Detection of Sleep Apnea using Machine Learning Algorithms based on ECG Signals: A Systematic Review

[bookmark: _GoBack]Abstract. Sleep Apnea (SA) is a common sleep disorder that remains unknown in many patients. Past studies have highlighted ECG analysis as a method of diagnosing SA. Because the changes caused by SA on the ECG are so subtle, the need for new methods in diagnosing the disease is required more than ever. Machine Learning (ML) techniques are recognized as one of the most successful methods of computer aided diagnosis. ML uses new methods to diagnose diseases using past clinical results. The purpose of this study is to evaluate studies using ML algorithms and based on ECG characteristics to evaluate people with SA. In this study, English articles indexed in PubMed, Scopus, Web of Science, and IEEE databases, with no lower time limit and until October 2020, were systematically reviewed. A total of 391 articles were collected from various databases, of which 48 articles were entered in the systematic review. Studies have shown that the most common features used in studies were frequency, time and statistics features. Support-Vector Machine (SVM) and Neural Networks‌ (NN) performed best in full record data detection. The highest accuracy, sensitivity and specificity reported between the selected studies was 100%, which was obtained by an SVM. In another case, the classification was based on ECG elements, and accordingly, the highest classification accuracy was observed in the residual neural network algorithm. The accuracy, sensitivity and specificity of this algorithm were reported to be 99%. In general, it can be stated that ML techniques based on ECG characteristics have a high capability in diagnosing SA. This can increase the diagnosis of patients with SA, and can potentially prevent complications of the disease at later stages.
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Introduction
Sleep Apnea (SA) refers to the periodic cessation or reduction of airflow during sleep [1]. SA occurs due to complete or partial obstruction of the upper airways (i.e. Obstructive Sleep Apnea (OSA)), reduction or cessation of brainstem respiratory motor output (i.e. Central Apnea) or both [2]. Complete cessation of respiration (i.e. apnea) or decreased airflow (i.e. hypopnea) are two respiratory events observed in SA. These events reduce oxygen levels, hypercapnia, increase sympathetic nerve activity, and fluctuations in blood pressure and heart rate. These physiological changes also affect patients’ sleep cycle. It causes brain arousal, disruption of various stages of sleep, and sleep fragmentation [3-5]. It is estimated that about 10% of middle-aged people are affected by SA [1]. Despite the high prevalence of this disorder, most patients are unaware of the effect of SA‌ on their respiratory pattern. And because of this, patients do not seek professional treatment [4]. Many studies have examined morbidity of SA. The results of these studies show that failure to diagnose and treat SA in a timely manner can cause daily drowsiness [6], cognitive dysfunction [7], cardiovascular diseases such as hypertension [8], coronary artery disease [9], heart failure [10], stroke [11] and metabolic diseases such as diabetes [12]. Therefore, the early detection of SA is very important.
Polysomnography (PSG) is known as the standard SA diagnostic test. Accordingly, PSG examines sleep and respiration parameters using electroencephalogram, electrocardiogram (ECG), electroechogram, electromyogram, pulse oximetry, airflow measurement and respiratory effort [13, 14]. PSG has high diagnostic accuracy [15], however, factors such as high cost, patient inconvenience, long data recording and difficult interpretation of data are some of the disadvantages of this method. Moreover, the long waiting list for evaluating patients with PSG device increases the possibility of not diagnosing and treating SA in time [16]. Therefore, it is necessary to provide an alternative method to enhance patients’ convenience, and reduce costs to diagnose SA at an early stage [17].
Different strategies have been used to diagnose SA without the use of PSG [18, 19]. Among these, the use of ECG signals has received much attention [20]. ECG is not stressful for the patients compared to PSG, and uses less technical equipment. It has also been observed that the ECG with a signal strength of 1-2 mV has the best signal-to-noise ratio among all physiologic signals [21]. Also using ECG, the cyclic variation of heart rate caused by SA can be seen [22]. Moreover, Parameters extracted from the ECG signal shape allow the extraction of the effort-related curve (ECG-induced respiration or EDR) [23]. On the other hand, it has been observed that the autonomic nervous system, respiration and sleep affect the ECG. Among the parameters that affect sleep are heart rate variability (HRV), LF band power distribution (low frequency) and VF (high frequency) heart rate [21]. The LF component has been shown to affect the ECG under the influence of sympathetic nerve activity changes and the HF component under the influence of respiration and vagus nerve [24]. With these interpretations, since the changes caused by SA in the ECG are very varied and subtle, the diagnosis of SA based on ECG data is a very complex task. One of the methods that has been considered to solve this problem is the use of computer algorithms [25].
Machine Learning (ML) techniques have been considered as one of the successful methods of computer-aided diagnosis [26]. According to the pattern in Figure 1, ML is an evolving branch of the computational science designed to simulate human intelligence by learning from the environment [27]. ML is used when it is not possible to interpret a particular pattern or extract relevant information [28]. When using ML algorithms, SA automatic detection is based on a large number of pre-detected samples. In other words, ML uses data from previous examinations in which the physician has diagnosed the presence or absence of a disease [26].
Various ML techniques have been used in the diagnosis of SA. In a study by Bozkurt et al. [29], the authors used electrocardiography of 10 patients with OSA against 10 healthy controls. This study first extracted HRV from ECG, and then extracted the QRS component at different frequencies using a digital filter and then selected the feature using Principal Component Analysis (PCA). Classification was performed by kNN algorithm. The results of this study showed that when using 3 features, the classification accuracy was 82.11% and when using 13 features, this value was 85.12%. In another study [30], data collected from 86 patients were used, of which 69 were used in training and 17 in test. The Residual Neural Network (RNN) algorithm was reported to offer the highest accuracy of 99%. Moreover, the study highlighted that deep learning techniques are very useful for automatic detection of SA. In another study [31], HRV data were used to automatically detect SA‌. Then a feature selection algorithm was used to select the best features. In this study, classification was performed using support vector machine (SVM), artificial neural network (ANN) and a combination of these two algorithms. The results of this study indicated that the proposed methods have a high capability in detecting SA from the healthy state. As mentioned, different ML algorithms have been used in detecting SA. Therefore, this systematic review was designed to evaluate the ability of ML algorithms to detect SA. Furthermore, as part of our work, the methods used within selected studies were also compared with each other.
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Figure 1: An overview of the implementation of machine learning techniques
Methodology
Search strategy and inclusion criteria
The protocol and reporting used in this systematic review were performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines [32]. The select relevant studies, the four databases of PubMed, Web of Science (, Scopus and IEEE were searched. All searches were performed on 24th September 2020, and were subsequently updated on 24th October 2020. Searches were performed using keywords related to sleep apnea, machine learning and electrocardiogram, and according to the search strategy for each of the databases; Table 1 outlines the keywords and search strategies used for each of database. Studies selected for this systematic review included the ones that distinguish SA from healthy states, as in a binary form. A number of diagnostic studies for apnea, hypopnea, and healthy states that followed a multiclass approach were excluded from this systematic review. Within all the included studies, various ML algorithms were used, and all classifications were based on electrocardiogram data. Exclusion criteria of this systematic review were: lack of access to the full text of articles, conference proceedings and articles written in a language other than English. Furthermore, research works that used a method other than electrocardiogram were excluded from this work.
Table 1: Search strategies, and keywords
	Database
	Search strategy
	Date
	number

	PubMed
	(Artificial Intelligence[mesh] OR "machine learning"[tiab] OR "neural networks"[tiab] OR "Bayesian models"[tiab] OR "deep learning"[tiab] OR "dimensionality reduction"[tiab] OR "decision trees"[tiab] OR "ensemble learning"[tiab] OR "instance based models"[tiab] OR "support vector machines"[tiab]) AND ( Sleep Apnea[tiab] OR "Sleep-Disordered Breathing"[tiab] OR Sleep Apnea, Central[tiab] OR Sleep Apnea Syndrome[MESH] OR Sleep Apnea, Obstructive[mesh] OR "Sleep Apnea Hypopnea Syndrome"[tiab] OR OSA[TIAB] OR OSAHS[TIAB] OR "Sleep Apnea Syndromes"[tiab]) AND ( Electrocardiography[mesh] OR ECG[tiab] OR EKG[tiab] OR Electrocardiogram[TIAB] OR "electrocardiogram derived respiration"[TIAB])
	24/10/2020
	59

	Scopus 
	TITLE-ABS-KEY("Artificial Intelligence" OR "machine learning" OR "neural networks" OR "Bayesian models" OR "deep learning" OR "dimensionality reduction" OR "decision trees" OR "ensemble learning" OR "instance based models" OR "support vector machines") AND TITLE-ABS-KEY("Sleep Apnea" OR "Sleep-Disordered Breathing" OR "Sleep Apnea, Central" OR "Sleep Apnea Syndrome" OR "Obstructive Sleep Apnea" OR "Sleep Apnea Hypopnea Syndrome" OR OSA OR OSAHS OR "Sleep Apnea Syndromes") AND TITLE-ABS-KEY(Electrocardiography OR ECG OR EKG OR Electrocardiogram OR "electrocardiogram derived respiration") 
	24/10/2020
	210

