

The Application of Machine Learning Algorithms in
Classification of Malicious Websites

Tabassom Sedighi

Reza Montasari
Amin Hosseinian-Far

Centre for Environmental and Agricultural Informatics, School of Water,
Energy and Environment, Cranfield University, Cranfield.

Hillary Rodham Clinton School of Law,
Swansea University, Swansea.

Department of Business Systems and Operations,
University of Northampton, Northampton.

{t.sedighi@cranfield.ac.uk}
http://www.cranfield.ac.uk

{Reza.Montasari@Swansea.ac.uk}
http://www.swansea.ac.uk

{amin.hosseinianfar@northampton.ac.uk}
https://www.northampton.ac.uk

Abstract

This chapter compares three different machine learning techniques, i.e.
Gaussian process classification, decision tree classification and support
vector classification, based on their ability to learn and detect the attributes of
a malicious website. The data used have all been sourced from HTTP headers,
WHOIS lookups and DNS records. As a result, this does not require parsing
of the website content. The data are first subjected to multiple steps of pre-
processing including: data formatting, missing value replacement, scaling and
principal component analysis.

Keyword: Gaussian Process; Decision Tree; Support Vector; Classification;
Malicious Applications; WHOIS; HTTP Headers; DNS Records; Correlation Matrix

1. Introduction

In today’s society, our inescapable reliance on technology makes it almost
impossible to ignore the ever-present dangers of malicious online resources
and the threat that they pose to financial, personal and business security. The
computer security company Kaspersky states in their 2016 statistics report
that 31.9% of their customers computers were “subjected to at least one
Malware-class web attack over the year” and that “261,774,932 unique URLs
were recognized as malicious by web antivirus components” (Garnaeva et al.,
2016). These statistics show how important it is to be cautious when using the
web. In this chapter, the competency of machine learning algorithms are
compared and evaluated with a view to determining how effective these are
to detect malicious websites.

These comparison and evaluation are based only on the data that can be
obtained from HTTP headers, WHOIS data and DNS records. The advantage
of using only this data is that it can all be obtained without the need to parse
any code located on the client or the server which could have potentially
harmful effects. To achieve the stated objectives, first, the dataset will be
heavily pre-processed into an appropriate format so that it can efficiently be
utilised. Next, the dataset will be subject to sampling, scaling and
dimensionality reduction before three machine learning algorithms are
applied with the aim of successfully identifying whether the data are
describing a malicious or benign website.

2. The Dataset

The dataset selected for this study is “Malicious and Benign Websites”,
provided by Urcuqui (2018) on Kaggle. The dataset contains information
about 1781 unique websites. Out of these websites, 1565 are benign and 216
are malicious. For each website, the dataset contains 21 attributes of metadata
that describe information about the application and network layers of the
website, all of which are freely available for public access. The first attribute
is named URL, which have all of its values replaced with unique identifying
values in order to protect the anonymity of the data. This attribute is therefore
relatively futile to a machine learning algorithm as every value is unique and
unrelated and will therefore not be used. The last attribute is the ‘Type’ of the
website, i.e. malicious or benign, and is a binary value of 0 or 1 with 0 being
benign. Therefore, there are 19 potentially useful attributes in the dataset
which can be refined later using dimensionality reduction techniques.

3. Data Preparation

This section provides an outline of how the raw dataset was modified and
prepared so that it would be ready to feed into machine learning algorithms.
This includes processes such as missing value handling, dimensionality
reduction and data normalisation.

3.1 Data Analysis
Of the 19 attributes in the dataset, excluding the URL and Type, 13 contain
numerical data, 4 are categorical and 2 contain date-time values. Tables 1, 2
and 3 provide information concerning each of these attributes.

