testing after the initial 100.0 seconds when the whirling phenomena on the rope

starts to occur.

The model accommodates the lateral in plane and longitudinal motion of the mass. The lateral
out of plane motion of the mass are neglected, due to the high stiffness in the lateral out of
plane direction of the frame structure at the mass assembly. The displacements of the mass in
the lateral out of plane direction after the initial transient phenomena were very small in the
range of 0.2x10*m, as it can be seen in Figure 3.38. The high amplitudes in the lateral out of
plane direction are due to the transient phenomena possibly caused by misalignment in the
system. According to Meirovitch (2001), transient phenomena are initial excitations that come

to rest in a system with damping, which are caused by a sudden change of state.
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Figure 3.38 Displacement of the mass in the lateral out of plane direction

The lateral in plane displacements of the mass are shown in Figure 3.39 showing the results
from the simulation in blue line and the experimental testing in black line. The displacements
shown for the simulation model are much smaller than the experimental testing as the model
does not accommodate the rotation of the mass during the whirling motion of the rope. The
displacements from the experimental testing start increasing up to 2x10*m due to the whirling

motion of the rope.
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Figure 3.39 Displacement of the mass in the lateral in plane direction from the simulation and
the experimental testing
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The FFT spectrum of the mass in the lateral in plane over the entire time span for the
simulation and the experimental testing are shown in Figure 3.40, where the predominant
frequency of 0.40 Hz is shown.

<107 Freq. mass in Lateral In-Plane (Model)

I
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Figure 3.40 Frequency of the mass of the lateral in plane displacements of the simulation and
experimental testing

The displacements of the mass in the longitudinal direction are shown in Figure 3.41
comparing the response from the simulation represented by a blue line and the response from
the experimental model. The high amplitudes in the sensor data is due to the transient
phenomena possibly caused by misalignment in the system. As it can be seen from the results
after the initial 100.0 seconds the transient vanishes and the measured response amplitudes are
within the range of the response predicted by the simulation. The steel frame was lubricated
before every test exactly at the sliding guiding system of the mass and steel frame. After 100
seconds the longitudinal displacements of the mass in the experimental testing got lowered

because the lateral in plane displacement of the mass started to appear.
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Figure 3.41 Mass displacement in the longitudinal direction comparing the response from the
simulation represented by a blue line and the experimental testing represented by a black line

The FFT spectrum over the entire time span from the displacement of the mass in the
longitudinal direction of the simulation and the experimental testing are shown in Figure 3.42.
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Figure 3.42 FFT spectrum over the entire time span from the longitudinal displacements of
the mass of the simulation and experimental testing

The predominant frequency is 0.80 Hz which is twice the frequency of excitation to the rope,

which is coming from equation (3.102) in the longitudinal direction. Thus, the mass is excited

at 24, due to primary external resonance.

As it was seen in the experimental testing the rotation of the mass does have influence in the
lateral in plane, out of plane, and longitudinal displacements of the mass. Simplifications were
made to track and understand the fundamental features and the behaviour of the system.
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However, the rotational mode of the mass was observed. The imperfections or misalignment
at the mass assembly, that are responsible for any additional looseness or misalignment have
been difficult to eliminate and to accommodate in the current model due to project

constraints. Future work is planned to improve the model.

In a real elevator system due to ever increasing efforts to achieve good ride quality
characteristics, the imperfections in the elevator car mass and its guiding system are
negligible. Thus, the proposed model assumptions can be applied in a full elevator system to
predict the behaviour of the suspension and compensating ropes with the influence of the

elevator car, compensating sheave, and counterweight.
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4. Stationary Model of a High — Rise Elevator System

4.1 Description of the vibration model
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EA ,m,
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M,

SJ(1)
5,(). 5

Figure 4.1 Drawing of the full stationary elevator system

In Chapter 3 was developed a mathematical model of a rope and mass system considering the

lateral in plane and out of plane displacements of the rope and the lateral in plane and
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longitudinal displacements of a mass attached to the end of the rope. The results obtained
from the mathematical model were in the same range as with the experimental results. The
mathematical model had certain limitations in predicting the rotational motion of the mass
due to the imperfections or misalignments at the mass assembly that are responsible for any
additional looseness or misalignment. Interesting events were discussed like the interaction
between the lateral displacements of the rope coupled with the longitudinal and lateral
displacements of the mass, the whirling motion of the rope through the auto parametric terms,
the lateral external frequency in which the rope was excited at the top, excited the mass in the
longitudinal direction at twice the frequency which is primary external excitation. Thus, the
proposed assumptions to develop the mathematical model can be applied to a full elevator
system to predict the behaviour of the suspension ropes, compensating ropes, elevator car,

compensating sheave, and counterweight.

The model of an elevator system with an elevator car of mass M1, compensating sheave of
mass M, and counterweight of mass Ms, is depicted in Figure 4.1. The suspension and
compensating ropes have mass per unit length m; and my, constant elastic modulus EA; and
EA, respectively. The parameter b represents the distance measured from the bottom landing
level to the center of the compensating sheave. The parameter b, denotes the distance
measured from the center of the traction sheave to the center of the diverter pulley and ho
represents the distance measured from the bottom landing level to the center of the traction
sheave. The parameter hyay is the height of travel of the elevator car. The elevator car,
compensating sheave and counterweight are considered as point masses, thus the height is
neglected. The parameter h; is the position of the elevator car measured from the bottom

landing level to the elevator car.

The lengths of the suspension rope and of the compensating rope are defined as follows. The
length of the suspension rope at the car side measured from the center of the traction sheave
to the termination at the car crosshead beam is denoted by L. The length of the compensating
rope at the car side measured from the termination at the car bottom to the center of the
compensating sheave is denoted as L. The length of the compensating rope at the
counterweight side measured from the termination at the counterweight to the center of the
compensating sheave is denoted by La. The length of the suspension rope at the counterweight
side measured from the center of the diverter pulley to the termination at the counterweight
end is denoted by Ls. The mass moment of inertia of the diverter pulley and the short stretch
of the suspension rope between the pulley and the traction sheave is neglected in the

simulation model.
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The response of the elevator ropes subjected to dynamic loading due to the building sway are
represented by the lateral in-plane and lateral out of plane displacements denoted as Vi(xi,t)
and Wi(xi,t) where the subscript i=1,2,3,4 corresponds to the sections of the ropes of length L,
Lo, Ls, and La, respectively. The displacements of the ropes relative to the configuration of the

ropes when they are stretched by the structure motion are represented by \Z(Xut) and

W, (x,t). The lateral in-plane and lateral out of plane motions of the ropes are coupled with

the longitudinal motions of the ropes that are denoted as Ui(x;t). The parameter x; is the
spatial coordinate of each rope measured from the top support of each rope. The longitudinal
motions of the car, compensating sheave and counterweight are denoted as Ucr(t), Ucs(t), and
Ucw(t), respectively. The lateral in plane and out of plane motions of the car denoted as
Ver(t)=Vi(L1,t)=V2(0,t) and Wcr(t)=W1(L1,t)=W>(0,t). The lateral motions of the
counterweight are not considered in this mathematical model. More emphasis was placed at
the car side due to see the effects to the ride quality of the elevator car. The compensating
sheave and counterweight are restricted to move in the longitudinal direction. The parameter
k1 and ko represents the combined stiffness of the roller guides and guide rails in the lateral in
plane and the lateral out of plane direction, respectively. The parameters ki and k. can be
estimated as it was discussed in Salamaliki-Simpson (2009). The lateral displacements of the
structure corresponding to the top of the building at the machine room level and to the

position of the car and counterweight are represented as &(t), £(t), &(t), and &(t).

To develop the mathematical model the following assumptions were taken into account:
a) All ropes are treated as strings.

b) The elastic modulus EA of the ropes is considered constant.

c) The bending stiffness of all ropes is neglected.

d) No interactions between the ropes are accounted for in the mathematical model.

e) The elevator car, compensating sheave and counterweight are treated as concentrated

mass elements.
f) The elevator system does not affect the dynamics of the building.

g) Lateral damping of suspension and compensating ropes in all modes is equal to the first

lateral modal damping ratio.
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h) Longitudinal damping of the elevator car, compensating sheave, and counterweight are
considered with longitudinal damping ratios.

i) The Sy(t)= A\,sin[/i\,t) and S, (t) = A, sin(Ant) are the displacement applied by the
building at the machine room level in the lateral in plane and out of plane directions.
J)  The building displacements are considered as a cantilever beam.

K) Elastic Green strain measure of the i"" rope considered as equation (4.1).
& =U. +1(v- 2 LW 2) (4.1)
i ix "o\ Vix iX :

[) The constant g is gravity which is equal to 9.81 m/s2.

m) The coupling between the suspension and compensating ropes at the car side due to the
constraints at the elevator car by the springs ki and k2 in both lateral in plane and out of

plane directions are considered.
n) The elastic interface with the building at the counterweight side is neglected.

0) This is a stationary model, thus the elevator car is not subjected to an overall transport
motion. A typical scenario is when the elevator car is positioned at a given height and the
electromechanical brake is applied at the machine room level and the elevator car is

stationary.

4.2 Derivation of the mathematical model

Hamilton’s principle is used to derive the equations of motion, according to equation (3.17).
The total potential energy is given by equation (3.18). The Kinetic energy of the system is

expressed as follows

Q= Z Q (Ui Vi Wi ) dx; +Qu, ((UCR )t Vi (Lyit) W, (Ll,t))

+QM2 ((ch )t)+QM3 ((UCW )t)

O ey [

(4.2)

The kinetic energy density of the i*" rope are expressed as

o222

The kinetic energy of each mass are given as
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Qu, =%M1[£MJZ+[6UCR J2+[6W1(L1’t)ﬂ (4.4)

at at at
1. [(oug Y

QM2_5M2_£ p ]} (4.5)
1 [(aug, Y

Qu, _EMS_[TJ } (4.6)

Assuming that the constant energy accumulated into the system during the initial static
deflection is neglected, the elastic strain energy of the rope and the equivalent spring element
between elevator car and guide rails in the lateral directions is given by equations (4.7) (4.8),

respectively.

He = ijﬁie(uix ’Vix ’Wix )dXi (47)

I =17 [V, (L) |+ 178 [W (Lt | (4.8)

where

ﬁie :(Ti(xi)-i_%EAigijgi (4.9)
v 1 v\?

I :Z(Ejkl(vl(Ll,t)— f)') (4.10)
W l w 2

BW =2(Ejk2 (W, (L, t)- ) (4.11)

The mean quasi static rope tension is represented by T,(x ) and the rope strain measure is

given in terms of Green’s symmetric strain tensor represented in equation (4.1), where the

expression (), denotes partial derivatives with respect to x. The absolute lateral in plane and
out of plane displacements of the elevator car are represented as V,(L,t) and W, (L,,t),

respectively. The displacements of the spring attachment of the elevator car and the building

structure in lateral in plane and out of plane direction are represented as f,' and f.", defined
as f'(t)=y, A,sin(At) and f." (t) =y, A, sin(A,t) are derived further in the mathematical

model. This type of base excitation to the springs is due to the interaction between the guide
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rails and roller guides that are being excited by the building displacements according to
position of the elevator car in the shaft. The gravitational potential energy is given in terms of
the dynamic deflections as

ﬁig(ui)dxi_MlgUCR_MngCS_MSQUCW (4.12)

4
Hg:z

i=1

O ™

Potential Energy due to gravity of the i*" rope
ﬁig =-m,gU, (4.13)

Hamilton principle requires that any virtual displacement, arbitrary between two instants t,

and t,, vanishes at the end of the time interval, so that

AU, (%) =6V, (x,t) =W, (x,t)=0

for 0<x <L att,t, (4.14)
5UCR :éch :éUcw Zé\/l(Ll't)zé\Nl(Ll’t)z

Applying into (3.17) equations (4.2), (4.7), (4.8), and (4.12) the following equation result

4

ZT(& Q (Ui Vi Wi )= 1T,y (U;) = OTT,, (U, N, W, ) ), +
tf 5Qu, (Vae (L st) Wy (Ly.t) (Vg ), )+ 6Qu, ((Ues ), ) dt=0 (4.15)
*1 +6Qu, (Ugw ), )+ M, 98U +M,g8U +M,gaU,

51" (v 1(L1,t))—5HZ“ (W, (L.t))

where
6Q, = {a—qjaun +(aéi ]a\/it { Q }é\Nit (4.16)
au, N, oW,

_ a(QM1 aQM1 6QM1

S Cromy LB Coy e RN G o (U
_| v,

6Qu, _(5(U—cs)t §(Ues), (4.18)
_| D,

6Qu, —(a(ucw ) S(Uew), (4.19)
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ST, = [%}Juix +[%] oV, {%J W, (4.20)

anx aVix aVvix
oll,, =-m,goy, (4.21)
oIT!
OIT, =——K 5V, (L, t 4.22
K 8V1(L1,t) 1(L1 ) ( )
sz =2 sy, (L.t) (4.23)
AW (Lt) T

Integrating equation (4.16) in respect to t and x the following equation is derived

{0 {2222 2 o oz

and

B~ aQ oQ, oQ,
J&Qidt :J(%%(wipa—\%%(mp&ﬁ(m )jdt (4.25)

Can be written as
t, a— t;
[oQut= R su, j

1 ou,, . ot

(14
L ot\ v, v patlav

_ t, X —
+ ﬂéW —tJ' 0 8Q oW.dt
ow, Cob ot | oW,

1

(4.26)

According to equation (4.14) the terms in red in equation (4.26) are the virtual displacements

which are 0 when evaluated between t; and t. Thus, equation (4.26) can be rewritten as

equation (4.27).
o tala

ta
o5 o 15
o 9Qy, 2o 0Qy,
J(SQMldt:_-[a(a(UCR)t]&JCRdt jat(avn(Ll,t)]éV“(Ll’t)dt

]aw dt (4.27)

Similarly

(4.28)
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[oQy,dt=-| g X, j&ucsdt (4.29)

1 t
¢ t0[ 0Qy
5Q, dt=—[— i |8U,,, dt (4.30)
;[ M, ;!' a(UCW)t} CwW
; oIl " Y oa(en ori. 1" Yo(err
[ormax=| = sU, | - [ | == |oUdx +| —=6V, | —[—| == [oVdx,
0 anx 0 Oax anx ix 0 Oax aVix
(4.31)
) . )
gy | § 2201 sy
W, oo ox| oW,
tp ty 617\/
IéHZdt——j@V (LK t)évl(Ll,t)dt (4.32)
t t, Vit
ty Y t aHW
J§HKdt __! awl(lz’t)éWl(Ll,t)dt (4.33)

The boundary conditions are as follows:

V,(0,t)=W,(0,t) =&, (4.34)
U,(0,t) =V,(L,,t) =W,(L,,t) =V,(L,,t) =W,(L,,t)=U,(0,t) =0 (4.35)
U,(L,,t)=U,(0,t)=U, (4.36)
V,(L,t)=V, (0,t)=W,(L,,t)=W, (0,t)=¢, (4.37)
U,(L, t)=U,(L; t)=Uc (4.38)
V,(0,t)=W,(0,t) =V, (L, ,t)=W,(L,t)=¢& (4.39)
U,(0,t)=U,(L,,t)=Ug, (4.40)
V,(0,t)=W,(0,t)=¢& (4.41)

Applying into equation (4.15) equations (4.21), (4.27) to (4.41) the following equation is

obtained
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A e TR 4 R« P 1 S PV
Lot V(L)) vl Vo | V(L) B
- A dt=0
! .2 Qy, | a, Ol | oIy W, (L,.t)
ot W, (Lt) ) oW, | oW, | oW (L,t) |
| oE :
i _9 v | Oy, +h +M.g |0U
ot d(Ue), ) Uy, L x| o
L o[ &, o, | al,, Mg |ou..
i ot a(UCS)t aUZX‘X:LZ 0U,, x=Ly (4.42)
c A .
i _9 OEy, ]—OH“Q +% +M,g [8U,
ot 0(Ue), 5U4XLL4 Uy,

The virtual displacement 6U;,6V,,6W,,0U;,8Uc,0U,, 6V, (L;,t),0W, (L, t) are arbitrary

and the above equation can only be valid for all the values of the virtual displacement if

O[RQ |_afal, |_, (4.43)
atlav, ) oxl av,

Ol Q| _Of M | g0 (4.44)
atlou, | ox|au,

O[0Q |_ofdl |_g, (4.45)
atl ow, | ox| ow,

a - o V

o Qy, orl,, M| e _, (4.46)
Al oV, (Lt)) v oV, oVi(Lyt)

=0 (4.47)
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o O ol ol

O Qu |, ol ol M.,g =0 (4.48)
at| 0Ug), ) U, \XZH U, .

o 0 ol orl

o[ _Rm, 2 42 _M,g=0 (4.49)
t\0Ucs), ) sl Uyl

o Q all ol

g My |, e _ Ollg, ~M,g=0 (4.50)
ot 6(UCW )t ou,, x=L, Uy x=Ly

Substituting the equations (4.3) to (4.11) into equations (4.43) to (4.50) the stationary and
nonlinear equations of motion are derived. The equations (4.51) to (4.53) describe the
dynamics of the i rope in the elevator system, where i=1,2,3, and 4.

mV, —T.V, —EA (u +;(vix2 +WiX2)J V,

X

(4.51)
1 2 2
_TiVixx - EA (Uix +§(Vix +Wix )]Vixx =0
mlwltt TIXWIX EA (U ix +%(Vix2 +Wix2 )j Wix
' (4.52)
1 2 2
T|W|xx EA (U ix +§(Vix +Wix )jwixx =0
mU;, - T, —EA (Uix +%(Vix2 +W,* )} -mg=0 (4.53)

The equations (4.54) and (4.55) are the boundary conditions at x1=L; in the lateral in plane

and lateral out of plane direction for the elevator car.

le
X =l

JV2X|X2_O +2kV, (L, t) -2k, f’ =0
X, =L,

Wlx
X =Ly

JW2X|X2_0 + 2k W, (L, t) -2k, " =0
Xo=L,

X =L

MV, (L. t)+ (Tl(x) +EA (le + %(lez +W,, 2 )j
(4.54)

V+W ))

{T (X)+EA,|U

%=l

1 2 2
ltt Ll t +£T1(X)+EA1 U1x+ z(le +W1x )j

(4.55)
[T(x)+EA2(U2X+ (V" +W, ))
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The equations (4.56) to (4.58) are the boundary conditions at x;=L1 and x2=0, x>=L> and
x3=L3, x3=0, and x4=L4 in the longitudinal direction for the elevator car, compensating

sheave, and counterweight respectively.

