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ABSTRACT Machine learning approaches are powerful techniques commonly employed for developing
cancer prediction models using associated gene expression and mutation data. Our survey provides a
comprehensive review of recent cancer studies that have employed gene expression data from several
cancer types (breast, lung, kidney, ovarian, liver, central nervous system and gallbladder) for survival
prediction,tumor identification and stratification. We also provide an overview of biomarker studies
that are associated with these cancer types. The survey captures multiple aspects of machine learning
associated cancer studies,including cancer classification, cancer prediction, identification of biomarker
genes, microarray, and RNA-Seq data. We discuss the technical issues with current cancer prediction models
and the corresponding measurement tools for determining the activity levels of gene expression between
cancerous tissues and noncancerous tissues. Additionally, we investigate how identifying putative biomarker
gene expression patterns can aid in predicting future risk of cancer and inform the provision of personalized
treatment.

INDEX TERMS Biomarker, Cancer prediction, Deep learning, Feature Selection, Machine Learning,
Microarray, RNA-Seq

I. INTRODUCTION

CANCER is a global health concern that causes death
worldwide, according to the World Health Organiza-

tion. Cancer has been defined as a group of cells that arise
from specific areas of the human body, that often readily
spreads to distant metastatic sites [1]. Abnormal growth of
cells occurs because of the complex interaction between
genes (deregulated due to mutation and epigenetic modi-
fications) and the environment (i.e. carcinogens) [2]. Con-
sequently, whole-genome expression analysis has become
an important tool to identify relevant genes pathways that
are deregulated and drive abnormal cellular proliferation
and metastatic spread. Whole-genome expression (transcrip-
tomic) analysis has the potential to provide early cancer
prediction, for diagnosis, determining clinical outcomes, and
the potential for disseminated disease. In addition, molecular
cancer classification can enhance the success of person-
alized treatments including immune-checkpoint inhibitors

including anti-PD1 and anti-CTLA-4 [2]. Measuring gene
expression differences of thousands of genes between healthy
and unhealthy tissue using transcriptomic approaches such
as microarrays and more recently RNA-Seq has required
investigators to develop bioinformatic pipelines that include
mathematical and statistical methods to analyze these large
novel datasets. Biomarker genes typically represent the iden-
tification of a subset of genes that are associated with a
specific disease or subset of diseases. This paper explores
the biomarker genes and gene signatures that have been
implicated in cancer studies. Identification of new gene sig-
natures will help in early cancer prediction and potentially
identify patient subgroups that may be responsible or non-
responsive for specific therapies. In this sense, biomarkers
have the potential to play a key role in determining treatment
strategies. The recent public availability of these datasets now
allows researchers to apply deep learning methods that may
speed up data analysis and greatly improve the accuracy of
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cancer diagnosis, prognosis, and likely response to therapy.
The rest of the paper is organized as follows: section II
explores recent studies analyzing gene expression data either
by using classical ML and DL for seven types of cancer
(including their subtypes). Section II is focused on existing
studies to identify putative biomarker genes that associated
with cancer and the methods that have been developed for this
purpose. Section III discussed the challenges in analyzing
gene expression data using novel ML and DL approaches.
Summary and conclusion are provided at the end of the
survey.

II. BACKGROUND & LITERATURE REVIEW
This section presents a comprehensive review of the chal-
lenges encountered in studies that have analyzed gene expres-
sion data in cancer. This includes using different mathemati-
cal and statistical methods to identify genes or gene pathways
that are associated with cancer pathogenesis and using these
gene signatures to improve cancer prediction.

A. MICROARRAY & RNA-SEQ TECHNOLOGY
DNA microarrays are a technology that allow biologists to
monitor the level of gene activity in an organism [13]. This
is achieved by measuring the expression levels of each gene
between healthy tissues and abnormal tissues. Microarray
associated tools have opened the door for researchers to use
mathematical and statistical methods to calculate differen-
tially expressed levels for each gene between cancerous and
non- cancerous samples. This allows identification of the top
differentially expressed genes that might be associated with
a particular disease. Perhaps more importantly pathway and
gene ontology enrichment analysis can be used to identify
putative biological pathways involved in the disease based
on prior experimental work that has already been done with
these genes.
Technically, Microarrays measure the intensity of fluores-
cence (fluorescently labelled cDNA molecules), where the
intensity of fluorescence reflects the corresponding gene ex-
pression levels. The ability of microarrays to measure the
expression of thousands of genes simultaneously depends
on slides (known as DNA Microarrays) pre-spotted with
thousands of probes complementary in sequence to the flu-
orescently labelled cDNA molecules that are added to the
array (usually referred to as DNA/Gene chips). The known
position of the probes on the chip allows assignation of
specific gene expression patterns to individual genes [14].
To implement a microarray experiment, both a reference
sample (e.g. from normal tissue) and an experimental sample
(i.e. cancer tissue) are collected, the mRNA is extracted and
converted to fluorescently labelled cDNA typically with one
sample labelled with a green fluorescent marker and the other
a red fluorescent marker. Then the two samples are combined
and hybridized to the microarray slide. The slide is then
washed to remove non-specific cDNA molecules and scanned
to measure the gene expression of every gene sequence
hybridized to the slide. A specific spot on the microarray

