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Analyzing and understanding human actions in long-range videos has promising applications, such as video surveillance,
automatic driving, and efficient human-computer interaction. Most researches focus on short-range videos that predict a single
action in an ongoing video or forecast an action several seconds earlier before it occurs. In this work, a novel method is proposed
to forecast a series of actions and their durations after observing a partial video. This method extracts features from both frame
sequences and label sequences. A retentive memory module is introduced to richly extract features at salient time steps and pivotal
channels. Extensive experiments are conducted on the Breakfast data set and 50 Salads data set. Compared to the state-of-the-art
methods, the method achieves comparable performance in most cases.

1. Introduction

In recent years, great achievements have been made in the
field of action recognition on RGB videos [1-3], depth, and
RGB-D data [4-8]. However, these methods do not produce
results until the action is complete. Action prediction aims to
distinguish one or multiple actions when we only observe a
partial video. It is a key to the success of many real-world
applications, such as video surveillance, automatic driving,
and efficient human-computer interaction.

Most current action prediction works forecast only one
action several seconds earlier before it occurs [9-11] or
distinguishes the action in an ongoing video [12-14].
However, in realistic applications, we often hope that the
agents can forecast long-term actions. For example, a robot
can interact with humans timely and efficiently, so the robot
should understand the intention of humans and forecast the
long-term actions of interactionists. However, long-term

action anticipation raises great challenges as it is difficult to
capture the relationships among long-term actions.

In this work, a novel model for dense action anticipation
is introduced, which is called a two-stream retentive long
short-term memory network (2S-RLSTM). To further un-
derstand what a video describes, this model exploits frame-
and label-wise features at the same time. Our model, depicted
in Figure 1, makes use of two types of inputs. One input
focuses on frame-wise features extracted from RGB frames by
pre-trained CNNs. The other input encodes label-wise fea-
tures. On each stream, we use one LSTM layer to encode the
input, which is followed by one more LSTM to preliminarily
analyze sequence information. Then, the features are con-
catenated and fed into the retentive memory module. This
module consists of a memory neural network and a channel-
wise attention network. As inspired by the work of [15, 16],
we utilize a memory neural network to extract features at
salient time steps of the video. Recently, Wang et al. [17]
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F1GURE 1: The architecture of 2S-RLSTM. Given a frame sequence and a label sequence, 2S-RLSTM can predict a series of actions and their

durations in an iterative way.

prove that it is beneficial for capturing key information to
avoid mapping features into low-dimensional spaces and
increase interaction among features. Inspired by this work,
we use a channel-wise attention network to capture infor-
mation in key channels of the model. Finally, a fully con-
nected layer is utilized to make classification and regression.

As evidenced by the experiments on the Breakfast data
set [18] and 50 Salads data set [19], we prove that 2S-RLSTM
helps improve the ability to forecast a series of actions and
their duration and outperforms several state-of-the-art
approaches for dense action anticipation by a relative in-
crease in terms of accuracy.

The rest of this paper is organized as follows: Section 2
describes recent studies related to our work. Section 3 in-
troduces several crucial components of our model. Section 4
reports and analyses the results of our method. The con-
clusion of this paper is given in Section 5.

The major contributions of this work are summarized as
follows: (1) we propose a retentive memory module to capture
relationships among long-term actions and (2) a new two-
stream model to solve dense action anticipation and achieve
comparable performance to the state-of-the-art methods.

2. Related Work

Although action recognition has achieved impressive results,
it is limited to post-event analysis applications. On the
contrary, action prediction methods can be used for pre-
event analysis. These approaches for action prediction are
divided into three main categories: early action prediction,
sparse action anticipation, and dense action anticipation.