	WOS
	TS=("Artificial Intelligence" OR "machine learning" OR "neural networks" OR "Bayesian models" OR "deep learning" OR "dimensionality reduction" OR "decision trees" OR "ensemble learning" OR "instance based models" OR "support vector machines") AND TS=("Sleep Apnea" OR "Sleep-Disordered Breathing" OR "Sleep Apnea, Central" OR "Sleep Apnea Syndrome" OR "Obstructive Sleep Apnea" OR "Sleep Apnea Hypopnea Syndrome" OR OSA OR OSAHS OR "Sleep Apnea Syndromes") AND TS=(Electrocardiography OR ECG OR EKG OR Electrocardiogram OR "electrocardiogram derived respiration") 
	24/10/2020
	103

	IEEE Explore
	("Artificial Intelligence" OR "machine learning" OR "neural networks" OR "Bayesian models" OR "deep learning" OR "dimensionality reduction" OR "decision trees" OR "ensemble learning" OR "instance based models" OR "support vector machines") AND ("Sleep Apnea" OR "Sleep-Disordered Breathing" OR "Sleep Apnea, Central" OR "Sleep Apnea Syndrome" OR "Obstructive Sleep Apnea" OR "Sleep Apnea Hypopnea Syndrome" OR OSA OR OSAHS OR "Sleep Apnea Syndromes") AND (Electrocardiography OR ECG OR EKG OR Electrocardiogram OR "electrocardiogram derived respiration")
	24/10/2020
	29



Study selection and data extraction
After removing duplicate articles using the EndNote bibliography management software, one of the authors (HGH) reviewed the title and abstract of collected articles. Accordingly, the studies that did not meet the inclusion criteria were omitted. Two authors (HGH, MM) then reviewed the full text of the remaining articles based on the inclusion and exclusion criteria. These study assessment activities were performed independently, and using blind copies. After completing the reviews at this stage, both authors reviewed the comments made regarding the approval or rejection of the articles. In case of a disagreement, another author (NS), as a senior reviewer, made the inclusion or exclusion judgement. In cases where full text of an article was not available, a request for the full text was sent to the corresponding author via email or ResearchGate. Finally, as full text was not available or could not be secured, the study had to be excluded. The following descriptive information were extracted from the remaining studies: a) year of study, b) country, c) dataset, d) pre-processing, e) feature extraction/selection, f) ML algorithm, and g) parameters reported in the study that represent performance of the algorithms used. The collected studies and their data were reviewed systematically, yet conducting meta-analyses was not deemed appropriate in this work.

Results
Study selection
After searching the databases, a total of 391 studies were collected. Subsequently, duplicates were omitted and only a copy was retained. Then, the remaining 318 articles were evaluated based on the inclusion and exclusion criteria, leaving 68 studies. These 68 articles were reviewed for eligibility, and finally 48 articles were included in the systematic review (Figure 2). By applying different methods, feature extraction was performed from ECG signals. These features were then used to construct training and test sets and to classify data. In these studies, SA was detected from healthy controls based on ‘per record’, ‘per segment’, or both. The studies performed on the studies showed that in 23 studies the diagnosis was made based on per record, and in 33 studies the diagnosis was made based on per segment. In the record mode, a complete ECG strip was analyzed to distinguish SA from healthy states. In another case (per segment), the ECG strip was first divided into smaller one-minute pieces and named by experts as apnea and healthy parts. Classification was then performed based on the characteristics extracted from these components.
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Figure 2: PRISMA flow diagram for study selection
Dataset
The datasets used in most studies overlapped [18, 20, 31, 33-62]. These studies used samples from the Physionet Apnea-ECG Database [63]. Nonetheless, among the remaining studies, one study used data from YILDIRIM BEYAZIT Instructional [64] and another study used samples from Sleep laboratories at Chest Diseases Clinics in Sakarya, Turkey [29]. Referrals to Sultan Qaboos University Hospital in Oman, Samsung Medical Center in South Korea, and University of Heidelberg Hospital in Jordan were also examined in other studies. Two other research works used data from the Sleep Heart Health Study cohort [67, 68]. In 6 studies, data from more than one dataset were examined. In 4 studies of data from both Physionet Apnea-ECG Database and St. Vincent’s University Hospital/University College Dublin were used [18, 69-71]. One other research work examined data from Physionet and University Hospital Leuven [72], and one study examined 3 different datasets [73]. The remaining two studies [74, 75] had not provided clear information in relation to the use of specific databases.
Pre-processing
In general, the feature extraction process was very different in the studies. In almost all studies, pre-processing was performed with the aim of breaking down the ECG waves into smaller sections and clearing them of junk data. R peaks are known as one of the common features in the diagnosis of apnea, which was detected by different algorithms. In two studies, the diagnosis was made based on the opinion of specialists. One of the most common methods in studies for ECG signal analysis was the Pan Tompkins algorithm [35, 47, 54, 55, 59, 65, 67, 72, 74]. This algorithm uses the amplitude, slope, and width of an integrated window to distinguish the peaks of R from the QRS complex. Pan Tompkins is known as the QRS detection algorithm in real-time approaches [76]. Other studies [46, 48, 49, 73] have used real-time approaches algorithms. Yet the specific type of the algorithms used were not reported.
Due to the oscillating nature of the ECG signal, wavelet-based algorithms and analyzes were used in several studies. TQWT is known as one of the wavelet analyzes that was adopted in four research works [42, 44, 51, 69]. This method breaks down the ECG signal into a number of sub-bands signal to extract features. Daubechies (Db) wavelet is another method used in some works. In this method, the ECG signal is decomposed into several segments. Studies have shown that studies have used 4Db [36, 53], 6Db [33, 62] and 14Db [46, 73] to analyze or extract features. In another study [71], the continuous wavelet transfer method was applied to ECG signals to detect R Wave and R peaks. In two other studies [56, 57], the optimal biorthogonal antisymmetric wavelet filter bank was used to differentiate SA from healthy. These studies first decomposed the ECG signal into 5 levels using wavelet decomposition‌ and then extracted the feature.
Studies have used other algorithms to segment ECG signals. In two studies [52, 64], due to the non-linear nature and energy of ECG waves, the Teager Energy Operator (TEO) method was used. Fourier decomposition was another method used in ECG analysis [41]. A study [43] adopted Empirical Mode Decomposition (EMD) to analyze signals. EMD is known as a data-adaptive signal processing method that performs highly localized time-frequency estimations. Another study [70] using the Hilbert algorithm identified the QRS complex‌. Variational Mode Decomposition [75], dynamic autoregressive (AR) representation model [60] and Iterated Cumulative Sums of Squares (ICSS) [38] were other methods used to detect the RR interval. In another study, the BIOSIG-toolbox was used to detect RRI and EDR [58]. In two studies, the diagnosis of QRS complex [54] and EDR [55] was performed based on Hermite algorithm.
The filters have been applied to ECG waves with the aim of clearing the ECG from noise, ground drift and baseline drift, and detecting HRV and EDR. Moving average filter was applied with the aim of limiting and adjusting the lower and upper limits of waves and eliminating false and unexplained points [20, 46, 65, 73]. This filter was also used to detect EDR [58], RR distance [38] and mean RR value‌ [48, 49]. One study [59] used a bandwidth filter to detect EDR. Low pass filter band was adopted in a number of other studies. This particular filter was used to remove noise from the ECG strip in a study [33]. In a study [74] low pass and high pass filter and in another study [35] low pass, high pass and band pass filters were used to eliminate noise. Chebyshev bandpass filter type I and type II [29, 66, 70], Butterworth pass filter [37], FIR band pass [18, 30], ‌ powerline filter‌ [72] and Savitzky–Golay filter [52] have been used to clean signals from junk data. In one article, the type of filter used to delete junk data was not known [68].

Table 2: Feature extraction process, by article
	First author, 
Year,
	Country
	Dataset,
	Pre-processing:
	Feature extraction/selection(FE/FS)
	Features
	classifier

	Akşahin, M. 2015,[64]
	Turkey
	YILDIRIM BEYAZIT Instructional,
20 cases
	Using TEO for detection HRV series.
	FE: Calculate CPSD by applying FT to cross correlation function 
FS: K-fold cross validation algorithm to determine training, test data
	PSD Feature (LF, VLF, HF)
	Per- record: FFNN

	Al-Angari, H. M. 2012, [67]
	America
	Sleep Heart Health Study (SHHS),
100 cases
	Using PTA for detection RRI
	FE:  Calculate PSD by applying 256-point FFT.
	PSD feature
	Per record: SVM (linear and polynomial)
Per segment: SVM (linear and polynomial) 

	Ali, S. Q.
2020,
[65]
	Oman
	Sultan Qaboos University Hospital (SQUH), 
80 cases
	Using PTA for detection RRI,
Lower limit, upper limit and medium average filters were used to clear junk data,
Resampling at 1 Hz and substituting of missed peaks
	FE: Signal breakdown into 9 and 512 sub-bands with wavelet packet decomposition.
	PSD feature,
Statistical feature
	Per record: FFNN, PNN

	Atri, R.
2015
[33]
	Iran
	PhysioNet, 
 35 cases
	The ECG signal is parsed with a Daubechies6 (db6) wavelet to seven levels, to detect QRS complex,
Low pass decomposition filter was used to clear junk data,
Detection of HRV and EDR using R peaks
	FE: Calculate PSD from HRV and EDR using FFT.
	PSD feature,
Bispectral feature
	Per segment: LS-SVM

	Babaeizadeh, S.
2010,
[34]
	America
	PhysioNet, 
 35 cases
	detect N-N intervals,
Calculate the distance of each N-N to obtain instantaneous HR
	FE: Using the Lomb algorithm to obtain the PSD.