1
M, (Ugq ), +To(L;) + EA (le +§(le2 +wlxz)j

. T (4.56)
~T,(0)- EA, (UZX + E(vzx2 +W, 2 )) ~M,g=0
x=0
1
M, (U ), +T,(L,) +EA, (UZX + E(VZX2 +W2X2)J
e (4.57)
1 2 2 _ _
+-|-3(|—3)"'E'A‘2 U3X+E(V3X +W3x ) Mzg—o
x=Lg
1
M, (U ), +Ta(L,) +EA (UM + E(V“XZ +W,2 )j
o (4.58)

~T,(0)- EA, (UBX Jr%(v?,x2 +W3X2)j ~M,g=0

x=0

From Figure 4.1 all tensions are derived by balance of forces which are represented by
equations (4.59) to (4.62).

Tl(xi):(M1+m1(L1—x)+m2L2+%jg (459)
Tz(xz):(%+m2(Lz—x2)jg (4.60)
T,(X,) =(%+ m, (L, _Xs)Jg (4.61)
T4(x4):(M3+ml(L4—x4)+m2L3+%jg (4.62)

The elevator system is excited by the displacements at the machine room level in the lateral in

plane and out of plane direction represented by equations (4.63) and (4.64).
S, = A sin(At) (4.63)
S. = A, sin(A) (4.64)
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The overall lateral in plane displacements of each rope are represented by equations (4.65) to
(4.68).

V(%) =V, (%, 1) + S, (t)(l+(y/1—1)fj (4.65)
W0%0=%WPU+QGW@@—E} (4.66)
V, (%, 1) =V, (%, 1) + S, (1), [1—%} (4.67)
WO%DZ%WMD+&C{WJQQ—%)EJ (4.68)

The overall lateral out of plane displacements of each rope are represented by equations (4.69)
to (4.72).

W, (x,,1) =vvl(x1,t)+sw(t)[1+(y/1—1)%j (4.69)
W, (X,,t) =W, (x,,t) +S,, (), (1—1‘—2) (4.70)
W, (%, 1) =W, (%, 1) +S,, (), (1-%) (4.71)
W, (x,,t) =VV4(X4,t)+SW(t)[y/5+(1//4 —%))L(—:j (4.72)

where V, (x,,t),W, (x,t) are the displacements of the rope relative to the configuration of

each rope when it is stretched by the structure motion. Furthermore, ¢1, ¢, ¢, s, and ¢s are
the deformations obtained from the shape function «#(z) of a cantilever beam which is
assumed to be related to the fundamental mode of the high rise building and is approximated
by a cubic polynomial representing the lateral displacements of the structure corresponding to
the top of the structure and to the position of the car and counterweight estimated by
equations (4.73) to (4.77).

(L) L)
1//1—3(1 hoJ 2(1 hoJ (4.73)
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b, b, )
o] ooy

(4.74)

(4.75)

(4.76)

(4.77)

The partial derivative with respect to t for the lateral in plane are shown in equations (4.78) to

(4.82).

Vig :\71tt - A/ﬂvz Sin(ﬂ\,t)— A/ﬂvz Sin(ﬂvt)[‘/jll_:lJ X, :\71tt —SY—SYx,
Vie (L) :\71(L1’t)n _l//lAvZ\/ZSin(ﬂvt) =\71(L1,t)n -S;

— . 174 . 7 v v
Vo =Vaq _l//zA/ﬂvz s|n(ﬂvt)+L—2A\/ﬂVZ Sm(ﬂvt)xz =Voq =S5 +5,%
2

Vi =V ~ VAL sinw)% A2 SN (A) X =V — 5§ + St

- . . Ve~ ¥ 7 v_ gV
Vi = Vi _'//5'0\1/1\/2 Sm(ﬂvt)_ '%/1\,2 Sln(%t)(%j Xy =Vyq — S5 —SgX,

4

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

The partial derivative with respect to x for the lateral in plane are shown in equations (4.83) to

(4.91).

le :\7lx +(W1T_1]Av Sin (//l\/t) :\71x - flv

2

V,, =V, + %jAvsin(ﬂVt)z\Ex—fzv

VSx :V3x - %JAV Sm(ﬂ\/t) :\73x - f3v

(4.83)

(4.84)

(4.85)
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V,, =V, —(MjAvsin(m) =V, - f) (4.86)

L,
V,(L,t) =V (L, t) +y, A sin(At) =V, (L, t) + £ (4.87)
Vo =V, (4.88)
Vo = Vo (4.89)
Vyo = Vo (4.90)
Vo =V (4.91)

Similarly, the lateral out of plane direction derivative with respect to x and t can be deducted.
Substituting equations (4.59) to (4.62) into equation (4.53) results in equation (4.92).

mU,, —EA (Uix +%(Vix2 "'Wix2 )j =0 (4.92)

X

Considering that the longitudinal natural frequencies of the ropes are much higher than the
lateral natural frequencies of the ropes, thus the inertia in the longitudinal direction can be

neglected, resulting in equation (4.93).

1 2 2
EA (uix+§(vix +W, )j =0 (4.93)

X

The internal terms inside the parenthesis is represented by ei(t), which is shown in equation
(4.94)

1., 2 2
& (t):Uix +§(Vix +W,, ) (4.94)

Substituting equation (4.94) into equation (4.51) to (4.58) gives

MV, + Ty Vi —TVi —EAE, (t )Vixx =0 (4.99)
mivvitt +TixVVix _Tlvlex - EAei (t)WIXX =0 (496)

M1\71 ( L11t)n - Mls;l +Tl(l-l)\71x _Tl(Ll) flv +EAg (t)\71x —EAg (t) flv

_ _ - (4.97)
—T,(0\V,, +T,(0) f, + EAe, (t)V,, —EAg, (t) fy +2kV, (L,,t)=0

MW, ( L,.t), —M,S; +T (LW, —T,(L,) f," + EAe, (t)W,, — EAg, (t) f."

4.98
—T,(0\W,, +T,(0) f," + EA, (t)W,, —EAg, (t) f," + 2kW, (L,,t) =0 (.99
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Ml(UCR )tt +T,(L,)+EAeg (t)—TZ(O)— EAe, (t)— M,g=0 (4.99)
M, (Us), +To(L,) +EAge, (1) +T,(L;) + EAe, (t)-M,g =0 (4.100)
M, (Uey ), + T (L,) + EAg, (t)-T,(0)— EAg, (t)-M,g =0 (4.101)
The boundary conditions at x, =0are V,(0,t)=W,(0,t)=0, at x, =L, or x,=0 are

Vi (L,t)=V,(0,t) and W, (L,,t)=W,(0,t), and at x, =L, are V,(L,,t)=W,(L,,t)=0. The

linear natural modes of the lateral in plane and lateral out of plane motion for the suspension
rope at the car side (rope 1) are given as equations (4.102) and (4.103).

B (X)) =Sin( BL"X, ) (4.102)
a, (%) =sin(Bix,) (4.103)

The linear natural modes of the lateral in plane and lateral out of plane motion for the
compensating rope at the car side (rope 2) are represented by equations (4.104) and (4.105).

SlnﬂLlnLICOSﬂLm

SIr.]ﬂLm

¢,.(X, )=sin B-"L, cos B, "x, 2.5in B,"X, (4.104)

_sin gL cos B L,
sin B ML,

a,, (X, ) =sin B, cos B X, sin By, (4.105)

The derivation of the linear natural modes of rope 1 and 2 are analysed in Appendix D. Where

L g gt and Bt are the eigenvalues in lateral in plane and lateral out of plane

direction for the suspension and compensating ropes at the car side, respectively. The natural
frequency for the lateral in plane direction of both ropes can be obtained from equation

(4.106), which is derived in Appendix D and in Appendix E are the orthogonality of modes.

el
ol
il
wirtelfE )

(4.106)
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The natural frequency for the lateral out of plane direction of both ropes can be obtained from
equation (4.107), which is derived in Appendix D and in Appendix E are the orthogonality of

modes.

e (o
{om Tl

el
i Eon

The eigenvalues for the lateral in plane and out of plane direction for the suspension and

(4.107)

compensating ropes at the counterweight side can be determined from equations (4.108) to
(4.111).

i in [M
1an — a)[l].ln 1 (4108)
Tl
. . ’m
erI]n — a)r:_m T_2 (4109)
2
m
1I_nout — a)':_OUt 1 (4110)
Tl
m
Lout _ gytout [Ty (4.111)
T2

Similarly, the boundary conditions at x,=0, x,=L;, x,=0, and x,=L, are

U, (0:) =W, (0.) =V, (Ly £) =W, (Ly £) =V, (L, ) =W, (L.t) =V, (0.4) =W, (0.t) =0.  The

linear natural modes of the lateral in plane and lateral out of plane motion are given as

oy =@, = sin(r:_—” XJ where r:_—” are the eigenvalues in lateral in plane and lateral out of plane
direction for the suspension and compensating rope at the counterweight side, respectively.
The natural frequencies in the lateral in plane and out of plane direction are determined by

equation (4.112) for ropes i=3,4.
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) n T
len :a)_Lout :_ﬂ. i (4112)
m.

in in LI
The equations of motion in (4.51) to (4.58) can be discretised by applying the Galerkin
method. In this procedure the dynamic response of the system is approximated in the lateral in

plane and lateral out of plane directions by the following expansions

G (%.0) = 2 4, (x) 0 (4.113)
W, (X1) = 3 i (%) 6, () (4.114)

respectively, where q,,,c,, represent the generalized (modal) coordinates. For the suspension
and compensating ropes at the car side the time dependent functions are gin(t)=02n(t) due to
the boundary conditions in (4.37). Substituting expansions (4.113) and (4.114) into equation
(4.94) which can be expanded into equations (4.115) to (4.118).

N N v N fl" ?
(0= 135 6, ()0, (0 S (sin( ) o L)

Lo 2L L 2 (4.115)
+iiZN:G?L°“tc (t)c (t)+f1WZN:c (t)sm( L°“‘L1)+(flw)
2L4EE T T L 5= 2
U U 1 N O 2Li Li (fzv)z
ez(t) CSL = +2L ZZGjpquJ q2p ZqZJ Sm('B L ) 2
2 2 j=1 p=l L, = , (4.116)
1 b 2Lout f2W N out (fzw)
+_22Gm CZJ(t)CZp(t)+_ZC21( )Sm(ﬂZ L )
A NEE 2 =1 2

e, (t) :Mﬁi[j—”jz ¢ (t)+ () +%Z(j_ﬂj2 ¢ (t)+ﬂ (4.117)

e4(t):Uﬂ+EZN:[J”J2qu ( )+1i(wj 2 (f4w)2 (4.118)

L4 4 j=l L4 4 i

Where G",G*",G™" and G} are shown in Appendix F.

i !

Substituting expansions (4.113) and (4.114) into (4.95) to (4.101) applying the orthogonality
conditions with respect to the linear modes a system of nonlinear ordinary differential

equations results as follows.
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d,, (1) + 28"l 6, (0) + (07)' q1,<t)+2klt:?1 Oy (8) + KU g + kiU

N N
+Z lerInnZCln (t) + Z Z Dllr_rllnlqu (t qln + z Z Dll;'lnn2 qln )
=1

n=l j=1 n=1

N N N NN _ (4.119)
+2.2.Din'ey, )+ 202 2 Rl 6y (1) 6, (1) 6o (1)

n=1 j=1 n=1 j=1 p=1

N N N y ]
+ZZ Z Rzlrlr?Jp (t) G (t) +F" =0

n=l j=1 p=1

N
Clr (t) + 2éllLrOUI a)l%'?mclr (t) + (a)ll;OUt ) Clr (t) + Z kl%‘zuucln (t) + kﬁﬂumu + lerﬁUMU
N N

+Z kll_rzmqun (t) + Z z Dl&r?uuqu t) C + Z Z Dll;?]UtZ t)

. T (4.120)
+2° 2 Dy (1) o, () + 25D DRI 0 (t) oy (1) €y ()

n=l j=1 n=1 j=1 p=1

N N N
+ZZ R2im ¢ (t)ey, (t)ey, (1) +F™ =0

n=1 j=1 p=1
and for i=3,4
4,0 +20" 0 6,0 + (") q, (1) + Zk.t;” G (1)

N N N N N N i ' (4.121)
+ Z Z Rlll;lnl]p qlJ qm + Z Z Z R2|Lrlnr;p qln ) + Fier = O

n=1 j=1 p=1 n=l j=1 p=1
6 0+ 260, O+(@)™) ¢, (1) Zk.t;’”“cm(t)

N N N N N N (4.122)
2,2, 2 Rl i (1) (1)+ 2,2, 2 R2sci ()¢ (1) +F, ™ =0

n=1 j=1 p=1 n=1l j=1 p=1

The coefficients &7, &, £, £ represent the modal damping ratios for the i rope in the

lateral in plane and out of plane direction.

M, (Ugg), + KLU g (1) +k2"U (1) stulqln Zk4“1 i (

N N N N (4'123)
+> 3 RISG, (t)ay, (1) + D> R2%c, o (t)+ fr =0
j=1 p=1 j=1 p=1
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M, (Ugs ), +KL1?Ugg (1) +k2"U (1) + k32U, (t)

N N
+Zk4“2qln st“z (1 +ZZR1]pqu ), (1) (4.124)
j=1 p=1
S S R2%c, (t)e,, (1) + Y RIZE (1) ZR4“2 ¢ (t)+ fy =0
j=1 p=1 n=1

M; (Uey ), +K1%Us (1) +k2%U g, (t) Z RL:*q5 (t)

+ZN: R2:3¢Z (t)+ZN:R3“3q4n ZR4“3 c w=0
n=1 n=1

The equations of motion (4.123) to (4.125) for the elevator car, compensating sheave, and

(4.125)

counterweight are transformed into the modal coordinates using the transformation U = [Y]§

where U =[Ug, Ug Ugy] and S=[Se Sc " is a vector of modal-coordinates

CW]
corresponding to the system comprising the car, compensating sheave, and counterweight,
respectively. If [Y] is the mass-normalized mode shape matrix, the following set of equations
describing the vertical response of the car, compensating sheave and counterweight in terms

of the modal parameters represented as (4.126) to (4.128)

Ser (1) 28 ca02aScr (1) + @B Sca (1) +(Y )T (6,+6,)+(Y" )T (F+7)=0 (4.126)
Sos (£)+ 26 505 Scs (1) + @B Scs (1) +(Y )T (6,+6,)+(Y"? )T (F+7)=0 (4.127)
S (8)+ 260 0 S (1) @B S (1) +(V) (6,46,)+(Y) (F+77)=0 (4.128)

where o, 0,0, represent the longitudinal natural frequencies of the elevator car,

CR?™’Cs?
compensating sheave and counterweight, which can be estimated by finding the eigenvalues
from the stiffness matrix represented in (4.129) and mass matrix represented in (4.130). The

coefficients ¢, ¢, <¢., represent the longitudinal modal damping ration of the elevator car,

compensating sheave and counterweight.

kil k2"t 0
k1UZ  k2u2 k32 (4.129)
0 k1“3 k2w
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M 0 O
0 M, O (4.130)
0 0 My

The coefficients ,,5,,F,7 are shown in equations (4.131) to (4.134).

N
> k3, (1)
n=1
N
G, =| D kdla, (t) (4.131)
n=1
0
. _
k4'c,
N
G, =| > k5n’c, (t) (4.132)
n=1
0
~ fCR
F=| fe (4.133)
fCW
Mer
ﬁ: Mcs (4-134)
New

The coefficients 7.,,7..7., are the quadratic terms from the equations of motion of the
elevator car, compensating sheave, counterweight represented in equations (4.135) to (4.137).

N N

ZZ RIpa,; (t)ay, (t)+ D > R2, 5(1) (4.135)
j=1 p=1 j=1 p=1
N N "2 N N u2
:ZZRl q1J qlp +ZZR2 )
oo e (4.136)
+> R3320, () Z R4%¢2
n=1
:zN:R1“3q3n ZR2“3<:§n (t)+ZN:R3“3q4n ZR4”3 c; (4.137)
n=1 n=1
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Similarly in equations (4.119) and (4.120) the coefficients of the elevator car, compensating

sheave and counterweight are transformed and rewritten as equations (4.138) and (4.139)

P in in in 2 in
Gy, (1) + 283" qlr(t)+(a)ll_r ) qlr(t)+zkll_rnlqln (t)
+5Y0s . +5"Y s +5Y s

N N
+Zkﬁ'n”zc (t)+ZZ Didy; (1) o, (1) + DD Diey (t) oy, (1)

n=1 j=1 n=1l j=1
N N J N N N J
+2 2D ey ()€ (1) + 222 > R 0 (1) 0 (1) i (1)
n=l j=1 n=1 j=1 p=1
N N N _
+2, 2, 2 R, (1), (1), (1) + R =0

n=l j=1 p=1

¢, (0 +28, " oy "¢, (1) + (a)lLroUt ) ¢, (t) + Z Kin' Gy, (1)

+5uy s 45y s 4 gy Ps

N N N N
D K, 0+ 3 2Dl (e, (1)+ 33 D, (16, (1)
n= n=1 j=1 n=1 j=1

N N Lout3 N N N Lout
202D (1) g (1) + 230 3 RL o (1), (1) (1)

n=l j=1 n=1 j=1 p=1

N N N
+2, 2.2 R ey (1), (1) ey, (1) + R =0

n=1 j=1 p=1

where 5" and " are represented by
O—_[IJin _ I:k1I:—n3 k1I:n4 O]
O_'JOUt _ I:klltr)ut3 klltrjut4 O]

All coefficients are shown in Appendix F.

4.3 Simulation Results

(4.138)

(4.139)

(4.140)

(4.141)

Three case study results are shown to verify the proposed mathematical model of a stationary

elevator system with a comparison on each case study with a high and low stiffness for ki and

ka.

The parameters taken to analyse the dynamic performance of an elevator system in the three

case studies consist of six (n, =6) steel wire suspension ropes and six (n, =6) steel wire

compensating ropes, both suspension and compensating ropes have a mass of m, =m,

=215
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kg/m with a constant elastic modulus of EA = EA, =95276193 N. The modal damping ratios

for the ropes are assumed as 1% across all modes and 30% for the lumped mass of the
elevator car, compensating sheave and counterweight. The height measured from the ground

floor level to the centre of the traction sheave is h, = 248 m, travel height h,,, =236.00 m, the

car mass with full load is M, =8600Kkg, the mass of the compensating sheave is M, =8000
kg, and the mass of the counterweight is M, =7800kg. The height measured from the bottom
landing level to the centre of the compensating sheave is given as b, =8.30 m and the height
from centre of the traction sheave to the centre of the diverter pulley is b, =0.50 m. Assuming

that the high rise building has a circular cross section, the fundamental natural frequency is

Q, =1.885rad/s (0.30 Hz) in the lateral in plane direction and in the lateral out of plane
direction is Q,=1.5708 rad/s (0.25 Hz). Assuming, the high rise building is excited by wind

harmonically, the displacement at the machine room level in the lateral in plane direction is
A, =0.90m and in the lateral out of plane direction is A, = 0.35m. From the Galerkin method
the nonlinear ordinary differential equations are given for N number of modes and the ODE45
solver is used in MATLAB. For the simulation results presented in this Chapter, the number
of modes taken into account are N=4, considered for all simulations of Chapter 4. The
stiffness of the springs that are connected to the elevator car in the lateral in plane direction

and in the lateral out of plane direction is of k, =k, =80000 N/m considered as high spring
stiffness and k, =k, =30000 N/m considered as low spring stiffness. The simulation is started

from the initial instant t, = 0s until t, =200s.