2.1. Action Recognition. Prior efforts, such as cuboids
[20, 21], 3D HOG [22], SIFT [23], and dense trajectory [24],

address the task of action recognition based on hand-crafted
features. In recent years, methods based on deep learning
have gained increased attention. Tran et al. [3] propose a
C3D network to evolve time information in convolutional
neural networks. Carreira et al. [1] also expand 2D con-
volution to 3D convolution and propose a large data set, the
Kinetics data set. To some extent, a large data set solves the
problem of being “data-hungry.” Hara et al. [2] design a deep
3D convolutional neural network, which is suitable to
process the Kinetics data set.

Meanwhile, with the appearance of depth cameras, re-
search on skeleton data have become gradually popular. Yan
et al. [25] utilize graph convolutional networks to extract
spatial features and temporal dynamics jointly. Considering
the relationships of relatively remote joints, Li et al. [4]
propose the A-link inference module to capture latent in-
formation among remote joints. Thakkar and Narayanan [8]
divide the whole human skeleton into several parts and
utilize graph convolution on each part. The work in [5] firstly
describes the skeleton as a directed acyclic graph and al-
locates an adaptive graph topological structure to the
skeleton. In their training process, the information on joints
and bones is updated iteratively. Based on this work, Shi
et al. [6] further take advantage of the second-order in-
formation, such as the length and direction of bones of
skeleton data, which is naturally more informative and
discriminative for action recognition. Si et al. [7] capture
features in discriminative joints with an attention module
and, in the meantime, employ temporal average pooling to
reduce computation to some extent.

All these methods intend to extract valuable information
in a complete data sequence, which is a kind of post-event
classification, while action anticipation aims at distinguishing
an action in an ongoing action sequence or forecasting one
action, also perhaps several actions, before any of them occurs.
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2.2. Action Prediction. In contrast to action recognition,
early action prediction aims at predicting an action as early
as possible in an ongoing video. This task is confronted with
the challenge that a partial video contains insufficient in-
formation compared with a complete video.

Recently, various methods have been devoted to this
task. Lan et al. [26] introduce a max-margin architecture to
inference actions. Hu et al. [27] intend to learn a soft label for
different progress levels of a video. Hence, full and partial
videos can be learned in a unified regression framework.
Aliakbarian et al. [12] jointly take advantage of context-a and
action-aware information in each frame. Then the infor-
mation is sent to multistage LSTM architecture to analyze
the temporal dynamics of the video. Besides, a novel loss is
used to ensure the accuracy of action classification at an early
stage in a video. A novel knowledge distillation framework
for early action prediction is introduced by the work in [14],
which contains a student model, a teacher model, and a
teacher-student learning block for distilling knowledge from
teacher to student. Kong et al. [28] propose an adversarial
action prediction network based on variational autoencoder
and adversarial learning to jointly learns features and
classifiers and generate the features particularly optimized
for action prediction.

Unlike early action prediction, sparse anticipation aims
at predicting one action in a video before it occurs. Sparse
anticipation raises new challenges. It not only needs to
analyze the observation but also needs the relationship
among actions. Miech et al. [29] fuse a purely anticipatory
model, which anticipates action directly from visual inputs,
with a complementary model, which is constrained to reason
about the present and then predicts one action a few seconds
later. Ke et al. [11] concatenate encoded temporal infor-
mation and action features to obtain global features of an
action sequence, which ensures the accuracy of long-term
prediction. On this basis, a skip connection with the last
action and its encoded temporal information is added to the
global features to jointly improve the accuracy of short- and
long-term prediction.

Sparse anticipation presents another research route that is
egocentricaction anticipation. Egocentric action anticipation
observes surroundings from a first-person perspective for
some time and forecasts an action one second or several
seconds later. Damen et al. [9] propose the first large-scale
egocentric data set, the EPIC-KITCHENS data set. In the case
of egocentric action anticipation, Damen et al. [9] utilize TSN
[30] to predict an action one second before it occurs, which is
regarded as a baseline for egocentric action anticipation on
this data set. Furnari and Farinella [10] jointly extract ap-
pearance (RGB), motion (optical flow), and objects (object-
based features) features to obtain rich information in ob-
servation. Subsequently, these features are fed into an at-
tention module to fuse and adaptively attach different
importance. Finally, these weighted features are summarized
inan LSTM structure to predict actions at different moments.