	PSD feature
	Per segment: QC
Per record: QC

	Baek, J. W.
2014,
[74]
	South Korea
	_
	Using PTA for detection QRS complex,
Low pass and high pass filter used to clear junk data,


	FE: Calculate PSD by applying STFT

	LF/HF, 
Average accelerometric value 
	Per record: machine learning

	Bali, J.
2018,
[35]
	India
	PhysioNet, 
 35 cases
	Low pass, high pass and Band pass filter were used to clear junk data,
Using PTA for detection QRS complex
	FE: Calculate PSD by applying FFT,
FS: Use PCA to select a feature
	PSD from frequency feature,
Time domain feature
	Per record: ANN-LM, ANN-SCG

	Bozkurt, F.
2020,
[29]
	Turkey
	Sleep laboratories at Chest Diseases Clinics of Sakarya Hendek Public Hospital,
10 cases
	IIR-Chebyshev Type II bandpass filter and medium average filter were used to clear junk data and detect different ECG frequency ranges

	FE: From all 9 features identified in the previous steps, 25 features were extracted. A total of 225 features were extracted
FS: Use PCA and Fisher score algorithm
	Statistical feature
	Per segment: DT, kNN, SVM and Ensemble Classifier

	Bsoul, M.
2011,
[36]
	America
	Physionet Apnea-ECG Database.
35 cases
	Detection of QRS, P and T waves complexes using wavelet algorithm,
The t-wave method was used to detect EDR,
using a DB4 wavelet with eight levels for RR (m) and nine levels for EDR
	FE: Calculate PSD by applying 256-point FFT.
	Time domain and frequency
	Per segment: SVM (RBF, polynomial, linear and MLP)

	Chang, H. Y.
2020,
[37]
	Taiwan
	MIT PhysioNet Apnea-ECG Database.
 35 cases

	fourth-order Butterworth pass band filter to reduce ground drift and high frequency interference,
Z score normalization
	FE: Block diagram 1D deep CNN model
	225 features
	Per record: CNN
Per segment: CNN

	Chen, L.
2015
[38]
	China
	PhysioNet Apnea-ECG Database.
 35 cases

	Using a medium filter, the RR distance was found in a local window,
To detect potential apnea, change points, RR intervals were segmented by iterated cumulative sums of squares algorithm
	FE: Calculate PSD by applying FFT
	LF/HF
	Per record: SVM (RBF, polynomial)

	Kaguara, A.
2014,
[77]
	America
	PhysioNet Apnea-ECG database,
 35 cases
	Find all peaks within ECG recordings using slope inversion
	FE: 11 properties were extracted from RR interval (mean and median RR interval, Standard, RMSSD, deviation of the set of RR intervals, NN50 and pNN50(for first and second RRI, SDSD, Inter-quartile range, Mean absolute deviation)
	Time domain features
	Per record: DNN

	Dey, D.
2017,
[39]
	India
	PhysioNet Apnea-ECG database,
35 cases

	Marking in cases of apnea or normal by medical professionals
	FE: Optimization of CNN parameters (ReLU, convolution pooling with stride 4 sample, convolution & ReLU, convolution pooling with stride 2 sample, fully connected layer)
	_
	Per segment: CNN

	Eiseman, N. A.
2012,
[68]
	America
	SHHS cohort,
4647 cases
	Filter to remove junk data
resampling of a cubic spline at 2 Hz
	FE: Calculate PSD by applying FFT
	PSD from RRI and EDR
	Per record: SVM, Naïve Bayes

	Erdenebayar, U.
2019
[30]
	South Korea
	Samsung Medical Center (Seoul, Korea),
86 cases
	Use FIR pass band to eliminate noise and baseline drift
Apply non-overlapping ECG signals at 10-second intervals to match event-based classification
	FE: To generate 2D input signals using Fourier transform, ECG signals were converted to 2D spectrometer images
	_
	Per segment: DNN, 1D CNN, 2D CNN, RNN, LSTM, GRU

	Farouk, F. N. B. M.
2019,
[40]
	Malaysia
	Physionet apnoea-ECG dataset,
35 cases
	Marking in cases of apnea or normal by medical professionals
	FE: Optimization of CNN parameters (ReLU, convolution pooling with stride 4 sample, convolution & ReLU, convolution pooling with stride 2 sample, fully connected layer)
	_
	Per segment: CNN

	Fatimah, B.
2020,
[41]
	India
	MIT PhysioNet Apnea-ECG Database.
35 cases
	Using FDM, the ECG signal was decomposed into M FIBF
	FE: Using statistical analysis of the extracted feature set.
FS: A subset of statistically relevant features was selected based on their discriminatory characteristics using the Kruskal-Wallis test.

	Entropy and MAD features
	Per segment: Bagging, KNN, SVM, LogitBoost

	Hassan, A. R.1
2016,
[42]
	Bangladesh
	Physionet’s apnea-ecg Database,
35 cases
	ECG signal segments are decomposed into sub-bands using TQWT
	FE: modeling of the sub-bands using symmetric NIG pdf is performed
	NIG parameters
	Per segment: RBM, SVM, Naïve Bays, ANN, RF, KNN, Bagging, LDA AdaBoost

	Hassan, A. R. 2,
2016,
[43]
	Bangladesh
	Physionetʼs apnea-ecg Databasess,
35 cases
	Each section was analyzed using EMD
	FE: compute statistical feature from IMFs
FS: Statistical hypothesis testing is then performed for feature selection
	Statistical feature 
	Per segment: ANN, naive baye, RBM, KNN, AdaBoost, Bagging, RF, DA, ELM

	Hassan, A. R. 3,
2016,
[44]
	Bangladesh
	Physionetʼs apnea-ecg Databasess,
35 cases
	_
	FE: Calculate PSD by applying DFT
	Statistical and spectral(PSD) feature
	Per segment: Bagging algorithm

	Hassan, A. R. 4,
2017,
[69]

	Bangladesh
	Physionetʼs apnea-ecg Databasess,
35 cases and UCDDB, 25 case
	Use of wavelet analysis (TQWT) due to the oscillating nature of ECG signals
	FE: Different statistical moments were used as features in the proposed framework
	sub-band, variance (σ2), skewness (ζ), and kurtosis (η)
	Per segment: LS-SVM, ELM, PRAZEN-PNN, SVM, KNN, Bagging, RF, Adaboost, Rusboost

	Jafari, A.
2013,
[45]
	Iran
	Physionet’s Apnea-ECG database: 35case
	-
	FE: 3-dimensional frequency features,
6 dimensional RPS based features
	NVLF, NLF, NHF, DFA, CD, 3 feature from LLEs and SE
	Per segment: SVM(linear)

	Khandoker, A. H.
2009,
[46]
	Australia
	physionet apnoea-ECG database,
 35 cases
	QRS detection times and amplitudes were determined using a real-time algorithm,
A moving average method was used to remove suspicious RRs
	FE: HRV and EDR signals were decomposed into 14 levels using daubechies Wvs with 10 vanishing moments.
FS: Using the hill-climbing feature selection algorithm
	variance of the coefficients (HRVWv, EDRWv) 
	Per-record: SVM (polynomial, linear), LD, KNN, PNN

	Khandoker, A. H.2.
2009,
[73]
	Australia
	SRU: 83 cases,
Physionet Apnea-ECG Database: 10 cases,
SVUH/UCB: 11 cases
(110 case)
	QRS detection times and amplitudes were determined using a real-time algorithm,
A moving average method was used to remove suspicious RRs
	FE: HRV and EDR signals were decomposed into 14 levels using daubechies Wvs with 10 vanishing moments.
FS: Using the hill-climbing feature selection algorithm
	variance of the coefficients (HRVWv, EDRWv) 
	Per-record: SVM (polynomial, linear)

	Li, K.
2018,
[47]
	China
	physionet apnoea-ECG database,
35 case
	Use the PTA to find the peaks of R,
intermediate filter was used to remove Physiologically unexplained points
	FE: Features were extracted based on DNN,
Use the HMM process and finally DF to evaluate records
	_
	Per segment: DNN, ANN, ANN-HMM, SVM, SVM-HMM, DF
Per record: DNN, ANN, ANN-HMM, SVM, SVM-HMM, DF

	Lweesy, K.
2011,
[66]
	Jordan
	University of Heidelberg hospital.
25 cases
	band pass filter, Chebyshev filter type I and Chechyshev IIR notch filter were used to eliminate noise 
	FE: Segmentation was performed to extract accurately the Pwaves and the time interval Tpr from an ECG signal
	3 P wave features 
(Tp, Pd, and Tpr)
	Per segment: ANN

	Mendez, M. O.
2009.
[48]

	Italy
	physionet apnea-ECG database,
 35cases
	QRS complex area and RR intervals were derived with real-time algorithm,
The mean RR value was calculated using a moving average filter of ten multiplications
	FE: TVAM method was used to extract the feature
	time and frequency domain
	Per segment: ANN, kNN

	Mendez, M. O.
2007.
[49]
	Italy
	physionet apnoea-ECG database,
35  cases
	QRS point was performed using an automated algorithm.
EDR signal was detected from the primary ECG.
The base level was calculated with an average filter
	FE: bivariate time-varying autoregressive model were used to extract PSD for RRI and DRS series
FS: it can be evaluated by statistical analysis of features or by WRAP methods.
	PSD feature
	Per segment: kNN

	Nakayama, C.
2019
[50]
	Japan
	physionet apnoea-ECG database,
35 cases

	RRI detection from ECG series,
Extract HRV feature from RRI data
	FE: time-domain HRV features,
frequency-domain features
	meanNN, SDNN, RMSSD, Total Power (TP), NN50, and pNN50, LF, HF, LF/HF. LFnu, and HFnu
	Per record: RF