Table 1. Information about numerical attributes

Name Min Max Mean
URL_LENGTH 16 249 56
NUMBER_SPEC
IAL_CHARACT ERS

5 43 11

CONTENT_LEN GTH 0 649263 11726
TCP_CONVERS
ATION_EXCHA NGE

0 1194 16

DIST_REMOTE_TCP_PORT 0 708 5
REMOTE_IPS 0 17 3
APP_BYTES 0 2362906 2982
SOURCE_APP_ PACKETS 0 1198 18
REMOTE_APP_ PACKETS 0 1284 18
SOURCE_APP_ BYTES 0 2060012 15892
REMOTE_APP_ BYTES 0 2362906 3155
APP_PACKETS 0 1198 18
DNS_QUERY_T IMES 0 20 2.26

Table 2. Information about Categorical Attributes

Name Unique Count None Count
CHARSET 9 7
SERVER 240 175
WHOIS_COUN TRY 49 306
WHOIS_STATE PRO 182 362

Table 3. Information about Timestamp Attributes

Name Unique Count
WHOIS_REGD ATE DD/MM/YYYY HH:MM
WHOIS_UPDAT ED_DATE DD/MM/YYYY HH:MM

3.2 Data Formatting and Conversion
3.2.1 Numerical Attributes
The numerical data attributes were naturally in the correct format to be used
by a machine learning algorithm with the only issue being any values that
were set to N/A. These were all replaced with the value -1 as there were no
other negative values in the dataset and this allowed for a clear distinction
between true values and missing values.

3.2.2 Categorical Attributes
The first decision that was made about the categorical attributes was that the
WHOIS_STATEPRO attribute would not be used as it has a very large
number of missing values. As a result, it would be unlikely to be useful to the
machine learning algorithms. The server attribute also has a high number of
unique values and ‘None’ values. However, the server attribute would almost
certainly be an effective indicator if there were enough data entries and
adequate pre-processing were performed on it. Therefore, it was decided to
keep this attribute.

The categorical attributes required much more pre-processing before they
could be ready to be used by a ML algorithm. First, the datasets were
analysed, and any values that represented the same category were combined
into one category. For instance, given that, in the WHOIS_COUNTRY
column, there were values ‘us’ and ‘US’, these were converted so that all
values referring to the United States would be ‘US’. This was applied to all
categorical data. For each categorical attribute, the full set of unique values
were then indexed, and each occurrence of each attribute was replaced with
its corresponding index value. All missing values and none values were then
set to -1 for the same reason as with the continuous data.

3.2.3 Timestamp Attributes
The third and final datatype in the dataset is timestamp data; these required a
few steps of processing before they could be used. First, any data values that
were not in a timestamp format were either converted manually to the correct
format or were converted to ‘NaT’ meaning Not a Time, if the value did not
represent date and time information. Then, the datetime values were all
converted into integers that represented the time in seconds so that they were
in pure integer form and finally, all NaT values were converted to be equal to
a value that would simulate the -1 that has been used for the other 2 data
formats, the function for this is displayed below.

3.3 Random Under Sampling
The dataset being used in this project has a heavy majority of one class over
the other. As a result, there are many more benign websites than there are
malicious websites. This imbalance can cause overfitting of ML algorithms
if it is not dealt with effectively. Since the imbalance is so large, the most
appropriate way to address this was to use random under-sampling. Random
under-sampling involves reducing the size of that dataset by removing entries
from the larger class until the classes contain the same number of instances.
This leaves the dataset much smaller than it was originally, but, in some cases,
it can significantly improve the accuracy of the ML algorithms, usually on
the initially smaller class. Whilst there was the option to employ some forms
of oversampling, this would have left the dataset with many copies of every
instance in the minority class and could potentially cause bad overfitting to
this class.

3.4 Scaling
Once the data have been processed, it could then be utilised for ML; however,
the significant variation in data ranges and values can cause the ML
algorithms to apply imbalanced importance to the attributes. This issue can
be addressed by converting the dataset, so that all attributes have similar
statistical attributes such as range, standard deviation or mean. For this study,
min-max scaling was selected for a range of -1 to 1. This was due to the fact
that the missing data had all been set to equal -1 and that this form of scaling
would retain the distinction that was desired when this decision was made.
The followings provide the functions for min-max scaling.