2.3. Dense Action Anticipation. Different from sparse an-
ticipation, dense anticipation aims at predicting an action

sequence rather than a single action shortly. Sequence
analysis becomes especially important in this task. Farha
et al. [31, 32] use CNN and RNN to generate action se-
quences as well as their durations. Gammula et al. [15]
embed memory neural networks into the LSTM network to
obtain features at significant time steps. It is crucial to
capture abundant features by an attention network in a long
video if a good performance for action prediction is ex-
pected. Therefore, a retentive memory module is proposed to
further capture features not only from salient time steps but
also from pivotal channels and deal with the relationship
among long-term actions.

3. Methodology

To model frame- and label-wise information, we introduce a
two-stream architecture, which is shown in Figure 1. This
model contains two types of inputs and finally extracts
salient features by a retentive memory network. In this
section, we first discuss our whole architecture and then
analyze several crucial components of our model.

3.1. Two-Stream Retentive LSTM Network. Our goal is to
forecast an action sequence and the duration of each action
after observing a partial video. Specifically, the aim is to
predict the action label of each frame after the observation.
This procedure can be formulated as follows: let
XTI ={x,,x,,...,x7} be a video with T frames and LI =
{I,,1,,. .., 13} be action labels of the video. Given the ob-
served frames X! and corresponding labels L}, the target is to
predict what will happen from frame x,,, to the last frame
Xr, o where xr, is the predicted frame count. Concretely,

. Tpred
we want to infer the labels L, = {lm,lﬁz, e ’lTpred} for

each of the unobserved frames.

3.1.1. Processing Strategy. Figure 2 illustrates the data pro-
cessing strategy. Given an action sequence, we randomly cut
each action except for the last action on the temporal axis.
For each action in the observation, it can be represented as a
two-tuple consisting of the action category and its observed
length. At the predicting step, we observe the video before
the cut line and predict a triple set, which consists of the label
of the next action, the length of the next action before the cut
line, and the remaining length of the current action. The
observation visualization is shown in the “input represen-
tation” in Figure 2. It can be seen as a matrix. Each row of
this matrix is a two-tuple mentioned above. The visualiza-
tion of prediction results is shown in the “output repre-
sentation” in Figure 2. It represents a matrix containing the
elements of the triplet mentioned above. The results at the
current step are added to the observation at the next step.
The results are generated recursively until the length of the
prediction reaches the expectation.

For label inputs, all the labels are encoded in a categorical
form. More precisely, the encoded labels are in form of a
composite vector, which consists of a one-hot vector and a
length vector. The one-hot vector represents the class of



Computational Intelligence and Neuroscience

input video | Al : |

training sample 1

gy . —

training sample 2

category of Al length of Al

input representation t o Tength of A2
cateory o before cut line

output representation category of A3 length of A2

after cut line

—— input sequence
target vector

training sample 2

length of A3
before cut line

FIGURE 2: Training samples are generated by cutting each action segmentation at a random split point. Each input sequence is a compound
matrix of which each row consists of a double set, including the label and length of the observed action. Each target vector consists of a triple
set, including the label of the next action, the remaining length of the current action, and the length of the next action before the cut line.

action, while the length vector contains one element, which
represents the remaining length of the current action. Due to
high computational cost, for frame inputs, we only randomly
choose several frames in observation as inputs. The targets
are also encoded in a categorical form. Specifically, the
targets consist of a one-hot vector and a compound length
vector. The compound vector contains two elements. One
represents the remaining length of the current action, and
the other represents the length of the next action before the
cut line.

3.1.2. Action Anticipation Model. More formally, given the
frame-wise inputs X! = {x,x,,...,x,} and label-wise in-
puts L} = {I;,1,,...,1,}, we first transform the label inputs to
categorical form 6 in the way mentioned above as follows:

0 = ftrans(Ltl)’ (1)

where f,.,.,(-) denotes the transform function that encodes
label inputs to categorical form.

