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Hull-WEMA: A Novel Zero-Lag Approach in the Moving Average Family,  

with an Application to COVID-19 

 

Abstract 

The Moving Average (MA) is undeniably one of the most popular forecasting methods in time 

series analysis. In this study, we consider two variants of MA, namely the Weighted 

Exponential Moving Average (WEMA) and the Hull Moving Average (HMA). WEMA, which 

was introduced in 2013, has been widely used in different scenarios but still suffers from lags. 

To address this shortcoming, we propose a novel zero-lag Hull-WEMA method that combines 

HMA and WEMA. We apply and compare the proposed approach with HMA and WEMA by 

using COVID-19 time series data from ten different countries with the highest number of cases 

on the last observed date. Results show that the new approach achieves a better accuracy level 

than HMA and WEMA. Overall, the paper advocates a white-box forecasting method, which 

can be used to predict the number of confirmed COVID-19 cases in the short run more 

accurately. 

Keywords 

Time Series Forecasting; Moving Average; HMA; WEMA; Hull-WEMA; White-Box Model; 

COVID-19; Python 3. 

 

1. Introduction 

Time series analysis has become crucial in many different fields, especially for strategic 

decision-making. It involves time series data and has two main usages: first, to find the basic 

structure or pattern in the observed data, and second, to fit a model of the observed data for 

future prediction (Deb et al., 2017; Hansun, 2016). Furthermore, time series forecasting has 

also become an essential branch of big data analysis (Shen et al., 2020). There are many 

forecasting methods that have been developed in the literature, but generally, they can be 

classified into two big groups, i.e., the traditional statistical forecasting methods and the 

advanced forecasting methods that incorporate different soft computing methods (Hansun and 

Subanar, 2016). Table 1 compares the characteristics of traditional and advanced forecasting 

methods. 

Table 1 

Traditional Versus Advanced Forecasting Methods 

Traditional Forecasting Methods Advanced Forecasting Methods 

Employs statistical methods Employs soft computing methods, such as 

machine learning 

Simple to complex analysis Complex analysis 

Higher interpretability Lower interpretability 

Easy to be implemented More difficult to be implemented 

Small number of parameters High number of parameters 

Use many simplifying assumptions Do not use many simplifying assumptions 



3 
 

Static Dynamic and evolving 

White box models Black box models+ 

Low computational cost High computational cost++ 
+Interested readers may find a comparison table between white box and black box models in Hansun et al. (2021). 
++Interested readers may find comparison results between traditional statistical methods and machine learning models in the 

M3 competition (Makridakis et al., 2018). 

In view of traditional forecasting methods, which become the main focus of this study, the 

Moving Average (MA) family of methods undeniably becomes one of the most popular 

methods used in different scenarios. The first usage of MA can be traced back to the early 

1900s (Raudys and Pabarskaite, 2018). Also known by other aliases such as ‘autoregressive 

models’ (in the statistical field), ‘low-pass filters’ (in signal processing), ‘sliding window’, and 

‘exponential smoothing’ (in the later development of MA methods) (Raudys and Pabarskaite, 

2018), the method has been improved and developed to tackle various problems, which resulted 

in the birth of different variants of MA methods. The most basic and the earliest type is the 

Simple Moving Average (SMA) method, which simply takes the average of several historical 

data without applying any weighting factor for each data point (Svetunkov and Petropoulos, 

2018). Since the most recent data will usually have greater effects on future values, the 

Weighted Moving Average (WMA) method was introduced, which applies the same basic 

formula of SMA, but with the application of linear weighting factor for each data point in the 

dataset (Hansun and Bonar Kristanda, 2017). In the next development phase, the Exponential 

Moving Average (EMA) method was introduced. It uses the same formulas as the WMA, but 

rather than using a linear function as the weighting factor calculation, it uses an exponential 

function (Bonar Kristanda and Hansun, 2019). EMA, which is best known as the exponential 

smoothing method, is widely accepted by the scientific community and applied in a wide range 

of fields, as can be seen in Anthony and Anggono (2019), Kim et al. (2020), and Rao (2020). 