4.3.1 Frequency Analysis

The variation of frequency in the lateral direction of the car, suspension and compensating
ropes at the car side due to different positions of the elevator car along the travel height is

determined with the eigenvalues of equation (4.142).
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__(Ml +mL, +m,L, + &j gJ.OLl i (X, (X)dx

(M +m,L, +—= ]QQAL)%AL)

/ mtin (4.142)

1rr

(e | 2L~ [+ B2 ol . 00 (00

(m L + )g¢2r(0)¢1r(|—)

mya [ xe (0, (X)dx+mg [ * g, ()i, ()X
+m,g [ X8, (0, (9 + g [ 7 6, (X0, (X)0x |

The variation of frequency corresponding to all lateral modes of the elevator car, suspension,
and compensating ropes at the car side according to the position of the elevator car in the
hoistway measured from the bottom landing level are shown in Figure 4.2, with
k, =k, =80000 N/m.

Variation of Frequency with the position of the car

Frequency (Hz)

0 50 100 150 200
Position of the elevator car (m)

Figure 4.2 Variation of frequency with the position of the elevator car (car side)

In Figure 4.2 the solid blue, orange, yellow, purple line are the variation of frequency of the
first four lateral in plane natural frequencies at the car side of the elevator car, suspension and
compensating ropes. The dashed magenta and black line are the fundamental natural
frequency of the suspension and compensating ropes when the lateral stiffness of the elevator

car is neglected according to the change of position of the elevator car, calculated using
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equations (4.143) and (4.144). The dashed red and blue lines are the excitation of the building
structure in the lateral in plane and out of plane direction with 0.30 Hz and 0.25 Hz,
respectively. In Figure 4.2 can be seen that the suspension ropes will be excited at the
fundamental natural frequency and compensating ropes will be excited at twice the
fundamental natural frequency in the lateral in plane direction due to the frequency of
excitation of the building structure in the lateral in plane direction of 0.30 Hz. For the lateral
out of plane direction the suspension and compensating ropes will be excited at the
fundamental natural frequency due to the frequency of excitation of the building structure in
the lateral out of plane direction of 0.25 Hz.

i o
;| MrmL e m L =2 (g [ (0, (e |
(@) ( - 2 ) k /(m, j01¢1i(xl)dx1) (4.143)
| mg [ X (04, ()b myg [ i, (9, ()
i M L
s |~ Ml 22 o ] g (04, (X)X L
(anr) = [ 2 j k /(mzjozgézzr(xz)dxz) (4.144)
+m,0 [ X5, (0, (9 + Mg [ 5, (), (¥)x

In Figure 4.2 the curve veering phenomena is observed which is when two eigenvalues
approach each other closely and suddenly veer away again, each one taking on the trajectory
of the other. The curve veering phenomena is also known as mode localization, according to
Giannini and Sestieri (2015) investigated curve veering with a two degrees of freedom system
to analysed the adverse conditions in coupling between elastic, inertial or gyroscopic. Du Bois
et al. (2011) and Bendiksen (2000) defined the veering phenomena as smooth change of
normal parametric variation of two modes approaching each other but, instead of crossing,
they veer away and finally diverge. The curve veering phenomena is the effect caused by
modal interaction, a group of frequencies joining together and mode shape localization. The
importance of eigenvalue veering and mode shape localization was demonstrated in a

structural buckling case in Pierre and Plaut (1989).

The point where both the fundamental natural frequency of the suspension and compensating
ropes match each other occur when the elevator car is positioned at 84.0 m from the bottom

landing level with a frequency of 0.317 Hz.
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The effect on the variation of frequency and veering phenomena when using high and low
stiffness parameter is shown in Figure 4.3. In Figure 4.3 the solid blue, orange, yellow, and
purple line for the first four natural frequencies in the lateral direction at the car side when
using a stiffness parameter of k1=80 kN/m considered as high stiffness and the dashed green,
cyan, red, and blue lines represent the first four natural frequencies in the lateral direction at
the car side when using a stiffness parameter of ki=30kN/m considered as low stiffness
parameter. The dashed red and blue lines are the excitation of the building structure in the
lateral in plane and out of plane direction with 0.30 Hz and 0.25 Hz, respectively.

It should be noted as the stiffness parameter is lowered the variation of frequency becomes
smooth and the sharp peak for the fundamental natural frequency is reduced. The point where
both the fundamental natural frequency of the suspension and compensating ropes match each
other was reduced from a frequency of 0.317 Hz to 0.305 Hz.

; Variation of Frequency with the position of the car

\
\

1 1
1

09

Frequency (Hz)

0 50 100 150 200
Position of the elevator car (m)

Figure 4.3 Variation of frequency with the position of the elevator car (car side) when
comparing stiffness parameter of k;=80 kN/m and ki=30kN/m

Thus, the three case studies that will be presented consist of positioning the elevator car at the
bottom landing level as case study one, when the elevator car is positioned at the veering
point at a height of 84.0 m from the bottom landing level as case study two, and when the
elevator car is positioned at the top landing level at a height of 236.0 m from the bottom

landing level as case study three.
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Similarly, the variation of the compensating and suspension ropes at the counterweight side
and the variation of the longitudinal natural frequencies of the elevator car, compensating
sheave, and counterweight according to the position of the car in the hoistway measured from
the bottom landing level are shown in Figure 4.4 and Figure 4.5. The solid blue, orange,
yellow, purple line represent the first four natural frequencies of the compensating and
suspension ropes at the counterweight side, calculated using equations (4.145) and (4.146).
The dashed green, magenta, and black lines represent the change of frequency in the
longitudinal direction of the elevator car, compensating sheave, and counterweight according
to the position of the elevator car, estimated by finding the eigenvalues from the stiffness
matrix represented in (4.129) and mass matrix represented in (4.130). The dashed red and
blue lines represent the frequency of excitation from the building structure at 0.30 Hz and
0.25 Hz in the lateral in plane and out of plane direction. The compensating rope at the
counterweight side will be excited at twice the fundamental natural frequency due to the
frequency of excitation of the building structure. Similarly, the suspension ropes at the
counterweight side will be excited at higher than the fundamental natural frequency due to the
frequency of excitation of the building structure.

Variation of Frequency with the position of the car (compensating rope - counterweight side)
5 \ ,

Frequency (Hz)

0 50 100 150 200
Position of the car (m)

Figure 4.4 Variation of the frequency according to the position of the car (compensating ropes
at the counterweight side)
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Variation of Frequency with the position of the car (suspension rope - counterweight side)

Frequency (Hz)

0 50 100 150 200
Position of the car (m)

Figure 4.5 Variation of the frequency according to the position of the car (suspension ropes at
the counterweight side)

2 Sr( ) Sr( )d
(wsr) = (mLﬁ—j 5[, 95,00, (0 + T2 I (4.145)
o |+ X, (X)gh, (X)lx

(a)jr‘f)z (M +mL, +m,L, +—2 j Lmj " (X)d,, (X)dx

(4.146)

+

(11 0 00, 000k [ 1 (08, (000K

1
Lin
m4rr

4.3.2 Mode shapes

The mode shapes corresponding to the vertical vibrations of the car, compensating sheave and
counterweight are shown in Figure 4.6 (a), (b) and (c), respectively for case study one. In the
first mode (1.074 Hz) the elevator car and compensating sheave have similar displacements
and are in phase than the counterweight. The second mode (5.3085 Hz) is the displacements
of the elevator car and compensating sheave are in phase and the counterweight is out of
phase. In the third mode (8.4475 Hz) the elevator car, compensating sheave, and

counterweight motions are all out of phase.
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Figure 4.6 The mode shape displacements of the car, compensating sheave and counterweight

for case study one

The mode shapes corresponding to the vertical vibrations of the car, compensating sheave and

counterweight are shown in Figure 4.7 (a), (b) and (c), respectively for case study two. In the

first mode (1.147 Hz) the elevator car and compensating sheave have greater displacements

than the counterweight and they are in phase. The second mode (2.2491 Hz) the

displacements of the elevator car, compensating sheave, and counterweight are all out of

phase. In the third mode (2.9492 Hz) the elevator car and counterweight motions are in phase

and the compensating sheave is out of phase.
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Figure 4.7 The mode shape displacements of the car, compensating sheave and counterweight

for case study two
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The mode shapes corresponding to the vertical vibrations of the car, compensating sheave and
counterweight are shown in Figure 4.8 (a), (b) and (c), respectively for case study three. In the
first mode (1.1007 Hz) the compensating sheave and counterweight are in phase and the
elevator car is out of phase. The second mode (4.9549 Hz) the displacements of the
compensating sheave and counterweight are in phase. The displacements of the elevator car
are out of phase. In the third mode (8.6533 Hz) the elevator car, compensating sheave and
counterweight motions are all out of phase.
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Figure 4.8 The mode shape displacements of the car, compensating sheave and counterweight
for case study three

The lateral mode shapes of the system at the car side composed of the suspension and
compensating rope and the elevator car when the car is at the bottom landing level as in case
study one where the elevator car is positioned at the bottom landing level is shown in Figure
4.9 comparing stiffness parameters of ki=80 kN/m and ki=30 kN/m. The solid and dashed
line represent the 1% and 2" mode shapes of the system at the car side, where the blue and red
line represent the suspension and compensating ropes and the connection point of the ropes is
the elevator car considered as a lumped mass. The small linewidth represent the mode shapes
calculated with a stiffness parameter of k;=80 kN/m and the bigger linewidth represent the
mode shapes calculated with a stiffness parameter of ki=30kN/m. The mode shapes can be
determined with equations (4.102) and (4.104).
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The mode shape of the compensating rope is linear due to the short length of the
compensating rope. The mode shape function is scaled so that the maximum amplitude is 1.
The effect of having a low stiffness parameter would increase the amplitude in the lateral
direction for the elevator car.

1st and 2nd Mode shape at the car side
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Figure 4.9 1% and 2"Y mode shapes of the system at the car side with different stiffness
parameters as ki=80 kKN/m and ki=30kN/m

The lateral mode shapes of the system at the car side composed of the suspension and
compensating rope and the elevator car when the car is positioned at 84.0 m from the bottom
landing level as in case study two is shown in Figure 4.10 comparing stiffness parameters of
ki=80 kN/m and ki=30 kN/m. The elevator car is positioned at 84.0 m from the bottom
landing level at the veering point where the fundamental natural frequencies of the suspension
and compensating ropes match. The solid and dashed line represent the 1% and 2" mode
shapes of the system at the car side, where the blue and red line represent the suspension and
compensating ropes and the connection between the ropes is the elevator car considered as a

lumped mass. The small linewidth represent the mode shapes calculated with a stiffness
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parameter of ky=80 kN/m and the bigger linewidth represent the mode shapes calculated with
a stiffness parameter of ki=30kN/m. The mode shapes can be determined with equations
(4.102) and (4.104).

1st and 2nd Mode shape at the car side
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Figure 4.10 1st and 2nd mode shapes of the system at the car side with different stiffness
parameters as ki=80 kN/m and k:=30kN/m for case study two

Similarly, the mode shapes for case study three when the car is positioned at the top landing
level and the mode shapes for the three case studies in the lateral out of plane direction can be
deducted.

In Figure 4.11 the 1% and 2" mode shapes of the compensating ropes at the counterweight
side for case study one are represented by a solid and dashed blue line, respectively. The
mode shapes of the compensating rope at the counterweight side are scaled to show the

maximum amplitude as 1. Similarly, the mode shapes for case studies two and three can be

determined by using o;, = ¢, = sin[nr” XJ.
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Figure 4.11 1st and 2nd mode shapes of the compensating rope at the counterweight side for

case study one

4.3.3 Response of the ropes

The behaviour of all ropes of the elevator system are obtained from the mathematical model.
The response of the compensating ropes at the car side for case study one, two, and three are
shown in Figure 4.12, Figure 4.13, and Figure 4.14 comparing a high stiffness parameter of
ki=k>=80KkN/m represented by a blue line and a low stiffness parameter of ki=k,=30kN/m
represented by a red line. The response of the compensating rope at the car side in the lateral
in plane direction is obtained from equation (4.66) and in the lateral out of plane direction is
obtained from equation (4.70). The response of the compensating ropes in the lateral direction
at the car side is higher due to the effect of using a low spring parameter in the lateral
direction of the elevator car. In case study one the elevator car is positioned at the bottom
landing level, thus the compensating ropes at the car side have small displacements in the

lateral directions when compared with the other two case studies.
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o 15(‘9 Displacement compensating rope at the car side at mid span length Lateral In-plane direction
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Figure 4.12 The mid span length displacements of the compensating rope at the car side with

respect to time (a) Lateral in plane direction (b) Lateral out of plane direction for case study

one comparing k1=k2=80kN/m represented as blue line and k1=k2=30kN/m represented as
red line

(a) Displacement compensating rope at the car side at mid span length Lateral In-plane direction
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(b) Displacement compensating rope at the car side at mid span length Lateral out of plane direction
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Figure 4.13 The mid span length displacements of the compensating rope at the car side with
respect to time (a) Lateral in plane direction (b) Lateral out of plane direction for case study
two comparing ki=k>=80kN/m represented as blue line and ki=k,=30kN/m represented as red
line
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4 (a) Displacement compensating rope at the car side at mid span length Lateral In-plane direction
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Figure 4.14 The mid span length displacements of the compensating rope at the car side with

respect to time (a) Lateral in plane direction (b) Lateral out of plane direction for case study

three comparing ki=k>=80kN/m represented as blue line and ki=k>=30kN/m represented as
red line

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span
of 100.0 seconds — 180.0 seconds for case study one are shown in Figure 4.15 (a) and (b),
respectively. It is evident that the dominant frequencies are 0.30 Hz and 0.25 Hz which is the
frequencies in which the building structure is exciting the ropes in the lateral in plane and out
of plane directions shown in Figure 4.15 (a) and (b). The frequencies of 0.30 Hz and 0.25 Hz

from the lateral in plane and out of plane directions are coming from the parametric terms

located in the lateral in plane and out of plane equations in the stiffness coefficients of K™

1rn

and K> from equations (4.119) and (4.120). This parametric excitation is coming from the

1rn

kinematic forcing terms that are exciting the ropes at the machine room level. Due to the short
length of the ropes no interaction between the lateral in plane and out of plane directions is

taking place.
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(a) Frequency of compensating rope at the car side in Lateral in plane (100s - 180s)
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Figure 4.15 The FFT frequency spectrum of the compensating rope in the lateral in plane
direction between 100 seconds and 180 seconds (a) Lateral in plane direction (b) Lateral out
of plane direction for case study one

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span
of 140.0 seconds — 180.0 seconds for case study three are shown in Figure 4.16 (a) and (b),
respectively. It is evident that the dominant frequency is 0.30 Hz which is the frequency in
which the building structure is exciting the ropes in the lateral in plane direction is shown in
Figure 4.16 (a) and (b). In the lateral out of plane direction the second predominant frequency
is 0.25 Hz which is the lateral out of plane excitation frequency of the building structure.
Thus, 1:1 autoparametric interaction is taking place between the lateral in plane and out of
plane directions, through the quadratic and cubic nonlinear terms of equations (4.138) and

(4.139) from coefficients DS"?,R2;" D" RL* where the coupling between the lateral in

irn ! 1mjp? —1rn ! mjp

plane and out of plane modes occur.
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(a) Frequency of compensating rope at the car side in Lateral in plane (140s - 180s)
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Figure 4.16 The FFT frequency spectrum of the compensating rope in the lateral in plane
direction between 140 seconds and 180 seconds (a) Lateral in plane direction (b) Lateral out
of plane direction for case study three

For case study two the elevator car is positioned at the veering point where the fundamental
natural frequencies of the suspension and compensating ropes match and are excited at the
fundamental natural frequency in the lateral in plane direction by the building structure. Thus,
the response of the suspension ropes at the car side will be showing high displacements as

shown in Figure 4.17.

0 (a) Displacement suspension rope at the car side at mid span length Lateral In-plane direction
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Figure 4.17 The displacements of the suspension rope at the mid span length at the car side
with respect to time (a) Lateral in plane direction (b) Lateral out of plane direction for case
study two comparing ki=k2=80kN/m represented as blue line and ki=k,=30kN/m represented
as red line
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The whirling motions at the mid span length of the compensating ropes at the car side for case
studies one, two, and three are shown in Figure 4.18 with ki=k>=80kN/m using the total time
span. In Figure 4.18 (a) the displacements of the rope in both directions are small due to the
short length of the rope in case study one. In Figure 4.18 (b) and (c) the compensating rope at
the car side is showing the whirling motion. Similarly the whirling motion of the

compensating ropes at the car side with ki=ko=30kN/m can be obtained.