For frame-wise inputs x,, we use pre-trained CNNs to
extract features from each frame. Here, we utilize ResNet50
[33] pre-trained on ImageNet [34] except for the last fully
connected layer as our image feature extractor. Hence, we
get a feature sequence f3 of observation.

As the categorical label information 6 is a sparse matrix,
it may be suitable for deep learning architecture. We take
advantage of an LSTM layer to encode 8. Corresponding to
this operation, an LSTM layer is also used to encode f in the
frame-wise stream. The encoded sequences are defined as 6’
and f/, respectively.

As is well known, an LSTM is beneficial to deal with
sequence information. Thus, as shown in Figure 1, we exploit
an LSTM to preliminarily analyze sequence features in each
stream. Then we obtain preliminary features @,y of the
frame- and label-wise sequence, respectively, as follows:

&= frorm (00,
Y= frsra (Bs

where fhoa, (1) and g, () represent LSTM layers for
analyzing preliminary sequence information in label stream
and frame stream, respectively.

Then « and y are concatenated to form a multimedia
feature e. This feature is fed into a retentive memory module
to capture key information after such a long observation.
This module consists of a memory neural network and a
channel-wise attention network. Compared to LSTMs, a
memory neural network is beneficial to capture the features
in a long video. Thus, a memory neural network is utilized to
capture the features in key time steps. Besides, to get further
attended features, a channel-wise attention network is used
to capture the features in pivotal channels. These procedures
can be formulated as follows:

(2)

@ = f anten (concat(a, y)), (3)

where concat(-) denotes a function that concatenates the
preliminary features, « and y. Then, the concatenated feature
is fed into the retentive memory module f,., and finally
gets a salient feature w. It is followed by a fully connected
layer to discriminate the final output y in categorical form.
The procedure can be formulated as follows:

¥ = frc(w), (4)

where f . (-) represents the final fully connected layer. y is
the output vector that consists of a one-hot vector and a
compound vector. The one-hot vector represents the cate-
gory of the next action. The compound vector includes two
elements. One represents the remaining length of the current
action. The other represents the length of the next action
before the cut line.

For the loss function, because the output vector is a
compound vector, a part of which requires classification and



Computational Intelligence and Neuroscience

the other part wants regression, we deal with the output as
follows:

L= _loga+(Pn_ﬁn)2+(pc_ﬁc)2’ (5)

where d denotes the predicted vector for classification, which
is used for the cross-entropy loss. p,, is the real length of the
next action before the cut line, while p,, is the estimated one.
Similarly, p, is the real remaining length of the current
action, while p, is the estimated. Both p, and p, are applied
to the mean squared error.

3.2. Retentive Memory Module. As the videos are usually too
long to focus on key information, a retentive memory
module is proposed to capture salient features. As shown in
Figure 1, the module consists of a memory neural network
and a channel-wise attention network. The preliminary
features of both two streams are connected. Then the
connected feature is fed into the retentive memory module.
In this module, a memory neural network is utilized to deal
with the features in key time steps of a video, and a channel-
wise attention network is used to capture the features in
pivotal channels.

Inspired by the work in [16], a memory neural network is
adapted after the concatenation of preliminary features. The
memory neural network consists of four main components:
read operation f,, compose operation f., write operation
fu and an encoding memory M € RN*L, where N is the
dimension of features and L is the length of memory. The
architecture of the memory neural network is depicted in
Figure 3.

The memory is initialized by the feature ¢ that is con-
catenated by the preliminary features, « and 8. More for-
mally, we initialize the memory M by e directly, which can be
formulated as follows:

M=e¢ (6)

Then, these features are analyzed at each time step se-
quentially. For each time step, a read function is utilized to
generate a query g,. Query g, maps each slot by calculating
the inner product and generates a series of association
scores. Afterward, we normalize these scores with the
softmax function without violating their orders and obtain a
score vector Z. The score vector Z means the degree of
importance of each slot. Thus, we take the weighted sum of
all slots and get an attended vector m,. These procedures can
be formulated as follows:

q: = f. (o),
Z = softmax (thM), (7)
m, = Z'M.