	Nguyen, H. D.
2014,
[31]
	America
	Physionet Apnea-ECG database,
35 cases
	_
	FE: The Takens time delay method, which was embedded in one phase, was used to obtain the u (t) data,
Extraction of ten RQA variables from RPs,
FS: Conditional reciprocal information was used to integrate and select the most attractive features
	 (DET)), maximum diagonal line length (L), maximum vertical line length (V), (ENTR), (LAM), (MDL) (TT), (T1) and (T2)
	Per segment: ANN, SVM and DF

	Nishad, A.
2018.
[51]
	India
	Physionet apnea-ECG database,
35 cases
	Use TQWT-based bank filter to decompose ECG into sub bands
	FE: Feature extraction was calculated using CCE. is the difference between Correntropy and Medium Correntropy
	Entropy feature
	Per segment: RF

	Pinho, A.
2019,
[52]
	Portugal
	Physionet apnea-ECG database,
35 cases
	Using TEO for detection HRV series
Savitzky-Golay filter was used to eliminate noise
	FE: The 256-point FFT power spectral density was computed for HRV and EDR,
FS: Measuring the quality of features using the Receiver Operating Cover curve,
Discriminant Relevance method was used to rank and select the features
	Extract 50 features from HRV, Extract 34 features based on EDR
	Per segment: ANN, SVM , LDA, PLS, REG, WienerHopf, aNB, PLA

	Rachim, V. P.
2014.
[53]
	South Korea
	Physionet apnea-ECG database,
35 cases
	_
	FE: Dividing ECG signals into some levels at specific frequencies using wavelet analysis(db4),
FS: Feature extraction was performed using PCA
	Entropy, IQR, Variance of detail coefficient, Standard deviation, Mean Absolute Deviation
	Per segment: SVM
Per record: SVM

	Rekha, B. B.
2018.
[70]
	India
	PhysioNet database,
35 cases
UCD database,
25case.
	Detect QRS using the Hilbert transform,
Chebyshev Type I band pass filter with a frequency band of 6 to 18 Hz. This filter was applied both forward and reverse
	FE: Twenty-two features were extracted in the domains of time, frequency range and statistical features,
FS: PCA was performed on the extracted features to obtain the three principal components,
CFS was applied to features to reduce dimensional complexity
	domains of time, frequency range and statistical features
	Per segment: SVM, RF

	Sharma, H.
2016,
[54]
	India
	PhysioNet database,
35 cases

	Using PTA for detection RRI,
the Hermite decomposition of QRS complexes was performed using 15 lower order Hermite basis functions
	FE: Mean R-R (mRR) distances, standard deviation(std) R-R(sRR) distances are used in the feature vector
FS: Hill climbing algorithm 
	_
	Per segment: KNN, MLPNN, LS-SVM and SVM
Per record: KNN, MLPNN, LS-SVM and SVM

	Sharma, H.
2020,
[55]
	India
	PhysioNet database,
35 cases

	Using PTA for detection RRI,
The EDR signal was detected by Hermite analysis,
Two medium filters were used to clear noise
	FE: HRV and EDR signals were analyzed based on VMD,
FS: PCA method was used to reduce the features,
Feature selection was performed via PCs using a 10-fold validation scheme
	spectral entropies, interquartile range, and energy from HRV and EDR, Standard deviation of EDR and RR interval,
Standard deviation of Hermite coefficients
	Per segment: LR, LDA, BDT, ADT, KNN, ANN, LS-SVM, SVM
Per record: LR, LDA, BDT, ADT, KNN, ANN, LS-SVM, SVM

	Sharma, M.
2018,
[56]
	India, Singapore and Malaysia 
	PhysioNet database,
35 cases 
	Apnea sections of ECG signals were detected using BAWFB system
	FE: Extraction of fuzzy entropy from WSBs
Log-energy (LE) extraction for SBs
	_
	Per segment: Weighted KNN, CT, LD, LR, LS-SVM(kernel)

	Sharma, M.
2019,
[57]
	India, Singapore and Malaysia
	PhysioNet database,
35 cases
	Apnea sections of ECG signals were detected using OWFB designed
	FE: Extraction of fuzzy entropy from WSBs
Log-energy (LE) extraction for SBs
	-
	Per segment: KNN, CT, LD, LR, Gaussian SVM

	Smruthy, A.
2017,
[75]
	India
	_
	Decomposition of ECG signals using VMD algorithm into different variational mode functions
	FE: Use FFT to extract attributes from each VMF
	 mean energy 
The standard deviation of the peak-to-peak distance 
	Per record: SVM

	Song, C.
2016,
[58]
	China and America
	PhysioNet database,
35 cases

	Detection of peaks of QRS complexes was performed using BIOSIG toolbox. 
EDR detection was performed by applying two medium filters
medium filter was used to eliminate abnormal infrastructure
	FE: 24 features from RR intervals and 8 features from EDR signals, were extracted
FS: Apply Hidden Markov Model on features,
using a step-by-step design with integrated validation (LOOCV)
	Time and frequency domain
	Per segment: SVM
Per record: SVM

	Travieso, C. M.
2014
[71]
	Spain and Colombia
	PhysioNet database,
35 cases.
UCDDB, 25 cases

	Use a continuous wavelet transform based algorithm to detect RRI

	FE: Use Cepstrum power parameters as a feature.
Apply Hidden Markov Model on features
	_
	Per segment: SVM-HMM

	Tripathy, R. K.
2018,
[59]
	India
	PhysioNet database,
35 cases
	Using PTA for detection RRI,
bandwidth filters were used to detection of EDR
	FE: extraction of features from the intrinsic band functions (IBFs) of both EDR and HRV signals.
Extraction of frequency-based properties using Fourier spectrum
FS: PCA based algorithm was used for the extraction of EDR signal, 

	Frequency feature, 
Fuzzy entropy
	Per record: SVM

	Varon, C.
2015.
[72]
	Belgium
	PhysioNet database,
35 cases,
UZ Leuven
10 cases
	Power line interference at 50 Hz was filtered using a gap filter and the average signals were removed,
Sampling of all ECG signals was performed using cubic spline interpolation at 250 Hz,
Using PTA for detection RRI

	FE: EDR detection was performed by applying two medium filters removing the QRS complex, R-waves and Pi waves. Then the found baseline was used for EDR detection
FS: Use of PCA on EDR signals
	Frequency feature
	Per segment: SVM, LDA, LS-SVM


	Wang, L.
2019.
[60]
	China
	PhysioNet database,
35 cases
	RR distance detection,
Remove RRIs that are 20% of the average distance
	FE: Display RR distances using dynamic autoregressive representation model (DARRM)
Optimization of CNN parameters
	_
	Per segment: CNN, residual network  

	Wang, T.
2019.
[18]
	China
	PhysioNet database,
35 cases
	Hamilton algorithm was used to detect R peaks,
FIR pass band filter and median filter were used to clear junk data
	FE: Calculate PSD by applying FFT
	Time domain and frequency feature
	Per segment: LR, LDA, SVM, MLP, TW-MLP
Per record: LR, LDA, SVM, MLP, TW-MLP

	Wang, T.
2019.
[20]

	China
	PhysioNet database,
35 cases.
UCD database,
25 cases
	Hamilton algorithm was used to find the peaks of R.
R peaks were used to calculate RR distances and amplitude extraction
Medium filter was used to remove 
Cubic interpolation was used due to unequal time interval
	FE: A simple CNN run, LeNet-5, was used to build the diagnostic model 
Calculate PSD by applying FFT
	Frequency and amplitude feature 
	Per segment: SVM, LR, KNN, MLP, LET-NET5 CNN
Per record: SVM, LR, KNN, MLP, LET-NET5 CNN

	Wang, X. W.
2020.
[61]
	China
	PhysioNet database,
35 cases
	_
	The model designed in this study consists of three convolution layers (the first two convolution layers are followed by batch normalization and maximization layers. The third convolution layer is followed by three fully connected layers)
	_
	Per record: LET-NET5 CNN

	Yildiz, A.
2011.
[62]
	Turkey
	PhysioNet database,
35 case
	multi-resolution decomposition of ECG signal was performed with Daubechies 6 (db6) wavelet, 
Detection of EDR and HRV using QRS complex
	FE: PSD characteristics of HRV and EDR signals were extracted using FFT-based method
FS: The hill-climbing method was used to select the feature
	Frequency feature
	Per record: LS-SVM