(a} Displ t comp ting rope at the car side (CS1) (lz))SDisplacement compensating rope at the car side (CS2)
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(c) Pisplacement compensating rope at the car side (CS3)
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Figure 4.18 Whirling motions of the compensating ropes at the car side for (a) case study one
(b) case study two (c) case study three at the mid span length of the rope with ki=k,=80kN/m

In Figure 4.19 and Figure 4.20 show the maximum displacements of the compensating ropes
at the car side in the lateral in plane and out of plane direction, compared with a stiffness
parameter of ki=k,=80kN/m represented by a dashed blue line and ki=k,=30kN/m
represented by a dashed red line. The compensating rope length is measured from center of
the compensating sheave to the elevator car considered as lumped mass where the height is
not considered according to the assumption made at the beginning. In Figure 4.19 and Figure
4.20 the shapes of the ropes display the second mode shape due the excitation frequency of
the building in the lateral in plane and out of plane direction is exciting the rope at twice the

fundamental natural frequency of the rope as it can be seen in Figure 4.2.
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Figure 4.19 Behaviour of the compensating rope at the car side in the lateral in plane direction

for case study three comparing ki=k>=80kN/m represented as dashed blue line and
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k1=k>=30kN/m represented as dashed red line
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Figure 4.20 Behaviour of the compensating rope at the car side in the lateral out of plane
direction for case study three comparing ki=k.=80kN/m represented as dashed blue line and

k1=ko,=30kN/m represented as dashed red line

The response of the suspension ropes at the car side and counterweight side and the

compensating ropes at the counterweight side can be obtained, similar figures can be

obtained.
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4.3.4 Lateral response of the elevator car

The lateral in plane and out of plane displacements of the elevator car are shown in Figure
4.21, Figure 4.22, and Figure 4.23 corresponding to the three case studies, compared with a
stiffness parameter of ki=k>=80kN/m represented by a blue line and ki=k>=30kN/m
represented by a red line. The maximum displacement of the elevator car in the lateral in
plane and out of plane direction is in case study two shown in Figure 4.22 with a displacement
in the lateral in plane of 0.75 m and in the lateral out of plane of 0.20 m. Due to the influence
of the lateral in plane and out of plane displacements of the suspension and compensating
ropes as shown in Figure 4.13 and Figure 4.17 at the mid span length of the rope for the
compensating and suspension ropes at the car side. As the elevator car is positioned at the
veering point where the fundamental natural frequencies of the suspension and compensating
ropes match as shown in Figure 4.2. The lateral displacements of the mass are increased when

a low spring parameter is used compared with a high stiffness parameter.

! Elevator car displacements relative to the building structure
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Figure 4.21 Lateral displacements of the elevator car relative to the building structure in the
lateral in plane and out of plane direction for case study one comparing stiffness parameters
of ki=ko=80kN/m represented as blue line and ki=k>=30kN/m represented as red line

112



tor car displacements re
T T

e
=90t

tive to the building structu
T T

0 100 00
t(s)
0.4 T
_02F
2 of
=
-0.2
-0.4 Il Il
0 20 40 60 80 100 120 140 160 180 200
t(s)

Figure 4.22 Lateral displacements of the elevator car relative to the building structure in the
lateral in plane and out of plane direction for case study two comparing stiffness parameters
of ki=k>=80kN/m represented as blue line and ki=k>=30kN/m represented as red line
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Figure 4.23 Lateral displacements of the elevator car relative to the building structure in the

lateral in plane and out of plane direction for case study three comparing stiffness parameters
of ki=ko.=80kN/m represented as blue line and ki=k>=30kN/m represented as red line
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4.3.5 Longitudinal response of the elevator car, compensating sheave, and

counterweight

The longitudinal displacements of the elevator car, compensating sheave, and counterweight
for case studies one, two, and three are shown in Figure 4.24, Figure 4.25, and Figure 4.26
compared when using a stiffness parameters of ki=k>=80kN/m represented as blue line and
ki=ko=30kN/m represented as red line. When the elevator car is positioned at the bottom
landing level and at the top landing level the longitudinal displacements of the elevator car,
compensating sheave, counterweight the displacements when using high stiffness and low
stiffness parameters are the same as in case studies one and three shown in Figure 4.24 and
Figure 4.26. The highest displacements of the elevator car, compensating sheave, and
counterweight are when the elevator car is at the veering point where the fundamental natural
frequencies of the suspension and compensating ropes match as in case study two shown in
Figure 4.25.
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Figure 4.24 Longitudinal displacements of (a) elevator car (b) compensating sheave (c)
counterweight for case study one when using a stiffness parameters of ki=k,=80kN/m
represented as blue line and ki=k>=30kN/m represented as red line
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Figure 4.25 Longitudinal displacements of (a) elevator car (b) compensating sheave (c)
counterweight for case study two when using a stiffness parameters of ki=k>=80kN/m
represented as blue line and ki=k.=30kN/m represented as red line
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Figure 4.26 Longitudinal displacements of (a) elevator car (b) compensating sheave (c)
counterweight for case study three when using a stiffness parameters of ki=k,=80kN/m
represented as blue line and ki=k>=30kN/m represented as red line

115



The FFT frequency spectra of the elevator car, compensating sheave and counterweight over a
time span of 100.0 seconds — 160.0 seconds from the longitudinal displacement response for
case study one are shown in Figure 4.27 (a) (b) (c), compared when using a stiffness
parameters of ki=k>=80kN/m represented as blue line and ki=k>=30kN/m represented as red

line.
The predominant frequency shown Figure 4.27 is 0.60 Hz which is double the frequency of

excitation in the lateral in plane direction of the building structure. This type of frequency is

coming in the longitudinal direction of each mass by the coefficients f_., f., f., that appear

in equations (4.123) - (4.125) and are defined in equations (F.57), (F.67), and (F.74),

respectively, and is primary external excitation.
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Figure 4.27 FFT frequency spectra of (a) elevator car (b) compensating sheave (c)
counterweight between the time span of 100.0 seconds — 160.0 seconds for case study one
with stiffness parameters of ki=k,=80kN/m represented as blue line and ki=k>=30kN/m
represented as red line

The longitudinal displacements of the elevator car, compensating sheave and counterweight
when the elevator car is positioned at the bottom and top landing level when compared with a
high and low stiffness parameters there is no change in the displacement response of each
mass. The high displacements were predicted when using a low spring parameter when
compared with a high stiffness parameter when the elevator car is positioned at the height of
84.0m from the bottom landing level, which is where both the suspension and compensating

ropes at the car side are excited at the fundamental natural frequency as shown in Figure 4.2.
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As it was presented in this Chapter, when the elastic interface between the elevator car and the
building structure in the lateral directions is considered the veering phenomena appear. The
simulation results were compared when the elevator car is positioned at the bottom landing
level, at a height where the eigenvalues of the suspension and compensating ropes at the car
side for the fundamental natural frequency match, and when the elevator car is positioned at
the top landing level, with a comparison when using a high and low stiffness parameter in the
lateral direction of the elevator car. On all three case studies the lateral response of the
suspension ropes, compensating ropes, and the elevator car was higher when the fundamental
natural frequency of the suspension and compensating rope match.

Due to ride quality control on the elevator system, an elevator car with low lateral stiffness
having high lateral vibrations as the ones shown in Figure 4.22 would not be suitable for
service. This is why high stiffness springs are used in the elastic interface between the
elevator car and the building structure in the lateral directions to minimize the lateral

vibrations on the elevator car.

The stationary mathematical model derived in this chapter can be used to predict the response
of the suspension and compensating ropes with the interaction between the elevator car,
compensating sheave, and counterweight in the longitudinal direction with the lateral elastic

interface between the elevator car and the building structure.

The mathematical model derived in this chapter has not yet been validated in a high rise
building under wind loading. It is recommended that a full validation of the lateral
displacements of the suspension and compensating ropes at the car and counterweight side be

completed.
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5. Nonstationary Model of a High — Rise Elevator System

5.1 Description of the vibration model

o
\VA %
Wl,r 1 9“.{:9_, 1
"..‘.
SR ]
x(t) I
Eﬂ’“l ] m[ : | rl | | x, 1) |
1| | e—— |
Top Landing - "f v || . l‘
Level I | [
| I Il
, M, = I J:_“
B | I
U“‘l Lol |f IJ
| ‘ J | ’ Lo l-lifxl
| 4
! : I EA . m
I | | v,
| | | A
| | Wt
E¥ ] h, !
-V N |
WZ .l-_]2 Il J IJ
B, (1) b, | | I
L1
EA,.m, [ | 1] | =r
| M, '-u'-l
| | 1 l |
|J W :?
| LL{
| Il et
1
Bottom Landing ! Ly(1)
Level
foannas 2aasn r i S VIR
M, b
! V.
) I 3
Uss A
| Irhl w3 U,
EA,, m,

Figure 5.1 Drawing of the mathematical model taken into account.

The model of an elevator system discussed in Chapter 4 with a car of mass M traveling up or
down along the elevator shaft at the car side, a counterweight traveling in the opposite
direction at the counterweight side, and a compensating sheave of mass M. positioned at the
bottom of the elevator shaft and not travelling along the elevator shaft, is referred to in this
chapter as nonstationary and is shown in Figure 5.1. The parameters that will change with

time are the lengths of the ropes that change with the position of the elevator car and
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counterweight along the height of travel. The length of the suspension ropes and of the
compensating ropes of the car and counterweight side denoted by La(t), Lo(t), La(t), and La(t)
will be varying with time according to the kinematic profile dictated by the drive control
algorithm, the equations were derived in Salamaliki-Simpson (2009).

The response of the elevator ropes subjected to dynamic loading due to the building sway are

represented by the lateral in-plane and lateral out of plane displacements denoted as

V; (% (t),t) and W, (x(t),t) where the subscript i=1,2,3,4 corresponds to the sections of the
ropes of length L1, Lo, L3, and L4, respectively. The displacements of the ropes relative to the
configuration of the ropes when they are stretched by the structure motion are represented by

V;(x(t),t)and W, (x(t),t). The lateral in-plane and lateral out of plane motions of the ropes
are coupled with the longitudinal motions of the ropes that are denoted as U, (xi (t),t). The

rest of the parameters remain unchanged.

As discussed by Kaczmarczyk and Iwankiewicz (2006) and in Strakosch (1998), the lateral
vibrations at the elevator car are induced by irregularities and imperfections of the rail guide
system resulting from the accumulation of manufacturing error, which are transmitted to the
suspension and compensating ropes resulting in adverse dynamic behaviour of the elevator
system. According to Lopez et al. (2010), which proposed an adaptive control for active
suspension of an elevator car to improve ride quality in high-rise buildings to minimize the
lateral vibrations on an elevator car are used in high rise buildings. Thus, lateral vibrations of
the elevator car and counterweight during travel were not considered in the derivation of the

mathematical model of a complete elevator system.

The time varying lengths of the system are represented by Li(t)for i=1,2,...,4. When the
variation of Li(t) is small over a time interval corresponding to the fundamental natural
frequency of the system considered as fixed values of these parameters, the length is said to
vary slowly with time, according to Kaczmarczyk (1997). The variation of Li(t) is then
observed on a slow time scale defined as =T, where T is a non-dimensional fast time
scale and ¢ is a small parameter. Thus, the length of the ropes can be represented by Li(7) In
order to represent the slow variability of L; the fast non-dimensional time scale is defined as

defined as T =w,t, where a, is the initial fundamental natural frequency of the system and t

is the time. The small parameter £ can be defined as equation (5.1).

st
g _a)ol-o (5.1)
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where Lo is the initial lengths of the ropes corresponding to «n. According to Kaczmarczyk

(2005), for high rise elevator system the terms identified as being of the order 0(z) or higher

are neglected.

The assumptions taken into account in Chapter 4 remain the same. The following assumptions

were taken into account:

a) The length of the ropes Lj =L (7) for i=1,2,...,4 are slowly varying in time.

b) The Coriolis and centrifugal forces of the ropes are taken into account in the lateral
direction.

c) The Coriolis and centrifugal forces are not considered in the longitudinal direction for the

elevator car, compensating sheave, counterweight, and all ropes.

d) The travel kinematics is prescribed and the elevator car follows the time profile dictated
by the drive control system, where the acceleration at the car and counterweight side are
denoted as acr and acw=-acr. When the elevator car is travelling up to the top landing
level the acr is considered with positive sign and travelling down to the bottom landing

level the acceleration is considered with negative sign.

e) The compensating sheave is positioned at the pit constrained to vibrate in the longitudinal

direction.

f) The longitudinal velocity of the rope section is given as U +v(t) where v(t) is the

transport velocity and U =U; +Vv(t)U,. Thus, the absolute longitudinal acceleration is
given as %[Ut +V () Uy +V(t) | =Uy +2v(t)Uy +Vv2 (t)U g +a(t)Uy +a(t), where

a(t) is the acceleration at the car or counterweight side.

g) The elastic interface with the building at the car and counterweight side is neglected.

5.2 Derivation of the Mathematical model

The same procedure to derive the mathematical model of Chapter 4 using Hamilton principle

is used to derive the nonstationary mathematical model of an elevator system on this chapter.

The terms corresponding to the centrifugal and Coriolis effects are considered and thus total
derivatives are used to express the absolute velocity in the lateral in plane and out of plane

directions represented by equations (5.2) and (5.3), respectively.
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%:V‘i :avi(xi ’t)+avi(xi ’t)v(t) (52)
dt ot OX,;

%:Wi :aWi(Xi ’t)+aWi(Xi ’t)V(t) (53)
dt ot X,

The kinetic energy of the system is rewritten as in equation (5.4)

Q:i] Q (Up Vi W, )dx+Qy, (Ugg )+ Qu, (Ues ), +Qu, (Uew ) (5.4)

i=1

where the upper dot represents the total derivative with respect to t. The kinetic energy of the

ropes are expressed as equation (5.5).
— 1 . 2 Y = \2

==m | (U. +v(t)) +(V.) +(W J 5.5
Q= m | (U, +v(R)) +(vi) +(,) (55)
The kinetic energy of the elevator car is rewritten as in equation (5.6).

1 . 2

Qu, =§M1[(UCR+v(t))] (5.6)
The kinetic energy of the compensating sheave is the same as in equation (4.5) and the kinetic
energy of the counterweight is defined as in equation (5.7).

Qu, =5 Ma| (Uew +v(1)) | 67)

Applying into (3.17) equations (5.4), (4.7), (4.12), and (4.13) the following equation results

8Qu, (Uen)+0Qu, (Ues),)+8Qu, (Uew) dt =0 (5.8)
+M,90U g +M,gUcs +M;goUey,

ix 1 Vix

O ey [

(5, (U; N W)= 67T, (U;) = 1T, (U, N, W, ) ), +

9}

ey

Integrating the Kinetic energy of the rope with respect to t and x the following equation is

derived

”5dedt ]T[(ﬁ]w (ZS Ja\/,+[a—8ja\/\/}dxdt (5.9)
And
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fa@idt:j{?—éiti(gui)+5_(5,ii(a\/i) ) d(éWi)Jdt (5.10)
Can be written as
| T

Iéth [a(u +v(t ))&Jl tJ:d [6(U +v(t ))J(SU a

- -

el e 41 511

+_ 9 } IS ( ] (5.11)
+ a—(j.‘éwi}z—j d [6Q JéWdt

ow, ] ] dtl ow,

According to equation (4.14) the terms in red in equation (5.11) are the virtual displacements

which are 0 when evaluated between t1 and t,. Thus, equation (5.11) can be rewritten as
equation (5.12)

t, t, = t, — t, —
[oqat=—] L 2% lsuat— [ L[ 2 |svar- L 22w (5.12)
! L dtl a(U, +v(t)) L dtl oV, L dtl ow,
Similarly, the kinetic energy of the elevator car and counterweight are integrated with respect

to t and represented in equations (5.13) and (5.14), respectively.

t, tZd aQM

dt=—|—| ——— d :
£5QM1 t Jldt a(UCR—kv(t))}wCR t 6.13)
t, tZd aQM

dt=—f—| ——M d .
£§QM3 t {dt 8(Ucw+v(t))J5UCW t (5.14)

Applying into equation (5.8) equations (4.21), (5.12) - (5.14), (4.29), (4.31) and boundary
conditions (4.34) - (4.41) the following equation is obtained
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_9[0Q ), ofaM |5,
dt\ oV, ) ox| oV,
syl [ o)
= dt{ o(U;+v(t)) | oxlau,
L | dt{ oW, ) ox| oW,
I I o ; y
Y N _i . QM1 _anle +% +|\/|lg 5UCR
dt| 0(Uge +V(t)) ) Vsl 0Unl
- ; . .
+ _i Qu, _ O, _ g, +M,g |6U
] dt a(UCS )t aUZX x=L, 6U3X x=Lg
- 5 . .
+ —i - QM3 LT +% +M,0 |0U,
dt| o(Ugy +Vv(t)) | Vsl sl

dt =0

(5.15)

The virtual displacement 60U, ,0V,,0W,,0U,0U,0U,, are arbitrary and the above equation

can only be valid for all the values of the virtual displacement if

d
dt

%{a(

Qo)
oV, ) ox| av,

aQ,

(U +v(1))

oQ,,

aU ix

_ofan,
OX

Q) afam)_,
oW, | x| oW,

~ oll,,

- + aﬁle
(Uep +v(1)) ou,, |

oI,

L L,

ouy,,

x=Ly

GQMZ
a(U &) )t i

aQu,

ou,,

x=L,

ouU

3 x=L,

~ oIl

]_mig =0

_Mlg:0

x=0

—Mzg=0

- + aﬁ“e
Uy +V(1)) U, |

X=L,

oU,,

_Msg

x=Lg

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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Equations (5.16) - (5.21) can be rewritten as equations. (5.22) - (5.27). The equations (5.22) to

(5.24) describe the dynamics of the i rope in the elevator system, where i=1,2,3, and 4.

mi\y; _TixVix - EA (U ix T %(Vixz +Wix2 )j Vix
x (5.22)

1 2 2
_TVixx - EA [Uix +§(Vix +Wix )jlex =0

ix" Uix X

— | — E +— 2 + 2 —
iWiXX A U ix (ViX WiX ) Wi — O

.. 1
miWi — Ty Wi, — E'Aﬁ (Uix +§(Vix2 +Wix2 )j Wi

m, (U’i +a(t))-T, —EA (uix +%(vix2 +Wix2)j -mg=0 (5.24)

The equations (5.25) to (5.27) are the boundary conditions at x, =L, (z) and xo=0,x, =L, (7)

and x, =L,(z),xs=0, and x, =L,() in the longitudinal direction for the elevator car,

compensating sheave, and counterweight respectively.

.. 1 5 9
Ml(UCR+a(t))+Tl(L1)+EA1(UlX+§(le +W, ))

X =L

. (5.25)
—T,(0)-EA, (UZX + E(sz2 +W2x2 )j -M,;g=0
X, =0
1
M, (U, ), + T, (L,) + EA, (UZX +E(V2X2 +sz2)j
ot (5.26)
1 2 2 _ _
+T3(|—3)+EA2 U3X+§(V3X +W3x ) Mzg—o
X3=Lg
.. 1
M, (Ugy +a(t))+T,(L,) +EA (UM +§(V4X2 +W4X2)J
A (5.27)

-M;9=0

X3=0

1 2 2
_T3 0)- EAz (ng + E(sz +W3x ))

The equations (4.59) to (4.62) of tension derived in Chapter 4 are rewritten as equations

(5.28) to (5.31), which include the acceleration at the car and counterweight side.