A novel approach to a ‘hybrid moving average’ method, which combines the weighting factor 

calculation in WMA with the general procedure of EMA, was introduced in 2013 by Hansun 

(2013). The introduced method is known as the Weighted Exponential Moving Average 

(WEMA) method and has been proven to excel the WMA and EMA method in terms of 

accuracy level. Moreover, since the introduction of this approach, it has attracted the attention 

of many researchers to apply the method in their respective fields. The robustness of the 

WEMA method has been tested in different kinds of scenarios and types of implementation, 

such as in the prediction of major Forex currency pairs (Hansun and Bonar Kristanda, 2018), 

prediction of Indonesia’s export and import values and volumes (Hansun et al., 2018), and 

ASEAN capital markets forecasting (Hansun et al., 2019). Moreover, Chen et al. (2015) also 

proposed a new differential secret key generation scheme based on the WEMA method, called 

the WEMA differential secret key generation (WEMA-DSKG). They found that the proposed 

method had a higher secret bit rate and entropy, with a lower bit mismatch rate. In the medical 

field, Rashidi Khazaee et al. (2019) proposed a hybrid prediction model based on multi-layer 

perceptron, linear regression, and the WEMA method that can predict the function of the 

transplanted kidney in a long-term care process. They found that the hybrid model could give 

reliable prediction values for estimated glomerular filtration rate (eGFR) in the routine daily 

care of kidney transplant patients. 

Despite its acceptance and advantages, the WEMA method still suffers from several 

weaknesses. Like other MA methods, it experiences ‘lag’ where it shows a previous trend 

instead of the new ‘desired’ one (Raudys et al., 2013). Therefore, some researchers focused 
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their study on reducing the lag in the MA methods, efforts which gave birth to the zero-lag 

approaches. One of the most famous examples of the zero-lag approaches is the Hull Moving 

Average (HMA) introduced by Hull (Raudys and Pabarskaite, 2018). It has been applied in 

different scenarios, such as for stock price series smoothing (Raudys, 2014) and trading 

systems (Di Lorenzo, 2012). Usaratniwart et al. (2017) developed a new smoothing technique 

based on HMA. The technique is called ‘adaptive enhanced linear exponential smoothing’ 

(AELES) and has the ability to mitigate the voltage fluctuation. Similarly, Ali et al. (2019) 

applied HMA to extenuate voltage fluctuation in electric vehicles (EV). Together with the 

gravitational search algorithm (GSA), they found that the proposed method effectively 

smoothed EV batteries' voltage fluctuations. 

In this study, we are concerned with taking the advantages of both WEMA and HMA methods 

to build a new zero-lag approach in the MA family, called the Hull-WEMA method. Moreover, 

the proposed method will be compared with several other popular forecasting methods in the 

MA family, such as WEMA and HMA. The remainder of the paper is structured as follows. In 

the next section 2, we provide a brief discussion of the proposed method's two building block 

methods, i.e., the HMA and WEMA. Then, section 3 will focus on the introduction of the 

proposed forecasting method, the Hull-WEMA method. The experimental and comparison 

results of the proposed method with other MAs methods will be given in section 4. Finally, 

section 5 comprises the concluding remarks. 

2. The Building Block Methods 

In this section, a description of two methods, namely WEMA and HMA, that constitute the 

building blocks of our proposed method, is given. Both methods have been widely accepted 

and used in the literature. We will also give the basic codes for both methods, which are written 

in Python programming language. 

2.1 Weighted Exponential Moving Average 

Hansun (2013) introduced a new hybrid approach to the MA forecasting method for time series 

analysis. Since it combines two conventional MA, namely WMA and EMA, the method was 

called the ‘Weighted Exponential Moving Average’ or WEMA. The method takes the 

advantages of both methods where some recent data will be considered in the prediction of 

future values using the EMA approach. There are three steps in the WEMA procedure, which 

are detailed below: 

1) Calculate the WMA with period 𝑛 using Eq. (1): 

 𝑊𝑀𝐴𝑡 =
∑ 𝑤𝑡𝐴𝑡

𝑘
𝑡=𝑘−𝑛+1

∑ 𝑤𝑡
𝑘
𝑡=𝑘−𝑛+1

, (1) 

where 𝑛 is the period or span number, 𝑘 is the relative position of the current data point 

being considered, 𝐴𝑡 is the actual value at time 𝑡, and 𝑤𝑡 is the linear weight at time 𝑡. 

