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Abstract

The local sensitivity analysis is recognised for its computational simplicity, and po-

tential use in multi-dimensional and complex problems. Unfortunately, its major draw-

back is its asymptotic behaviour where the prior to posterior convergence in terms of the

standard metrics (and also computed by Fréchet derivative) used as a local sensitivity

measure is not appropriate. The constructed local sensitivity measures do not converge

to zero, and even diverge for the most multidimensional classes of prior distributions.

Restricting the classes of priors or using other φ-divergence metrics have been proposed

as the ways to resolve this issue which were not successful. We overcome this issue,

by proposing a new flexible class of metrics so-called credible metrics whose asymptotic

behaviour are far more promising and no restrictions is required to impose. Using these

metrics, the stability of Bayesian inference to the structure of the prior distribution will
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1



be then investigated. Under appropriate condition, we present a uniform bound in a

sense that a close credible metric a priori will give a close credible metric a posteriori.

As a result, we do not get the sort of divergence based on other metrics. We finally

show that the posterior predictive distributions are more stable and robust.

Keywords: Bayesian robustness, Bayesian stability, credible metrics, local sensitivity

analysis.

1 Introduction

Robust Bayesian analysis is the study of sensitivity of Bayesian answers to uncertain in-

puts such as sampling model, prior distribution, or loss function, or any combination of them.

There are several reasons to examine the robustness of Bayesian answers to the above misspec-

ification: foundational motivation, practical Bayesian motivation, and acceptance of Bayesian

analysis (see [14, 17, 12]).

Sensitivity analysis can be divided into two broad categories, global and local sensitivity.

The common approach to assessing sensitivity is to measure the size of the class of posteriors

(or perhaps just a particular posterior quantity) that arises from a specified class of priors.

This is referred to as global sensitivity analysis ([6]). The global sensitivity analysis does

not rely on perturbation lying within a given parametric family ([15]). Alternatively, an

appropriate divergence measure is applied to first specify a neighbourhood system around

each model. The bounds are then computed for the maximum deviation in the inference that

could be obtained by a model in this neighbourhood. If this deviation is small then the model

is considered ro be robust ([9]; [16].

The fact that global analyses often entail a large and complex computational problem

([7])) has led to the local sensitivity analyses, originally introduced by Gustafson and Wasser-

man []Gustafson-Wasserman95, and developed further Gustafson et al.[10]. The idea of a local

analysis is to examine the rate at which the posterior changes, relative to the prior. In local
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sensitivity analysis, a chosen base prior distribution is perturbed using a finite parametrised

modification. Hence, measures which are ‘functionally close’ to the chosen/elicited prior are

considered and the behaviour of the posterior functional forms, under infinitesimal departures

from the prior, are studied.

The local sensitivity analysis, as studied in the last chapter, is recognised for its compu-

tational simplicity, and its potential use in multi-dimensional and similar complex problems

where global robustness investigation may be difficult ([5]). The major drawback of this ap-

proach is about the asymptotic behaviour. It is reasonable that in most cases the influence of

prior distribution on the posterior quantities becomes less important as the sample size tends

to infinity. In this article, we study asymptotic behaviour of the local sensitivity methods

which measure the effect of infinitesimal perturbations of the prior on the posterior quantities

([1, 9]). We assume xn = (x1, . . . , xn), n ≥ 1 is a random sample with observed sample

densities p(xn|θ), where θ = (θ1, . . . , θk). Let P be the set of all probability measures on the

parameter space, Θ, and given a prior distribution π(θ), we denote π(θ | x) as the correspond-

ing posterior distribution. We denote T : P → T some quantity of interest. For instance, the

whole posterior distribution can be derived by taking T (π) = π(θ | x) and T = P . We denote

the predictive distribution of a new observation x∗n by, p(xn|x∗n) =
∫
p(xn|θ)π(θ|x∗n)dθ.

Gustafson and Wasserman (1995) define the local sensitivity of a prior π in the direction

of another prior ψ as

s(π, ψ) = lim
ε→0

d2(T (ψε), T (π))

d1(ψε, π)
, (1)

where ψε is the perturbed prior distribution, and d1 and d2 denote total variation distance

unless otherwise stated. We denote the overall sensitivity by s(π,Γ; xn) = supψ∈Γ s(π, ψ; xn),

for some class of priors Γ ⊂ P .

It was shown that under mild regularity conditions, s(π,P) (s(π,Γ) for many classes of

Γ) increases at rate n
k
2 ([9]). Therefore, if we use this quantity as a diagnostic measure,

the posterior distribution becomes increasingly sensitive to the chosen prior distribution as
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the sample size becomes very large. This is because, P consists of the unreasonable prior

distributions (e.g., priors which put all the mass at one point, or priors that have very noisy

behaviour at their tails). Restricting the class of priors to a subset ΓR of P was then proposed

by ([10]). However, they showed that the mentioned issue still remains as long as π is an

interior point of ΓR with respect to the density ratio metric. This is a very severe constraint

on any prior family, but despite this, the type of divergence discussed above will still occur

under this prior family constraint.

The parametric prior distributions as the restricted class was another solution to tackle

the aforementioned issue proposed in ([9]). The corresponding Bayesian inference under

any prior in this class is still rather unsatisfactory. Since, the local sensitivity measure will

then depend on a prior lying in a particular parametric family which should be avoided. A

similar asymptotic behaviour will be also observed even if other φ-divergence distances or the

geometric perturbation are used for d1 and d2 given in Eq. (1).