T (%,67) = (M, +m, (L (7)=%)+ oL, (£)) (9 - e (t))+%g (5.28)
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Tz(xz’t;r):(mz(Lz(T) ))(g acR( ))"‘%g (5.29)
Ty (X ti7) = (mz (Ls (T)_Xs))(g ey (t))"‘%g (5.30)

T, (0 5) = (M 1 (L (7)) + s (1)) (0 2 (6) + 02 .31

where the acceleration at the car and counterweight side are defined as acr and acw=-acr.
Additionally of equations (4.78) to (4.91) for the partial derivatives with respect to x and t

required for this model are shown in equations (5.32) to (5.35) for the lateral in plane

direction.

let =\7lxt (‘/’1(7) 1JA 2\/ COS(XVt) let +‘]v (5-32)
L,(7)

Vth = _2xt - l//Z (T) A COs t 2xt ; (533)

V3xt =\73xt l//?» (T) A Cos t 3xt (534)

Vi =V pﬁﬁgz%iQ}Awaam@M) Vi + 3! (5.35)

Similarly, the partial derivatives with respect to x and t for the lateral out of plane direction
can be deducted. The deformations obtained with v, (7),w5(7),w3(7).w4(7).ws5(7)

change slowly in time. Thus, are determined with the same shape function as in Chapter 4.
Substituting equations (5.28) to (5.31) into equation (5.24) results in equation (5.36).

I 1 2 2
mU, — EA (uix +§(vix +W, )j =0 (5.36)

X

According to Kaczmarczyk et al. (2010), the entire longitudinal inertia from equation (5.36)
can be neglected. Considering the longitudinal natural frequencies of the ropes are much
higher than the lateral natural frequencies, resulting in equation (5.37) where ei(t;7) have

slowly varying terms in time corresponding to Li(7).

qua:u“+%wf+w;) (537
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For the longitudinal direction of the elevator car and counterweight equations (5.25) and
(5.27) are simplified by neglecting the Coriolis and centrifugal forces in the longitudinal
direction as v(t)U, =0 resulting in equations (5.38) and (5.40) respectively which are the
same as equation (4.56) and (4.58) derived in Chapter 4. The equation (4.57) of the

compensating sheave derived in Chapter 4 remains unchanged.

1 1
M, (U ), +EA (le +§(le2 +W, 2 )j ~EA, (sz +§(V2X2 +W,, 2 )j =0 (5.38)
X =L X, =0
M E 1 V, 24+W, 2 E 1 V., 2+W, 2 =0
Z(UCS)n+ AZ U2x+2( 2X + 2X ) + AZ U3x+2( 3x + 3x ) - (539)
x=L, X=Lg
1 1
M, (Uey ), +EA (U“ +E(V4X2 +W4x2) —EA, (st +§(V3X2 +W, 2 )j -0 (5.40)
X4=Ly X3=0

The absolute acceleration is derived by equations (5.2) and (5.3) given in equations (5.41) and

(5.42) for the lateral in plane and lateral out of plane direction respectively.

62V(x,,t) 82V(x,,t) OV (x,t) /2 oV.(x,t)
—( [ )= 2200 2v(t) vt o (t)+a(t)—8xi (5.41)
2W(x,,t) OW,(x,,t) 82\N(xl,t) /2 OW,(x,t)
_( )= T AU ox.ot ox.2 viDralt) = (5.42)

Equations (5.22) and (5.23) can be rewritten using equations (5.41) and (5.42) represented in
equations (5.43) to (5.44).

MV, +2mV (t)V,, +mv? (H)V,, +ma(t)V, —T.V,

1 itt IXX X7 IX

_EA (Uix + %(Vix2 +Wix2 )] V TIVIXX EAi (U ix + %(Vix2 +Wix2 ))Vixx =0

X

(5.43)

mW. +2mv( )W +myv (t)W +ma(t)W -T.W.

1 itt ixt IXX IX™ TIX
(5.44)

1 IXX

—EA (uix +%(vix2 +Wixz)j W, —TW, —EA (uix +%(vix2 +Wix2)ij =0

The Galerkin method is applied with the expansions shown in equations (5.45) and (5.46).

V(4 67) = D g (%:7) G () (5.45)
W, (x;,t;7) Zam(xl,r )Cin (1) (5.46)
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The linear natural modes of the lateral in plane and out of plane motions for all ropes are
shown in equations (5.47) and (5.48) with the slowly varying in time terms.

N nz _

ﬂn(xi,r)—sm(l_i(r) xi] fori=1,... 4. (5.47)
N[ nz _

ai“(xi’r)_sm{Li B xi] fori=1,... 4. (5.48)

According to Kaczmarczyk (1997), the lengths L;(z) are changing slowly in time, the

eigenvalues for the lateral in plane and out of plane direction for the i"" rope can be

determined as ——, which are changing slowly in time.

Li(T)
The lateral in plane and lateral out of plane natural frequencies represented by @-" (7) and
@ (z) corresponds to a value of L(z). The natural frequencies of ropes i=1,....4

represented by ;" () and @™ (z) for the lateral in plane and out of plane direction can be

determined using equation (5.49) corresponding to a value of L,(z), respectively.

O (1) =6 (1) = nz [T (%.t;7)

I OO m

(5.49)

Substituting expansions (5.47) and (5.48) into equation (5.37) which can be expanded into
equations (5.50) to (5.53).

o) e 13 0 - wiz[%]m

(5.50)

(5.51)
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e3<t;f)=”c;;ﬂ+ii{ u qu;(mwﬁ“[ u ch;(t)

(r)  45=\L(2) 2 45 L(7) (5.52)
)
2
e (tr)= Ucw +1N iz 2 2 _}_M_}_EN I 202_
(0= e B oG RE e 559
(1 (wo)
2

Substituting expansions (5.45) and (5.46) and equations (5.50) to (5.53) into (5.43) to (5.44)
and applying the orthogonality conditions with respect to the linear modes a system of

nonlinear ordinary differential equations for the i" rope results as follows.

N

.r(t)+ZB.mtr o) +(, (7)) 0, (0 + 2 )G (0
+Z ern qln qlr + i ﬁ|rn (

n=

—

) (5.54)

+F" (t7)=0

Clr(t)+ZBlrn tT)C|n(t)+( |r ) +i |rn tz—xin(t)

23 R (1)@ (1) (0+3 R ()62 (1)c, (1) (5.55)

Equations (5.54) and (5.55) represent the equations of motion of the i rope for i=1,...,4 in

the lateral in plane and out of plane directions.

The coefficients B, ,k  represent the damping and stiffness matrix for the lateral in plane and

irn? “tirn

out of plane direction, respectively. The coefficients R, are the cubic nonlinear terms for the

lateral in plane and out of plane directions. The coefficients F", F-** are the excitation terms

ir ' ir

for the lateral in plane and out of plane directions of rope i". The equations (5.50) to (5.53)
are substituted in equations (5.38) to (5.40) for the elevator car, compensating sheave, and

counterweight resulting in equations (5.56) to (5.58).
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. (5.56)
+Z R (¢ ZRM( )G (1)+ LR (7) ek (0)+ foa (i7) =0
M, (Ugs (1)), +K*2 (7)Ugn (£) K2 (£)Ucs () + K (£)Uqy (1) + DR ()2 (1) -
n=t 5.57
+> R¥*(7)cZ, (t)+il§§“2 (7)as, (t)+il§§“2 (7)cs, (t)+ fes (;7)=0
MS (UCW (t))n + k\lus (T)U ( )+ kzua Z RlU3 q3n
(5.58)

N
+Y R (7)c ZRM 7) s, ( )+Zﬁf”3(1)cfn (t)+ fow (t;7)=0
n=1 n=1

Equations (5.56) to (5.58) represent the motion in the longitudinal direction of the elevator

car, compensating sheave, and counterweight with slowly varying coefficients in time

corresponding to L; (7).

Equations (5.56) to (5.58) are transformed into the modal coordinates using the
transformation U (t)=[Y(z)]S(t) where U(t)=[Ug(t) Ug(t) Ugy (t)]T and
S(t)=[Scr(t) Scs(t) Sew (t)]T is a vector of modal-coordinates corresponding to the

system comprising the car, compensating sheave, and counterweight, respectively. If [Y (r)]

is the mass-normalized mode shape matrix slowly changing in time, the following set of
equations describing the vertical response of the car, compensating sheave and counterweight

in terms of the modal parameters are represented in equations (5.59) to (5.61).

—

Ser (1) +2¢ r@er (7) Ser (1) + @l (7) Ser (t)+(y<1) (T))T (F(t:r)+i(tir))=0 (5.59)

Ses (1) +28 s @5 (7) Ses (1) + @ (7) Ses (t)+(\7<2> (T))T (F(t:r)+i(tz))=0 (5.60)

S (V)4 260 @ () S (0 + @2 (7) S (0 +(VO () (F (i) +i(67)) =0 (560

The longitudinal natural frequencies of the elevator car, compensating sheave and

counterweight represented as @, (7),w, (7). @, () are changing slowly in time
corresponding to the lengths L (z) of the i rope due to the change of position of the elevator

car and counterweight. The longitudinal natural frequencies of the elevator car, compensating
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sheave and counterweight can be estimated with the eigenvalues of the stiffness matrix shown

in (5.62) changing slowly in time and the mass matrix represented in (4.130).
k‘lul(z_) kAZul(z_) 0
121“2(1) IQZUZ(T) k3u2 (7) (5.62)
0 |21U3(z') IZZU3(1')

fer (87)

F(tir)=| fos (ti7) (5.63)
fow (£:7)
Tler (t;T)

7(t7)=| mes (t7) (5.64)

New (t;T)

The coefficients 7, (t;7), 7 (t;7), 7., (t;7) are the quadratic terms from the equations of

motion of the elevator car, compensating sheave, counterweight represented in equations
(5.65) to (5.67).

N
77CR t T Z RlU1 qln z R1Ul Z RZUl QZn Z gn t (565)
n=1
N N
77cs t T ZRlUZ q2n )+z§iuz(f ZRZUZ q3n lifuz (T)C§n (t) (5.66)
n=1 n=1

ow (67) = DR (), (1) + YR (2) €, (1) + DR () (0)+ LR (2)e2 (1) (5:67)

n=1 n=1 n=1 n=1

All coefficients appear in Appendix G, which are dependent of the slowly varying parameter

¢ for Li(7).

5.3 Simulation Results

Two case study results are shown to verify the proposed mathematical model of a
nonstationary elevator system through a comparison of each case study results when the
elevator car is travelling along the travel height at high and low velocity, to demonstrate the

influence of the Coriolis and centrifugal forces.

130



The parameters taken to analyse the dynamic performance of an elevator system in this
chapter are exactly the same as the ones presented in Chapter 4 without considering the elastic
interface with the building at the car in the lateral directions. The excitation of the building
structure at the machine room level is also the same as in Chapter 4.

It is assumed the elevator car is travelling at a rated acceleration of acr(t)=1.80m/s?, and a
rated jerk of j(t)=1.80m/s®. From the Galerkin method the nonlinear ordinary differential
equations are given for N number of modes for the simulation results presented in this

Chapter, the number of modes taken into account are N=4.

According to Salamaliki-Simpson (2009), the solution for a nonstationary rope and mass
mathematical model can be obtained with a stiff solver of integration algorithm. However, a
non-stiff solver is used to find the solution of the dynamic response of a nonstationary full
elevator system, such as ODE45.

For case study one the elevator car is traveling at a rated velocity of v(t)=15.00m/s and a
comparison is shown when the car is travelling from the bottom landing level to the top
landing level and from the top landing level to the bottom landing level. The kinematic profile
of the elevator car dictated by the drive control algorithm is shown in Figure 5.2 when the
elevator is travelling from the bottom landing level to the top landing level. Similarly when
the elevator car is traveling from the top landing level to the bottom landing level can be

obtained.
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Figure 5.2 The kinematic profile of the elevator car for case study one when the car is going
from the bottom landing level to the top landing level with a rated velocity of v(t)=15.00m/s
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For case study two the elevator car is traveling at a rated velocity of v(t)=4.00m/s and a
comparison is given when the car is travelling from the bottom landing level to the top
landing level and from the top landing level to the bottom landing level. The kinematic profile
of the elevator car dictated by the drive control algorithm is shown in Figure 5.3 when the
elevator is travelling from the bottom landing level to the top landing level. Similarly when
the elevator car is traveling from the top landing level to the bottom landing level can be
obtained.
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Figure 5.3 The kinematic profile of the elevator car for case study two when the car is going
from the bottom landing level to the top landing level with a rated velocity of v(t)=4.00m/s

5.3.1 Frequency Analysis

The variation of frequency in the lateral direction of the suspension ropes at the car side
according to the position of the elevator car along the travel height is determined with the

eigenvalues of equation (5.68).

_i () My +mL (2)+m,L, (), M, oL, ()]
- Lf(f){ (t) n (9-2ac (1)) T .
D T o RO |
7 =g(n"+r°)+ax (t)(3n"~r
I (nz_rz) Li(T)( g( ) ac ()( )) |
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The variation of frequency corresponding to all lateral modes of the suspension ropes

dependent of r which are slowly changing in time due to L;(z) at the car side according to

the position of the elevator car in the hoistway is measured from the bottom landing level are
shown in Figure 5.4 with a v(t)=15.00m/s as in case study one and in Figure 5.5 with a
v(t)=4.00m/s as in case study two. In Figure 5.4 and Figure 5.5 the solid red, green, cyan, and
purple line are the variation of frequency of the first four lateral natural frequencies at the car
side of the suspension ropes, considering the Coriolis and centrifugal forces as shown in
equation (5.68). The dashed dotted red, green, cyan, and purple line is when the Coriolis and
centrifugal forces are not considered as shown in equation (5.69). The small step from the
curves of the natural frequencies of the suspension ropes with the Coriolis and centrifugal
forces is due to the high velocity considered in case study one. When the elevator car is
traveling at a low velocity there is low influence of the Coriolis and centrifugal forces in the
natural frequencies of the ropes. This can be demonstrated with case study two in Figure 5.5

where the elevator car is traveling at a low velocity.

In Figure 5.4, Figure 5.5, Figure 5.6, and Figure 5.7 the dashed black, blue, and cyan lines
represent the change of frequency in the longitudinal direction of the elevator car,
compensating sheave, and counterweight according to the position of the elevator car,
estimated by finding the eigenvalues from the stiffness matrix represented in (5.62) and mass

matrix represented in (4.130).

In Figure 5.4, Figure 5.5, Figure 5.6, and Figure 5.7 the dashed magenta and blue horizontal
lines represent the frequency of excitation from the building structure at 0.30 Hz and 0.25 Hz

in the lateral in plane and out of plane directions.

The suspension ropes will be passing through resonance, matching the fundamental natural
frequency, when the elevator car is at a height of approximately 50.0 m from the bottom
landing level. The passage through resonance occur when the ropes are changing length and
one of the natural frequencies of the ropes matches the external excitation frequency as
discussed by Kaczmarczyk (2012), Kaczmarczyk (1997), Terumichi et al. (1997), and
Terumichi et al. (2003), thus the lateral displacement response of the ropes will start to
increase and then decrease. During the passage through resonance, the elevator car travelling
at high velocity the lateral displacements of the ropes will be smaller when compared when

the elevator car is travelling at low velocity.
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Variation of frequency due to car position (suspension rope car side)
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Figure 5.4 Variation of frequency of the suspension ropes according to the position of the

Variation of frequency due to car position (suspension rope car side)
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Figure 5.5 Variation of frequency of the suspension ropes according to the position of the

elevator car (car side) for v(t)=4.00m/s for case study two
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@, (7)= (5.69)

The variation of frequency in the lateral direction of the compensating ropes at the car side
according to the positions of the elevator car along the travel height is determined with the
eigenvalues of equation (5.70)

i[—véR (1)+La(7)(9 ~2en (1) +5 - g‘gLZ(T)}

L’ (7) 2m, 2
@er (T) = nr ((_1)”” _l) (570)

: —g(n*+r?)+ag (t)(3n*—r?
(nz_rz) LZ(T)( g( ) ( )( ))

The variation of frequency corresponding to all lateral modes of the compensating ropes at the

car side dependent of r which are slowly changing in time due to L;(z) according to the

position of the elevator car in the hoistway measured from the bottom landing level are shown
in Figure 5.6 with a v(t)=15.00m/s as in case study one and in Figure 5.7 with a v(t)=4.00m/s
as in case study two. In Figure 5.6 and Figure 5.7 the solid red, green, cyan, and purple line
are the variation of frequency of the first four laterals in plane natural frequencies at the car
side of the compensating ropes, considering the Coriolis and centrifugal forces as shown in
equation (5.70). The dashed dotted red, green, cyan, and purple line is when the Coriolis and

centrifugal forces are not considered.

The compensating ropes will be passing through resonance, matching the 1% and 2" natural
frequencies, at a height of approximately 100.0 m and 200.0 m from the bottom landing level,

respectively.
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Variation of frequency due to car position (compensating rope car side)
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Figure 5.6 Variation of frequency of the compensating ropes according to the position of the
elevator car (car side) for v(t)=15.00m/s for case study one
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Figure 5.7 Variation of frequency of the compensating ropes according to the position of the
elevator car (car side) for v(t)=4.00m/s for case study two

The variation of frequency of the compensating and suspension ropes at the counterweight

side can be obtained from the mathematical model.
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5.3.2 Mode shapes

The mode shapes of the elevator car, compensating sheave, and counterweight are dependent

of 7 which are slowly changing in time due to L;(z). In section 4.3.2 are shown the mode

shapes of the elevator car, compensating sheave, and counterweight when the car is at the
bottom landing level, at 84.0m from the bottom landing level, and at the top landing level.

In Figure 5.8 are shown the mode shapes of the 1% and 2" mode shapes of the suspension
ropes at the car side for case study one represented by a solid and dashed blue line,
respectively. The mode shapes of the suspension rope at the car side are scaled to show the
maximum amplitude as 1. Similarly, the mode shapes for all ropes have the same shape which
are coming from the trial function used in the Galerkin method defined in equations (5.47)
and (5.48) which are changing according to the position of the elevator car while travelling

along the travel height.

1st and 2nd Mode shape

200

[
a
o

Length of the rope

\
50

Figure 5.8 1st and 2nd mode shapes of the suspension rope at the car side

5.3.3 Response of the ropes

The behaviour of all ropes of the elevator system are obtained from the mathematical model.
The displacement of the suspension ropes at the car side at the mid span length of the rope for

case study one when the elevator car is travelling at a rated velocity of v(t)=15.00m/s when
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going from the bottom landing level to the top landing level represented by a blue solid line

and when traveling from the top to the bottom landing level represented by a red line are

shown in Figure 5.9 for (a) in the lateral in plane direction and (b) in the lateral out of plane

direction. Similarly, the displacement of the suspension ropes at the car side at the mid span

length of the rope for case study two when the elevator car is travelling at a rated velocity of

v(t)=4.00m/s is shown in Figure 5.10.