2) Calculate the WEMA by using the EMA formula as shown in Eq. (2): 

 𝑊𝐸𝑀𝐴𝑡 = 𝛼 ∙ 𝑊𝑀𝐴𝑡 + (1 − 𝛼) ∙ 𝑊𝐸𝑀𝐴𝑡−1, (2) 

where 𝛼 is the smoothing constant taking a value between 0 and 1, 𝑊𝑀𝐴𝑡 is the base 

value obtained from Step 1, and 𝑊𝐸𝑀𝐴𝑡 is the predicted value at time 𝑡. For 𝑡 = 1, 

𝑊𝐸𝑀𝐴𝑡 = 𝐴𝑡. 

3) Back to Step 1 until all data points have been visited. 
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Although there is a slightly different formula for the WEMA method in the literature, the above 

procedure will be used in this study. Figure 1 shows the implemented codes for WEMA in 

Python language. 

 

Fig. 1. WEMA implementation in Python. 

 

2.2 Hull Moving Average 

To solve the old-time dilemma of lag in MA, Hull (Zakamulin, 2017) introduced the HMA 

method. This method uses a combination of three WMAs with different sizes of period. It is 

considered as one of the best approaches to reducing the average lag time of MA, while 

simultaneously improving the smoothing (Hull, n.d.). The procedure of HMA can be described 

in three steps, as follows: 

1) Calculate the WMA with period 𝑛 2⁄  and multiply it by 2. 

2) Calculate the WMA with period 𝑛 and subtract it from Step 1. 

3) Calculate the WMA with period √𝑛 using the results from Step 2. 

The above procedure can be written as a mathematical formula, as shown in Eq. (3) 

(Kolkova, 2018; Oyewola et al., 2021): 

 𝐻𝑀𝐴 = 𝑊𝑀𝐴√𝑛 (2 × 𝑊𝑀𝐴𝑛

2

(𝐴) − 𝑊𝑀𝐴𝑛(𝐴)), (3) 

where 𝑊𝑀𝐴𝑛, 𝑊𝑀𝐴𝑛

2
, and 𝑊𝑀𝐴√𝑛 are the results for WMA with periods of ‘integer’ 𝑛,

𝑛

2
, and 

√𝑛 respectively. Furthermore, 𝐴 is the actual observed data, and 𝐻𝑀𝐴 represents the predicted 

results. Figure 2 shows the implemented codes for HMA in Python language.  

 

Fig. 2. HMA implementation in Python. 
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3. Hull-WEMA and Error Criteria 

In this section, we introduce and describe our proposed approach to the zero-lag method in the 

MA family. Moreover, we also briefly describe the forecast error criteria being implemented 

in this study, namely the Mean Absolute Percentage Error (MAPE) and the Mean Absolute 

Scaled Error (MASE). 

 

3.1 Hull Weighted Exponential Moving Average 

As suggested by its name, Hull-WEMA, our proposed novel approach for the zero-lag MA 

combines the HMA and the WEMA methods. The motivation behind this approach is quite 

simple. Since the HMA method could reduce the average lag time in the given time series data, 

we first use the HMA method described in Section 2.2 to get the base values. Next, the base 

values obtained will be used as the input in the second step of the WEMA method, as explained 

in Section 2.1. By combining both methods, we could get the forecasting results that follow the 

procedure of WEMA, while reducing the average lags at the same time. A more detailed, yet 

simple procedure of the proposed method, the Hull-WEMA, is as follows: 

1) Calculate the HMA using Eq. (3) for the given time series data and period. 