In this paper, we examine prior to posterior convergence and the sensitivity issues men-

tioned above in terms of a new class of metrics called credible metric. Section 2 is dedicated

to introduce this metric which its asymptotic behaviour is more desirable, and if it is used

as a local sensitivity measure, does not require us to restrict ourselves to a particular class of

priors. We also present some preliminary definitions, theorems and lemmas which will be used

to study the asymptotic behaviour of this metric in Section 3. The predictive performance

of this metric is investigated in Section 4. We show the computed metric in terms of the

posterior predictive distributions would be be more stable and robust compared to the metric

derived in terms of the posterior distributions.

2 A new class of metrics

In this section, we introduce a new class of metrics called credible metrics. We illustrate

that the local sensitivity measures based on these metrics for the posterior distributions are
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more stable in the sense that they at least do not diverge as we obtain more data. We first

present some notations and preliminarily results regarding the total variation distance which

are required to introduce our new class of metrics.

We denote the total variation metric on probability distributions (Π,Ψ), defined over a

common σ-algebra C on a parameter space Θ, as follows:

d(Π,Ψ) = sup
C∈C
|Π(C)−Ψ(C)| (2)

This metric can be also written in terms of the respective densities of π and ψ as follows

d(Π,Ψ) =
1

2

∫
θ∈Θ

|π(θ)− ψ(θ)|dθ (3)

In addition to the above property, this metric is also invariant with respect to transformations

ð in the following sense. If ð : θ → θ′, θ ∈ Θ and θ′ ∈ Θ′, is bijective and measurable and

(Π(θ),Ψ(θ)) and (Π(θ′),Ψ(θ′)) are probability distributions defined on θ and θ′ = ð(θ), then

d(Π(θ),Ψ(θ)) = d(Π(θ′),Ψ(θ′))

It can be also shown that for a fixed known family of sample distributions, the total

variation distance between two predictive distributions is no larger than the distance between

their prior distributions as discussed in ([5]). In other words,

d(Π(X),Ψ(X)) ≤ d(Π(θ),Ψ(θ))

where Π(X) and Ψ(X) are probability distributions associated with the following density

functions

π(x) =

∫
π(θ)p(x | θ)dθ, and ψ(x) =

∫
ψ(θ)p(x | θ)dθ

Despite all these nice properties, using the following example we verify the results reported

in ([9]) that this distance cannot converge as n→∞.

Example 1 Suppose X1, X2, ..., Xn is a random sample from a standard normal distribution,

N(θ, 1). Let us define Si(n) = n−
1
2

∑ni
j=n(i−1)+1Xj. It can be easily concluded that for two
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different prior densities pj(θ), j = 1, 2, and ∀n > 0, pj(θ|X(n) = x(n)) = pj(θ|S1(n) = s1(n)),

where x(n) = {x1, x2, ..., xn}. We also have that

pj(s2(n)|x(n)) =

∫
θ∈Θ

pj(s2(n)|θ)pj(θ|x(n))dθ =

∫
θ∈Θ

pj(s2(n)|θ)pj(θ|s1(n))dθ

=

∫
θ′∈Θ

pj(s2(n)|θ′)pj(θ′|s1(n))dθ′.

Since pj(s2(n)|θ′) = pj(s2(1)|θ) ∼ N(θ′, 1), then pj(s2(n)|x(n)) =
∫
θ′
pj(s2(1)|θ′)pj(θ′|s1(n))dθ′,

where θ′ = n
1
2 θ. Thus, in a sense, the problem of predictive densities does not appear to de-

pend on the number of observations, n. In particular, d(p1(s2(n)|x(n)), p2(s2(n)|x(n))) does

not depend on n. It can then be concluded that for all n > 0,

d(p1(θ|x(n)), p2(θ|x(n))) ≥ d(p1(s2(n)|x(n)), p2(s2(n)|x(n))) = d(p1(x2|x1), p2(x2|x1)).

This looks counter-intuitive, since we know whatever the prior for θ, in this circumstance,

given x(n), n−
1
2 (θ − x̄) tends to the standard normal density, the posterior densities will be

close to one another, spiking near x̄. On the other hand, we know that the variation metric is

scale invariant, and we need to see the difference between the posterior densities appropriately

magnified up onto the region to which θ converges. However, if we have some way of fixing

the scale of the deviation, then this is not so. For example,

d(p1(xn+1|x(n)), p2(xn+1|x(n))) =

∫
|p(xn+1|θ){p1(θ|x(n))− p2(θ|x(n))}|dθ

≤
∫
θ∈B(x̄,δ)

p(xn+1|θ)|p1(θ|x(n))− p2(θ|x(n))|dθ

+

∫
θ/∈B(x̄,δ)

p(xn+1|θ)(p1(θ|x(n))− p2(θ|x(n)))dθ

≤ sup
θ∈B(x̄,δ)

{p(xn+1|θ)}µ(B(x̄, δ)) + sup
θ/∈B(x̄,δ)

{p(xn+1|θ)}2η(δ)

< (2π)−1{µ(B(x̄, δ)) + 2η(δ)} → 0, as n→∞,

where B(x̄, δ) is an open ball with its centre at x̄ and diameter δ, µ(B(x̄, δ)) is its dominating

measure, and η(δ) =
∫
θ/∈B(x̄,δ)

p1(θ|x(n))dθ =
∫
θ/∈B(x̄,δ)

p2(θ|x(n))dθ.
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Therefore, one step ahead, prediction of the next observation certainly converges. These

predictions will be stable if prediction about θ are stable. So stability in terms of this (and

in many other metrics) is consistent with ideas about Bayesian Sufficiency. Using posterior

predictive distributions or making inference in terms of Bayesian predictive measures have

been supported by several researchers ([3, 14]).

