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Abstract. In engineering systems a Passive Tuned Mass Damper (a secondary mass – spring - 

damper combination) is often used to reduce vibrations of a primary structure (main mass). In an 

Active Tuned Mass Damper (ATMD) arrangement vibrations of the main mass are attenuated when 

the secondary mass (referred to as an active mass) is actively controlled. The ATMD system is 

equipped with a controller, sensors and an actuator. The attenuation is achieved by the application 

of control force determined by a suitable feedback control algorithm. In this paper the ATMD 

method is considered to attenuate resonance vertical vibrations of a lift car assembly – suspension 

rope system during the lift travel, when the frequency of harmonic excitation acting upon the car 

assembly becomes near its natural frequency. A mathematical model with the optimal feedback gain 

calculated using Linear–Quadratic Regulator control law is developed. Then, a case study is 

presented in which computer simulation is carried out. The simulation results are discussed and the 

effectiveness of an active tuned mass damper system is demonstrated for a given set of lift system 

parameters. 

1 INTRODUCTION 

Excessive vibrations in a lift system compromise car ride quality and may lead to wear, fatigue, 

malfunctioning, failure and structural damage of the installation. The underlying causes of vibration 

are varied, including poorly aligned joints and imperfections of guide rails, eccentric pulleys and 

sheaves, systematic resonance in the electronic control system, and gear and motor generated 

vibrations [1]. In high-rise applications lifts are subject to extreme loading conditions. High-rise 

buildings sway at low frequencies and large amplitudes due to adverse wind conditions and the load 

resulting from the building sway excites the lift system. This results in large vibratory motions of 

lift ropes [2,3].  

Vibration suppression (reduction) can be achieved through passive, semi-active and / or active 

control methods. In passive control the aim is to develop a design of the system in which amplitudes 

of vibration are limited through an optimal choice of mass, stiffness and damping characteristics. 

However, often the desired level of vibration reduction cannot be obtained by passive methods and 

in order to achieve high performance of the system active vibration control (AVC) strategies must 

be applied [4]. In active vibration control a set of actuators with external power supply is used to 

provide a force to the system in order to limit vibration amplitudes. In this approach a set of sensors 

and a suitable control algorithm (feedback/ feedforward) are used to determine the control force to 

be applied. For example, in lift systems an active vibration damper can be applied under the lift car, 

fitted between the floor and sling, to suppress its vertical vibrations [5]. 

In resonance conditions (when a structure is acted upon by a force whose frequency coincides with 

its natural frequency) vibration attenuation can be introduced by the application of an auxiliary 

spring – damper - mass combination (a dynamic vibration absorber) attached to the main structure 

(primary mass). The best vibration control effects are then achieved when the mass – spring – 
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damper parameters are optimally tuned. Thus, this implementation the absorber device is referred to 

as a tuned mass damper (TMD).   

In order for the TMD to be effective the harmonic excitation should be well known and its 

frequency should not deviate from its constant value. If the driving frequency drift occurs or there 

are changes in the TMD characteristics, the tuning condition will not be satisfied and the primary 

mass will experience some vibration. Furthermore, the driving frequency might be shifted to one of 

the natural frequencies of the combined primary – secondary mass assembly and the system will be 

driven to resonance and potentially fail. In order to address these issues a semi-active or active 

TMD device can be applied.  

In this paper the concept of active tuned mass damper (ATMD) is discussed in the context of lift 

applications. The principle of operation and an ATMD is explained and then its operation is 

demonstrated through a case study involving a lift car-suspension model subjected to resonance 

vibrations.  

2 ACTIVE TUNED MASS DAMPER 

Fig. 1 shows a schematic diagram of a structure equipped with an ATMD system. Vibrations x1 of 

the main mass m1, acted upon by an excitation force f(t), are attenuated by the application of an 

actively controlled auxiliary mass m2. The ATMD system is equipped with a controller Co, sensors 

s1, s2 (typically accelerometers) and an actuator providing a control force u(t). The active 

attenuation is achieved by the application of control force u determined by a suitable feedback 

control algorithm.  
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Figure 1 Schematic diagram of a structure equipped with an ATMD system  

By introducing the state variable vector  1 2 1 2, , ,
T

x x x xx , where x1 and x2 represent the absolute 

displacements of the main mass and the auxiliary mass, respectively, and the overdot denotes 

differentiation with respect to time t, the equations describing the dynamics of system can be 

written as [6] 

       u ft t u t f t  x Ax B B  (1) 

where the matrices A (the state matrix), Bu (the input matrix) and Bf are defined as follows 
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with the mass-normalized stiffness and damping matrices Κ  and C  defined as 
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where c1, c2 and k1, k2 are the coefficients of damping and stiffness, respectively. In a state feedback 

approach the control force is determined as  u t  Gx , where  1 2 3 4g g g gG  is a gain 

vector. The output equation is then given as    t ty Cx , where the constant output matrix is 

 1 0 0 0C . The closed-loop control system can then be represented by the block diagram 

shown in Fig. 2. 
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Figure 2 Closed-loop control system. 