2) Calculate the predicted values using Eq. (4): 

 𝐻𝑢𝑙𝑙 𝑊𝐸𝑀𝐴𝑡 = 𝛼 ∙ 𝐻𝑀𝐴𝑡 + (1 − 𝛼) ∙ 𝐻𝑢𝑙𝑙 𝑊𝐸𝑀𝐴𝑡−1, (4) 

where 𝛼 is the smoothing constant that takes a value between 0 and 1, 𝐻𝑀𝐴𝑡 is the base 

value obtained from Step 1, and 𝐻𝑢𝑙𝑙 𝑊𝐸𝑀𝐴𝑡 is the predicted value at time 𝑡. For 𝑡 =

1, 𝐻𝑢𝑙𝑙 𝑊𝐸𝑀𝐴𝑡 = 𝐴𝑡. 

3) Back to Step 1 until all data points have been visited. 

The implemented codes for the Hull-WEMA method in Python language are shown in Figure 

3. Moreover, the complete codes can be retrieved from GitHub at 

https://github.com/senghansun/Hull-WEMA (Hansun, 2020). 

 

Fig. 3. Hull-WEMA implementation in Python. 

 

3.2 Error Criteria 

Two popular forecast error criteria used in this study are MAPE and MASE. Both criteria are 

included as unit-free [or scale-independent (Kim and Kim, 2016)] forecast error measurements, 

which means that they can serve as effective measures of model accuracy, typically against 

datasets with vastly different sizes (Giri et al., 2020; Kuo, 2019). 
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MAPE is one of the most widely used error evaluation methods in the literature. It shows the 

percentage value of absolute error compared to the actual ones (Hansun et al., 2019). MAPE 

can be represented as in Eq. (5) (Prapcoyo, 2018; Saoud and Al-Marzouqi, 2020): 

 𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑁

𝑡=1 . (5) 

MASE is another forecast error measurement proposed by Hyndman and Koehler in 2006 

(Hyndman and Koehler, 2006). It uses a naïve forecast approach and the in-sample Mean 

Absolute Error (MAE) to scale the absolute error value (Hansun et al., 2019). For non-seasonal 

time series data, it can be represented as in Eq. (6) (Hyndman and Koehler, 2006; Jiao et al., 

2020): 

 𝑀𝐴𝑆𝐸 =
1

𝑁
∑ |

𝐴𝑡−𝐹𝑡
1

𝑁−1
∑ |𝐴𝑡−𝐴𝑡−1|𝑁

𝑡=2

|𝑁
𝑡=1 , (6) 

where 𝑁 is the total number of data in the given time series, 𝐴𝑡 is the actual value at time 𝑡, 

and 𝐹𝑡 is the forecasted value at time 𝑡. 

 

4. Experimental Results 

To study the proposed method's accuracy level, we performed experiments using the Hull-

WEMA method and several other MA methods on COVID-19 data. More precisely, we tried 

to predict the values of confirmed cases of COVID-19 disease in several countries. The reason 

behind choosing to work with COVID-19 data lies in the contemporaneity of the disease. 

COVID-19 is a significant public health issue, which is caused by a virus called the Severe 

Acute Respiratory Syndrome Coronavirus-2 (Lai et al., 2020). Moreover, due to its massive 

global spreading and range of impacts (from individual to organisational and national level), 

the World Health Organization (WHO) declared the disease as a pandemic in March 2020 

(Spinelli and Pellino, 2020). Its future course is still unknown and research efforts are 

constantly being made to not only identify a vaccine, but also to predict the number of future 

infections and deaths, as well as fight the negative consequences affecting economies 

worldwide. We therefore position this paper as a contribution towards developing a better 

forecasting method, which can be used to predict the number of confirmed COVID-19 cases 

more accurately, in the short run. 

Section 4.1 gives a brief description of the data being used in this study. The prediction results 

using several MA methods are given in Section 4.2, and the accuracy level for each method, 

which is defined by its error calculation, is given in Section 4.3. 