Before introducing the credible metric and study its asymptotic behaviour, we need to

present some further notations and definitions.

Let P |A and Q|A denote respectively the conditional probability distributions associated

with P and Q given an event A ∈ C, P (A) > 0 and define

dA[P ](P,Q) = d(P | A,Q | A), (4)

where C is a common σ− algebra on the parameter (or sample) space Θ. Note that this is a

pseudometric (i.e. all the metric axioms hold other than dA[p](P,Q) = 0⇒ P = Q).

Call a set A of events P -conditioning, if Θ ⊆ A ⊆ C+[P ], where C+[P ] = {C ∈ C :

P (C) > 0}. For any P -conditioning set A denote

dA(P,Q) = sup{dA[P ](P,Q) : A[P ] ∈ A}. (5)

Finally denote by P(P )+ the set of all probability measures with the same support as P .

Lemma 2.1 If A is P -conditioning then dA(., .) is a metric on P(P )+.

Proof Let P,Q,R ∈ P(P )+. Since d(., .) is a metric on P(P )+, we can then conclude that

P 6= Q and dA(P,Q) ≥ d(P,Q) > 0. Furthermore, since dA[P ](P,Q) is a pseudometric for all

A[P ] ∈ A, we have both

dA(P, P ) = sup
A[P ]∈A

{dA[P ](P, P )} = 0, & dA(P,Q) = dA(Q,P ).
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Finally, again since dA[P ](P,Q) is a pseudometric for all A[P ] ∈ A,

dA(P,Q) = sup
A[P ]∈A

{dA[P ](P,Q)} ≤ sup
A[P ]∈A

{dA[P ](P,R) + dA[P ](R,Q)}

≤ sup
A[P ]∈A

{dA[P ](P,R)}+ sup
A[P ]∈A

{dA[P ](R,Q)} ≤ dA(P,R) + dA(R,Q) (6)

Note that this result does not rely on d(., .) being the variation metric. In particular, it works

with the Hellinger metric as well.

To clarify the nature of this new class of metric, we make a few remarks in the lemmas

below.

Lemma 2.2 If P is discrete and A contains all two point sets {i, j}, then the dA(P,Q)

neighbourhoods of P are contained in DeRobertis density ratio spheres

∧s(p; ε) = {Q : sup
i,j
| log(pi)− log(qi)− log(pj) + log(qj)| ≤ ε}, (7)

Proof Suppose, without loss of generality that

ρ =
pi
pj
≥ qi
qj
.

Then

d{i,j}(P,Q) =
pi

pi + pj
− qi
qi + qj

=
piqj − pjqi

(pi + pj)(qi + qj)
=

ρ

1 + ρ

c− 1

c+ ρ
,

where c =
piqj
pjqi

= exp{| log pi − log qi − log pj + log qj|} ≥ 1.

Clearly d{i,j}(P,Q) is increasing in c ≥ 1. Thus, for discrete variables, the topology defined

by such a metric is at least as refined as topology defined by density ratio spheres.

Now assume that A = C. Note that, for any set A ∈ C

2dA(P,Q) =

∫
A

| p(θ)

P (A)
− q(θ)

Q(A)
|dθ =

1

P (A)

∫
A

p(θ)|P (A)

Q(A)
exp{t(θ)} − 1|dθ

≤ sup
θ∈A
|P (A)

Q(A)
exp{t(θ)} − 1|,
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where t(θ) = | log p(θ)− log q(θ)|.

Now assume |t(θ)| ≤ τ , and note that

e−τ ≤ Q(A)

P (A)
=

∫
A
q(θ)dθ∫

A
p(θ)dθ

=

∫
A

exp{t(θ)}p(θ)dθ∫
A
p(θ)dθ

≤ eτ ,

which implies

2dA(P,Q) ≤ exp{2τ} − 1.

Thus we have proved the following lemma.

Lemma 2.3 Suppose probability measures P and Q have respective densities p and q with

respect to the same dominating measures, and are strictly positive on their shared support.

Then if, for all ε > 0, there exist (small) values of τ(ε) > 0, and if θ ∈ A, A ∈ C,

| log p(θ)− log q(θ)| ≤ τ then dA(P,Q) ≤ ε.

It is clear therefore that although these metrics are much fiercer than the variation met-

ric, the open sets around P are rich, provided that A does not contain sets which are too

improbable. The following lemma present a partial converse of this result.

Lemma 2.4 Suppose probability measures P and Q (P 6= Q) have respective continuous

densities p and q with respect to the same dominating measure, non-zero on their shared

support. For all τ > 0, write

AU(τ) = {θ : log p(θ)− log q(θ) ≥ τ}, (8)

AL(τ) = {θ : log p(θ)− log q(θ) ≤ −τ}, (9)

AM(τ) = {θ : | log p(θ)− log q(θ)| < τ}. (10)

Suppose there exists a value of η > 0 such that, for all τ < η,

min{P (AU(τ)), P (AL(τ))} > 0.

Then, for all ε > 0, there exists a value τ > 0 and a set C(τ) ⊂ Θ, P (C) > 0,

dC(P,Q) ≥ (1− e−τ ).
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Proof First note that

P (AU(τ))−Q(AU(τ)) =

∫
AU (τ)

(p(θ)− q(θ))dθ ≥ (1− e−τ )P (AU), and

Q(AL(τ))− P (AL(τ)) =

∫
AL(τ)

(q(θ)− p(θ))dθ ≥ (eτ − 1)P (AL)

Now if µ(AU(τ)) = 0, then

d(P,Q) =
1

2

∫
θ∈Ω

|p(θ)− q(θ)|dθ

≤ 1

2

∫
θ∈Ω

(q(θ)− p(θ))dθ +

∫
AM

|p(θ)− q(θ)|dθ ≤ τ.