X – Xmin

Xmax – Xmin
Xstd =

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 ∗ (𝑚𝑚𝑚𝑚𝑚𝑚 − min)) + 𝑚𝑚𝑚𝑚𝑚𝑚

• X = Value to be scaled

• Xmin = Minimum of attribute values

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 – Date𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,

Where,
• NaT = Not a Time values
• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = Lowest time value in the attribute
• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = The range of date values

One of the main disadvantages of min-max scaling as opposed to
standardisation is that the resulting standard deviations are smaller, denoting
that outliers are less easily detected. This has not created an issue for the
dataset used in this study since the data are all exact and no errors were made
during the collection and production of the data.

3.5 Dimensionality Reduction
Having a large quantity of data is extremely important to ensure the accuracy
and quality of ML algorithms. However, this amount of data requires
substantial processing power to be able to perform the required calculations.
In order to alleviate this issue, there exists several techniques that can be
performed to reduce the amount of data without losing the usefulness that it
provides. For this study, principle component analysis (PCA) technique was
selected. Before the dimensionality reduction was performed, it was essential
to visualise the relationships between the attributes in the dataset. For this
purpose, a correlation matrix was generated and plotted as shown in Figure 1.

 Figure 1. Correlation Matrix prior to PCA.

As represented by Figure 1, a large percentage of the attributes in the bottom
left of the plot are very closely correlated to one another. However, they show
very little relationship to the classification. On the contrary, URL_LENGTH,
NUMBER_SPECIAL_CHARACTERS, WHOIS_COUNTRY and
WHOIS_UPDATED_DATE are all strongly correlated with the classification.
Nevertheless, they have low correlation with each other, indicating that these
features were most likely to be useful to the ML algorithms.

3.5.1 Principal Component Analysis
Having plotted the correlation matrix revealed that some forms of
dimensionality reduction could have a large impact on the performance of the
dataset. PCA is a dimensionality reduction technique that generates a
decreased number of features whilst retaining the highest percentage of the
underlying information as possible. In order to achieve this, it combines them
by projecting all the original data into lower dimensional space in a manner
that makes them no longer realistically interpretable by a human. PCA was
then performed in a loop for every number of output attributes up to the
original count. Next, the classification algorithms (discussed in the next
section) were used to analyse the effectiveness of the PCA. The results of this
analysis are depicted in Figures 2, 3 and 4.

Figure 2. PCA Analysis using Gaussian Process Classification.

Figure 3. PCA Analysis using Decision Tree Classification.

Figure 4. PCA Analysis using Support Vector Classification.

Figures 2, 3 and 4 clearly demonstrate the relevance and usefulness of the
PCA to be applied to this dataset as the results for all 3 classifiers do not show
any significant improvement above 11 features, i.e. less than 2/3 of the initial
amount of data. In view of this, it was decided to use the feature count of 11

through PCA as this appeared to be the point of plateau/ convergence of the
Gaussian Process Classification and the Support Vector Classification. Had
the Decision Tree Classification was the sole focus of this study, a much
lower feature count could have been selected since the reduction of features
appears to have much less effect on this classifier. Once the PCA had been
completed with a feature count of 11, a new correlation matrix as displayed
in Figure 5 was produced to show the relationships between the new features.

Figure 5. The new Correlation Matrix after the completion of the PCA.

As the new correlation matrix reveals, the PCA has produced a set of features
that have very little correlation with each other. However, these features are
almost all correlated to the classification, illustrating that it has successfully
achieved its intended purpose.

4. Classification Methods

As previously stated, this study involved applying 3 ML classification
algorithms to the dataset with the aim of achieving significant prediction
accuracy of the classification. The remainder of this section provides an in-
depth discussion of these classification methods.