 

4.1 Data Collection 

The primary data being used in this study are the time series data of confirmed cases of COVID-

19 disease. We collected the data from a GitHub repository managed by the Johns Hopkins 

University Center for Systems Science and Engineering (JHU CSSE) (JHU CSSE, 2020). The 

repository contains the confirmed, recovered, and death cases of COVID-19, which are used 

by an online real-time interactive dashboard for COVID-19 developed by the JHU team (Dong 

et al., 2020). We use the time series data for ten countries that had the highest number of 
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confirmed cases on the last observed date, i.e., 8 October 2020; the data is provided in Table 

2. Figure 4 shows the Python codes to get the top ten countries, while Figure 5 plots the 

COVID-19 confirmed cases for those countries. 

Table 2 

COVID-19 Time Series Data Being Used in the Study 

No Country Date Range 

Number of 

Data Points 

(Days) 

1 Argentina 3 Mar 2020 – 8 Oct 2020 220 

2 Brazil 26 Feb 2020 – 8 Oct 2020 226 

3 Colombia 6 Mar 2020 – 8 Oct 2020 217 

4 India 30 Jan 2020 – 8 Oct 2020 253 

5 Mexico 28 Feb 2020 – 8 Oct 2020 224 

6 Peru 6 Mar 2020 – 8 Oct 2020 217 

7 Russia 31 Jan 2020 – 8 Oct 2020 252 

8 South Africa 5 Mar 2020 – 8 Oct 2020 218 

9 Spain 1 Feb 2020 – 8 Oct 2020 251 

10 US 22 Jan 2020 – 8 Oct 2020 261 

Total 2,339 

 

 

Fig. 4. Python implementation to get the top ten countries. 
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Fig. 5. The number of COVID-19 confirmed cases for the top ten countries considered in the 

study. 

4.2 Prediction Results and Analysis 

The prediction results for the top ten countries being considered in the study are given in this 

section. We show the prediction results obtained by using WEMA, HMA, and the proposed 

zero-lag approach, i.e., the Hull-WEMA method. First, we split the datasets, as explained in 

Section 4.1, into train and test data with a ratio of 80:20. Table 3 shows the number of train 

and test data for each country with their respective periods. 

 

Table 3 

Train vs. Test Data Split 

Country 

Total Data 

Points 

(Days) 

Train Test 

Date Range Days Date Range Days 

Argentina 220 3 Mar 20 – 25 Aug 

20 

176 26 Aug 20 – 8 Oct 

20 

44 

Brazil 226 26 Feb 20 – 23 Aug 

20 

180 24 Aug 20 – 8 Oct 

20 

46 

Colombia 217 6 Mar 20 – 25 Aug 

20 

173 26 Aug 20 – 8 Oct 

20 

44 

India 253 30 Jan 20 – 18 Aug 

20 

202 19 Aug 20 – 8 Oct 

20 

51 

Mexico 224 28 Feb 20 – 24 Aug 

20 

179 25 Aug 20 – 8 Oct 

20 

45 

Peru 217 6 Mar 20 – 25 Aug 

20 

173 26 Aug 20 – 8 Oct 

20 

44 
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Russia 252 31 Jan 20 – 18 Aug 

20 

201 19 Aug 20 – 8 Oct 

20 

51 

South 

Africa 

218 5 Mar 20 – 25 Aug 

20 

174 26 Aug 20 – 8 Oct 

20 

44 

Spain 251 1 Feb 20 – 18 Aug 

20 

200 19 Aug 20 – 8 Oct 

20 

51 

US 261 22 Jan 20 – 16 Aug 

20 

208 17 Aug 20 – 8 Oct 

20 

53 

 

The purpose of the training phase is to find the best smoothing constant value (𝛼), which is 

used by both the WEMA and Hull-WEMA methods. The best value is found by rerunning both 

methods several times (the default value is 100) that could give the lowest Mean Absolute 

Percentage Error (MAPE) as the error measurement criteria. Moreover, we also use seven data 

periods as the default input value for all applied methods in this study. Table 4 shows the best 

𝛼 value for each country found during the training phase. 