ECG: Electrocardiogram, TEO: Teager Energy Operator, PTA: Pan–Tompkins Algorithm, FT: Fourier Transform, FFT: Fast Fourier Transform, STFT: Short-Time Fourier Transform, FDM: Fourier Decomposition Method, DFT: Discrete Fourier Transform, PCA: Principal Component Analysis, CCE: Centered Correntropy,  HRV: Heart Rate Variability, RRI: RR Interval, RQI: Recurrence Quantification Analysis, BAWFB: Biorthogonal Antisymmetric Wavelet Filter Bank, OWFB: Orthogonal Wavelet Filter Banks, EDR: ECG-derived respiratory, CPSD: Cross Power Spectrum Density, EMD: Empirical Mode Decomposition, VMD: Variational Mode Decomposition, DARRM: Dynamic Autoregressive Representation Model , VMF: Variational Mode Functions, NIG: normal inverse Gaussian, TQWT: tunable-Q factor wavelet transform,  PSD: Power Spectral Density, LF: Low Frequency, VLF: Very Low Frequency, HF: High Frequency, FFNN: Feed Forward Neural Network, SVM: Support Vector Machine, LS-SVM: least-square support vector machine, QC: quadratic classifier, ANN: Artificial Neural Network, ANN-SCG: Artificial Neural Network- Scaled Conjugate Gradient, ANN-LM: Artificial Neural Network- Levenberg-Marquardt algorithm, CNN:  Convolutional neural network,  DNN: Deep Neural Network, RNN: Recurrent Neural Networks DT: Decision tree, kNN:  k-nearest neighbors algorithm, GRU: Gated Recurrent Unit, RBF: Restricted Boltzmann Machine, LDA: linear Discriminant Analysis, Bagging: Bootstrap Aggregating, Adaboost: Adaptive boosting, HMM: Hidden Markov Model, PLS: Partial Least Squares Regression, REG: Regression Analysis, aNBC: Augmented Naive Bayesian Classier, PLA: Perceptron Learning Algorithm, LMS: Least Mean Square, WienerHopf:  Wiener–Hopf equation, BDT: Bagged Decision Tree, CT: Complex Tree, LR: Logistic Regression, 
Feature Extraction/Selection
IN the selected studies, after ECG analysis, features were extracted from different sections such as RRI, HRV, EDR, R wave and P wave. Fourier transform has been one of the most common methods for feature extraction. This method was used in most studies to extract Power Spectral Density (PSD) of signals, and the frequency feature. PSD shows energy changes as a function of frequency. In a number of studies [18, 35, 36, 49, 50, 52, 58, 70], in addition to the frequency feature, Fourier transform was used to extract the time domain feature. Another study [65] extracted the frequency feature using wavelet packet decomposition. The Lomb algorithm was also used to obtain the PSD of signals [34]. In one article, the Hilbert algorithm was used to extract the time and frequency features [70].
In 6 studies [18, 35, 36, 48, 50, 58], frequency and time domain features were extracted from ECG signals simultaneously. Eight other studies [34, 38, 49, 62, 64, 67, 68, 72] adopted the frequency feature only for classification of SA and healthy individuals. One research work [33] also used only the time domain feature for classification. In another work [33], PSD was extracted along with bispectral feature. Another article [74] that used a portable accelerometer with 3 electrodes used the frequency along with the data accelerometer as a feature. Another work [45] adopted the frequency feature along with the RPS based feature for classification. One piece of research [18] also used the frequency feature along with the amplitude feature. Frequency and statistical feature were also extracted in one article [44]. Moreover, 7 studies [29, 31, 43, 46, 69, 70, 73] considered statistical features, 9 studies [41, 51, 53, 55-57, 59, 66, 75] the characteristics related to wave energy and entropy, and One study [66] used the properties of P and T wave analyses. Four articles [31, 59, 71, 72] adopted various features for classification, yet the specific features used in these studies were not reported. Also, a number of other studies [20, 30, 37, 39, 40, 47, 60, 61] prepared data for classification by applying different layers within the Neural Network (NN).
Per record classification
In 23 studies, data were classified as per record. The data used in the studies were between 20 and 4647 ECG strips. Classification was performed based on 15 different ML algorithms. The most commonly used algorithm was SVM, which was used in RBF, linear and polynomial form; The accuracy of this algorithm in detecting SA from healthy individuals was reported to be 65.4% to 100%. The sensitivity and specificity of this algorithm were also reported (43.4%-100%) and (36.4%-100%) respectively. Moreover, kNN algorithm was used in 7 studies; the lowest accuracy of this algorithm was reported 77.3%, and the highest accuracy was 97.14%. In all of these studies, the classification sensitivity was equal to or greater than 80%. The specificity of the kNN algorithm also showed that, with the exception of one work [20], in other studies at least half of the healthy individuals were correctly classified, thus the specificity was 50%. LR was another common algorithm for classifying data per record. The accuracy of this method in diagnosing SA was reported to be in the range of 74.3% to 97.14%. The classification sensitivity of this algorithm was reported to be 100% in all studies. However, the specificity of the LR algorithm was very scattered and was reported in the range of 18.2% to 90.91%.
Other methods used in the studies include neural network algorithms. These algorithms include FFNN two studies [64, 65], PNN in three studies [46, 54, 65], CNN 2 studies [20, 37], DNN [77] and ANN [35] each in one study. The results showed that neural network algorithms perform classification with very high accuracy. Classification accuracy was reported in these studies (80%-99%). The sensitivity and specificity of these algorithms were investigated in 7 studies. Sensitivity greater than 85% and specificity greater than or equal to 80% were reported in all, but one study [46]. Among the other techniques used Naive Bayes, LD, LS-SVM, LDA, BDT, ADT, MLP and QC could be mentioned mentioned. The minimum classification accuracy was obtained in the study of Eiseman et al. [68] using Naive Bayes for which the value was reported to be 63.02%. Study of Song et al. [58] also reported SA detection accuracy based on ANN algorithm as 68.6%. The results of other studies reported a high accuracy of 75% in the classification based on per record data (Table 3).
Per segment classification
Classification was performed per segment in 33 articles. These studies used from 1500 to 43522 segments for their classification. In 9 studies [20, 31, 42-44, 51, 53, 69, 70], the number of segments examined was not reported. However, in all of these studies, it was stated that one-minute ECG components were labeled by experts, indicating a classification based on one-minute components in these studies. Furthermore, SVM was used as the most common algorithm. In total, among the selected studies 31 different ML algorithms were used to classify SA and healthy individuals.
SVM algorithm has been used in linear, polynomial, RBF, and nonlinear forms. The accuracy of this algorithm was reported in the range of 59.22% to 93.91%. The sensitivity of the algorithm was also reported in the range of 32.7% to 95.2%. Specificity studies of SVM algorithm showed that the minimum specificity was 47.32%, and the maximum was 95.42%. In 3 articles, Hidden Markov Model (HMM) was applied to SVM algorithm, leading to the accuracy of the algorithm in these 3 studies to be between 80% and 100%. Another LS-SVM algorithm was used in a number of research works. The lowest accuracy reported was in the study of Hassan et al. [69], which was 31.88%. Other studies reported an accuracy of more than 70% for the LS-SVM algorithm. The highest accuracy was reported in the study of Atri et al. [33] with 95.57%. The sensitivity and specificity of this algorithm in this study were 98.64% and 92.51% respectively.
Neural Network (NN) algorithms have also been used in several related research works. CNN, DNN, RNN, ANN and PNN were the specific algorithms used. Eight studies [31, 42, 43, 47, 48, 52, 55, 66] adopted the ANN algorithm. The highest accuracy was reported at 92.3% and the lowest at 68.52%. CNN was another algorithm that was examined in 6 studies [20, 30, 37, 39, 40, 60]. The accuracy reported in these studies was 78.2% to 98.91%. Sensitivity and specificity were also calculated to be more than 80% in most studies. In only one article [20] the reported classification sensitivity was 26.6%. This study had the lowest accuracy among all CNN algorithms. Specificity reported 86.9%. DNN and RNN‌ algorithms were applied to the data in the study of Erdenebayar et al. [30]. The results of this study showed that the accuracy of the DNN algorithm in detecting and classifying SA and healthies was ‌ 93.1%. Moreover, in this study, the accuracy of the RNN algorithm was 99%. The sensitivity and specificity of DNN and RNN algorithms were above 90%. PNN was also investigated in a study with an accuracy of 60.95%. This work [69] did not report sensitivity and specificity for the PNN algorithm.
RF, LR, LDA and kNN were 4 other algorithms used to classify data. kNN was applied to selected datasets in 12 studies [20, 29, 41-43, 48, 54-58, 69]. Examination of the results of these studies showed that the accuracy of the kNN algorithm is in the range of 66.1% to 90.57%. In these research works, with increasing accuracy, sensitivity and specificity also increased. The accuracy of RF, LR and LD‌ algorithms were reported in the ranges of 79.26%-92.78%, 66%-85.6% and 62.93%-83.72% respectively, which shows the better performance of RF algorithm in data classification. Information on other algorithms used are provided in Table 3.
Table 3: Classification result based on per record or per segment data
		Per segment	

	First author, Year,
	NO, of segments
	classification
	ACC%
	Other parameters

	Al-Angari, H. M. 2012,
	39575 segments
	SVM (linear) C= 10
	68.8
	Sen:  51.6, spec: 81.4

	
	
	SVM (polynomial) C= 10
	69.5
	Sen:  54.8, spec: 80.1

	Atri, R. 2015
	16479 segments
	LS-SVM
	95.57
	Sen: 98.64, Spec: 92.51

	Babaeizadeh, S. 2010,
	17010 training. 17268 test sesments 
	QC
	84.7
	Sen: 76.7, Spec: 89.6, PPV: 81.8, NPV:86.3

	Bozkurt, F. 2020,
	2460 segments (1242 A, 1218 N),
1230 training segments,
1230 test segments
	DT (113 feature)
	79.11
	Sen: 76, sp:82

	
	
	kNN (90 feature)
	82.2
	Sen: 78, sp:75

	
	
	SVM (113 feature)
	84.15
	Sen: 76, sp:82

	
	
	Ensamble (113 feature)
	85.12
	Sen: 76, sp:82

	Bsoul, M. 2011,
	14700 one-minute segments
	SVM (linear) C=32 
	91.16
	Sen:89.12, Spec: 92.35, F: 90.70