Let ¢, denote the feature at time ¢ in the original feature.
In compose operation, we concatenate the feature ¢, and m,
and feed it into a multilayer perceptron:

¢ = fmip (8, m,), (8)

F1GURE 3: The architecture of a memory neural network. We extract
features ¢, in compose operation after the analysis of all time steps.

where f ., (-) is a multilayer perceptron with a hidden layer.

In the write operation, we map ¢, into output space.
Finally, we update the memory space with a new
representation:

he= fo(c)

M =M"o(1-z)+hoz, ®
where © denotes element-wise product. Finally, we extract
¢, at the last time step and feed it into the channel-wise
attention network.

After obtaining salient features at each time step, we
hope to further capture the features from pivotal channels.
Inspired by the work in [17], we utilize a channel-wise at-
tention network to enhance the critical information of
pivotal channels in ¢,, which is generated by equation (11).
Let us represent ¢, as c. More formally, given an output
feature ¢ € RX, the channel-wise attention network can be
formulated as follows:

n=0(Wo), (10)
where W denotes a parameter matrix in the shape of K x K.

o is a sigmoid function. In detail, W can be defined in form
of W1 as shown in (11):

w) w0 0 0 0
0 w2 wH+1 0
W' = ’ ? w | ay
wg_, O
0 0 -0 0 - wy' wk

where w/ denotes the elements located at row i and column j
in the parameter matrix. W' involves K x H parameters.
However, smaller H means features will be mapped into a
lower-dimensional space, which may harm performance.
Thus, an appropriate value for H can reduce the compu-
tational effort without seriously affecting the performance of
the model. If different channels share weights, the parameter
matrix W/ evolves W', and w;, represents the shared pa-
rameter at row k.
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Such a strategy can be readily implemented by a fast 1D
convolution with a kernel size of H:

n =0(C1 D(c)), (13)

where C1 D(-) denotes a fast 1D convolutional network.

4. Experiment

In this section, we first compare our method with some
state-of-the-art techniques on the task of dense action an-
ticipation and then analyze several crucial components of
our model. We also introduce implementation details and
evaluation metrics in our experiments.

4.1. Data Set. The Breakfast data set [18] is a large-scale data
set, which contains 1,712 video samples and consists of 48
action classes collected by 52 subjects. Each video sample
contains a broad set of activities about preparing breakfast in
daily life such as preparing milk, pancake, and tea, with an
average length of 2.3 minutes and an average of 6 action
instances. It is a challenging data set due to its large diversity
of actions, long-range of videos, and variations of the
camera’s view angle. In our experiments, we follow the
training/test split rules in [32]. Thus, the data set is divided
into 4 parts. The first part is served as a test set, which
contains 252 videos interpreted by 13 participants from P03
to P15. The other three parts are served as a training set,
which contains 1,460 videos interpreted by 39 participants
from P16 to P54.

The 50 Salads data set [19] contains 50 videos and
consists of 17 action classes. It captures 27 people preparing
salads, and each participant performs twice at random.
Because of data loss, the videos of two participators, P08 and
P12, are removed from the data set. Each video contains
more than 7,000 frames, and many have more than 10,000
frames. In each video of this data set, the action sequence
similarity is low, with similar actions only in the beginning
part of the action and almost different actions in the back
part. This increases the difficulty of supervised learning and
brings great challenges to dense action anticipation. In our
experiments, the 50 Salads data set is divided into 2 parts.
The first part is served as a test set, which contains 10 videos
interpreted by 5 participants from P13 to P17. The other part
is served as a training set, which contains 40 videos inter-
preted by the other 20 participants.