4.1 Gaussian Process Classification (Binary)

The first classification algorithm implemented in this study was Gaussian
Process Classification. This ML algorithm uses a regression model to fit the
data and then calculates a probability for each class using this. It then
determines the most effective probability to use as a splitting point between
the prediction classes to find its output predictions. In this case, the regression
model is Laplace Approximation. This algorithm is different when dealing
with multiple output classes (Williams and Rasmussen, 2006; Daneshkhah et
al., 2017; Batsch et al., 2019).

4.2 Decision Tree Classification

Decision Tree Classification is a ML algorithm which progressively splits the
dataset by incrementally adding rules that provide the largest increase in
prediction accuracy. This process terminates when the accuracy is no longer
increasing (Grąbczewski, 2014).

4.3 Support Vector Machine Classification

The Support Vector Classifier attempts optimally to separate classes by
constructing hyperplanes that split them. These hyperplanes use linear
boundaries if possible but can become much more complex when dealing
with non-linearly separable output classes (Friedman et al., 2001).

5. Results

Having carried out all the experiments, the results were tabulated and plotted.
This section first provides the overall results in Tables 3 and Table 4, where

• True Negative represents values that were correctly predicted as
benign,

• False Positive refers to values that were falsely predicted as malicious,
• False Negative outlines values that were falsely predicted as benign,

and
• True Positive define values that were correctly predicted as malicious.

Table 4. Data showing the overall accuracy

Overall Results

Accuracy

Benign
Accuracy

Malicious
Accuracy

Gaussian 86.92% 83.56% 91.23%
Gaussian no PCA 87.69% 86.30% 89.47%
Decision Tree 84.62% 79.45% 91.23%
Decision Tree no PCA 89.23% 84.93% 94.74%
Support Vector 83.85% 84.93% 82.46%
Support Vector no PCA 82.31% 89.04% 73.68%

Table 5. Data representing overall results counts

The remainder of this section offers the results concerning the individual
classification methods.

5.1 Gaussian Process Classification Results

Figure 6. Gaussian Process Classification Results.

True
Negative

False
Positive

False
Negative

True
Positive

Gaussian 61 12 5 52
Gaussian no PCA 63 10 6 51
Decision Tree 58 15 5 52
Decision Tree no PCA 62 11 3 54
Support Vector 62 11 10 47
Support Vector no PCA

65

8

15

47

Figure 7. Gaussian Process Benign Probability.

Table 6. Gaussian Process Confusion Matrix (PCA)

Gaussian

 Predicted

Benign Malicious

 Actual
Benign 61 12

Malicious 5 52

Table 7. Gaussian Process Confusion Matrix (No PCA)

Gaussian No PCA

 Predicted

Benign Malicious

 Actual
Benign 63 10

Malicious 6 51

5.2 Decision Tree Classification Results

Figure 8. Decision Tree Classification Results.

Table 8. Decision Tree Confusion Matrix (PCA)

Decision Tree

 Predicted

Benign Malicious

 Actual
Benign 58 15

Malicious 5 52

Table 8. Decision Tree Confusion Matrix (No PCA)

Decision Tree
No PCA

 Predicted

Benign Malicious

 Actual
Benign 62 11

Malicious 3 54

5.2 Support Vector Classification Results

Figure 9. Support Vector Classification Results.

Table 9. Support Vector Confusion Matrix (PCA)

Support Vector

 Predicted

Benign Malicious

 Actual
Benign 62 11

Malicious 10 47

Table 8. Decision Tree Confusion Matrix (No PCA)

Support Vector
No PCA

 Predicted

Benign Malicious

 Actual
Benign 65 8

Malicious 15 47

5. Discussion and Conclusion

The analysis of the results obtained reveal that all three of the ML techniques
used in this study have achieved their intended purpose to predict the nature
of a website from the provided data. All of the overall accuracies are between
80% and 90% with similar values for each of the classes alone indicating that
there is no overfitting of one class. The application of the principle component
analysis showed an overall minor reduction of accuracy. However, for the
improvement of efficiency, this trade-off is almost certainly worthwhile. The
nature of the application incurs a higher cost to the misclassification of
malicious websites than it causes to the benign. As a result, the ML technique
that would best apply to this context would be one that achieves a higher
accuracy on malicious websites than it applies to the benign ones.
Furthermore, the results reveal that the Gaussian Process Classifier or the
Decision Tree Classifier would fit that role whereas the Support Vector
Classifier would not be appropriate for the stated role.