	
	
	SVM (poly, d=2) C=0.5, γ= 0.5
	89.85
	Sen:88.25, Spec: 88.25, F: 90.82

	
	
	SVM (RBF) C=2, γ= 0.5
	90.86
	Sen: 89.02, Spec: 91.94, F: 90.46

	
	
	SVM (MLP) C=0.5, γ= 0.5
	80.45
	Sen:74.66, Spec: 83.96, F: 79.04

	Chang, H. Y. 2020,
	34230 segments, 17234 test segments
	CNN
	87.9
	Sen:81.1, Spec:92

	Dey, D. 2017,
	10787 segments, (4987A, 5800 N)
	CNN
	98.1
	Sen:97.82, Spec: 99.2, PPV: 99.06, NPV: 98.14

	Erdenebayar, U.  2019

	43522 segments,
37338 training segments,
6184 test segments (1623A, 4561N)
	DNN
	93.1
	Sen: 93 Spec:94

	
	
	1DCNN
	98.5
	Sen: 99 Spec:99

	
	
	2DCNN
	95.9
	Sen: 96 Spec:96

	
	
	RNN
	85.4
	Sen: 97 Spec:87

	
	
	RNN(LSTM)
	98
	Sen: 98 Spec:98

	
	
	RNN(GRU)
	99
	Sen: 99 Spec:99

	Farouk, F. N. B. M. 2019,
	17402 segments, 10787 test segments
	CNN
	98.91
	Sen:97.82, Spec:99.20 PPV:99.06, NPV:98.14

	Fatimah, B.2020,
	17010 segments (6514A, 10496N)
	Bagging
	91.44
	Sen:91.61 Spec:  92.52 Pre: 88.20

	
	
	KNN
	90.57
	Sen: 89.13 Spec: 91.56 Pre: 86.90

	
	
	SVM
	92.59
	Sen: 89.70 Spec: 94.67 Pre: 91.27

	
	
	LogitBoost
	85.84
	Sen: 79.17 Spec: 89.97 Pre: 83.04

	Hassan, A. R.1 2016,
	_
	RBM
	38.79
	AdaBoost:
Sen: 81.99, Spec: 90.72

	
	
	SVM
	59.22
	

	
	
	Naïve Bays 
	62.15
	

	
	
	ANN
	81.37
	

	
	
	RF
	82.70
	

	
	
	KNN
	83.32
	

	
	
	Bagging
	83.33
	

	
	
	LDA
	83.72
	

	
	
	AdaBoost
	87.33
	

	Hassan, A. R. 2, 2016,
	-
	ANN 
	68.52 
	ELM:
Sen: 85.20, Spec: 82.79


	
	
	NBC
	39.47
	

	
	
	RBM
	61.20
	

	
	
	KNN
	69.72
	

	
	
	AdaBoost
	80.07
	

	
	
	Bagging
	79.82
	

	
	
	RF
	79.26
	

	
	
	DA
	64.60
	

	
	
	ELM
	83.77
	

	Hassan, A. R. 3, 2016,
	-
	Bagging
	85.97
	Sen:84.14, Spec: 86.83

	Hassan, A. R. 4, 2017,
	-
	LS-SVM
	31.88
	Rusboost
Sen: 87.58, Spec: 91.49

	
	
	ELM
	53.02
	

	
	
	PRAZEN-PNN
	60.95
	

	
	
	SVM
	72.4
	

	
	
	KNN
	79.77
	

	
	
	Bagging
	84.29
	

	
	
	RF
	84.49
	

	
	
	Adaboost
	86.94
	

	
	
	Rusboost
	88.88
	

	Jafari, A. 2013,
	16711 segments, 6711 test segments
	SVM
	94.80
	Sen:94.16, Spec:95.42

	Li, K. 2018,
	17122 test segments (6517A, 10605N)
	ANN
	78.3
	Sen:66.6 Spec:85.4

	
	
	ANN-HMM
	83
	Sen:91.5 Spec:77.7

	
	
	SVM
	78.6
	Sen:66.5 Spec:86.1

	
	
	SVM-HMM
	84.7
	Sen:68.8 Spec:94.5

	
	
	Decision fusion
	84.7
	Sen:88.9 Spec:82.1

	Lweesy, K. 2011,
	1500 segments, 224 test segments
	ANN
	92.3
	Sen:90.1, Spec:94.4,

	Mendez, M. O. 2009.
	24432 segments,
12077 training segments, 12355 test segments
	KNN Feature=10
	88
	Sen:86, Spec: 87

	
	
	ANN Feature=10
	88
	Sen: 89, Spec:86

	Nguyen, H. D. 2014,
	-
	ANN
	83.23
	Sen:85.57, Spec:79.09

	
	
	SVM
	84.14
	Sen:93.72, Spec:65.88

	
	
	Decision fusion
	85.26
	Sen:86.37, Spec:83.47

	Nishad, A. 2018.
	-
	RF
	92.78
	Sen: 90.95, Spec:93.91

	Pinho, A. 2019,
	5671 test segments
	ANN Features: 20
	82.12
	Sen:88.41, Spec:72.29

	
	
	SVM Features: 70
	75.18
	Sen:86.79, Spec:56.45

	
	
	LDA Features: 20
	62.93
	Sen:83.98, Spec:28.40

	
	
	PLS Features: 20
	64.49
	Sen:57.78, Spec:66.05

	
	
	REG Features: 20
	65.13
	Sen:62.23, Spec:65.65

	
	
	WienerHopf Features: 20
	64.05
	Sen:58.14, Spec:65.07

	
	
	aNBC Features: 44
	62.12
	Sen:0, Spec:62.12

	
	
	PLA Features: 6
	61.36
	Sen:36.84, Spec:61.70

	
	
	LMS Features: 84
	61.72
	Sen:28.70, Spec:62.35

	Rachim, V. P. 2014
	-
	SVM (RBF), C=10, Ϭ=0.5, PCA=5
	93.91
	Sen: 95.20, Spec: 92.65

	Rekha, B. B. 2018.
	_
	SVM (without feature reduction)
	91
	Sen: 90.38, Spec: 91.54

	
	
	RF (with feature reduction)
	94.32
	Sen:92.98, spec: 94.77

	Sharma, H. 2016,
	32727 segments,
16845 training segments, 15873 test segments
	KNN
	73.3
	Sen:72.5, Spec:73.8 AUC:73.8

	
	
	MLPNN
	81.2
	Sen:77.5, Spec:83.4 AUC:80.7

	
	
	LS-SVM
	82.6
	Sen:76.7, Spec:88.2 AUC:82

	
	
	SVM
	83.8
	Sen:79.5, Spec:88.4 AUC:83.4

	Sharma, H. 2020,

	34313 set,
17045 training, 17268 test segments
	LR
	85.6
	Sen:82.1, SP:90.2 AUC: 0.93

	
	
	LDA
	82.5
	Sen: 73, Spec: 88.5 AUC: 0.89

	
	
	BDT
	84.7
	SEN:79.5, Spec: 87.5 AUC: 0.92

	
	
	ADT 
	81.6
	Sen: 74, Spec: 86.3 AUC: 0.88

	
	
	KNN
	87.5
	Sen: 84.9, Spec: 88.2 AUC: 0.93

	
	
	ANN
	86.1
	Sen: 84, Spec: 86.9, AUC: 0.82

	
	
	LS-SVM
	86.2
	Sen: 81.3, Spec: 87.7 AUC: 0.91

	
	
	SVM
	85.3
	Sen: 82.5, Spec: 88 AUC: 0.91

	Sharma, M. 2018,
	16993 test segments (6513A, 10480N)
	Weighted KNN 
	89.1
	Sen: 91.8, Spec: 84.9, PPV: 90.36, NPV:87

	
	
	CT
	83.5
	Sen: 86.3, Spec:78.9, PPV: 87.1, NPV:77.8

	
	
	LD
	66.1
	Sen:70.9, Spec: 56.7, PPV: 76.6, NPV: 49.8

	
	
	LR
	66.5
	Sen: 70, Spec: 58.1 PPV:80, NPV: 44.8

	
	
	LS-SVM(kernel) 
	90.11
	Sen: 90.9, Spec:88.9 PPV: 93, NPV: 85.8

	Sharma, M. 2019,
	16993 test segments (6513A, 10480N)
	KNN 
	90.3
	Sen: 91.5, Spec: 88.5, PPV: 92.8, NPV:86.6

	
	
	CT
	82.9
	Sen: 91, Spec:76.8, PPV: 85.8, NPV:78.1

	
	
	LD
	68.9
	Sen:86.9, Spec: 40, PPV:70, NPV: 65.4

	
	
	LR
	71.1
	Sen: 86, Spec: 47.2 PPV:72.4, NPV: 67.7

	
	
	Gaussian SVM
	90.87
	Sen: 92.43, Spec:88.33 PPV: 92.8, NPV: 88.3

	Song, C. 2016,
	17268 test segments (6550A, 10718N)
	SVM
	81.2
	Sen: 75.7, Spec: 84.7

	
	
	SVM-HMM 
	86.2
	Sen: 82.6, Spec: 88.4 

	
	
	LR
	81.2
	Sen: 74.4, Spec: 85.4

	
	
	LR+HMM
	86.2
	Sen: 80, Spec: 89.9

	
	
	LDA
	80.5
	Sen: 83.1, Spec:78.9

	
	
	LDA+HMM
	85.3
	Sen: 77.5, Spec: 90.1

	
	