(a) Displacement suspension rope at the car side at mid span length Lateral In-plane direction
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(b) Displacement suspension rope at the car side at mid span length Lateral out of plane direction
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Figure 5.9 Displacement of the suspension rope at the car side at the mid span length of the

ropes in (a) Lateral in plane (b) Lateral out of plane directions when the elevator car is

travelling with a rated speed of v(t)=15.00m/s as in case study one when the car is travelling

up represented by a blue line and when going down is represented by a red line.
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(a) Displacement suspension rope at the car side at mid span length Lateral In-plane direction
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Figure 5.10 Displacement of the suspension rope at the car side at the mid span length of the
ropes in (a) Lateral in plane (b) Lateral out of plane directions when the elevator car is
travelling with a rated speed of v(t)=4.00m/s as in case study two when the car is travelling up
represented by a blue line and when going down is represented by a red line

As shown in Figure 5.9 and Figure 5.10 the passage of resonance of the suspension ropes at
the car side when the elevator car is traveling at a rated velocity of 15.00m/s and 4.00m/s is
observed when the elevator car is at a height of approximately 50.0 m from the bottom
landing level. The response of the ropes in the lateral in plane and out of plane direction are
higher when the car is travelling at a rated velocity of 4.00m/s, as discussed by Terumichi et
al. (2003).

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span
of 30.0 seconds — 50.0 seconds for case study two are shown in Figure 5.11 (a) and (b),
respectively. The maximum frequencies are 0.30 Hz and 0.25 Hz which are the frequencies in
which the building structure is exciting the ropes in the lateral in plane and out of plane
directions shown in Figure 5.11 (a) and (b). The frequencies of 0.30 Hz and 0.25 Hz from the
lateral in plane and out of plane directions are coming from the kinematic forcing terms that

are exciting the ropes at the machine room level.
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(a) Frequency of suspension rope at the car side in Lateral in plane (30s - 50s)
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Figure 5.11 The FFT frequency spectrum of the suspension rope in the lateral in plane
direction between 30 seconds and 50 seconds (a) Lateral in plane direction (b) Lateral out of
plane direction for case study two when the elevator is travelling to the top landing level with

v(t)=4.00m/s

In Figure 5.12 and Figure 5.13 show the maximum displacements of the suspension ropes at
the car side in the lateral in plane when the elevator car is travelling from the bottom to the
top landing level represented by a dashed blue line and when the car is travelling from the top
to the bottom landing level represented by a dashed red line at a rated velocity of
v(t)=15.00m/s and v(t)=4.00m/s, respectively. The suspension rope length is measured from
center of the traction sheave to the top elevator car which is considered as a lumped mass
where the height is neglected according to the assumption made in Chapter 4. As it can be
seen maximum displacements are observed when the elevator car is travelling at a rated
velocity of 4.00m/s. The suspension ropes are excited at the fundamental natural frequency

thus the 1% mode shape is the maximum displacements of the suspension ropes at the car side.
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Plot of the suspension rope (car side) behaviour lateral in plane
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Figure 5.12 Behaviour of the suspension rope at the car side in the lateral in plane direction
for case study one comparing when the elevator car is travelling with a rated velocity of
v(t)=15.00m/s when the car is going up represented by dashed blue line and when going down
represented by dashed red line

Plot of the suspension rope (car side) behaviour lateral in plane

.
N
.
225 T o=

N
S
)
N,
\
\
"

-
5
)]
e
N,
-
7

=
a
o

'~ Pl va
125 \ Ss d ’

100 S - o .

Length of the rope (m)

50 BN

25

Vl(x,t)

Figure 5.13 Behaviour of the suspension rope at the car side in the lateral in plane direction
for case study two comparing when the elevator car is travelling with a rated velocity of
v(t)=4.00m/s when the car is going up represented by dashed blue line and when going down
represented by dashed red line
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In Figure 5.14 and Figure 5.15 show the maximum displacements of the suspension ropes at
the car side in the lateral out of plane when the elevator car is travelling from the bottom to
the top landing level represented by a dashed blue line and when the car is travelling from the
top to the bottom landing level represented by a dashed red line at a rated velocity of
v(t)=15.00m/s and v(t)=4.00m/s, respectively. The maximum displacements are when the
elevator car is travelling at a rated velocity of 4.00m/s. The suspension ropes are excited at the
fundamental natural frequency thus the 1% mode shape is the maximum displacements of the

suspension ropes at the car side.

Plot of the suspension rope (car side) behaviour lateral out of plane
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Figure 5.14 Behaviour of the suspension rope at the car side in the lateral out of plane
direction for case study one comparing when the elevator car is travelling with a rated
velocity of v(t)=15.00m/s when the car is going up represented by dashed blue line and when
going down represented by dashed red line
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Plot of the suspension rope (car side) behaviour lateral out of plane

225 ey S 8

N
o
o
N\,
N
\
’
4

[
~
[&)]
~

td
~

=
a1
o
’
~.l
\

=
o
o

4

Length of the rope (m)

[oa)

o
4
N,

N
(&3]
4
Ay

o

-4 -3 -2 -1 1 2 3 4

ngx,t)

Figure 5.15 Behaviour of the suspension rope at the car side in the lateral out of plane
direction for case study two comparing when the elevator car is travelling with a rated
velocity of v(t)=4.00m/s when the car is going up represented by dashed blue line and when
going down represented by dashed red line

In Figure 5.16 and Figure 5.17 show the maximum displacements of the compensating ropes
at the car side in the lateral in plane when the elevator car is travelling from the bottom to the
top landing level represented by a dashed blue line and when the car is travelling from the top
to the bottom landing level represented by a dashed red line at a rated velocity of
v(t)=15.00m/s and v(t)=4.00m/s, respectively. The compensating rope length is measured
from the center of the compensating sheave to the bottom of the elevator car which is
considered as a lumped mass where the height is neglected according to the assumption made
in Chapter 4. The maximum displacements are when the elevator car is travelling at a rated
velocity of 4.00m/s. The compensating ropes are excited at the second natural frequency thus

the 2" mode shape is the maximum displacements of the compensating ropes at the car side.
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Plot of the compensating rope (car side) behaviour lateral in plane
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Figure 5.16 Behaviour of the compensating rope at the car side in the lateral in plane direction
for case study one comparing when the elevator car is travelling with a rated velocity of
v(t)=15.00m/s when the car is going up represented by dashed blue line and when going down
represented by dashed red line
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Figure 5.17 Behaviour of the compensating rope at the car side in the lateral in plane direction
for case study two comparing when the elevator car is travelling with a rated velocity of
v(t)=4.00m/s when the car is going up represented by dashed blue line and when going down
represented by dashed red line
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In Figure 5.18 and Figure 5.19 show the maximum displacements of the compensating ropes
at the car side in the lateral out of plane when the elevator car is travelling from the bottom to
the top landing level represented by a dashed blue line and when the car is travelling from the
top to the bottom landing level represented by a dashed red line at a rated velocity of
v(t)=15.00m/s and v(t)=4.00m/s, respectively. The maximum displacements are when the
elevator car is travelling at a rated velocity of 4.00m/s. The compensating ropes are excited at
the second natural frequency, thus the 2" mode shape is the maximum displacements of the

compensating ropes at the car side.

Plot of the compensating rope (car side) behaviour lateral out of plane
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Figure 5.18 Behaviour of the compensating rope at the car side in the lateral out of plane
direction for case study one comparing when the elevator car is travelling with a rated
velocity of v(t)=15.00m/s when the car is going up represented by dashed blue line and when
going down represented by dashed red line

145



Plot of the compensating rope (car side) behaviour lateral out of plane
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Figure 5.19 Behaviour of the compensating rope at the car side in the lateral out of plane
direction for case study two comparing when the elevator car is travelling with a rated
velocity of v(t)=4.00m/s when the car is going up represented by dashed blue line and when
going down represented by dashed red line

The behaviour of the suspension and compensating ropes at the counterweight side can be

obtained with the mathematical model.
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5.3.4 Longitudinal response of the elevator car, compensating sheave,
counterweight

The longitudinal displacements of the elevator car, compensating sheave, and counterweight
when the elevator car is traveling from the bottom to the top landing level represented by a
blue line and from the top to the bottom landing level represented by a red line with a rated
velocity of v(t)=15.00m/s shown in Figure 5.20 and with a rated velocity of v(t)=4.00m/s
Figure 5.21. The highest displacements of the elevator car, compensating sheave, and
counterweight are when the elevator car is travelling at a rated velocity of v(t)=4.00m/s.

(a) Displacement of the Car
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Figure 5.20 Longitudinal displacements of (a) elevator car (b) compensating sheave (c)
counterweight for case study one when the elevator car is travelling with a rated velocity of
v(t)=15.00m/s when the car is going up represented by blue line and when going down
represented by red line

147



(a) Displacement of the Car
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Figure 5.21 Longitudinal displacements of (a) elevator car (b) compensating sheave (c)
counterweight for case study two when the elevator car is travelling with a rated velocity of
v(t)=4.00m/s when the car is going up represented by blue line and when going down
represented by red line

The FFT frequency spectra of the elevator car and compensating sheave over a time span of
40.0 seconds — 50.0 seconds from the longitudinal displacement response when the elevator
car is travelling at a rated velocity of v(t)=4.00m/s shown in Figure 5.22 (a) and (b) when the
elevator car is travelling from the bottom to the top landing level represented by a blue line

and from the top to the bottom landing level represented by a red line.

The predominant frequency shown in Figure 5.22 is 0.60 Hz which is double the frequency of
excitation in the lateral in plane direction of the building structure. This type of frequency is

coming in the longitudinal direction of each mass by the coefficients f (t,7), f (t,7) that

appear in equations (5.59) - (5.60) and are defined in equations (G.22) and (G.28), is primary

external excitation.
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(a) Frequency of the elevator car (40s - 50s)
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Figure 5.22 FFT frequency spectra of (a) elevator car (b) compensating sheave between the
time span of 40.0 seconds — 50.0 seconds for case study two when the elevator car is
travelling at v(t)=4.00m/s when the car is going up represented by blue line and when going
down represented by red line

The FFT frequency spectra of the compensating sheave and counterweight over a time span of
20.0 seconds — 40.0 seconds from the longitudinal displacement response when the elevator
car is travelling at a rated velocity of v(t)=4.00m/s shown in (a) and (b) when the elevator car
is travelling from the bottom to the top landing level represented by a blue line and from the

top to the bottom landing level represented by a red line.

The predominant frequency shown in Figure 5.23 is 0.60 Hz which is double the frequency of
excitation in the lateral in plane direction of the building structure. This type of frequency is

coming in the longitudinal direction of each mass by the coefficients f (t,7), fo, (t,7) that

appear in equations (5.60) - (5.61) and are defined in equations (G.28) and (G.33), is primary
external excitation.
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(a) Frequency of the compensating sheave (20s - 405s)
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Figure 5.23 FFT frequency spectra of (a) compensating sheave (b) counterweight between the
time span of 20.0 seconds — 40.0 seconds for case study two when the elevator car is
travelling at v(t)=4.00m/s when the car is going up represented by blue line and when going
down represented by red line

5.4 Autoparametric resonance 2:1

In the nonstationary mathematical model of a full elevator system which is described by the
nonlinear equations (5.54) and (5.55) for the i™ rope and (5.59) to (5.61) for the elevator car,
compensating sheave and counterweight, autoparametric (2:1) resonance may occur due to
coupling between the longitudinal displacements of the elevator car, compensating sheave and
counterweight and the lateral in plane and out of plane displacements of the suspension and

compensating ropes.

The stiffness term of the ropes represented as k (t;r) contain the longitudinal displacements

irn

of the elevator car, compensating sheave, and counterweight defined in Appendix G in
equations (G-2), (G-5), (G-9), and (G-13) provides parametric excitation to the lateral modal
displacements of the rope, therefore the excitation of each mass provides autoparametric

excitation to the rope, which gives a 2:1 resonance, according to Nayfeh and Mook (1979).

This type of resonance was also studied by Salamaliki-Simpson and Kaczmarczyk (2006) in a
rope and mass mathematical model where adverse situation arises due to the quadratic

coupling between the longitudinal and lateral modes of the system. A comparison was also
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done with a high and low rated velocity of the mass and concluding that at low velocity the
lateral response of the rope is higher.

In the following simulation the autoparametric (2:1) resonance has been studied in respect to
the tuning between the longitudinal and lateral modes. In order for this type of resonance to
take place the longitudinal natural frequency of the elevator car should be twice the lateral

natural frequency of the suspension ropes at the car side (@ =2@,,,) and also the external

excitation frequency of the building structure should coincide with the longitudinal natural

frequency (2, = o ).

A four mode approximation in each direction of motion is applied. In order to demonstrate the
principle features of the dynamic behaviour of the system, the first four lateral in plane and
lateral out of plane modes are considered. Since the longitudinal natural frequency of the
elevator car is the lowest between the elevator car, compensating sheave and counterweight.

Thus, the longitudinal natural frequency of the elevator car was tuned to be @, =20, .

To demonstrate a 2:1 resonance through the autoparametric excitation terms of the elevator

car. The mass of the compensating sheave is assumed to be M, = 20000 kg, the elevator car is

assumed to have a rated velocity of v(t)=2.00m/s, a rated acceleration of acr(t)=1.00m/s?, and
a rated jerk of j(t)=1.00m/s®. The rest of the parameters of the building and elevator ropes

remain unchanged as defined in Chapter 4.
It is assumed the fundamental natural frequency of the building structure is Q, =5.4475rad/s

(0.867 Hz) in the lateral in plane direction, where Q, = e, (7) =2, (7) and in the lateral

out of plane direction is Q, =1.6336rad/s (0.26 Hz). Assuming, the high rise building is

excited by wind harmonically, the displacement at the machine room level in the lateral in

plane direction is A, =0.90m and in the lateral out of plane direction is A, =0.35m.

A comparison is shown when the car is travelling from the bottom landing level to the top

landing level and vice versa.

The kinematic profile of the elevator car dictated by the drive control algorithm when
traveling at a rated velocity of v(t)=2.00m/s from the bottom landing level to the top landing
level is shown in Figure 5.24. Similarly when the elevator car is traveling from the top

landing level to the bottom landing level can be obtained.
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The variation of frequency corresponding to all lateral modes of the suspension ropes
dependent of ¢ which are slowly changing in time due to L (r) at the car side according to

the position of the elevator car in the hoistway is measured from the bottom landing level are
shown in Figure 5.25 with a v(t)=2.00m/s. In Figure 5.25 the solid red, green, cyan, and
purple line are the variation of frequency of the first four lateral natural frequencies at the car
side of the suspension ropes, considering the Coriolis and centrifugal forces as shown in
equation (5.68).

In Figure 5.25 the dashed black, blue, and cyan lines represent the change of frequency in the
longitudinal direction of the elevator car, compensating sheave, and counterweight according
to the position of the elevator car, estimated by finding the eigenvalues from the stiffness
matrix represented in (5.62) and mass matrix represented in (4.130).

In Figure 5.25 the dashed magenta and blue horizontal lines represent the frequency of
excitation from the building structure at 0.867 Hz and 0.26 Hz in the lateral in plane and out

of plane directions. The lateral in plane excitation frequency of the building structure will
Q, = o (t)=2a,, (7) when the elevator car is approximately at a height of 100.0m from

the bottom landing level, shown with a dashed yellow circle in Figure 5.24 and Figure 5.25.
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Figure 5.24 The kinematic profile of the elevator car when the car is going from the bottom
landing level to the top landing level with a rated velocity of v(t)=2.00m/s
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Variation of frequency due to car position (suspension rope car side)
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Figure 5.25 Variation of frequency of the suspension ropes according to the position of the
elevator car (car side) for v(t)=2.00m/s

5.4.1 Lateral response of the suspension ropes

The displacement of the suspension ropes at the car side at the mid span length of the rope
when the elevator car is travelling at a rated velocity of v(t)=2.00m/s when going from the
bottom landing level to the top landing level shown in Figure 5.26 where (a) in the lateral in

plane direction and (b) in the lateral out of plane direction.
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(a) Displacement suspension rope at the car side at mid span length Lateral In-plane direction
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(b) Displacement suspension rope at the car side at mid span length Lateral out of plane direction
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Figure 5.26 Displacement of the suspension rope at the car side at the mid span length of the
ropes in (a) Lateral in plane (b) Lateral out of plane directions when the elevator car is
travelling with a rated velocity of v(t)=2.00m/s from the bottom landing level to top landing
level

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span
of 40.0 seconds — 60.0 seconds when the elevator car is travelling from the bottom landing
level to the top landing level is shown in Figure 5.27 (a) and (b), respectively. The maximum
frequencies are 0.30 Hz and 0.89 Hz which are approximately the frequencies in which the
building structure is exciting the ropes in the lateral in plane and out of plane directions
shown in Figure 5.27 (a) and (b). The frequencies of 0.30 Hz and 0.89 Hz from the lateral in
plane and out of plane directions are coming from the kinematic forcing terms that are

exciting the ropes at the machine room level. The two frequencies appear on both directions

due to the coupling between the lateral in plane and out of plane direction from the terms R,

which are the cubic nonlinear terms of equations (5.54) and (5.55) defined for the i"" rope. To
better demonstrate the 2:1 auto parametric resonance of the suspension ropes at the car side,

the response of the suspension ropes at the car side are shown when the elevator car is going

down.

154



(a) Frequency of suspension rope at the car side in Lateral in plane (40s - 605s)
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Figure 5.27 FFT frequency spectra of suspension ropes at the car side (a) Lateral in plane (b)
Lateral out of plane between a time span of 40.0 seconds — 60.0 seconds when the elevator car
is travelling at v(t)=2.00m/s when the car is going up.

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span
of 100.0 seconds — 120.0 seconds when the elevator car is travelling from the bottom landing
level to the top landing level is shown in Figure 5.28 (a) and (b), respectively. The maximum
frequencies are 0.30 Hz and 0.88 Hz which are approximately the frequencies in which the
building structure is exciting the ropes in the lateral in plane and out of plane directions
shown in Figure 5.28 (a) and (b). The frequencies of 0.30 Hz and 0.88 Hz from the lateral in
plane and out of plane directions are coming from the kinematic forcing terms that are
exciting the ropes at the machine room level. Due to the short length of the suspension rope
the expected frequency from the building structure in the lateral in plane and out of plane
direction are shown by the suspension rope in each direction and the transfer of energy from

both directions is not present.
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(a) Frequency of suspension rope at the car side in Lateral in plane (100s - 120s)
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Figure 5.28 FFT frequency spectra of suspension ropes at the car side (a) Lateral in plane (b)
Lateral out of plane between a time span of 100.0 seconds — 120.0 seconds when the elevator
car is travelling at v(t)=2.00m/s when the car is going up.