The fact that the Gaussian Process Classifier is technically a regression model
with a classification layer on top means that the probability of each prediction
can be determined as displayed as in Figure 6. The results represented by
Figure 6 reveals the probability that each website is benign with the truly
benign websites being in green and the truly malicious applications being in
red. Furthermore, the results demonstrate that whilst the classifier incorrectly
predicted around 13% of websites, only a few had a probability that was
significantly bad. Most of the incorrect predictions were very close to the cut-
off value of approximately 0.4, denoting that, with some fine tuning, this
model could potentially be brought much closer to 100% accuracy.
Considering the correlation matrix in Figure 5, it could be deduced that
forward selection might have been a better choice of dimensionality reduction
due to the high number of attributes with very limited usefulness, or
potentially even a combination of forward selection and PCA. Therefore, this
could be investigated as a future work.

In summary, ML algorithms offer many opportunities to detect malicious
websites without the need for high risk website content parsing. Instead, as
the study has shown, this can be achieved by using data from HTTP headers,
WHOIS lookups and DNS records. Of the three classifiers used in this study,
the Gaussian Process Classifier is the most appropriate option for the
application. This is due to the fact that it is a good balance between effectively
managing dimensionally reduced data and achieving a high accuracy on
specifically the malicious websites. Another point of consideration for future
work could be a further investigation into the possibility of forward feature
selection alongside additional other similar ML methods.

References

Dal Pozzolo, A., Caelen, O., Johnson, R. A. and Bontempi, G. (2015).
Calibrating probability with under-sampling for unbalanced
classification. IEEE Symposium Series on Computational Intelligence,
pp. 159-166. IEEE.

Pressable. (2019). What are DNS Records? Types and How to Use Them.
Available at: https://pressable.com/2019/10/11/what-are-dns-records-
types-explained-2/.

Garnaeva, M., Sinitsyn, F., Namestnikov, Y., Makrushin, D. and Liskin, A.
(2016). Overall Statistics for 2016: Kaspersky Security Bulletin. Blue
Book.

Grąbczewski, K. (2014). Meta-learning in decision tree induction (Vol. 1).
Cham: Springer International Publishing.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of
statistical learning (Vol. 1, No. 10). New York: Springer series in
statistics.

Urcuqui, C. (2018). Malicious and Benign Websites: Classify by
Application and Network Features (Dataset). Kaggle. Available at:
https://www.kaggle.com/xwolf12/malicious-and-benign-websites.

Kaggle. (2018). Malicious and Benign Websites Learning. Available at:
https://www.kaggle.com/dmrickert3/malicious-and-benign-websites-
learning.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for
machine learning (Vol. 2, No. 3). Cambridge, MA: MIT press.

Daneshkhah, A., Hosseinian-Far, A., & Chatrabgoun, O. (2017). Sustainable
maintenance strategy under uncertainty in the lifetime distribution of
deteriorating assets. In Strategic Engineering for Cloud Computing and
Big Data Analytics (pp. 29-50). Springer, Cham.

Batsch, F., Daneshkhah, A., Cheah, M., Kanarachos, S., & Baxendale, A.
(2019). Performance boundary identification for the evaluation of
automated vehicles using Gaussian process classification. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC) (pp. 419-424).
IEEE.

InterServer. (2017). WHOIS Lookup Explained. Available at:
https://www.interserver.net/tips/kb/whois-lookup-explained/.