will appear as red if the expression of a certain gene in the
experimental sample is higher than in the reference sample.
Conversely, the spot appears green if the expression of a
certain gene in the experimental sample is lower than in the
reference sample. The spot appears yellow if the expression
of a certain gene is equal in both samples. No color means
the gene is not expressed in either sample. The information
collected through Microarrays can be used to generate gene
expression profiles which display concurrent changes in the
expression of multiple genes compared with a reference
sample. This may represent a specific treatment or condition.
RNA-seq is a measurement tool employing next generation
sequencing technology (e.g. Illumina HiSeq) which can be
used to determine gene expression and sequence differences
between different types of biological samples and has largely
superseded microarray technology. Microarray methods only
profile predefined mRNA transcripts by hybridizing comple-
mentary DNA (cDNA) to pre-spotted oligonucleotide probes
on an array. In contrast, RNA-Seq measures read counts as
a proxy for relative abundance measures of gene expression
levels [15]. RNA-Seq also provides single base pair resolu-
tion, distinguishing allelic expression of genes, identification
of novel genes and altered splice forms and has a larger
dynamic range, a good signal to noise ratio and is more
accurate in measuring gene expression levels [16] [18]. RNA-
Seq requires mapping of processed sequence reads to a ref-
erence genome (or transcriptome) and therefore is dependent
on the accuracy of these references assemblies rather than
being limited by a predetermined choice of probes (on an
array). This allows an increased ability to identify new gene
disease associations that may have been missed with microar-
ray approaches [16].RNA-seq able to detect expression at
the gene,exon, transcript, and coding DNA sequence (CDS)
levels,whereas Microarray can detect expression in a gene,
exon level only [17].

B. PROBLEM STATEMENT
Researchers have used different mathematical and statisti-
cal methods to analyze gene expression data for several
purposes, including the identification of informative gene
associated pathways, improved disease classification, disease
prediction, drug discovery, and personalized therapy. Various
methods have been developed to address these goals. The
challenge in all approaches concerns the complexity and
high dimensionality of gene expression data. In addition,
the number of individual cancers is vast including at least
>100 molecularly distinct types of cancer. Moreover, tools
employed for calculating gene expression genome-wide con-
tinue to evolve, which leads to improved accuracy in gene
expression values. Novel gene expression patterns (novel
transcripts) can be readily identified using RNA-Seq instead
of using the DNA microarrays. As a result, technology de-
velopment requires new mathematical and statistical meth-
ods to analyze such heterogeneous data. Another challenge
is additional interacting factors (e.g. environmental factors)
such as smoking, asbestos and dietary factors that are likely
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to interact with and influence genes associated with specific
cancers.

C. THE STUDIES IN THIS FIELD

Recent studies employing machine and deep learning ap-
proaches for cancer prediction and biomarker gene identifi-
cation will be evaluated. Useful resources for downloading
cancer gene expression data will be highlighted which con-
tributes to researchers being able to test and evaluate their
proposed analytical techniques.

1) Classical Machine Learning & Feature Selection Methods

Machine learning is a sub-field of artificial intelligence that
allows computers to learn without being explicitly pro-
grammed [3]. There are many different techniques of clas-
sical ML that have been developed, including, K-Nearest-
Neighbor (KNN), Support Vector Machine (SVM), Deci-
sion Tree (DT), Random Forest (RF), Bayes, etc. ML is
distributed across three major classes which are supervised
learning, unsupervised learning, and reinforcement learning.
Supervised learning is applied after the data used is labelled
because it is mapping between input and output data. In
supervised learning the ML task is to learn a function that
maps an input to an output using example input-output pairs.
It deduces a function from labeled training data consisting
of a set of training examples. In unsupervised Learning,
the model works independently to discover patterns and
previously undetected information. Therefore, unsupervised
Learning does not involve data labelling. Reinforcement
learning (RL) can be applied for both types of data (labelled
and unlabeled). RL makes the decision sequentially, e.g., the
output depends on the current input, and the next input relies
on the output of the previous input. In contrast, for supervised
learning the decision will be made based on the initial input.
RL models aim to maximize the notion of cumulative reward
(Figure 1).
Feature Selection(FS) is defined as a statistical method that is
used for reducing the dimensionality of the data by selecting
the informative features and ignoring uninformative ones in
the dataset [9]. FS techniques have valuable benefits when
used as they reduce the time training of a model, are less
complicated and are easy to interpret [10]. More importantly,
when the FS method employs optimal features, it will help
enhance the accuracy of a model and reduce possible overfit-
ting [11]. In general, FS approaches are divided into three
fundamental types: filter methods, wrapper methods, and
embedded methods [12].
To discuss and analyze a study that uses machine learn-
ing(traditional ML and DL approaches) it is beneficial to
understand the evaluation parameters that were employed
to demonstrate that this proposed study outperformed the
previous studies.The evaluation parameters are as a follows:
Accuracy (AC) is a metric that is used for evaluating clas-
sification models in AI. AC is calculated by dividing the
number of correctly classified instances by the total number

of instances in the dataset. Mathematically, it is calculated as
follows [8]:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

where TP is True Positive, TN is True Negative, FP is False
Positive and FN is False Negative. A TP is the result that
is accurately predicted by the model as a positive class. TN
is a result where there is accurate prediction by the model
of a case as a negative class. For example, non-cancerous
cases are classified and correctly called as noncancerous by
the model. FP is the result that is inaccurately predicted a
positive class (e.g. a patient has cancer when they do not).
FN is where the model inaccurately predicted by the model
as negative class (e.g. a patient with cancer is not called as
such).
Precision is the average probability of relevant retrieval as
illustrated in [8]