4.2. Evaluation Metric. We follow the evaluation metric in
[32], which is called mean over classes. This evaluation
metric is formulated as follows:
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cézf‘u}v (9

where C is the number of action classes involved in the
forecasting process. I} denotes the number of right labels of
class i, while I} denotes the number of wrong labels of class i.
The labels here refer to the label of each frame. The length of
the action is expressed as the number of consecutive labels.
This evaluation metric is a pretty restricted criterion due to
its coeflicient. Specifically, MoC represents the mean ac-
curacy of classes involved in predicting process. In other
words, if the accuracy of one class becomes low, MoC will
decrease fiercely. Therefore, MoC can be high only if the
accuracy of each action class is high.

4.3. Comparison to the State-of-the-Art. Our approach is
compared to some state-of-the-art dense action anticipation
approaches, and the results of experiments are reported as
shown in Tables 1 and 2. There is no agreement on the
proportion of frames that are observed or predicted, so we
follow the experiment settings in [32] and forecast 10%, 20%,
30%, and 50% after observing 20% and 30%, respectively.
The evaluation metrics of all experiments are those described
in formula (14). The error criteria of the experiments are
introduced in formula (5). As evidenced by the results in
Tables 1 and 2, our method outperforms several state-of-the-
art dense action anticipation approaches by a relative in-
crease in accuracy in most cases.

For the label stream, we utilize the ground truth as input.
As shown in Tables 1 and 2, our method improves the
accuracy by approximately 5% in most items compared to
CNN and RNN. During the training process, we noticed that
our model converged much faster than RNN, which only
utilizes the information of labels. It is because the frame
stream provides abundant and detailed visual information to
help the model understand what happens in the scenes.
Besides, the label stream informs the model of what happens
in the form of abstract language, so it may study better and
faster from both two streams than from only label inputs.
Furthermore, the key information of both two streams is
captured by the retentive memory module to improve video
comprehension ability.

However, on the 50 Salads data set, the accuracy of 2S-
RLSTM when the observation ratio is 30% is not as high as
when the observation ratio is 20%. The actions of the per-
formers are arbitrary, and only the first few actions have a
reference between the training set and the test set. When the
observation ratio is 30%, we usually cannot find the action
sequence similar to the predicted part in the training set, so it
is difficult to predict the correct category of movements.
Compared to CNN, our method has worse performance
when observing 30% and predicting 50%. This is because our
method operates iteratively, with errors generated in the
current step accumulating into the next prediction. We find
that the short-term prediction effect is inferior to RNN when
the observation ratio is 30%. It is due to the difference in the
action order between the training set and the test set after
30% observation and the lack of large empirical data. And
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TaBLE 1: Dense action anticipation performance comparison on the Breakfast data set.

Observation% Prediction% 2S-RLSTM CNN [32] RNN [32] Grammar [35]
10 65.04 57.59 60.35 48.92
20 20 52.67 49.12 50.44 40.33
30 50.42 44.03 45.28 36.24
50 45.42 39.26 40.02 31.46
10 65.44 60.23 61.45 52.66
30 20 54.59 50.14 50.25 42.15
30 49.24 45.18 44.90 38.44
50 46.03 40.51 41.75 33.09
TaBLE 2: Dense action anticipation performance comparison on 50 Salads data set.
Observation% Prediction% 2S-RLSTM CNN [32] RNN [32] Grammar [35]
10 46.67 36.08 42.30 28.69
20 20 33.32 27.62 31.19 21.65
30 31.14 21.43 25.22 18.32
50 19.76 15.48 16.82 10.37
10 39.96 37.36 44.19 26.71
30 20 27.40 24.78 29.51 14.59
30 21.23 20.78 19.96 11.69
50 10.03 14.05 10.38 9.25

then the information from the video frames facilitates the
miscalculation. In these cases, the model is easy to make
wrong judgments on the action category. But, if enough
appropriate data is available to learn, the model can make an
accurate prediction about future sequences of actions.

4.4. Analysis. In this section, we provide a detailed analysis
of several components of our model on the Breakfast data
set. For a fair comparison, we design a baseline composed of
two LSTM layers and a fully connected layer, only involving
the label stream.