Similarly, if µ(AL(τ)) = 0

d(P,Q) ≤ 1

2

∫
θ∈Ω

(p(θ)− q(θ))dθ +

∫
AM

|p(θ)− q(θ)|dθ ≤ τ.

Therefore, f∀τ , min{µ(AU(τ)), µ(AL(τ))} = 0, then P = Q is in contradiction to our hypoth-

esis. Hence, provided τ is small enough, say δ < η, we have min{µ(AU(τ)), µ(AL(τ))} > 0,

which, since p is strictly positive in turn implies min{P (AU(τ)), P (AL(τ))} > 0.

It follows from the above that both AU and AL are such that P (AU(τ))−Q(AU(τ)) > 0

and P (AL(τ))−Q(AL(τ)) > 0.

As a result, when P (AU)−Q(AU) ≥ Q(AL)−P (AL), one can then choose any subset BU

of AU such that P (BU) − Q(BU) = Q(AL) − P (AL). This is clearly possible if P and Q are

continuous. On the other hand if P (AL) − Q(AL) ≥ Q(AU) − P (AU), then one can choose

any subset BL of AL such that P (BL)−Q(BL) = Q(AU)− P (AU).

Therefore, under the conditions given above, we can construct subsets BU , BL such that

BU = {θ : log p(θ)− log q(θ) ≥ τ} and BL = {θ : log p(θ)− log q(θ) ≤ −τ},

where P (C) = Q(C), and C = BU ∪BL. We can then write

2dC(P,Q) =

∫
C

| p(θ)

P (C)
− q(θ)

Q(C)
|dθ =

1

P (C)
{
∫
BU

(p(θ)− q(θ))dθ −
∫
BL

(p(θ)− q(θ))dθ}

=
1

Q(C)
{Q(BU)(eτ − 1) +Q(BL)(1− e−τ )} ≥ (1− e−τ )
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which implies dC(P,Q) ≥ (1− e−τ ) as required.

It should be noted the metric developed above when A = C is not really new, and it essentially

demands that the log-densities of two distributions are close everywhere. Furthermore, this

is not that practical, because it demands proportionate closeness in the tails of the density

and it would be unrealistic to expect such levels of subjective certainty on the sets with very

small probability. In the following lemma, we demonstrate that the sets that have large prior

probability do not affect the topology of dA(P,Q).

Lemma 2.5 If P (A) > c > 0, then for all ε > 0 there exits a δ such that if d(P (A), Q(A)) <

δ, then dA(P (A), Q(A)) < ε.

Proof

2dA(P (A), Q(A)) =

∫
A

| p(θ)
P (A)

− q(θ)

Q(A)
|dθ

≤ 1

P (A)

∫
A

|p(θ)− q(θ)|dθ + | 1

P (A)
− 1

Q(A)
|
∫
A

|q(θ)|dθ

≤ 1

P (A)

∫
A

|p(θ)− q(θ)|dθ +
|P (A)−Q(A)|
P (A)Q(A)

≤ 2δ

c
+

δ

c(c− δ)
=
δ(2c+ 1− δ)
c(c− δ)

,

which for fixed values of c is continuous at zero and equal to zero when δ = 0.

It can be concluded that, when the limits are considered, we will gain nothing over the

variation metric by including the sets with higher than a threshold probability. It is the

distances associated with small sets A which might contribute to something new. However,

when we learn through Bayes rule, typically, as our sample increases in size, the posterior

densities associated with different priors will tend to concentrate around the same small open

balls. It follows that there may be considerable gain by restricting our attention to the whole

space together with small open balls. This provokes the following definition.
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Definition 1 Call dA(P,Q) = d4|C(P,Q) the (δ, C)-credibility metric if

A = {Θ} ∪
⋃
{B(θ0; δ) : θ0 ∈ C ⊆ Θ, 0 < δ ≤ 4}, (11)

where B(θ0; δ) is a Euclidean open ball with center at θ0 and diameter δ, and d(., .) is the

total variation metric.

By writing d4(P,Q) = d4|Θ(P,Q), we shall see that, provided that the space of densities

we consider is smooth enough, this metric gives the sort of limiting results we require. Fur-

thermore, the type of smoothness conditions we need to impose, seems relatively benign and

plausible from a subject perspective.

Explicitly, we can write d
B(θ0;δ)

(P,Q) = d(P | B(θ0; δ), Q | B(θ0; δ)). We show that,

within a set A a sufficiently “small” ball B(θ0, δ) is not active in dA(P,Q), provided the log-

densities of P and Q are defined and continuous at θ0. So, P and Q can be very different in

variation metric and still be closed under this conditional metric. All we require is that both

are sufficiently smooth.

Lemma 2.6 Suppose probability measures P and Q have respective densities p and q, and

for all ω > 0, there exists a δ(θ0;ω, p) > 0 such that, for all θ ∈ B(θ0; δ),

| log p(θ)− log p(θ0)| < ω

and, for all ω > 0, there exists a δ(θ0;ω, q) > 0 such that, for all θ ∈ B(θ0; δ),

| log q(θ)− log q(θ0)| < ω,

then

1

[µ(B(θ0; δ))]

∫
B(θ0;δ)

| p(θ)

p(θ0)
− 1|dθ < (eω − 1),

1

[µ(B(θ0; δ))]

∫
B(θ0;δ)

| q(θ)

q(θ0)
− 1|dθ < (eω − 1),

e−ω <
p(θ0)µ(B(θ0; δ))

P (B(θ0; δ))
< eω, e−ω <

q(θ0)µ(B(θ0; δ))

Q(B(θ0; δ))
< eω,

where µ(B(θ0; δ)) denote the dominating measure.
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Proof . The first assertion follows, since for all θ ∈ B(θ0; δ), it can be easily shown that

| log p(θ)− log p(θ0)| < ω ⇔ | p(θ)

p(θ0)
− 1| < eω − 1.