Precision =
TP

TP + FP
(2)

Recall is defined as the average probability of complete
retrieval. It is also known as sensitivity. The recall formula
is described as [8]:

Recall =
TP

TP + FN
(3)

The F1 score is a weighted average of the precision and
recall, where a perfect F1 score has a value of 1 and worst
score at 0 [8]:

F1 = 2× precision× recall

precision+ recall
(4)

Extreme Learning Machines (ELM) have been developed as
classifier techniques with Correlation Coefficient as feature
selection method to reduce the number of features (genes)
and increase the performance of this kind of sophisticated
model. In a particular study,accuracy was accomplished with
79% [52]. The study used 60 central nervous system tumors
(in addition to other tumors). A caveat to this study is that
it utilized a small dataset. In addition, it also used only one
gene expression dataset for evaluating the performance of the
proposed model, and that may only show good results for this
specific dataset. It may not be broadly applicable.
Suleyman et al. [21] used five machine learning techniques,
namely random forest, support vector machine, Naïve Bayes,
C4.5, and K-nearest Neighbor. In this study, somatic mu-
tation data, from 358 patients, was obtained from TCGA
and was used to predict breast cancer. The highest accuracy
accomplished with this study was 0.70 when using Random
forest, while the other machine learning techniques used in
the study were less accurate. This study failed to achieve the
desired results (Table 1).
Naïve Bayes and two feature selection methods (Reli-
efF/Limma) were applied to classify different lung cancer
subtypes [34]. This study used the gene expression dataset
GDS3257, and DNA methylation data from TCGA. 19 genes
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FIGURE 1: Types of Machine learning.

TABLE 1: Comparing the performance of ML approaches for
analyzing breast cancer dataset

Methods Accuracy TP FP TN FN F-measure
RF 70% 58% 19% 81% 42% 59 %
SVM 69% 49% 16% 84% 51% 53 %
C4.5 60% 47% 26% 74% 53% 47 %
NB 57% 45% 29% 71% 55% 44 %
KNN 49% 25% 16% 84 75% 31 %

were associated with adenocarcinoma, squamous cell carci-
noma and carcinoma of the lung. The selected genes were
selected employed as a gene signature for predicting lung
cancer subtypes. The performance of the proposed model was
0.89 for both data (GDS3257 and TCGA DNA methylation).
This study is limited as it lacked evaluation of the model
performance with prospective data.
Pineda et al. used gene expression (TCGA and GEO) and
DNA methylation data (TCGA) to develop a classifier that
effectively discriminated lung adenocarcinoma from lung
squamous cell carcinoma cases [61].The dataset for both
lung cancer subtypes were collected from [62][63][64]. They
applied a feature selector (ReliefF/Limma) to select 30 top
relevant scoring variables associated with these lung cancer
subtypes. This was reduced from 27,578 DNA methylation
variables and 17,814 genes from microarray gene expression.
The study achieved an AUC classification performance of
0.89 by applying a Naïve Bayes classifier and gene functional
analysis using Ingenuity Pathway Analysis tool (IPA) and
identified 19 genes of which 4 were specifically associated
with lung cancer subtypes (AKR1B10, AQP10, CXCR2,
TP73).
Four machine learning techniques were applied to four dif-
ferent sources of gene expression data for predicting lung
cancer [33]. The datasets were from Harvard Medical School

consisting of 203 samples probing expression of 12,600
genes; the University of Michigan (192 samples and 7129
genes); the University of Toronto (63 samples and 2,880
genes) and Brigham and Women’s Hospital (181 samples and
12,533 genes). The highest accuracy achieved was between
0.88-0.94 when the Brigham and Women’s Hospital dataset
was used, and SVM applied. In addition, 0.83 was the highest
accuracy accomplished when applying the C4.5 decision tree
on the University of Toronto dataset.
Yuan et al. [38], used RF and SVM to classify two subtypes
of lung cancer: (Adenocarcinomas(AC) and Squamous Cell
Carcinomas(SCC)). They also applied Monte-Carlo (MCSF)
and incremental feature selection methods to identify in-
formative genes. Affymetrix U133 arrays (probing 20,502
genes) were used to generate data from 77 lung AC and 73
lung SCC samples from Gene Expression Omnibus (GEO
GSE43580). The study showed that when 1100 optimal
features (genes) were selected for classification using an
SVM classifier, higher accuracy was achieved compared with
using 43 informative features (genes) obtained using a MCSF
method.Accuracy decreased from 0.96 to 0.86 using SVM
and 0.93 to 0.88 with RF (Table 2).

TABLE 2: The Performance of RF and SVM to analyze lung
cancer subtypes

Methods Number of genes Accuracy Precision Recall F1 score
SVM 1100 96% 93% 100% 96%
SVM 43 86% 80% 98% 88%
RF 260 93% 89% 98% 93%
RF 43 88% 82% 97% 89%