	KNN
	80.7
	Sen:75.3, Spec: 83.9

	
	
	KNN+HMM
	84.5
	Sen: 74, Spec: 90.8

	Travieso, C. M. 2014
	11266 test segments (4375A, 6891N)
	SVM-HMM
	99.2
	Sen: 98.8, Spec: 99.5, PPV: 99.2, NPV:99.3

	Varon, C. 2015.
	32 477 segments,
6000 training segments, 26477 test segments
	LDA
	71.43
	Sen: 71.74, Spec:71.2 

	
	
	SVM(LIN)
	71.16
	Sen: 74.63, Spec: 68.51

	
	
	SVM(POLY)
	72.6
	Sen: 78.36, Spec: 68.22

	
	
	SVM(RBF)
	73.86
	Sen: 78.2, Spec: 70.55

	
	
	LS-SVM(LIN)
	71.78
	Sen: 71.48, Spec: 76.26

	
	
	LS-SVM(POLY)
	73.43
	Sen: 73.4, Spec:73.43

	
	
	LS-SVM(RBF)
	84.74
	Sen: 84.71, Spec: 84.69

	Varon, C.2 2015.
	5205 segments,
3000 training segments, 2205 test segments
	LDA 
	79.86
	Sen: 81.22, Spec: 79.71

	
	
	SVM(LIN)
	75.83
	Sen: 86.46, Spec: 74.6

	
	
	SVM(POLY)
	77.78
	Sen: 88.21, Spec: 76.57

	
	
	SVM(RBF)
	81.9
	Sen: 82.97, Spec: 81.78

	
	
	LS-SVM(LIN)
	80.05
	Sen: 80.35, Spec: 80.01

	
	
	LS-SVM(POLY)
	81.68
	Sen: 81.66, Spec: 81.7

	
	
	LS-SVM(RBF)
	83.95
	Sen: 78.81, Spec: 84.56

	Wang, L. 2019.
	16,988 test segments,
6496A, 10492A
	CNN
	90.97
	Sen: 83.43, Spec: 85.5

	
	
	residual network
	94.39
	Sen: 93.04, Spec: 94.95

	Wang, T. 2019.
	34,313 segments, 
17045 training segments, 17268 test segments.
	LR
	81.5
	Sen: 72, Spec: 87.4

	
	
	LDA
	81.8
	Sen: 70.9, Spec: 88.4 

	
	
	SVM
	80.6
	Sen: 72.1, Spec: 85.6

	
	
	MLP
	81.4
	Sen: 74.3, Spec: 85.7

	
	
	TW-MLP
	87.3
	Sen: 85.1, Spec: 88.7

	Wang, T.2 2019.
	
	SVM
	81.4
	Sen: 76.9, Spec: 84.3

	
	
	LR
	80.8
	Sen: 75.7, Spec: 84

	
	
	KNN
	77.5
	Sen: 68.1, Spec: 83.4

	
	
	MLP
	81.1
	Sen: 71.3, Spec: 87.2

	
	
	LET-NET5 CNN
	87.6
	Sen: 83.1, Spec: 90.3

	Wang, T.3 2019.
	
	SVM
	70.6
	Sen: 32.7, Spec: 83.3

	
	
	LR
	69.6
	Sen: 34.7, Spec: 81.3

	
	
	KNN
	66.1
	Sen: 38.1, Spec: 75.4

	
	
	MLP
	67.2
	Sen: 38.5, Spec: 76.8

	
	
	 CNN
	71.2
	Sen: 26.6, Spec: 86.9

	Per record


	First author, Year,
	No, of records
	ML algorithm
	ACC%
	Other parameters

	Akşahin, M. 2015,
	20test, (10 A, 10 N)
	FFNN
	99
	_

	Al -Angari, H. M. 2012,
	100 records
50 apnea, 50 normal
	SVM(linear) C=5
	79
	Sen: 79.6, spec: 78.4

	
	
	SVM(polynomial) C=5, 10
	78
	Sen: 67.3, spec: 88.2

	Ali, S. Q. 2020,
	-
	FFNN
	87.5
	Sen:86.67, spec: 90

	
	
	PNN
	85
	Sen:86.67, spec: 80

	Babaeizadeh, S. 2010,
	70 records, 30 test segments (20 A, 10 N)
	QC
	100
	Sen: 100, Spec: 100, PPV: 100, NPV: 100

	Baek, J. W. 2014,
	20 records (10A, 10N),
	ML
	85
	Sen: 90, spec: 80

	Bali, J. 2018,
	70 records,
35 training segments, 35 test segments (23A, 12N)
	ANN-LM
	91
	Sen:91, spec: 92, PR:95

	
	
	ANN-SCG
	95
	Sen:94, spec: 91, PR: 96

	Chang, H. Y. 2020,
	35 training segments, 35 test segments
	CNN
	97.1
	Sen:95.7, spec:100

	Chen, L. 2015
	90 subjecta,
59 training, 31 test segments (23A, 8N)
	SVM (RBF kernel), C=3
	97.41
	Sen:98.99, Spec: 92.87

	
	
	SVM(polynomial) C=5, Order=1
	97.03
	Sen:99.16, Spec: 90.91

	Kaguara, A. 2014,
	70 records, (35 training segments, 35 test segments)
	DNN (fold 4)
	91
	_

	Eiseman, N. A. 2012,
	4647 records,
2090 A, 2557 N
	SVM
	65.4
	Sen: 43.4, Spec: 83.5 PPV: 68.3, NPV: 64.4

	
	
	Naive Bayes
	63.02
	Sen: 39, Spec: 82.7 PPV: 64.8 NPV: 62.4

	Khandoker, A. H. 2009,
	60 records,
30 training segments, 30 test segments (20A, 10N)
	SVM(Poly) Feature:5,6,7or8, C=0.1,1,1
	100
	Sen: 100, Spec: 100

	
	
	SVM(Linear) Feature: 6 or7, C=10
	100
	Sen: 100, Spec: 100

	
	
	LD
	90
	Sen: 100, Spec: 93

	
	
	KNN (K =1)
	80
	Sen: 90, Spec: 83

	
	
	PNN (Ϭ =0.5)
	80
	Sen: 50, Spec:70

	Khandoker, A. H.2. 2009,
	125 records,
83 training segments, 42 test segments
	SVM(Polynomial) D= 3, C =0.8
	100
	Sen: 100, Spec: 100 

	
	
	SVM(Linear) C =10
	98.8
	Sen: 100, Spec: 94.44

	
	
	SVM(RBF)Ϭ =0.5, C= 10
	96.39
	Sen: 98.46, Spec: 88.89

	Mendez, M. O. 2007.
	25 training segments, 25 test segments
	KNN
	85
	Sen: 83.90, Spec:88.50

	Nakayama, C. 2019
	61 test segments (25A, 36N)
	RF
	85
	Sen: 76, Spec: 92

	Rachim, V. P. 2014
	35 test segments (22A,13N)
	SVM
	94.3
	Sen: 100, Spec: 81.3

	Sharma, H. 2016,
	70 records,
35 training segments, 35 test segments
	KNN
	77.3
	Sen:100, Spec:63.6, AUC:77.3

	
	
	MLPNN
	93.4
	Sen:95.8, Spec:90.9, AUC:93.4

	
	
	LS-SVM(RBF)
	97.8
	Sen:95.8, Spec:100 AUC:97.8

	
	
	SVM(RBF)
	97.8
	Sen:95.8, Spec:100 AUC:97.8

	Sharma, H. 2020,
	70 records,
35 training segments, 35 test segments
	LR
	97.14
	Sen:100, Spec:90.91AUC:97.8

	
	
	LDA
	100
	Sen:100, Spec:100 AUC:0.95

	
	
	BDT
	97.14
	Sen:100, Spec:90.91 AUC:1

	
	
	ADT
	94.28
	Sen:91.67, Spec:100 AUC: 0.95

	
	
	KNN
	97.14
	Sen:100, Spec: 90.91 AUC: 0.95

	
	
	ANN
	97.14
	Sen:100, Spec: 90.91 AUC: 0.95

	
	
	LS-SVM
	94.28
	Sen:100, Spec: 90.91 AUC: 0.95

	
	
	SVM
	97.14
	Sen:95.8, Spec: 90.91 AUC: 0.93

	Smruthy,A. 2017
	40 test segments
	SVM
	97.5
	Sen:95.45, spec: 100, PPV: 100, NPV: 94.7

	
	25 test segments
	SVM
	95
	Sen: 100, Spec: 80, PPV: 94.12, NPV:1

	Song, C. 2016,
	35 test segments
	SVM 
	80
	Sen: 100, Spec: 36.4

	
	
	SVM-HMM
	97.1
	Sen: 95.8, Spec:100

	
	
	LR 
	74.3
	Sen: 100, Spec: 18.2

	
	
	LR+HMM 
	97.1
	Sen:95.8, Spec: 100

	
	
	LDA
	68.6
	Sen:100, Spec: 0

	
	
	LDA+HMM
	97.1
	Sen: 95.8, spec: 100

	
	
	KNN
	91.4
	Sen: 100, Spec: 72.7

	
	
	KNN+HMM
	91.4
	Sen: 87.5, Spec: 100

	Tripathy, R. K. 2018,
	31 test segments
	KELM (RBF) K=5
	78.71
	Sen:83.45, Spec:73.27

	
	
	KELM (LINEAR) K=10
	75
	Sen:91.26, Spec:58.19

	
	
	KELM (POLY) K=10
	83.46
	Sen: 85.6, Spec: 81.30

	
	