 

Table 4 

Best 𝛼 for WEMA and Hull-WEMA 

Country WEMA Proposed Hull-WEMA 

Best 𝛼 MAPE Best 𝛼 MAPE 

Argentina 0.99 10.582578 0.85 1.367974 

Brazil 0.99 12.432575 0.89 2.000314 

Colombia 0.99 11.199843 0.84 1.329066 

India 0.99 11.180390 0.83 1.655934 

Mexico 0.99 10.713949 0.87 1.326896 

Peru 0.99 10.359019 0.87 1.647792 

Russia 0.99 10.117957 0.92 1.432328 

South Africa 0.99 11.052603 0.87 1.566090 

Spain 0.99 8.519508 0.99 1.885227 

US 0.99 10.226317 0.99 1.917176 

 

In the testing phase, we use the best 𝛼 found in the training phase to run the algorithm for each 

respective method. Since there is no smoothing constant parameter in HMA, we use all the data 

points for the prediction without splitting them into train and test data. Meanwhile, in both 

WEMA and Hull-WEMA methods, the smoothing constant parameter will be used in the 

testing phase for future prediction of the time series data. To compare all methods' prediction 

results, we use two unit-free error measurements, namely MAPE and MASE, as explained in 

Section 3.2. 

The prediction results for each country being considered in this study are given in Figure 6. 

The ‘blue’ line denotes the actual data, the ‘orange’ line represents the prediction results using 

HMA, the ‘green’ line shows the prediction results using WEMA, and the ‘red’ line is for the 

prediction results using Hull-WEMA. Moreover, the MAPE and MASE values for each method 

applied in the study are given in Table 5. 
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Fig. 6. Prediction results of COVID-19 confirmed cases using WEMA, HMA, and Hull-

WEMA. 
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Table 5 

MAPE and MASE Values in the Testing Phase 

Country 

WEMA HMA Proposed Hull-

WEMA  

MAPE MASE MAPE MASE MAPE MASE 

Argentina 3.692057 1.920786 1.444371 0.290716 0.281054 0.147563 

Brazil 1.361809 1.986339 1.753350 0.344589 0.234135 0.343359 

Colombia 1.920936 1.949919 1.362404 0.315808 0.177549 0.175244 

India 3.423444 1.958746 1.738152 0.307172 0.200374 0.121326 

Mexico 1.527995 1.942859 1.289052 0.336226 0.199625 0.264934 

Peru 1.395531 2.027225 1.497031 0.388704 0.235260 0.340934 

Russia 1.161244 1.911082 1.258953 0.311232 0.113969 0.185956 

South Africa 0.487350 1.979444 1.366751 0.329459 0.061510 0.249731 

Spain 3.251890 1.953809 1.679493 0.500925 0.913386 0.549944 

US 1.252714 1.959763 1.561818 0.318247 0.196906 0.307004 

AVERAGE 1.947497 1.958997 1.495138 0.344308 0.261377 0.268600 

 

As shown in Table 5, the proposed approach, i.e., the Hull-WEMA method, has the lowest 

average values for both MAPE and MASE. Intuitively, we could say that the proposed 

approach has a better accuracy level when compared to the WEMA and HMA methods due to 

its smaller error values. Figure 7 shows the scatter plots that compare the forecast error results 

for each method. It can be seen clearly from the plot that the proposed method gives lower 

MAPE and MASE values for each country considered in the study. 

 

 

Fig. 7. Scatter plot of MAPE and MASE for each method. 
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Moreover, to confirm this result, we conducted a paired sample t-test using an add-in in 

Microsoft Excel called ‘Data Analysis ToolPak’. First, we compare the MAPE and MASE 

results for WEMA versus Hull-WEMA, then similarly we compare the MAPE and MASE 

results for HMA versus Hull-WEMA. Table 6 shows the paired sample t-test results for all 

comparisons conducted. Since the two-tailed p-values for all comparisons are less than the 

significance level value at 0.05, we can conclude with 95% confidence that the difference in 

the means of MAPE and MASE values for WEMA (and HMA) versus Hull-WEMA are 

significantly different. Specifically, the MAPE and MASE values of the Hull-WEMA method 

are lower than those of WEMA and HMA. 