Tarek et al. [25], proposed a method for classifying three
types of cancer; Leukemia, Colon, and breast cancer by ap-
plying a KNN algorithm and three feature selection methods
to reduce the dimensionality and to select significant features
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to improve cancer prediction. The dataset used for testing
the system again was obtained from TCGA. The dataset
had 6,500 colon, 24,481 breast and 3,571 leukemia samples.
KNN was applied with three feature selection (Singular
Value Decomposition Entropy (SVDE), Extreme Value Dis-
tribution (EVD), and Backward Elimination Hilbert-Schmidt
Independence Criterion (BASIC)). The accuracy achieved
with the system was 0.80 for colon cancer, 0.91 for breast
cancer, and 0.92 for leukemia.
A deep learning approach with a stacked denoising auto-
encoder (SDAE) algorithm as a feature selection method was
proposed to select informative genes that distinguish breast
cancer samples from normal breast tissue samples. RNA-
Seq gene expression data was analyzed [19]. This approach
was applied to 1097 cancer samples and 113 healthy con-
trols. The data was downloaded from The Cancer Genome
Atlas (TCGA) [20] for both sample types. To evaluate the
performance of the proposed algorithm, three classifier tech-
niques which included artificial neural network (ANN), Sup-
port Vector Machine (SVM) and SVM-radial basis function
(SVM- RBF)) were applied. The system achieved an accu-
racy of 0.91,0.91 and 0.94 for ANN, SVM, and SVM-RBF
,respectively.
Yeganeh et al. [46], used different machine learning
techniques with multiple GEO ovarian cancer datasets
(GSE12172, GSE14407, GSE9899, GSE37648, GSE18521,
GSE38666, and GSE10971) for predicting ovarian cancer
(n=530 cases). They used a 26-gene set panel for train-
ing different machine learning predictive models. The study
achieved the highest accuracy of 0.89 when using a Random
Forest pipeline. The drawbacks of the study used imbalanced
dataset, and the achievement results require improvements.

In a study of microarray gene expression data from
Lung adenocarcinoma samples (86 tumor samples and 10
non-tumor samples collected from Kent Ridge Bio-Medical
Dataset Repository available from [60] with 7129 genes) an
Info gain feature selection technique was applied to identify
genes strongly associated with cancer samples using 70% of
samples as a training set and 30% of samples as a test set.
This study applied three classifier techniques to discriminate
tumor and non-tumor samples after choosing the candidate
genes that had known relevance to lung cancer [2]. Several
selected genes were evaluated for biological relevance in lung
cancer pathology. The system tested on the dataset provided
an output of six genes with high Info Gain scores that
might be linked with lung cancer (FABP4, FHL1, CLEC3B,
Monoamine Oxidase-A, Platelet endothelial cell adhesion
molecule-1, and Selenoprotein P). Additionally, the system
employed these as biomarker genes to classify lung cancer by
applying three classifier techniques (Multilayer Perceptron
(MLP), Random subspace (RSS) and (Sequential Minimal
Optimization (SMO)). The accuracy achieved was 0.87, 0.68,
and 0.92 MLP, RSS, and SMO,respectively (Table 3).
Bhalla et al. [48], applied SVM and RF based models on 523
clear cell renal cell carcinomas (ccRCC)). The main aim of
this study was to identify a minimum number of biomarker

TABLE 3: Comparing the performance of MLP,RSS and
SMO to classify lung cancer data

Methods Accuracy Precision Recall
MLP 86.6% 87% 83%
RSS 68.3% 64% 60%
SMO 91% 91% 90%

genes that would effectively discriminate early from late
stage ccRCC and therefore would be effective in cancer
staging. The models used identified an eight-gene signature
(4 upregulated and 4 downregulated) that achieved a ROC of
0.77 with accuracy of 70.19%. The authors attempted to de-
velop gender specific models as well to improve performance
prediction and whilst some evidence of increased specificity
was highlighted further work is required.
A novel multi-view feature selection method was used to
analyze gene expression (RNA-Seq) data in combination
with copy number alteration and protein array data to predict
renal clear cell carcinoma (KIRC) survival [49]. eXtreme
Gradient Boosting (XGB) was applied for training and test-
ing the genes selected by the multi-view feature algorithm
and rely on canonical correlation analysis (CCA). The study
achieved 0.76 accuracy. One of the notable limitations of the
proposed feature selection methods was that it was performed
using unsupervised CCA that may lead to reduced accuracy.
Additionally, the study had a quite low accuracy score so it
requires some enhancement which might be achieved using
supervised variants of the CCA method [50] [51]. The study
again did not used additional sources of data for evaluating
the proposed model efficiency.
Xu et al. [55], proposed a Multi-Grained Cascade Forest
(gcForest) and dependent feature selection strategy for pre-
dicting four subtypes of breast cancer (Basal, Her2, Lumi-
nal A, and Luminal B). Again, TCGA RNA-Seq data was
used and feature selection was developed for selecting 30
informative genes used for improving classification accuracy
and reducing training time. The study compared the gcForest
classifier with three different machine learning approaches
(KNN, SVM and MLP). gcForest showed higher accuracy
scores compared with the other classifiers. 0.92 accuracy was
accomplished in this study. Although the research yielded
valuable results. However, it has some caveats. The gcForest
classifier works under the decision tree principle so it is
poorly suited for processing continuous gene expression data
and must perform discretization of the data which leads to
information loss. Additionally, the study did not use external
data for evaluating the proposed model.
Additional studies of conventional machine learning ap-
proaches that have been employed using cancer gene expres-
sion data are presented (Table 4) and includes the datasets and
techniques that have been developed, as well as accomplished
results, and references.
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TABLE 4: Summary of Traditional ML Approaches Applied to Gene Expression Data

Dataset Techniques Accuracy Reference

Kent Ridge Bio-Medical Dataset Repository. Info gain,SMO,RSS,MLP 86.6%,68.3% ,91%,
MLP,RSS,SMO respectively [2]

Breast Cancer from TCGA
1097 breast cancer samples
and 113 healthy samples.