To evaluate the frame stream, we add one more branch
that consists of a ResNet50 [33] and two LSTM layers with
the same dimension to the baseline. These features of both
two streams are concatenated before the fully connected
layer. The final output is generated by the fully connected
layer. The evaluation results on the Breakfast data set are
shown as 25-LSTM in Table 3.

As evidenced by the results, the frame stream improves
the performance of the model compared to the baseline.
According to this case, we believe that RGB frames can
provide abundant features for understanding the present
and predicting the future reasonably. Specifically, an action
may consist of several subactions. For example, “pour milk”
may consist of “take up a milk carton,” “tilt the milk carton,”
“pour milk from the milk carton,” and “put the milk carton
on the table.” However, if we only use the information of
labels, the information of subactions will not be used at all
because the model may only know “pour milk” if we only
feed information of labels to the model. Therefore, the frame
stream provides detailed information to the model.

We then evaluate the retentive memory module that
consists of a memory neural network and a channel-wise
attention network, shown as L-CLSTM in Table 3. To this
end, we first add the channel-wise attention network before

TaBLE 3: Comparison of different architectures that are composed
of different components.

Observation Prediction Baseline 2S- L- L-
% % LSTM CLSTM RLST
10 54.26 59.45 57,24 58.35
20 20 43.96 48.98 45.24 47.38
30 41.86 46.19 42 .81 46.01
50 40.96 44.75 41.56 43.46
10 56.79 63.24 57.26 61.25
30 20 51.87 52.69 52.67 53.61
30 46.14 47.26 46.64 47.63
50 42.69 44.85 43.79 44,51

the fully connected layer to the baseline. The results of
L-CLSTM show that the channel-wise attention network
improves the performance slightly, which is a little beneficial
to enhance information in pivotal channels. Besides, to
prove the effectiveness of the memory neural network, a
memory network is inserted before the channel-wise at-
tention network based on L-CLSTM. As shown in L-RLSTM
in Table 3, the results illustrate the advantages of focusing on
salient features extracted from highlighted time steps.
Furthermore, we find the performance of 2S-LSTM and
L-RLSTM is similar. We hold the opinion that the frame
stream and the retentive memory module improve the
performance from different aspects. Frame stream offers
detailed information about subactions, while the retentive
memory module captures salient information at prominent
time steps and pivotal channels.

4.5. Limitations. In this section, the limitations of the
proposed method will be discussed. Although the proposed
method achieves comparable results, it has many obvious
limitations. One of the limitations is that the approach relies



on fine-grained action annotations. This requires explicit
action labels for each frame of the observed video. However,
in the real world, such fine-grained action annotations are
difficult to obtain. Therefore, weakly supervised learning is a
solution and a future research direction.

Another limitation is that the model has heavy com-
ponents. In the task of action prediction, due to the limi-
tation of the processing performance and storage space of
some mobile devices, there are certain demands on the
calculation speed and space size of the model. In the part of
feature extraction, this model uses a ResNet50. And, in the
part of feature analysis, the model is composed of a large
module, which is termed the “retentive memory module.”
The parameter amount of this model is about 40.44 M, and
the calculation amount is about 26.59 G FLOPS. In addition,
the computational burden of RGB image processing is
relatively heavy. Therefore, a lightweight framework for fast
data processing is necessary and is the future research
direction.

5. Conclusion

In this paper, a novel method is proposed to predict a series
of actions and their durations after observing a partial video.
This model processes low-level features extracted from RGB
videos and high-level features extracted from labels si-
multaneously. Moreover, to fully capture salient features in
the long-range videos, a retentive memory module is uti-
lized. This module extracts the features not only from salient
time steps but also from pivotal channels. Finally, with
extensive experiments on the Breakfast data set and 50
Salads data set, we verify the effectiveness of the model. The
results show the method outperforms several state-of-the-
art approaches for dense action anticipation by a relative
increase in terms of accuracy in most cases. An efficient
lightweight framework is the future research direction of
this work.
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