The displacement of the suspension ropes at the car side at the mid span length of the rope
when the elevator car is travelling at a rated velocity of v(t)=2.00m/s when going from the top
landing level to the bottom landing level is shown in Figure 5.29 in (a) the lateral in plane

direction and (b) the lateral out of plane direction.
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(a) Displacement suspension rope at the car side at mid span length Lateral In-plane direction
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Figure 5.29 Displacement of the suspension rope at the car side at the mid span length of the
ropes in (a) Lateral in plane (b) Lateral out of plane directions when the elevator car is
travelling with a rated velocity of v(t)=2.00m/s from the top landing level to bottom landing
level

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span
of 35.0 seconds — 45.0 seconds when the elevator car is travelling from the top landing level
to the bottom landing level is shown in Figure 5.30 (a) and (b), respectively. The maximum
frequency is 0.89 Hz which is approximately the frequency in which the building structure is
exciting the suspension ropes in the lateral in plane direction shown in Figure 5.30 (a) and (b).
The frequency of 0.89 Hz appear on both directions due to the coupling between the

longitudinal direction with the lateral in plane and out of plane direction which are found at
the stiffness term IZim (t;r) of equations (5.54) and (5.55) of the lateral in plane and out of

plane direction of the suspension ropes at the car side defined in equation (G.2). Energy from
the high frequency longitudinal direction is transferred to the low frequency lateral modes and
the lower modes are strongly excited at half the frequency of the excitation in the lateral in

plane direction, as discussed by Salamaliki-Simpson and Kaczmarczyk (2006).
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(a) Frequency of suspension rope at the car side in Lateral in plane (35s - 45s)
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(b) Frequency of suspension rope at the car side in Lateral out of plane (35s - 45s)
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Figure 5.30 FFT frequency spectra of suspension ropes at the car side (a) Lateral in plane (b)
Lateral out of plane between a time span of 35.0 seconds — 45.0 seconds when the elevator car
is travelling at v(t)=2.00m/s when the car is going down.

The FFT frequency spectra of the lateral in plane and out of plane direction over a time span
of 90.0 seconds — 120.0 seconds when the elevator car is travelling from the top landing level
to the bottom landing level is shown in Figure 5.31 (a) and (b), respectively. The maximum
frequencies are 0.30 Hz and 0.89 Hz which are approximately the frequencies in which the
building structure is exciting the ropes in the lateral in plane and out of plane directions
shown in Figure 5.31 (a) and (b). The frequencies of 0.30 Hz and 0.89 Hz from the lateral in
plane and out of plane directions are coming from the kinematic forcing terms that are
exciting the ropes at the machine room level. The two frequencies appear on both directions
due to the coupling between the lateral in plane and out of plane direction from the terms R,
which are the cubic nonlinear terms of equations (5.54) and (5.55) defined for the suspension
rope at the car side. As the elevator car is going down the natural frequency of the suspension

rope at the car side is lowered, thus the transfer of energy from the lateral in plane and out of

plane direction is present.
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(a) Frequency of suspension rope at the car side in Lateral in plane (90s - 120s)
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Figure 5.31 FFT frequency spectra of suspension ropes at the car side (a) Lateral in plane (b)
Lateral out of plane between a time span of 90.0 seconds — 120.0 seconds when the elevator
car is travelling at v(t)=2.00m/s when the car is going down.

5.4.2 Longitudinal response of the elevator car, compensating sheave, and

counterweight

The longitudinal displacements of the elevator car, compensating sheave, and counterweight
when the elevator car is going up is shown in Figure 5.32 when the elevator car is travelling at

a rated velocity of v(t)=2.00m/s.
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Figure 5.32 Longitudinal displacements of (a) elevator car (b) compensating sheave (c)
counterweight when the elevator car is travelling at a rated velocity of v(t)=2.00m/s when

going up
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The FFT frequency spectra of the elevator car between a time span of 40.0 seconds — 60.0 and
100.0 seconds — 120.0 seconds when the elevator car is travelling from the bottom landing
level to the top landing level is shown in Figure 5.33 (a) and (b), respectively. The frequency

of 1.75 Hz is approximately twice the frequency of excitation in the lateral in plane direction
coming from the excitation term f.; (t;r) in the longitudinal direction which is defined in

equation (G.22), which is primary external excitation. The frequency of 0.85 Hz is the

frequency of excitation in the lateral in plane direction of the building structure at the machine
room level.
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Figure 5.33 FFT frequency spectra of the elevator car between the time span (a) 40.0s to 60.0s
(b) 100.0s to 120.0s when the elevator car is travelling at v(t)=2.00m/s when the car is going

up.

Similarly, the response in the longitudinal direction of the elevator car, compensating sheave,
and counterweight when the elevator car is travelling from the top landing level to the bottom
landing level can be determined.

According to the simulation results presented in this Chapter by comparing when the elevator
is travelling at a high and low rated velocity and when the elevator car is traveling from the
bottom landing level to the top landing level and vice versa from the top landing level to the

bottom landing level. As the elevator car is travelling at a low rated velocity the response of
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the ropes and of the elevator car, compensating sheave, and counterweight are higher as the

elevator is passing through resonance with a low rated velocity.

The nonstationary mathematical model derived in this chapter has not yet been validated in a
high rise building under wind loading. It is recommended that a full validation of the lateral
displacements of the suspension and compensating ropes at the car and counterweight side be

completed.

A special case was shown where the longitudinal natural frequency of the elevator car is equal
to twice the lateral natural frequencies of the suspension ropes at the car side, where this type
resonance is called 2:1 autoparametric resonance. The excitation frequency in which the high
rise building is exciting the elevator system is equal to the longitudinal natural frequency of

the elevator car. In this case study the longitudinal mode of the elevator car excited the lateral

modes of the suspension ropes due to the quadratic coupling in the coefficient k. (t;7) inthe

equations of motion of the suspension rope at the car side (i=1) in equations (5.54) and (5.55)
shown in Appendix G. The results showed better correlation when the elevator car was
travelling at a very low rated velocity from the top landing level to the bottom landing level.
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6. Conclusions

This research addresses the linear and nonlinear phenomena that occur in the vibration
problem of an elevator system in high rise buildings. The aim of this study was to develop and
to validate a computer model of the elevator system to predict the dynamic responses of ropes
and cables in an elevator system due to the vibrations of a high-rise building which is excited
by the action of wind loading, when the elevator system is stationary and in motion. The wind
loading is not represented in the mathematical models of the elevator system, due to
considerable amount of time and resources during experimental testing. The vibrations of a
high-rise building are considered as displacements which are caused by the wind loading on a
high-rise building.

The mathematical methodology defined in Chapter 2 to predict the responses of the elevator
steel wire ropes has been validated through experimental tests conducted using an
experimental test rig described in Chapter 3. The mathematical model predictions have shown

a good agreement with the experimental results.

In Chapter 3 the techniques validated through the experimental tests were used to model the
rope and mass assembly of an experimental test rig. A set of experiments were developed to
estimate the modal damping ratio of the rope and mass assembly, the lateral natural
frequencies, and the modulus of elasticity of the rope. The torsional linear stiffness of the
steel frame used to restrict the mass to move in the longitudinal and lateral in plane direction
was estimated. A methodology was developed to derive the mathematical model of the rope
and mass assembly taking into account the stationary and nonlinear behaviour of the system.
Linear and nonlinear resonances were predicted through simulation. The lateral and
longitudinal natural frequencies of the rope and mass system obtained from the mathematical
model agreed when compared with the natural frequencies obtained from the experimental
testing. The whirling motion of the rope took place, due to the transfer of energy between the
lateral in plane motion to the lateral out of plane motion. The numerical simulation was
compared with experimental results and a good agreement was found for the displacements of
the rope. However the rotation of the mass in the experimental testing has influence in the
lateral in plane and longitudinal displacements of the mass. The imperfections or
misalignment at the mass assembly, that are responsible for any additional looseness or
misalignment were difficult to eliminate and to accommodate in the current model due to

project constraints.
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Due to good comparison of the rope lateral displacements between the experimental and
numerical simulation results under different input parameters. The methodology used to
derive the mathematical model of a rope and mass system was used to derive the
mathematical model of a full elevator system for a high rise building to predict the motions of
the ropes and the interaction between its components.

In Chapter 4 a stationary mathematical model of a high rise elevator system that predicts the
behaviour of the suspension and compensating ropes at the car and counterweight side with
the influence of the lateral in plane and out of plane displacements of the elevator car and
longitudinal displacements of the elevator car, compensating sheave, and counterweight was
derived. The equations of motion for the entire system were derived. The stationary and
nonlinear vibrations of the suspension and compensating ropes were taken into account. The

numerical results were compared with a high and low lateral stiffness of the elevator car.

When the elastic interface between the elevator car and the building structure in the lateral
directions is considered the veering phenomena was discussed. The simulation results were
compared when the elevator car is positioned at the bottom landing level, at a height where
the eigenvalues of the suspension and compensating ropes for the fundamental natural
frequency becomes equal, and when the elevator car is positioned at the top landing level.
Among all three case studies the lateral response of the suspension ropes, compensating
ropes, and the elevator car was higher when the elevator car is positioned at a height where
the fundamental natural frequency of the suspension and compensating rope becomes equal.
Due to good ride quality on the elevator car, an elevator car with lateral low stiffness of the
guiding system and having lateral vibrations as the ones shown in Chapter 4 would not be
suitable for service. This is why the lateral high stiffness of the guiding system are used in the
elastic interface between the elevator car and the building structure in the lateral directions to
minimize the lateral vibrations on the elevator car. Thus, the mathematical model derived in
Chapter 5 the lateral stiffness of the elevator car was neglected. The mathematical model
derived in Chapter 4 can be used to predict the response of the suspension and compensating

ropes and the interaction between its components.

In Chapter 5 an efficient nonstationary mathematical model of a high rise elevator system that
predicts the behaviour of the suspension and compensating ropes at the car and counterweight
side with the influence of the longitudinal displacements of the elevator car, compensating
sheave, and counterweight while the elevator car is going up or down in the elevator shaft was
derived. The equations of motion for the entire system were derived taking into account the

kinematic profile of an elevator system dictated by the drive control algorithm. The equations
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of motion of the entire system accommodate the Coriolis and centrifugal forces due to the
nonstationary behaviour of the system. The nonstationary and nonlinear vibrations when the
suspension and compensating ropes are changing length were taken into account. The change
of length of the ropes was treated as slowly varying in time.

The numerical results were discussed by comparing when the elevator is travelling at a high
and low rated velocity and when the elevator car is traveling from the bottom landing level to
the top landing level and vice versa. As the elevator car is travelling at a low rated velocity the
response of the ropes and of the elevator car, compensating sheave, and counterweight are
higher as slow passage through the resonance regions takes place. A special case was shown
where the first longitudinal natural frequency equal to twice the lateral fundamental natural
frequency of the suspension ropes at the car side leading to the nonlinear 2:1 autoparametric
resonance. The external excitation frequency of the high rise building is equal to the first
longitudinal natural frequency. In this case study the first longitudinal mode excited the lateral
modes of the suspension ropes due to the quadratic coupling in the equations of motion of the
suspension rope at the car side. The 2:1 autoparametric resonance was more evident when the
elevator car was travelling at a very low rated velocity and when travelling from the top

landing level to the bottom landing level.

The mathematical models of a high rise elevator system presented in this research are the
basis for the development of computer simulation tools for designers to predict unwanted
resonance vibration by using the parameters of the elevator system such as number of steel
wire suspension and compensating ropes, the mass per unit length, the elastic modulus, and
the lateral modal damping ratios of the ropes, the height of the building structure at the
machine room level, the travel height, the elevator car, compensating sheave, and
counterweight full mass, with the longitudinal modal damping ratio of each mass. Designers
would be able to configure the high rise elevator system and study which arrangements are

better to prevent unwanted vibrations of the ropes and the components of the elevator system.
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6.1 Future work

There is scope for further developments in modelling and prediction of the dynamic

behaviour of a full elevator system and experimental testing, such as:

The validation of the full elevator model presented in chapters 4 and 5 can be
completed considering the stationary and nonstationary behaviour of the elevator
system in a high rise building under wind loading. The full validation of the lateral
displacements of the suspension and compensating ropes at the car and counterweight
side can be accomplished.

As new elevator systems are being installed in open elevator shaft (without elevator
shaft walls) the influence of aerodynamic effects on the dynamics of ropes in a full
elevator system should be studied.

To expand the mathematical model derived in Chapter 4 future mathematical models
could include the elastic interface between the building structure and the

counterweight.

In the modern high-rise systems elevator cars are equipped with active roller guides
when installed in high rise buildings, to mitigate the lateral vibrations from
misalignment of the guide rails and to suppress the lateral vibrations of the elevator
car. The new mathematical models of a high rise elevator system could be
incorporated active roller guides, to predict the behaviour of the suspension and
compensating ropes in a stationary and nonstationary elevator system and to predict

the effects at the elevator car.

Impact between the shaft walls and the ropes and the interaction between the ropes of
the elevator system should be included as this is another excitation to the elevator car

during operation and stationary.

As it was presented in Chapter 3 the lateral damping ratios of the ropes were
determined experimentally of a steel wire rope and were considered constant
throughout all modes for a constant length of rope. A new research could arise to
determine the damping ratios for different modes during travel of the elevator car and

for different travel directions.
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For the mathematical model derived in Chapter 3, a future mathematical model could
be derived by adding a rotational degree of freedom to the mass/car assembly

dynamics in the lateral in plane direction.

A new type of sensor to monitor the vibrations of the ropes in the elevator system
stationary and during travel should be studied. As it was reported in Chapter 1, a fibre
optic sensor based on Fibre Bragg Grating technology could be used to measure the
vibrations of the ropes.

The existing mathematical model results could be verified through the development of
another model using an alternative software platform such as MSc Software Adams
which is multibody dynamic software. A single rope can be characterized by segments
of a specified length linked all together by joints and a mass can be attached at the

bottom restricted to vibrate only in the longitudinal and lateral in plane directions.

The effects of the rope vibrations on the elevator car structure can be developed. The
models could accommodate the geometry of the elevator car, compensating sheave,
and counterweight. A more in depth analysis of the elevator car components in
particular the deformations of the car frame/body and the materials being used can be

developed. As certain components can be excited at their natural frequency.

High rise buildings are often being constructed in seismic areas. The mathematical
models of a full elevator system in a high rise building with the excitation of wind
loading can be included seismic excitation. To predict the behaviour of the suspension
and compensating ropes at the car and counterweight side with the interaction of the
elevator car, compensating sheave and counterweight, when the high rise building is

being excited by wind and seismic loading.
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Appendix A

Orthogonality of Modes of one rope and a mass
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Figure A.1 Drawing of the model taken into account

For the lateral in plane and out of plane motion of the model of Figure A.1, the differential

equation of the stationary, unconstrained system can be written as:

mv, TV, =0 (A1)



Which must be satisfied in the domain 0 <x<L.

In addition V must satisfy the boundary conditions at x=0 and x =L which are described by

the equations A.2 and A.3, respectively.
V(0,t)=0 (A2)
MV (L,t)+2kV (L,t)+TV,(Lt)=0 (A3)

Using the separation of variables technique the displacement V can be expressed as:

V(x,t)=¢(x)a(t) (A4)
where q(t) is a harmonic function with frequency « , so that

Vu (X,1) ==’ ¢(x)q(t) (A.5)
where o= £"" THO . The Eigenvalue problem of (A.1) is then reduced to

¢"()+ (") p(x)=0 (A.6)
where the prime designates differentiation with respect to x. Equation A.6 can be re-written
as

Todh (X) =—Ma’ ¢, (X) (A7)

The orthogonality property of (A.7) can be examined by considering modes n and r of the

Eigenvalue problem as the following equations:
Toth (X) = —Ma3 ¢, (%) (A.8a)
To (X) = —maf'¢, (x) (A.8b)

Multiplying the (A.8a) by ¢,(x) and (A.8b) by ¢ (x)and integrating over the entire interval
[0-L].

[Toi ()¢, (X)dx = —ma? [ 4, (X) (x)lx (A.92)
[Tod! (), (x)dx = —ma? [ 4, (x)¢h, (x)lx (A.9b)

The second boundary condition at x =L, for modes n and r can be written as the following

expressions:



—o,Mg, (L)¢, (L) = (=T (L) k44, (L)), (L) (A.109)
—o,Mg, (L)g, (L) = (=To! (L) — k¢, (L)), (L) (A.10b)
Subtracting (A.9a) and (A.9b) from the expressions (A.10a) and (A.10b)

[Tor 00, () dx+ 0, M4, (L) (L) =—ma [ 6, (), 0)dx+ T (L) (L)
kg (L), (L)

(A.11a)

[To" (0, ()dx+ 0, Mg (L), (L) = —ma? [ 6, (), () + Togh (L), (L)
kg (L), (L)

(A.11b)

Evaluating the integrals of (A.11a) and (A11lb) with the method of integration by parts the

following equations are produced:

Tt (D (D =T, [ 4,004 ()dx + @, M, (L), (L) = —mao? [ 4, ()¢, (X)X

(A.12a)
+T0¢r: (L)¢r (L) + keq¢n (L)¢r (L)
Todr (L), (L) —To£¢r’ (X)¢, () dx + @, M4, (0)4,(0) = —m,e; ! ¢, (X)¢, (x)dx (A.12b)
+Tod (L), (L) + ko (L), (L)
Subtracting Equations (A.12a) and (A.12b), the resulting equation is
m,, if n=r
Mg, (L), (L) +m| ¢ ()¢, (x)dx = (A13)
0 ifn#r
Applying (A.12a) into (A.9a)
_m2rra)22rr ifn=r
To [ #1006, (dX =Tyt (L) (L) — keyth, (L) (L) = (A.14)
0 ifn-r



Appendix B
Lateral Eigenvalue Problem of one rope and a mass
In the lateral motion the rope is being treated as a string governed by the equation
mv, —-TV, =0 (B.1)

The equation of the string (B.1) is solved using the technique of the separation of variables in
order to determine the equation for the mode shapes. It is assumed that the displacement

V(X,t) can be written as a product of two functions one depending on length (x) and the other

on time (t).

V(x.t)=¢(x)a(t) (B.2)
and each function can be written separately as following

#"(x)+(B" Y p(x)=0 (B.3)
q'(t)+wq(t)=0 (B.4)

The solution for each function is defined in Equations (B.5) and (B.6) respectively

q(t)=Acosat +Bsinwt (B.5)
#(x)=Ccos " (x)+ Dsin g (x) (B.6)
where A,B,C,D are constants of integration. The boundary condition at x =0 is

V(0,t)=0 (B.7)

From the boundary condition (B.7) q(t)¢(0)=0 and Ccos A" (x)+Dsing"(x)=0 and
thus C=0

Consequently
#(x)=Dsin g™ (x) (B.8)
at x =L the boundary condition is

MV(x,t)],  +ToV(xt)] | +K V(xt), =0 (B.9)

X=

Equations (B.2), (B.4) are applied into Equation (B.9) resulting into a new Equation (B.10).