To prove the second assertion, note that

(
P (B(θ0; δ))

p(θ0)µ(B(θ0; δ))
− 1

)
=

∫
B

( p(θ)

p(θ0)
− 1)dθ

µ(B(θ0; δ))
,

and substituting the first result gives e−ω−1 <
(

P (B(θ0;δ))

p(θ0)µ(B(θ0;δ))
− 1
)
< eω−1, which rearranges

to the given expression. The last two inequalities hold, simply by substituting q for p.

One immediate consequence of these inequalities is that they hold if and only if the corre-

sponding conditions hold for the posterior distribution of a shared sampling model, and the

log-likelihood is smooth and continuous at θ0. Therefore,

| log p(θ | x)− log p(θ0 | x)| = | log p(θ) + log p(x | θ) + log

∫
p(θ)p(x | θ)dθ

− log

∫
p(θ)p(x | θ)dθ − (log p(θ0) + log p(x | θ0))|

≤ | log p(θ)− log p(θ0)|+ | log p(x | θ)− log p(x | θ0)|,

so that, for all ω′ > 0, provided δ is chosen small enough, for all θ ∈ B(θ0; δ)

| log p(x | θ)− log p(x | θ0)| < ω′,

and we obtain analogous inequalities for the posterior densities in B(θ0; δ). It means that,

with a continuity condition on the likelihood, prior closeness with respect to this metric guar-

antees posterior closeness. We use this fact in the next section.

Theorem 2.7 For all ε > 0, if P and Q satisfy the continuity conditions above, there exists

values of η > 0, such that if δ < η then d
B(θ0;δ)

(P,Q) < ε.
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Proof

2dB(θ0;δ)(P,Q) = 2d(P | B(θ0; δ), Q | B(θ0; δ))

=

∫
θ∈B(θ0;δ)

| p(θ)

P (B(θ0; δ))
− q(θ)

Q(B(θ0; δ))
|dθ ≤ A(δ) +B(δ) + C(δ),

where, whenever log p, log q are continuous,

A(δ) =

∫
θ∈B(θ0;δ)

| p(θ)

P (B(θ0; δ))
− p(θ0)

P (B(θ0; δ))
|dθ

=
p(θ0)µ(B(θ0; δ))

P (B(θ0; δ))
{[ 1

µ(B(θ0; δ))
]

∫
θ∈B(θ0;δ)

| p(θ)

p(θ0)
− 1|dθ},

which by the inequalities above A(δ) < eω(θ0;δ,p)(eω(θ0;δ,p) − 1). Similarly

C(δ) =

∫
θ∈B(θ0;δ)

| q(θ0)

Q(B(θ0; δ))
− q(θ)

Q(B(θ0; δ))
|dθ < eω(θ0;δ,q)(eω(θ0;δ,q) − 1)

and

B(δ) = µ(B(θ0; δ))| p(θ0)

P (B(θ0; δ))
− q(θ0)

Q(B(θ0; δ))
|

≤ |µ(B(θ0; δ))p(θ0)

P (B(θ0; δ))
− 1|+ |µ(B(θ0; δ))q(θ0)

Q(B(θ0; δ))
− 1|,

which by the inequalities above, B(δ) ≤ (eω(θ0;δ,p)− 1) + (eω(θ0;δ,q)− 1). Thus, for a given θ0,

and P and Q, for all ε > 0, there is a value of δ such that

d
B(θ0;δ)

(P,Q) <
1

2
{eω(θ0;δ,p)(eω(θ0;δ,p) − 1) + eω(θ0;δ,q)(eω(θ0;δ,q) − 1) + (eω(θ0;δ,p) − 1)

+ (eω(θ0;δ,q) − 1)} =
1

2
{(e2ω(θ0;δ,p) − 1) + (e2ω(θ0;δ,q) − 1)} = ε(θ0, P,Q, δ),

as required.

Corollary 2.8 Suppose that P has a differentiable log density with derivative D log p(θ),

bounded by M for all θ, i.e. |D log p(θ)| ≤M . Then, for all distributions Q with differentiable

log-densities bounded by M and for all ε > 0, there exists a value of η such that for all sets

B(θ0; δ), whenever δ < η, d
B(θ0;δ)

(P,Q) < ε.
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Proof . This follows immediately from the lemma above, since if D log p(θ), D log q(θ) are

bounded, they are then automatically uniformly continuous in θ0.

It should be noticed that according to this corollary, we can write

d
B(θ0;δ)

(P,Q) = d(P | B(θ0; δ), Q | B(θ0; δ)).

As outlinedd before, B(θ0; δ) is a sufficiently small ball in A which is not active in (δ, C)-

credibility metric, dA(P,Q) = d∆|C(P,Q), where A is defined in (11), and δ is defined in

Corollary 1. This is very useful and particularly implies that two strictly positive unimodal

bounded prior densities with sub-exponential tails will look locally similar in the sense of this

metric. In Section 3, we will use this to relate the metric above to well-known results about

the robust families of priors. We could also link this to the Gustafson’s ideas to restrict the

class of prior distributions into a parameterised class of priors (as also closely discussed in [5]).