Stacked denoising Autoencoders
(SDAE),SVM,SVM-RBF,ANN

91.74%, 91.74%, and 94.78%,
ANN, SVM, and SVM-RBF,
respectively

[19]

Breast cancer RF,SVM,NB,C4.5, K-NN RF=70%, SVM=69% NB=57%,
C4.5=60% KNN=49% [21]

leukemia, colon and
breast cancer

K-NN and three
feature selection techniques
BAHSIC, EVD, SVD

92%,80% ,91% leukemia,
colon, breast cancer respectively. [25]

GEO(leukemia cancer, prostate and
colon cancer data

signal to noise ratio,
Fisher,ReliefF,T-statistics
SVM,K-NN

Between 85% and 100%. [27]

TCGA(Lung cancer ReliefF,RF 83% [30]

GSE4922, GSE2034,
GSE6532, GSE7390
GSE11121
Breast cancer

To identify informative genes are used:
1.Principal component analysis algorithm
2.Autoencoder neural network.
AdaBoost algorithm (PCA-AE-Ada)
was constructed to predict clinical
outcomes in breast cancer

The accuracy of this study
was between
75%,72%,77%,75% and 85%
GSE4922, GSE2034,
GSE6532, GSE7390 and
GSE11121 respectively.

[31]

Breast cancer

SVM, KNN, MLP, DT, RF,
Logistic Regression (LR),
Ada (Adaboost),
GBM (Gradient Boosting Machines,
Recursive Feature Elimination (RFB),
Randomized Logistic Regression (RLR)

88.8% was the highest accuracy
when RFE and SVM applied.
While 87% the highest accuracy
when RLR and SVM applied.

[32]

Harvard Medical School,
University of Michigan ,
University of Toronto ,
Women’s Hospital
Breast cancer

SVM, C4.5
88%-94% when the Brigham and
Women’s Hospital dataset was use
83% with C4.5 .

[33]

GDS3257,DNA methylation
from TCGA NB, ReliefF,Limma 89%. [34]

GEO,TCGA(Three lung cancer subtypes)

mRMR,Multi-category Receiver
Operating Characteristic (Multi-ROC)
Incremental Feature Selection (IFS)
Random Forests,
multiclass support vector

86.5% . [36]

GEO(GSE43580) RF, SVM 86%-96% with SVM 88%-93% with RF. [38]

GEO(GSE161741) Binary classification algorithm 97for positive(has cancer)
73% for negative (normal). [39]

GEO(GSE6044, GSE2109)
Harvard Structural Binary Classification (SBC) 93%. [41]

TCGA(LUAD and LUSC) DGE ,PCA,mRMR
Lasso,Xgboost,Overlapping,RF 92.9% [42]

GEO(Lung,Ovarian
and Colon)

Mutual Information(MI)
Genetic Algorithm()GA,SVM 80% -98% [43]

GEO(GSE12172, GSE14407, GSE9899, GSE37648,
GSE18521, GSE38666, and GSE10971) RF 89%. [46]

clear cell renal cell carcinomas (ccRCC) from TCGA SVM,RF 70%. [48]

Renal clear cell carcinoma (KIRC) from TCGA multi-view feature selection
eXtreme Gradient Boosting (XGB) 76%. [49]

Central Nervous System tumors Extreme Learning Machines (ELM)
Correlation Coefficient 79%. [52]

Breast Cancer subtypes
from TCGA

MLP,SVM,KNN and
Multi-Grained Cascade Forest (gcForest) 92% was highest accuracy with gcForest . [55]

GEO,TCGA NB 89%. [61]
GEO Colon cancer, Acute leukemia ,
Prostate tumor, High-grade Glioma Lung cancer II,
Leukemia2 data

,Indipendent Component Analysis (ICA)
Artificial Bee Colony (ABC)
,NB

Between 92% to 98%. [72]

GEO Colon cancer, Acute leukemia ,
Prostate tumor, High-grade Glioma Lung cancer II,
Leukemia2 data

,Indipendent Component Analysis (ICA)
Artificial Bee Colony (ABC)
,NB,SVM

Between 92% to 98% with NB
and 93% to 97% with SVM [73]

GEO Colon cancer, Acute leukemia ,
Prostate tumor, High-grade Glioma Lung cancer II,
Leukemia2 data

,Indipendent Component Analysis (ICA)
Artificial Bee Colony (ABC)
,Artificial Neural Networks(ANN)

93% to 98% with ANN [74]

GEO Colon cancer, Acute leukemia ,
Prostate tumor, High-grade Glioma Lung cancer II,
Leukemia2 data

,Indipendent Component Analysis (ICA)
Genetic Bee Colony (GBC)
,Artificial Neural Networks(ANN)

96% to 99% with ANN [75]
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2) Deep Learning Approaches
DL also called deep neural network (DNN) learning has
shown some major breakthroughs in recent years due to
the increase in computation power. DL can be defined as
a sub- field of machine learning that works by generating
structure that has multiple layers in which the next layer
of input is the output of the previous layer (Figure 2) [4].
DL structure aims to mimic the mechanisms of the human
brain by interpreting the various types of data including
sound, text, and images [5]. DL uses principles similar to
that of linear regression, where each neuron has a weighted
value that is updated by applying a gradient descent al-
gorithm through back-propagation to reduce global loss of
function[6]. DL approaches contributed to overcoming the
difficulties of cancer prediction by speeding up analysis
whilst maintaining accuracy. Most common architectures are
Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), and Artificial Neural Networks (ANN).