(K —Mo®)sin L+T S cos "L =0 (B.10)



applying Equation (B.2), (B.3), (B.4) into (B.1)

(02 — (T_OJ(ﬂLin )2 (Bll)
m

using Equation (B.11) into Equation (B.10)

Toﬂun COS,BLinL-F(keq— Mn-‘:—o (ﬂLihZ )stinﬂLinL :O (812)



Appendix C
Simulation Results for the Experimental Testing
Running a simulation with a number of mode of N=1.

A comparison between the experimental testing and the mathematical model of the
displacements in the lateral in plane and out of plane direction is shown in Figure C.1 and the
whirling motion of the rope appears in Figure C.2.

Dlsplacement of the rope at the height of the sensor Lateral In-plane
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Figure C.1 Comparison of the rope displacement at sensor height from the experiment and the
mathematical model
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Figure C.2 Comparison of the displacements in the Lateral in plane and out of plane direction



Running a simulation with a number of mode of N=2.

A comparison between the experimental testing and the mathematical model of the
displacements in the lateral in plane and out of plane direction is shown in Figure C.3 and the

whirling motion of the rope appears in Figure C.4.

I8i1splacement of the rope at the height of the sensor Lateral In-plane
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Figure C.3 Comparison of the rope displacement at sensor height from the experiment and the
mathematical model
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Figure C.4 Comparison of the displacements in the Lateral in plane and out of plane direction



Running a simulation with a number of mode of N=3.

A comparison between the experimental testing and the mathematical model of the

displacements in the lateral in plane and out of plane direction is shown in Figure C.5 and the

whirling motion of the rope appears in Figure C.6.
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Figure C.5 Comparison of the rope displacement at sensor height from the experiment and the

mathematical model
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Figure C.6 Comparison of the displacements in the Lateral in plane and out of plane direction.

As it can be seen the simulation with higher number of modes for the Galerkin method agrees

better with the experimental testing. The contribution of the first three modes to compare the

results with the experimental testing agrees better. Thus, the number of modes chosen in

Chapter 3 to compare the simulation with the experimental testing will give an acceptable

correlation.



Appendix D

Lateral Eigenvalue Problem of two ropes and a mass

~V,
(»)
X']. |
EA,,m,
Top Landing ! '
Level
Ml kll kl
g
|
|
X, ho
|
V, b
T t h ray|
L, " '
B |
EA,, m,
|
|
Bottom Landing
Level

Figure D.1. Drawing of the mathematical model taken into account.

The lateral motion of the mathematical model of the ropes of Figure D.1, which are being

treated as a string, are governed by the following equations



mV,, TV, =0 (D.1)
MV, — TV, =0 (D.2)
V,(0,t)=0 (D.3)
V,(L,,t)=V,(0,t) (D.4)
V,(L,t)=0 (D.5)
M Vi (L) + TV, (L 1) =TV, (0t) + 2KV, (L, 1) =0 (D.6)

The equation of the string (D.1) and (D.2) are solved using the technique of the separation of
variables in order to determine the equation for the mode shapes. The boundary conditions are

defined from equations (D.3) to (D.5). It is assumed that the displacement V,(x,t) and
V,(x,t) can be written as a product of two functions one depending on length (x) and the

other on time (t).

Vi(x,t)=g(x,)q(t) (D.7)
Vo(x,t) =y (x, )a(t) (D.8)
The solution for each function is defined in equations (D.9) and (D.10) respectively

@ (x)= A cos S x + B, sin 8,x, (D.9)
#,(X)= A, cos B,X, + B, sin 5,X, (D.10)

Where g, and g, are defined as equations (D.11) and (D.12)

B -0 T (D.11)
mZ
B = T (D.12)

From the boundary condition (D.3).

A =0 Thus, equation (D.9) can be rewritten as

$(x)=B,sin fx, (D.13)

From boundary condition (D.4)

10



A —B;singL, =0 (D.14)
From boundary condition (D.5)

A, cos gL, +B,sing,L, =0 (D.15)
From boundary condition (D.6) and using equations (D.14) and (D.15)

~M,@’B,sin gL, +T,B B cos AL, —T,B, 5, +k B sin L, =0 (D.16)

Placing equations (D.14) to (D.15) in a matrix and finding the determinant of the matrix gives
equation (D.17)

o S

(D.17)
+a)4/i sm[mL2 / Jcos[ Ll\/7J M, sm(a)L f JS|n(a)L1\/7J=
To determine B, A2, and B2, assuming
B =1 (D.18)
Thus using Bs in equation (D.13) and (D.14) results in equation (D.19) and (D.20)
A, =sin L, (D.19)
B, —— sin gL, cos S, L, (D.20)

sin g,L,
Using equations (D.18) to (D.20) in (D.13) and (D.10) gives equations (D.21) and (D.22)
¢1( X)=sin BiX (D.21)

sin B, cos S,L
sin,L,

@,(x)=sin B,L, cos S,x, — 2sin B,X, (D.22)

11



Appendix E

Orthogonality of Modes of two ropes and a mass

For the lateral in plane and out of plane motion of the mathematical model of Figure D.1, the
differential equation of the stationary, unconstrained system can be written as:

mV,, —T\V,,, =0 inthe domain 0<x, <L, (E.1)

XX

m,V,, —T,V,,, =0 inthe domain 0<x, <L, (E.2)

XX

In addition V1 must satisfy the boundary conditions at x, =0 and x, =L, and V2 must satisfy
boundary conditions at x, =0 and x, =L, which are described by the equations (E.3) to

(E.6), respectively.

V,(0,t)=0 (E.3)
V,(L,,t)=V,(0,t) (E.4)
V, (L, t)=0 (E.5)
M Vy (L) +T, (L )V (Lo t) =T, (0)V,, (0.t) + 2KV, (L, t) =0 (E.6)
Using the separation of variables technique the displacement V1 and V- can be expressed as

Vi(xt)=4,(x)q(t) (E.7)
Vo(x,t)=6,(x,)q(t) (E.8)
L =% (E.9)

where the prime designates differentiation with respect to x. Equations (E.1) and (E.2) can be

rewritten as
m,w°¢ (X) = -T,8(x,) (E.10)
m,o°@, (X) = ~T,4;(X,) (E.11)

The orthogonality property of equations (E.10) and (E.11) can be examined by considering

modes n and r of the Eigenvalue problem as the following equations:

M} dh, (X) =Ty, (%) (E.12)

12



m2a)r$¢2n (X) = _T2¢2”n (XZ) (E 13)
mid, (X) =—T,dr (%) (E.14)
m,! ¢, (X) = =T, 4, (X,) (E.15)

Multiplying Equations (E.12) and (E.13) by ¢4, (x) and ¢, (x) respectively and (E.14) and
(E.15) by ¢, (x) and ¢,.(x) and integrating over the interval [0—L,] Equations (E.12) and

(E.14) and [0-L, ] equations (13) and (15).

m, ] L! hin (X, (X)X = —le i (X, (X)dx (E.16)
m, ] 1 o (X)y, (X)X = T, 1 P (X) 5, (X)dX (E.17)
m,ef L! hn (X, (X)X = —le e (), (X)dx (E.18)
m, e} 1 o (X)y, (X)X =T, 1 B (X) ¢y (X)dX (E.19)

The boundary condition equation (E.6) and using equations (E.7), (E.8), (E.9), for modes n

and r and multiplying by, (x) and ¢, (x) respectively, can be written as the following

expressions:

_M1¢1n (L1)¢1r (Ll)a)r? = _Tl¢1,n (L1)¢1r (L1)+T2¢£n (O)¢1r (Ll)_2k1¢1n (L1)¢1r (Ll) (E-ZO)
M, (L) o (L) @ =T, (L) o (L) + T, (0) i (L) — 2Kty (L) i (L) (E.21)

Evaluating the integrals of (E.16) to (E.19) by parts the following equations are produced:

L L
M@’ [ o (0, ()X = =Ty, (L), (L) +T, [ 1, ()8, (%)X (E.22)
M2 [ (00, (O =Ty, (00, (0)-+T, [ 8, ()48, () (E.23)

L L
M7 [ o (O, (VX = =Ty, (L) (L) +T, [ 1,08, (x,) X (E.24)
mza)r2 Jg ¢2n (X)¢2r (X)dX = T2¢£r (0)¢2n (0) +T2 Jg ¢2'n (X2)¢£r (Xz)dX (E25)

13



Summing equation (E.22) and (E.23) and subtracting equations (E.20) for n. For r summing

equations (E.24) and (E.25) and subtracting equation (E.21), and using the transformation
¢,(L,)=4,(0) gives equations (E.26) and (E.27)

mla)r? jl ¢ln (X)¢1r (X)dX + rnza)n2 f ¢2n (X)¢2r (X)dX + M 1¢lr (L1)¢1n (Ll)a)r? =
0 0 (E.26)

T, g, 0, 00+ 2Ky (L) e (L)+T, [ 200,45, ()

mla)r2 Il ¢ln (X)¢1r (X)dX + rnza)r2 Jg ¢2n (X)¢2r (X)dX + M 1¢lr (L1)¢1n (Ll)a)r2 =
0 0 (E.27)

T, [, (), 0K T, [ (%), () + 2K, (L)oo (L)

Substracting equation (E.26) and (E.27) gives the following solution

m ifn:r

1rr

L L,
M, [ ¢, (0, ()dx+m, [ &, (), (Ydx+ Mg, (L) i, (L) = (E.28)

0 if n£r

Applying (E.28) into (E.27)

m, . ifn:r

T [ A, 0, ()X +T, [ 6, (), 0 )+ 2k, (L) i (L) (E.29)

0 ifn#r
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Appendix F

Coefficients for the Stationary Model of a High Rise Elevator System

Where G and G:" are represented as equations (F.1) to (F.4)

j B p( Lln) L1 ﬂLm Sln(ZﬂLm L1)

GlLin ’ 2 4 (F 1)
! j;t pﬂLln Lin Sin(Ll( 1Liin_ 1Lpin))+3in(|'1( Lm+ Lm)) |
2( 1ij_ 1me) 2( L|n+ Lm)

L, (B") sin? ginL, | B sin’ B'L cos2B, L, sin 25, 1L,
i=p 2sin’ gL, 4sin® p,1'L,
L|n Sln ,BLmL1COSﬁLmLZS|nﬁLmL2
SlnﬂL'” (ﬁLva Cv ﬂLva Cv )
sin B;,'L, . ; ; +
2Lin |n n \ \ n \ V
G = +20s 'L, (B35 CooCsi + B57CHCY ) ) | (F2)
1 COSﬂLm (ﬂz va Cv ﬂLmC Cv )
j;é p’ Lin 2 Lin 2 COSﬂLm Lln Lin~v v LinA~v v B
( Zp) _( 21) —sin ] ('B CppCyj + iCZpCZJ)
(ﬂLInCV Cv ﬂLmCV Cv )
L|n Lin LlnL
Where Clvp — Lln SIn’BleLl, C;:/J — L|n Slnﬂltle ' C;J _ Slnﬂ |—LlCOS ’ and
sin 5, "L,
Cv _ Lin SlnﬁLleCOS LlnL2
2p SlnﬂLmLz )
Similarly G** and G can be deducted.
The coefficients for the first rope in the lateral in plane direction are the following:
1Lrlrn _mJ. ¢1r Xl)dx +M1¢lr(|‘1)+m J‘ ¢2r (F3)
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lein4 — [ EAZ f2V J ¢1r (Ll)

_ (M +mL +ml, +—= Jgj. i (%), (X )dx, |

[M +myL, +—2 jg%(l— )4, (Ly)

/m

+2k1¢1r(|-1)2 (m L +— jgj‘ ¢2r(X )¢2r(X2)dX

(m L +— jg¢2r(0)¢lr(|—)

g [ (x)dh, (6, +mg [, (x)dh, (%),

_EA((flV)2+(f1W)2) L

5 " 80,00, (%),

B % (J:'l i (X)), (x,)dx, — @i, (L)), (L1))

EAi(( 0 (1))

2

A (L) (L) + ¢ (L), (L)

EA (1)
L,

_EA (UZ el [ g, 0008, 00, 41,00, (1)

EAZ(( f;)2+(f2w)2) )

) .[02¢2"n(xz)¢2r(xz)dxz

2
EA, fzv 2+ fzw 2 E fzv 2
- (( )2 ( ) )¢£n(0)¢1r(L1)+#¢ln(l‘l)¢lf(l‘l)

+mag [ X, ()i 0)0, + My [ 65, (%), 0, )

SEALE (L) ERR T,

- Lin Lin
lelrr LZ m1rr

(L1)¢lr(|— )

KLin3 _ EA1 flv _ EAZ fzv ¢1r (Ll)
1r I—l |_2 mLi”

1rr

mLin

1rr

L

2

(F.4)

(F.5)

(F.6)

(F.7)

(F.8)
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E’tfl 8 (L[ 0 (), + ALiil 4, (L), (L) (L)
Linl _ EA1 f ! 1Lin . EAZ fz " Lin
Di* = + 5~ Ch " (L) e (L], 65,060 ()0, my
B 4 L L)k, 0+ 2 6}, (L)

Lin
/ mlrr

R (L)) A 0 () + = (L) (L) (L)

oe-| W
B ] 800 )k, - T (L), (L6, 0

EAif ou EA2f ou
2 LlnlL1 GlL t¢ll’(Ll) 2 ll_r|rn|2_ GZL t¢lr(L1)

lrr

Lin3
Dlnr

R}, = MI 41,00)d, 00)e, + 208 (L), (L)
Jnf 2 Lin 1r 2L1 1Lr|rn 1n 1r

1rr
2L|n

AG,” oo (X2 )y, (X, )X, — : 0, (L))
2 LlnL j 2 ¢2r 2 2 2L2 1|_r|rn ¢2n ¢lr

ll’l’

lLOUI EAlGlLOlJt
2 [ A0 )+ (L) L)
2Lout

GZLout E
Iy ) () == i 00 (L)
m"

L|n
2m L 2" 1rr

1rr

Lin _
R2ljnr -

B L L L
—myS; [ " O)dx, —miS} [ i, () + gl [ " g, (x ) +
(M +m,L, +NI jgf +[M22+m2L2jgf2V

AL o A A |/m
—MlS7V+T(( )+ (1) )+7(( )+ 1 (1) )

vl vl vl
__mzssjo ¢2r(X2)dX2+mZS4J-O X2¢2r(xz)dxz_ngf2 Io ¢2r(X2)dX2 J

Lin _
I:1r -

Lin
1rr

(F.9)

(F.10)

(F.11)

(F.12)

(F.13)

(F.14)

The coefficients for the first rope in the lateral out of plane direction are the following

L L
mLout:mlj‘O alzr(xl)dxl+m2jo a;r(xz)dX2+Mla12|'(L1)

1rr

(F.15)
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I (M +mL +m,L, +—)gf o (%), (%) dx,

[M emyL, + e ]galr(L )at (L)
" [ m-o" (F.16)
+2k,a, (L,)? - (m L, +—jg j al (%), (%,)dX,

[m L+ M jgaZr(O) (L)

[ %, (%), (%), + m,g [, (4)os, (),
EA(( ) +( ")

il )2 () J, e x)en, ()
EAU, [ (4
B |_1 (IO

e, (4)et (%) et (L), (L)

CEA((1) (1)) EA (1)
k Loutt — 2 L

" EA ) oy G, -, 01, (1)

alrn(l—l)alr(l—l) - , (Ll)alr(l—l)

Lout
1rr

/m

L
2 n

2n (X )aZr (X )dX

2 E f2W 2
- a;n<0>a1r(Ll>+#%<m%<m

2
Lo - ? (F.17)
|+, [ Xp0rg, () (%)X, + My [, (%, )ery, (4 ) bk, |

k Lout3 EA1 f EA2 fz alr E!:tl) (F 18)
Li L2 mlrr

oo = Eola | el (F.19)
I‘2 mlrr

s EATVEY EA fYf"
k1|;n © = leiLr(;utl ¢, (L), ( L1) + L, mer(:utz ¢, (L), ( L1) (F.20)

E’tfl 8, (L] e (%)t (), — E’tflv (L), (L)t (L)
DLt /mi (F.21)

BB L) e, () - 2 g (L), (L), O
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eary| @b ), ot (x)e, (%)

L Ty (L)ey, (L)), (Ly )+ GlLOUt a, (L)
D" - I
eaty| ), a0, ()

L, _au(l— oy, (Ly)ay, (0)+ GZLOUI ay, (L)

ou EA1 f" in EAz f,’ in
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1L|n EAlGlLIn
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EAG2™ o, EAGET
oL [.” a3, (%) (%, )dx, - i 02 (1)
1Lout 1Lout
R2L = - Epfidi’ [Fa 1;(x)alr<x)dx+fwam¢ i, (L)
EAZGZLout E GZLout
Zmlchr)utL I Ol (X )azr(x )dX _WQZn(O)aﬂ(L)

B L L L

-myS [ " e, () d —mSy [ *xa, (%) +mygf,” [ " e, ()dx, +
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The coefficients for the third rope in the lateral in plane direction are the following
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The coefficients for the fourth rope in the lateral in plane direction are the following
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The coefficients for the third rope in the lateral out of plane direction are the following
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The coefficients for the fourth rope in the lateral out of plane direction are the following
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The coefficients of the elevator car in the longitudinal direction are the following

K :% +EL_A2 (F.51)
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The coefficients of the compensating sheave in the longitudinal direction are the following
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The coefficients of the counterweight in the longitudinal direction are the following
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Appendix G

Coefficients for the Nonstationary Model of a High Rise Elevator System

The modified coefficients for the nonstationary model of a high rise elevator system are
shown from equations (G.1) to (G.35).

For rope i=1 in the lateral in plane direction

28, @, (T)
By, (t;7)=| 4v(t)nr((-1)"" -1 (G.1)
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o) L) ©?
B (i) - 2ol F@ZMT)(g%)(%(T)l))
i (5 L(z)rz (—1)r(_ZVZLl(T)+(l//1(2')—1)(—jv2|_1(z')+g+aCR(t))) (G.3)

4v r
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For rope i=2 in the lateral in plane direction
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For rope i=4 in the lateral in plane direction

20, @,, (T)
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For rope i=1 in the lateral out of plane direction
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For rope i=3 in the lateral out of plane direction

)~ 2l (21, (1) 0420, (0) ) (92, 1)
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For rope i=4 in the lateral out of plane direction
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