	KELM (CWK) K=6
	78.71
	Sen: 79.06, Spec: 78.33

	Wang, T. 2019.
	35 test segments





	LR 
	91.4
	Sen: 100, Spec: 75

	
	
	LDA
	88.6
	Sen: 100, Spec: 66.7

	
	
	SVM
	82.9
	Sen: 100, Spec: 50

	
	
	MLP
	82.9
	Sen: 100, Spec: 50

	
	
	TW-MLP
	97.1
	Sen: 100, Spec: 91.7

	Wang, T.2 2019.
	35 test segments
	SVM
	88.6
	Sen: 100, Spec: 66.7

	
	
	LR
	88.6
	Sen: 100, Spec: 66.7

	
	
	KNN
	82.9
	Sen: 100, Spec: 50

	
	
	MLP
	85.7
	Sen: 95.7, Spec: 66.7

	
	
	LET-NET5 CNN
	97.1
	Sen: 100, Spec: 91.7

	Wang, T.3 2019.
	25 test segments
	SVM
	92.3
	Sen: 100, Spec: 50

	
	
	LR
	84.6
	Sen: 100, Spec: 50

	
	
	KNN
	84.6
	Sen: 90.9, Spec: 0

	
	
	MLP
	92.3
	Sen: 100, Spec: 50

	
	
	LET-NET5 CNN
	92.3
	Sen: 90.9, Spec: 100

	Yildiz, A. 2011.
	35 test segments
	LS-SVM(RBF)
	83.3
	Sen: 95, Spec: 60

	
	
	LS-SVM(POLY)
	76.7
	Sen: 85, Spec:60

	
	
	LS-SVM(LIN)
	86.7
	Sen: 90, Spec: 80


FFNN: Feed Forward Neural Network, SVM: Support Vector Machine, LS-SVM: least-square support vector machine, QC: quadratic classifier, ANN: Artificial Neural Network, ANN-SCG: Artificial Neural Network- Scaled Conjugate Gradient, ANN-LM: Artificial Neural Network- Levenberg-Marquardt algorithm, CNN:  Convolutional neural network,  DNN: Deep Neural Network, RNN: Recurrent Neural Networks DT: Decision tree, kNN:  k-nearest neighbors algorithm, GRU: Gated Recurrent Unit, RBF: Restricted Boltzmann Machine, LDA: linear Discriminant Analysis, Bagging: Bootstrap Aggregating, Adaboost: Adaptive boosting, HMM: Hidden Markov Model, PLS: Partial Least Squares Regression, REG: Regression Analysis, aNBC: Augmented Naive Bayesian Classier, PLA: Perceptron Learning Algorithm, LMS: Least Mean Square, WienerHopf:  Wiener–Hopf equation, BDT: Bagged Decision Tree, CT: Complex Tree, LR: Logistic Regression
Discussion
This systematic review was conducted to investigate the applications, and current performance of ML techniques in the diagnosis of SA. ML is used when storing, efficiently managing and extracting information from data are challenging tasks [78]. ML includes a set of artificial intelligence algorithms that enable computers to think and learn on their own. These algorithms are used to achieve more accuracy [79, 80]. It has always been observed that providing accurate diagnosis based on experimental data is ambiguous and difficult [81]. Therefore, in recent years, the use of ML algorithms in the healthcare sector has been increasing rapidly [82].
Finding evidence on the high accuracy of ML algorithms in providing medical diagnoses is an important objective, since providing an accurate diagnosis is recognized as one of the major challenges facing global health systems [83]. Nonetheless, the high accuracy of ML techniques generally has led to their successful in many medical disciplines [84]. One of the features of ML techniques is that it allows the analysis of larger and more complex data. On the other hand, ML models extract features that are not normally extractable by human [85].
In this study, different ML algorithms that are used in the diagnosis of SA were reviewed. Our study shows that SA diagnosis using both per record and per segment methods have high accuracy, sensitivity and specificity. Within the reviewed articles, various features of the ECG were also extracted and used in the classification. From the medical perspective, hormonal and neurological changes are observed automatically and frequently during sleep. One of the changes that is commonly seen during sleep is a decrease in Heart Rate (HR) [34]. When apnea stops breathing, the oxygen level in the blood decreases rapidly, which causes a rapid increase in HR. Therefore, Heart Rate Variability (HRV) is one of the cases used in the diagnosis of apnea [86]. EDR is another feature that was commonly monitored. This feature is important because the electrodes on the surface of the body move due to the filling and emptying of the lungs. This movement shifts the axis relative to the heart, and a continuous ECG-derived respiration is extracted for each normal QRS complex [87]. As a result, many classification studies were performed based on EDR and HRV characteristics.
The number and selection of appropriate attributes is crucial for the success of classification [88]. PSD signals was one of the most common features used in most research works standalone, or in combination with other features. Time domain and statistical feature were other features that were used for classification. In general, our review showed that all the features used in the selected studies were applicable to the diagnosis of SA. However, it was not possible to determine the best feature to diagnose SA. This is due to the high accuracy of classification in various studies. Moreover, the combined use of the features in some research works prevents their detailed study.
The highest classification accuracy (100%) was observed when performing the analysis based on a complete ECG record. The study by Babaeizadeh et al. [34] adopted the QC algorithm to classify data. This study, which reported 100% accuracy, sensitivity and specificity, extracted PSD features from HR. However, none of the studies used the QC algorithm, therefore, it is not possible to accurately outline the performance of this algorithm. Other studies such as Khandoker [46, 73] and Sharma et al. [55] also reported 100% accuracy, sensitivity and specificity. In the first two studies which used a wavelet-based analysis, HRV and EDR waves were decomposed into 10 different layers. Then, using hill climbing algorithm, the best features were selected and classified accordingly. In both studies, the SVM algorithm performed a more accurate classification compared to the other algorithms. The better performance of SVM than other algorithms has also been reported in some other articles [54, 58]. Although the SVM algorithm was highly accurate in the study of Sharma et al. [55], the highest classification accuracy was observed using the LDA algorithm. In this study, classification was performed based on energy, entropy and standard deviation characteristics in HRV and EDR. Overall, existing research works have shown that classifying data per record is a very good way to diagnose and separate SA patients from healthy individuals. Classification using full ECG tape seems to provide more accurate diagnoses of SA than ECG components. However, this does not mean that segmentation per segment performs poorly.
Unlike per record data classification, none of the classifications provided based on ECG components had 100% accuracy, sensitivity and specificity. However, a review of all the presented results shows that more than 80% of the algorithms applied to the ECG components have a high accuracy that is in the range of 70% to 99%. This indicates that the use of small ECG components also performs very well in the diagnosis and classification of SA. Our review also highlighted that the best algorithms in segment classification were Neural Network, RF and SVM. Erdenebayar et al. [30] used neural network algorithms in their work. The results of their study showed that the best algorithm in segmentation is RNN. DNN and CNN algorithms were also highly accurate. Such high accuracies were also observed in a number of other studies [20, 37, 39, 40, 60, 66].
In general, the results of selected studies indicate that ML techniques are successful in diagnosing SA. Unlike the present study, which only diagnoses SA from binary healthy individuals, some studies have classified patients with SA based on the severity of the disease, the results of which again showed the high accuracy of ML models. Another approach was to evaluate the ability of models to detect the exact value of Apnea Hypopnea Index (AHI), and the results of these research works were also of acceptable accuracy [89].
With these interpretations, ML still faces challenges that may affect the results obtained. One of the issues with ML algorithms is that they use random models to train their data. This means that if the same model is retrained with the same data, different values of the parameters may be reported. In other words, the reproducibility of the models is one of the issues that should be considered [90].
Another factor that may affect the results of this study is the possibility of bias. In one piece of research, the possibility of unintended racial bias within healthcare algorithms has been raised [91]. A 2015 study was conducted to investigate the impact of ethnicity on the prognosis of cardiovascular disease. The results of this study showed that predicting the risk of cardiovascular disease for non-whites was associated with bias. In fact, the risk of cardiovascular disease for this group of people was reported either more or less than normal [91, 92]. Furthermore, when different causes of a disease are provided, ML techniques will be unable to diagnose the cause of the disease [83]. Also, most of the selected studies in our review used fixed datasets, and ethnic and genetic differences were not measured. This issue can cause challenges in using ML methods in diagnosing SA.
Limitations
One of the limitations of this study is that most studies had used the same datasets. This made it impossible to review data from the same area, so the impact of environmental and individual factors on the incidence of SA was not measured. The small samples used in these datasets is another factor that can affect the generalizability of the results. Another limitation observed was the lack of reporting true positive, true negative, false positive and false negative in most studies. Accordingly, it was not possible to perform meta-analysis on the data.
Conclusion
Studies have confirmed the effectiveness of ML techniques in diagnosing SA. Since neurological, hormonal, and respiratory changes are quite effective on the ECG, HRV and EDR were the most common ECG features extracted for classification. The features of PSD waves obtained from ECG analysis appear to be very useful in the diagnosis of SA. It was also observed that SVM and Neural Network algorithms are highly accurate in detecting SA. Additionally, other ML techniques such as KNN, RF, and LR performed well in classifying SA-related data. There was no significant difference between the parameters related to the classification based on the complete ECG record and ECG components. However, the ML performance seems to have been better in the full record classification. In future studies, more up-to-date datasets can be used to classify SA. Furthermore, datasets with higher number of records, and the use of samples in various geographical areas are other things that can be examined.
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