FIGURE 2: Deep Learning Structure

Practically, DL is a subset of ML and functions in a similar
way. Traditional ML and DL approaches both allow com-
puters to learn from input data without the requirement of
explicit programming, but they are technically different. DL
does not require human effort to generate feature extraction
in the way that traditional ML does (Figure 3) [7]. DL is also
more efficient than ML in how it uses very large datasets.
Recently, DL shows higher performance than human perfor-
mance on tasks that involves images classifications (Figure
4) [7].

Deep Neural Network (DNN) was applied to analyze gene
expression data for early pan-cancer prediction [24]. The
system was tested for 37 different types of cancer. Again,
TCGA data was used for the 37 cancer types. The dataset
consisted of 10,663 samples (9,807 tumors and 856 normal
samples) across 37 cancer types measuring expression of
10,000 genes. The system applied the DNN model with
three different structures: 3NN, 5NN, 9NN, and compared
the accuracy with SVM. The system applied two feature

FIGURE 3: Deep learning vs Conventional Machine learning

reduction methods: Prior Knowledge was applied to identify
a set of genes known to be involved in relevant biological
pathways, whereas an autoencoder was used for extracting
informative genes from the input data (Table 5). Although,
the study achieved good accuracy (i.e. with 5NN), more
enhancements are needed due to the current sensitivity of
the cancer classification field.

TABLE 5: Comparing the performance of DNN against SVM

Methods Accuracy Precision Recall F1 score
SVM 82% 79% 83% 82%
3NN 84% 80% 89% 84%
5NN 90% 90% 90% 90%
9NN 83% 80% 88% 83%

Yawen et al [71], has proposed a deep learning based multi-
model ensemble for three types of cancer (Lung, Breast, and
Stomach). The dataset was obtained from (TCGA) 162,271
and 878 samples from Lung ,stomach and breast respectively.
The accuracy was 98% for all the datasets used in this study.
Although, this system has accomplished impressive results
and employed good sample sizes for training and testing the
proposed model, the ensemble model has high complexity
and which requires more time for training. Additionally, the
ensemble model is difficult to interpret.
Matsubara et al. [35], used CNN (combining spectral clus-
tering information processing) to classify lung cancer using
both protein interaction network data and gene expression
data from 639 samples (152 benign and 487 malignant).
The dataset is available from NCBI GEO datasets (ID
GSE66499). This study achieved 0.81, 0.88, 0.78 and 0.74
accuracy, recall, precision and specificity ,respectively. This
study, as for the others described did not employ validation
data to check the efficiency of the model. Moreover, 190 out
of 487 cancer samples were randomly chosen and this explain
the results obtained. (190) malignant samples were randomly
selected, and that would not be efficient.
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FIGURE 4: Deep Learning Performance vs Human Preformance

Zeebaree et al. [37], used a CNN deep learning algorithm
with microarray gene expression data across eight cancer
types. The largest tumor cohorts used in this study was
286 samples for breast cancer probing expression of 13321
genes, while the smallest cohort size was for brain cancer
(42 samples probing 5597 genes). The overall sample size
for most tumor types was small compared with prior studies.
The study had the lowest accuracy of 0.41 for one of the two
breast cancer datasets using CNN. However, in comparison
to alternative approaches (mSVMRFE-IRF and varSelRF)
CNN is typically superior in terms of accuracy and mini-
mizing the gene numbers used for classification.
Sun et al. [22], proposed a novel multimodal deep neural
network (MDNN) algorithm for breast cancer prediction.
This system was applied to publicly available data [23] and
examined 24368 genes across 2509 breast cancer and 548
normal samples. The proposed algorithm achieved higher
accuracy when compared with SVM, Random Forest RF, and
Logistic regression (LR). Minimum Redundancy Maximum
Relevance (mRMR) was also applied as a feature selection
method to reduce the number of features (genes) to enhance
accuracy. The accuracy achieved was 0.82, 0.80, 0.79 and
0.76 for MDNN, SVM, RF, and LR respectively. However,
recall values were low in this study (0.45, 0.36, 0.22 and 0.18
for MDNN, SVM, RF, and LR respectively) and precision
was 0.95 for all algorithms. Although this study achieved
satisfactory accuracy, further enhancements are required due
to the sensitivity of the cancer classification domain. Addi-
tionally, recall values were very low negatively impacting the
proposed model. The study was tested only on a breast cancer
dataset whereas, most studies have used multiple cancer