In a practical setting, it would be challenging to assert the condition of this corollary, which

makes strong statements about the tail behaviour of a prior density. Fortunately, the required

uniform continuity for the convergence of our metric can be obtained, provided closeness for

sets B(θ0; δ) for which p(θ0) ≥ c > 0.

Corollary 2.9 Suppose that P has a continuous bounded density p at all points θ0, such

that p(θ0) ≥ cp > 0, and all distributions Q have a continuous bounded density q at all

points θ0, such that q(θ0) ≥ c > 0. Suppose the sets Dp = {θ0 : p(θ0) ≥ cp > 0} and

Dq = {θ0 : q(θ0) ≥ cq > 0} are compact. Then, for all ε > 0 there exists a value of η such

that for all sets B(θ0 : δ), θ0 ∈ Dp ∪Dq, whenever δ < η, d
B(θ0;δ)

(P,Q) < ε.

Proof . The required uniform continuity is immediate from the compactness of the sets

and the continuity and boundedness of p and q. Thus, for small open sets in a credibility set,

with sufficient smoothness assumptions, we can expect all associated variation distances to

be small a priori. Therefore, we may be able to assert densities which are close and do not

wobble too much (see [5] for more details).
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3 Sensitivity analysis using η-Credibility metrics

The usefulness of the credibility metrics arises from the following plausible observation.

Theorem 3.1 Suppose P ∗ and Q∗ are the posterior distributions associated with P and Q

respectively after we observe that θ ∈ B ∈ A. Then, if A is closed under intersection,

dA(P ∗, Q∗) ≤ dA(P,Q).

Proof Since A is closed under intersection with B, A | B = {A′ ∈ A : A′ = A∩B,A ∈ A} ⊆

A, and because dA(P ∗, Q∗) = dA(P | {θ ∈ B}, Q | {θ ∈ B}) = dA∩B(P,Q), the result is now

immediate by definition.

This means that under an extended variation metric, learning about θ directly cannot increase

neighbourhoods: in particular the Fréchet derivative (used as the local sensitivity measure)

always reduces as zero-one information about θ arrives. This is in strong contrast to the use

of the ordinary variation metric for which this is untrue in general [9]. In particular, if our

experiment indicates that θ ∈ B(θ0; δ) and δ → 0 then, under the conditions of the corollaries

1 and 2, the Fréchet derivative does not diverge, and is bounded.

There are more problems here when we learn through a sample distribution. In 2004,

Daneshkhah [5] reported that prior small credibility closeness gives rise to posterior credibility

closeness with a likelihood continuous at all the relevant θ0.

We next show that the variation distance between posterior cannot explode, if we use

closed priors that equals with smooth priors.

Theorem 3.2 Suppose for all γ > 0 there exists a value 4 such that, for all δ < 4 and

Q such that dA(P,Q) < η, Q(Bc) < γ, where B =
⋃m
i=1 B(θ0

i ; δ) and for all ω > 0, and all

{i : 1 ≤ i ≤ m},

| log p(θi)− log p(θ0
i )| < ω, and | log p(x | θi)− log p(x | θ0

i )| < ω;

then for all ε > 0, d(P | x, Q | x) < ε.
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Proof

d(P | x, Q | x) =

∫
|p(θ | x)− q(θ | x)|dθ

≤
m∑
i=1

∫
B(θ0i ;δ)

|p(θi | x)− q(θi | x)|dθi +

∫
Bc

|p(θ | x)− q(θ | x)|dθ

≤ Σm
i=1(I1

i (δ) + I2
i (δ) + I3

i (δ)) +

∫
Bc

p(θ | x)dθ +

∫
Bc

q(θ | x)dθ

≤ Σm
i=1I

1
i (δ) + Σm

i=1I
2
i (δ) + Σm

i=1I
3
i (δ) + 2γ,

where

I1
i (δ) =

∫
θi∈B(θ0i ;δ)

|p(θ
0
i | x)

p(θi | x)
− 1|p(θi | x)dθi

≤ P (θi ∈ B(θ0
i ; δ) | x)(exp(2ω)− 1).

Moreover

|p(θ
0
i | x)

p(θi | x)
− 1| = | exp[(log p(x | θ0

i )− log p(x | θi))− (log p(θi)− log p(θ0
i ))]− 1| ≤ [e2ω − 1].

Similarly, I3
i ≤ Q(θi ∈ B(θ0

i ; δ))(exp(2ω)− 1). Finally

I2
i (δ) =

∫
B(θ0i ;δ)

|p(θi | x)− q(θi | x)|dθi = µ(B(θ0
i ; δ))|p(θ0

i | x)− q(θ0
i | x)|

=
µ(B(θ0

i ; δ))p(x | θ0
i )|p(θ0

i )Mi(q)− q(θ0
i )Mi(p)|

Mi(p)Mi(q)
, where

Mi(p) =

∫
B(θ0i ;δ)

p(x | θi)p(θi)dθi, Mi(q) =

∫
B(θ0i ;δ)

p(x | θi)q(θi)dθi,

I2
i (δ) = S(θ0

i , δ,x)× T (θ0
i , δ,x), S(θ0

i , δ,x) =
p(θ0

i )µ(B(θ0
i ; δ))p(x | θ0

i )∫
B(θ0i ;δ)

p(x | θi)p(θi)dθi
,

T (θ0
i , δ,x) =

∫
B(θ0i ;δ)

p(x | θi)q(θi)|1− p(θi)

p(θ0i )

q(θ0i )

q(θi)
|dθi∫

B(θ0i ;δ)
p(x | θi)q(θi)dθi

≤ sup
θi∈B(θ0i ;δ)