 

Table 6 

Paired Sample t-test Results 

Comparison Pearson 

Correlation 

t-Stat df t 

Critical 

(1-

tailed) 

Sig. 

(1-

tailed) 

t 

Critical 

(2-

tailed) 

Sig. 

(2-

tailed) 

WEMA 

vs. Hull-

WEMA 

MAPE 0.55325 5.37 9 1.83311 0.00023 2.26216 0.00045 

MASE 0.38859 45.49 9 1.83311 2.998E-

12 

2.26216 5.995E-

12 

HMA vs. 

Hull-

WEMA 

MAPE 0.45522 17.41 9 1.83311 1.534E-

08 

2.26216 3.068E-

08 

MASE 0.92007 3.23 9 1.83311 0.00515 2.26216 0.01031 

 

5. Conclusions 

In this study, we have described two popular MA methods, namely the WEMA and HMA 

methods. We took the advantages of both methods and proposed a new approach for the zero-

lag method in the MA family, i.e., the Hull-WEMA method. Then, we applied and compared 

the proposed approach with the WEMA and HMA methods using time series data of COVID-

19 confirmed cases in ten different countries with the highest case number on the last observed 

date (i.e., 8 October 2020). We found that the proposed approach could give better prediction 

results when compared to the WEMA and HMA methods.  

As noted by Hansun et al. (2021), large amounts of data within the framework of big data are 

constantly being generated at an exponential rate, holding the potential to expand the 

opportunities for making better decisions at strategic, tactical, and operational levels (Charles, 

Tavana, & Gherman, 2015). The challenge, however, is to find ways to translate these data into 

meaningful knowledge (Charles & Gherman, 2013) in a timely manner, especially in the 

context of the COVID-19 pandemic. Recently, many studies have emerged that use soft 

computing methods, also known as black-box models, for COVID-19 prediction purposes. 

Nonetheless, as shown in Hansun et al. (2021), more sophisticated models are not necessarily 

better than white-box models. For example, black-box models, despite providing higher 

accuracy, have high computational complexity, lower interpretability or explainability, and 

lower transparency and accountability, among others. White-box models, on the other hand, 

have relatively lower accuracy levels, but are highly transparent, accountable, and explainable, 
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with clarity around inner workings. In this sense, then, in the context in which the COVID-19 

pandemic is not yet fully understood, white-box models become more reliable, as they provide 

stakeholders with pieces of information that clearly explain how the models behave and which 

variables precisely are influencing the predictions. 

Overall, this paper advocates a white-box forecasting method, which can be used to predict the 

number of confirmed COVID-19 cases more accurately, in the short run. In this sense, we join 

the recent research efforts made by the community of researchers to assist governments, 

policymakers, and other relevant stakeholders alike by providing forecasts that can be used as 

a tool towards making better decisions and taking appropriate actions to contain or curb the 

spread of the coronavirus. 

An avenue for future research is to test the acceptance and robustness level of the proposed 

approach in different fields and on different datasets. It is also proposed to conduct a 

performance analysis of the proposed approach with other zero-lag MA methods, such as the 

Zero Lag Moving Average (ZLMA), the Exponential Hull Moving Average (EHMA), and the 

MESA Adaptive Moving Average (MAMA) (Ehlers, 2002; Ehlers, n.d.; Raudys et al., 2013). 

Moreover, future research could employ qualitative approaches (Charles & Gherman, 2018) 

with a view to integrating the various stakeholders (Charles et al., 2019), to complement the 

analyses performed in this paper, so as to build a more solid picture of the COVID-19 pandemic 

and its behaviour. 

Data Availability 

All data being used in this study, including the Python codes for all applied methods, are 

available to be accessed by the public from the GitHub repository at  

https://github.com/senghansun/Hull-WEMA.  
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