datasets to prove the validity of the results that have been
obtained with their models.
Muhamed et al. [47], used Long Short-Term Memory
(LSTM) as a classifier technique and Matthews Correlation
Coefficient as a feature selection method for classification of
five subtypes of kidney cancer using microRNA (miRNA)
gene expression data. The dataset for the five subtypes of
kidney cancer was obtained from TCGA dataset. The study
achieved an overall accuracy between 0.88-0.92 identifying
35 miRNAs with strong discriminative ability for renal
cancer subtypes. Limitations of this study were the lack
of replication in a new dataset to test the efficiency of the
suggested model and the models were used on datasets that
were not balanced in terms of equal sample sizes between the
different cancer subtypes.
Anika et al. [26], proposed a CNN-based model that uses
gene expression data (from TCGA) for predicting 20 types
of cancer.The dataset used 1,881 samples across these 20
cancers profiling expression of 60,383 genes. The model
achieved accuracy between 0.52 to 0.78 when applied to
a single cancer from the 20 types of cancer, whereas the
accuracy was between 0.66 to 0.93 when applied across the
pan-cancer dataset.
A novel Deep Flexible Neural Forest (DFNForest) model
was tested as an alternative to deep neural networks to
classify subtypes of three different tumors (Lung, Breast and
Glioblastoma multiforme) using TCGA RNA-Seq data [56].
The study combined two feature reduction methods (fisher
ratio and neighborhood rough set) to reduce the dimension-
ality of the data, avoid overfitting and select informative
genes [57]. The Novel DFNForest model achieved 0.93, 0.88
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and 0.84 accuracy in classifying subtypes of breast, lung
and GBM cancers, respectively. The study highlights the
variability in effectiveness of subtype classification across
different tumor types.
A differential regulatory network embedded deep neural
net- work (DRE-DNN) approach was developed from a
canonical DNN and applied to predict liver cancer (hepa-
tocellular carcinoma) outcomes using three datasets (GEO
GSE10143 and GSE14520 and TCGA) [45]. The proposed
model achieved 0.86, 0.74 and 0.72 average AUC values
for GSE10143, GSE14520 and TCGA datasets respectively
which was improved on conventional DNN AUC values.
The study used different sources of data for validation and
measuring the performance of the proposed method. It used
sufficient dataset for train the DRE-DNN model, and whilst
it was useful as a tool for prognosis it did not accomplished
good results for classification purposes. However, it goes
some way to addressing the overfitting problem of the model.
A novel hybrid filter wrapper feature selection method has
been described [53] for selecting a subset of informative
genes for diagnosis and classification. CNN and ReliefF
were applied for classifying different cancer microarray
datasets (Ovarian, Leukemia and CNS). For the CNS data,
60 samples probed for 7129 genes were used for testing
the feature selection and classifier technique. ReliefF was
applied to select a subset of informative genes to increase
the performance of the CNN and reduce time for training the
model. The ReliefF-CNN method achieved 0.83 (increased
from 0.65) accuracy with CNS data. Based on the studies
that have been done for classifying CNS, there are some
challenges that need to be addressed.Comparatively small
sample cohort sizes were used from CNS patients as this was
freely available. Therefore, multicenter studies are required
that provide larger datasets for analysis.The accuracy scores
obtained are suboptimal and may need improvement to
inform clinical decision making. Techniques are required that
have high efficiency with small datasets such us Learning
vector quantization.
Guillermo et al [70], has proposed CNN and transfer learning
(TL) for lung cancer prediction . CNN has been used to
extract features from high dimensional dataset. The dataset
TCGA for 33 different types of cancer(10535 samples and
top 20K most variably expressed genes) were used but the
study focused on the lung cancer dataset to test the pro-
posed model. The highest accuracy was 68 %,72% and 69%
CNN, densely-connected multi-layer feed-forward neural
network(MLNN) and SVM respectively. The investigation
had quite low accuracy scores and was limited to one type of
cancer. Examination of other cancer types may not ac hive
the same accuracy. Other evaluation measurements from this
study were determine (Table 6).

Additional studies of deep learning approaches that have
been used on cancer gene expression data in the cancer are
(Table 7).The Table includes the datasets, techniques that

TABLE 6: Comparing the performance of CNN against
MLNN and SVM

Methods AUC Sensitivity Specificity Accuracy
CNN 73% 67% 68% 68%
MLNN 70% 61% 73% 72%
SVM 70% 64% 69% 69%

have been developed,accomplished results, and references.

D. LIST OF COMMON DATASETS
Here,common data repositories for analyzing cancer gene
expression data that helps researchers to test their proposed
models (Table 8) are discussed.

III. THE CHALLENGES OF ANALYZING AND USING
GENE EXPRESSION DATA FOR CLINICAL USE
• Although gene expression datasets are large in terms of
volume, the datasets commonly have quite small cohort sizes
but with a very large number of associated variables (e.g.,
gene expression values). This is a recognized issue for DL
as well as (but less demanding) for ML algorithms [69].
In cancer genomics, there are several repositories providing
access to high quality, curated public data allowing training
of DL models. However, pre-processing and harmonization
are required across these and newly developed datasets.
• Large public data resources for gene expression in cancer
is limited to a few key sources (e.g., TCGA and GEO).
Most Deep learning techniques require big data to develop
accurate models that can be applied to new cancer datasets.
Researchers have attempted to mitigate these existing issues
using different techniques such as regularization methods
(ridge and lasso or L1 and L2), dropout, data augmentation,
reduction of NN complexity to enhance the performance of
the model. However, they did not completely solve this issue.
• Early cancer prediction and classification enhancement with
very high accuracy is necessary and could be achieved by
developing mathematical methods with less complexity and
are less computationally time consuming. For some tumor
types (e.g., gallbladder cancer) classification, prediction or
gene biomarker identification studies using ML or DL is
limited.
• More studies on personalized treatments using deep learn-
ing approaches for complex genetic diseases are warranted.
• Identifying individual gene signatures for each cancer type
is important because it may contribute to early diagnosis
of disease. In addition, knowledge of these gene pathways
could have a significant impact in determining the underlying
pathology of these tumors and potentially druggable path-
ways.
• Some gene pathways may be implicated across multiple
cancer types and identifying these may aid risk prediction
for individual patients.
• Cancer subtype classification algorithms need improving
and extending across different tumor type to facilitate optimal
patient treatment.
• A notable limitation of AI in analyzing gene expression
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TABLE 7: Summary of DL Approaches Applied to Gene Expression Data