{|1− p(θi)

p(θ0
i )

q(θ0
i )

q(θi)
|}

= sup
θi|B(θ0i ;δ)

{|1− exp{(log p(θi)− log p(θ0
i ))− (log q(θi)− log q(θ0

i ))|}

≤ (e2ω − 1)
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Now, note that by hypothesis

S−1(θ0
i , δ,x) =

∫
B(θ0i ;δ)

p(x | θi)p(θi)dθi
p(θ0

i )µ(B(θ0
i ; δ))p(x | θ0

i )

=

∫
B(θ0i ;δ)

exp{[log p(x | θi)− log p(x | θ0
i )]− [log p(θi)− log p(θ0

i )]}dθi
µ(B(θ0

i ; δ))

≥ exp{−2ω}

Thus, I2
i (δ) ≤ e2ω{e2ω − 1}. As a result,

d(P | x, Q | x) ≤ (e2ω − 1){Σm
i=1[P (θi ∈ B(θ0

i ; δ) | x) +Q(θi ∈ B(θ0
i ; δ) | x) + e2ω]}+ 2γ

≤ (e2ω − 1){2m+me2ω}+ 2γ = ε.

By hypothesis, the function on the right hand side of the inequality above can be made as

small as we like by choosing 4 small enough when required.

Therefore, contrary to the assertion that it is necessary to restrict our class of prior distri-

butions into a parametrised family of distributions, we can work with a general class of priors

here. It is just needed to work with an appropriate extended variation metric presented above.

Example 2. Let the prior densities p(θ) and q(θ) be Beta distributions with the following

density functions p(θ | α) ∝ θα1−1(1 − θ)α2−1, q(θ | β) ∝ θβ1−1(1 − θ)β2−1, and the corre-

sponding posterior distributions for a sample drawn from a Binomial distribution with size n

is given by pn(θ | α, x) ∝ θ(α1+x)−1(1− θ)(n+α2−x)−1, qn(θ | β, x) ∝ θ(β1+x)−1(1− θ)(n+β2−x)−1,

where x is the number of successes observed in the sample. The posterior mean and and

variance of the Beta distribution, pn(θ | α, x) are respectively given by

θ0 =
(α1 + x)

(α1 + α2) + n
, σ2

n =
α1α2

(α1 + α2 + n)2(α1 + α2 + n+ 1)

As discussed above, the conventional local sensitivity measures, as introduced in [1, 9, 11],

do not converge for the large sample size. For example, the local sensitivity measure, defined
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in Eq. (1), under mild regularity conditions, increases at rate n
k
2 for many classes of prior

distributions, where k is dimension of the parameter space. In this example, we illustrate

that the asymptotic behaviour of the local sensitivity measure, developed in this paper using

the credible metric is more promising, and will converge for the large sample size.

It is reasonable to consider δ as a function of σ2
n, such as δ = (σ2

n)0.4 or δ = (σ2
n)0.45.

Therefore,

I1(δ) = Pθ0|x

(
exp{(α1 + x− 1) log(

θ0

θ
) + (n+ α2 − x− 1) log(

1− θ0

1− θ
)} − 1

)
≤

Pθ0|x ×
(

exp{(α1 + x− 1) log(
θ0

θ0 − δ
) + (n+ α2 − x− 1) log(

1− θ0

1− θ0 − δ
)} − 1

)
where Pθ0|x = P (θ ∈ (θ0 − δ, θ0 + δ) | x). Similarly

I3(δ) = Qθ0|x

(
exp{(α1 + x− 1) log(

θ0

θ
) + (n+ α2 − x− 1) log(

1− θ0

1− θ
)} − 1

)
≤

Qθ0|x ×
(

exp{(α1 + x− 1) log(
θ0

θ0 − δ
) + (n+ α2 − x− 1) log(

1− θ0

1− θ0 − δ
)} − 1

)
,

where Qθ0|x = Q(θ ∈ (θ0 − δ, θ0 + δ) | x), and

I2(δ) ≤
(

exp{(α1 + x− 1) log(
θ0

θ
) + (n+ α2 − x− 1) log(

1− θ0

1− θ
)}
)

×
(

exp{(α1 + x− 1) log(
θ0

θ
) + (n+ α2 − x− 1) log(

1− θ0

1− θ
)} − 1

)
.

Using the Chebychev’s inequality, we can show that P (|θ − θ0| > δ) ≤ (σ
2
n

δ2
), which for

δ = (σ2
n)0.45, it becomes as

P (|θ − θ0| > δ) ≤ (σ2
n)0.1.

Therefore, as n increases, d(P | x,Q | x) tends to zero. Figure 1 illustrates the distance

bounds associated with p(θ) = Beta(4, 6), q(θ) = Beta(6, 8), x = 7 and for δ = (σ2
n)0.4 and

δ = (σ2
n)0.45.
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Figure 1: The distance bounds associated with p(θ) = Beta(4, 6), q(θ) = Beta(6, 8), and

δ = (σ2
n)0.4 and δ = (σ2

n)0.45.

4 Credible Metrics Between Posterior predictive Dis-

tributions

Theorem 3 can be adapted for posterior predictive distributions. However, working with these

distributions is quite difficult due to the complex computation, but by using them, we can

avoid of the priors with unstable behaviours (the ones with too much wobble). We present

similar results as given in the previous section for posterior predictive distributions.

First, we should show that d(p(z | x), q(z | x)) is a lower bound for d(p(θ | x), q(θ | x)).

That means, d(p(z | x), q(z | x)) ≤ d(p(θ | x), q(θ | x)), where p(z | x) =
∫
θ p(z | θ)p(θ | x)dθ.