The most effective and widely used technique to determine the gain vector G  and to obtain an 

asymptotically stable control system is the optimal Linear Quadratic (LQ) regulator [4]. This 

technique involves minimizing the cost functional (the quadratic performance index) 

 2

0

TJ Ru dt



  x Qx  (4) 

in order to determine the control u, where  1 2 3 4diag q q q qQ  is the state cost matrix (with 

time invariant weights), and R is the control force weight. According to the LQ theory the optimum 

control law is then expressed as:  

  1 T
uu t R   B Px Gx  (5) 

where P is the solution of the Algebraic Riccati Equation (ARE, [4]). 

3 LIFT MODEL 

A lift car assembly – suspension rope model is depicted in Fig. 3. The combined mass of the 

assembly, denoted as M, is suspended on ropes of length L and mass per unit length mr each (see 



102 4
th

 Symposium on Lift & Escalator Technologies 

 

 

Fig. 3a). Fig. 3b shows a single-degree-of-freedom (SDOF) vibration model representing the 

fundamental vertical (bounce) mode with the overall motion denoted as xc. In this mode both the car 

and sling move in phase and the effective modal mass is then determined using the kinetic energy 

expression corresponding to the vibration mode. The equivalent (effective) mass is given then as 

3
r r

e
n m L

M M  , where nr is the number of ropes. The flexibility of ropes is represented by a 

spring of effective coefficient of stiffness given as e r
EAk n

L
 , where EA is the product of modulus 

of elasticity and cross-sectional area of the ropes. Damping in this model is represented by a 

dashpot damper of the effective coefficient of viscous friction ce.  
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Figure 3 Lift car – suspension rope model. 

Following what has been discussed above the application of ATMD can be considered to reduce 

vibrations of the car assembly. In schematic diagram shown in Fig. 3c an actively controlled 

auxiliary mass is fitted under the sling to implement the ATMD strategy.  

4 NUMERICAL SIMULATION: CASE STUDY 

The performance of an ATMD is demonstrated through a numerical simulation experiment. In the 

simulation the lift travels at rated speed V = 2 m/s. The car - sling mass is M = 1400 kg and the 

assembly is suspended on nr = 4 steel wire ropes in 1:1 configuration. The ropes are of modulus of 

elasticity E = 0.85 × 10
5
 N/mm

2
, mass per unit length mr = 0.66 kg/m and effective area A = 69 

mm
2
 each. A scenario in which the car is subjected to harmonic excitation f(t) of frequency 3.7 Hz 

is considered in the test. The frequency of excitation becomes tuned to the natural frequency of car 

– suspension system during the lift travel when the length of the suspension ropes L is 30 m (see 

Fig. 4a). This results in resonance at the time instant of about 11.25 s and without application any 

active mitigation measures the car will suffer from excessive vibrations (with peak-to-peak 

displacements of over 3.4 mm, see the resonance region identified in Fig. 4b). 

However, if ATMD is used and tuned according to possible resonance scenarios vibrations can be 

substantially reduced. In order to mitigate the effects of resonance in the above scenario, the lift 

performance is simulated when the car assembly is fitted with an ATMD system with moving mass 

m2 = 71 kg equipped with an actuator capable of providing the maximum force of about 50 N, 

(a) (b) (c) 
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dictated by LQR algorithm. The damping ratio of the car – suspension system is assumed to be 

5%e   and the optimal value of damping ratio of the ATMD system is determined as 

 2
3

8 1
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
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
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e

m
M

  . The coefficient k2 is determined as 2
2

1

e

e

km
k

M



 [7]. The 

performance of the system is illustrated in Fig. 5. 

 

 
Figure 4 Lift resonance.  

   
Figure 5 (a) Displacements of the car (red line), active mass (black line) (b) control force. 

Fig. 5(a) shows that with the actuator providing a control force of t magnitude about 40 kN and the 

active mass peak-to-peak displacements of about 7 mm, the car vibrations can be eliminated. The 

results of numerical experiments will be illustrated with co-simulation and visualization using a 

model developed in a multibody system dynamics software environment and Matlab/ Simulink.  

5 CONCLUSION 

In a lift installation an adverse situation arises when one of the time-varying natural frequencies of 

the car – suspension rope system becomes near the frequency of a periodic excitation existing in the 
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system. This results in a passage through resonance. In such a case the lift car will not vibrate 

throughout its travel, but will pass through a resonant vibration at some particular stage in the 

travel. Passive vibration isolation techniques are often applied to mitigate the effects of resonance. 

However, active vibration control methods can be used to control adverse dynamic behaviour of a 

lift. For example, resonance vibrations of a lift car can be attenuated by the application of a suitable 

ATMD system, as demonstrated by the results of numerical experiment carried out for a given set 

of lift system parameters. 
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