Dataset Techniques Accuracy Reference

TCGA(Breast cancer). MDNN, SVM, RF, and LR 82%, 80%, 79% and 76%
for MDNN, SVM, RF, and LR respectively [22]

TCGA(37) types of cancer. SVM,DNN(3NN,5NN,9NN) 82%,84%,90% and 83%
SVM,3NN,5NN and 9NN respectively [24]

TCGA(20 types of cancer). CNN-based

Between 52% to 78%
when applied to a single cancer
%66 to 93% when applied
across the pan-cancer dataset

[26]

TCGA(BRCA,COAD and KIPAN) standard Lasso, DeepNeti
and DeepNetii

65%,62%and 65%
standard Lasso,DeepNeti and DeepNetii
respectively for BRCA data. 77%,72%and 75%
standard Lasso,DeepNeti and DeepNetii
respectively for KIPAN data. 57%,58%and 57%
standard Lasso,DeepNeti and DeepNetii
respectively with COAD data.

[28]

TCGA Ensemble of LASSO 68% [29]
GEO(GSE66499). CNN 81% [35]

GEO(10 types of cancer). mSVM-RFE-iRF,varSeIRF, CNN
Between 49% to 93% with varSeIRF
%71 to 95% mSVM-RFE-iR with
Between 41% to 100% with CNN

[37]

TCGA(mRNA,Methylation,
Copy number variation(CNV). SVM,Integrative deep learning(IDL) 80% and 60% with SVM and IDL respectively [40]

GEO(GSE68465 and GSE8894)

Consistency Subset Feature
Selection(CSF), CSFS
Wrapper Subset(WS)
SVM, Gene Expression Programming (GEP)
Deep gene selection (DGS)

84%,83%,83%,85%,
85%,87%,CSF,CSFS,WS,SVM,GEP
DGS respectively
and five gene selected to be
associated with lung cancer

[44]

TCGA,GEO(GSE10143 and GSE14520) DRE-DNN
86%,74% and 72%
average AUC values for GSE10143,
GSE14520 and TCGA respectively

[45]

TCGA(five kidney cancer subtypes) LSTM
Matthews Correlation Coefficient 88% to 92% [47]

GEO(Central Nervous System ) ReliefF,CNN 83% [53]
GEO(copy number alterations(CNA),
Gene expression)
Breast cancer subtypes

Deep CNN(DCNN)
62% with CNA data
62% with Gene expression data
and 96% with both

[54]

TCGA(Lung,Breast,
Glioblastoma multiforme(GBM))
cancer subtypes

DFNForest
Fisher ratio and Neighborhood rough set

93%, 88% and 84%
Breast,Lung and GBM respectively [56]

TCGA(PANCANCER,BRCA,GBM,LUNG)
GEO(Adenocarcinoma,Colon,Brain)

Boosting Cascade
Deep Forest(BCDForest)
KNN, LR, RF, SVM ,gcForest

Highest accuracy was between (41% , 97%)
with TCGA data
between (92% , 96%) with GEO data
BCDForest Applied on
Both(GEO,TCGA)

[58]

TCGA(Breast Cancer subtypes) CNN 88% [59]

TCGA(Lung cancer) CNN,MLNN,SVM
TL,ANOVA

Highest accuracy was 68%, 72% and 69%
CNN+TL,MLNN+TL and
ANOVA+SVM respectively

[70]

TCGA(Lung,Breast,Stomach cancer) Deep learning-based multi-model ensemble 98% [71]

GEO

Incremental feature selection(IFS)
Minimum redundancy
maximum relevance (mRMR)
Recurrent neural network (RNN)

73.9% for normal tissues
and 63.9% for cancers [76]

TABLE 8: List of common dataset websites

Dataset name Description Number of samples Reference

GEO It is a public functional genomics data repository
supporting MIAME-compliant data submissions 3635328 [65]

ArrayExpress It archives the dataset from genomic experiments. 57004 [66]
The Cancer Genome Atlas
(TCGA) It is a dataset for different types of cancer that contained gene expression data 84,031 [67]
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data is known as “The curse of dimensionality” [68] in which
higher dimensional data may reveal random effects that do
not replicate in related patient cohorts.
• Only a few studies have focused on analyzing gene expres-
sion of Liver, Kidney and CNS types of cancer using machine
learning. For instance, CNS classification achievements were
meagre [52][53].

IV. CONCLUSION
In this paper, we provide a detailed review of Machine
Learning (ML) studies using gene expression data across ma-
jor cancer types (e.g. Lung, Breast, CNS, Kidney, Ovarian,
Liver and Gallbladder). These studies use ML for different
purposes including cancer identification, cancer subtype clas-
sification, identification of gene biomarkers and prognosis. In
exploring these studies, the most common tools for measur-
ing gene expression between benign and malignant tissues
have been identified. We highlight datasets commonly em-
ployed when using gene expression data to test ML models
under development. Several challenges remain in analyzing
gene expression data and those challenges can be used as
sign posts for researchers beginning their studies in this field
and may lead to new results that could help in improving in
cancer classification and ultimately personalized treatments.
In conclusion, deep learning approaches are overcoming the
issues of traditional machine learning techniques in analyz-
ing gene expression data for cancer.
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