For this purpose, we use the total variation distance as follows,

d(p(z | x), q(z | x)) =
1

2

∫
z

|p(z | x)− q(z | x)|dz

≤ 1

2

∫
z

∫
θ
|p(z | θ)||p(θ | x)− q(θ | x)|dθdz

It is trivial to show that (see also the assumptions mentioned in Theorem 4)
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1

2

∫
z

∫
θ
|p(z | θ)||p(θ | x)− q(θ | x)|dθdz =

1

2

∫
θ
|p(θ | x)− q(θ | x)|{

∫
z

|p(z | θ)|dz}dθ =

1

2

∫
θ
|p(θ | x)− q(θ | x)| dθ =

d(p(θ | x), q(θ | x)).

In the following theorem, we will show that as n → ∞ (or equivalently as ∆ → 0),

d(p(z | x), q(z | x)) will then become very small (and bounded).

Theorem 4.1 Suppose the likelihood function p(x | θ) is bounded by M, and suppose that

any prior distribution P has a differentiable log density with derivative D log p(θ) bounded

by N, i.e. there exists N > 0 such that for all θ, |D log p(θ)| ≤ N , and for any other ar-

bitrary prior distribution, Q and for all γ > 0 there exists ∆ > 0 such that for all δ ≤ ∆,

Q(Bc(θ0(x); δ)) < γ, where θ0(x) denote an estimation such as maximum likelihood. Then,

for all ε > 0, there exists a ∆ > 0 such that for all δ ≤ ∆, d(p(z | x), q(z | x)) < ε.

Proof We can write the equation below

|p(z | x)− q(z | x)| =
∫
θ∈B(θ0(x);δ)

p(z | θ)|p(θ | x)− q(θ | x)|dθ

+

∫
θ /∈B(θ0(x);δ)

p(z | θ)|p(θ | x)−q(θ | x)|dθ,

where B(θ0(x); δ) is an open ball with its centre at θ0(x) and diameter δ. It can be eas-

ily concluded that
∫
θ /∈B(θ0(x);δ)

p(z | θ)|p(θ | x)− q(θ | x)|dθ ≤ 2Mγ. By the hypothesis in

Corollary 1, we can say that for all ω > 0 there exists ∆ > 0 such that for all δ < ∆,

| log p(θ) − log q(θ)| < ω, where p and q denote the densities associated with P and Q re-

spectively. Therefore, by the results taken from Theorem 3, the following inequality can be

21



achieved ∫
θ∈B(θ0(x);δ)

p(z | θ)|p(θ | x)− q(θ | x)|dθ ≤Me2ω{e2ω − 1}.

Therefore, |p(z | x)− q(z | x)| ≤M{2γ + e2ω{e2ω − 1}} = ε, as required.

5 Discussion

In this paper we present a new local sensitivity measure in terms of the credibility metrics.

We have shown that these metrics asymptotically behave better. We have argued that the

corresponding Fréchet derivative similar to the derivatives studied by Gustafson et al.[10] does

not tend to zero. However, we do have uniform boundedness under appropriate conditions.

That means a close credible metric a priori will give a close credible metric a posteriori.

Therefore, we do not get the sort of divergence derived with the total variation metric as

discussed in [9, 10].

It is important to investigate how the local sensitivity measure proposed in this paper

is applicable to Bayesian networks. However, the proposed likelihood (multinomial distri-

butions) and prior distribution (Dirichlet or product of Dirichlet’s) for Bayesian networks

with discrete variables would provide the conditions (especially, continuity condition) in the

theorems and lemmas presented in this paper. Nevertheless, this still needs to be formally

investigated.

Smith and Daneshkhah [15] developed new explicit total variation bounds on the posterior

density as the function of closeness of the base prior to the approximating one (selected from

a class of priors very similar to the one proposed in this paper) used and certain summary

statistics of the calculated posterior density. It was illustrated that the approximating pos-

terior density often converges to the base (or genuine) posterior as the number of sample

point increases and the proposed bounds would allow them to identify when the posterior
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approximation might not.

Another inspiring work, which require further practical works, is related to investigate the

asymptotic behaviour of the local sensitivity measures (or closeness distances), and compare

it with the closeness distances reported in [15]. It should be noted that the local sensitivity

measures introduced in this paper could be usually expressed in terms of difference between

logarithms of the posterior densities. In many cases, this difference would ensure that the

Hellinger distance (or total variation bounds as proposed in in [15, 18]), and thereby the

corresponding local sensitivity measure will least be bounded for large enough sample sizes

as shown in this paper.

The local sensitivity analysis, as studied in this paper and other relevant works, would

be also very useful to answer the following questions, which are commonly raised when mod-

elling multivariate data with complex dependency using Bayesian hierarchical models ([13]),

Bayesian network, or Bayesian network pair-copula models ([2]). It is of great importance

to investigate whether the network structure that is learned from data would be robust with

respect to changes of the directionality of some specific arrows. Ross et al. [13] examine local

sensitivity of the Bayesian hierarchical models by developing a new local sensitivity frame-

work, known as ε-local sensitivity. The next important problem is to study whether the local

conditional distribution/probability associated with the specified node would be robust with

respect to the changes to its prior distribution or to the changes to the local conditional dis-

tribution of another node. However, this problem is addressed in [5, 15, 18], but there still

exist areas for continued development. In particular, it is of great importance to examine

the behaviour of the posterior distribution associated with the parameters of any node robust

with respect to the changes to the prior distribution associated with the parameters of one

specific node. Finally, would the quantities mentioned above be robust with respect to the

changes in the independence assumptions as described in [4].
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