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Abstract. Despite its many technological and economic benefits, Cloud
Computing poses complex security threats resulting from the use of vir-
tualisation technology. Compromising the security of any component in
the cloud virtual infrastructure will negatively affect the security of other
elements and so impact the overall system security. By characterising the
diversity of cyber-attacks carried out in the Cloud, this paper aims to
provide an analysis of both common and underexplored security threats
associated with the cloud from a technical viewpoint. Accordingly, the
paper will suggest emerging solutions that can help to address such
threats. The paper also offers future research directions for cloud se-
curity that we hope can inspire the research community to develop more
effective security solutions for cloud systems.
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1 Introduction

Cloud Computing (CC), still an evolving paradigm, has become one of the most
transformative computing technologies and a key business avenue, following in

?



the footsteps of main-frames, minicomputers, personal computers, the World
Wide Web and smartphones [29] [28] [37] [39]. CC is a shared collection of con-
figurable networked resources (e.g., networks, servers, storage, applications and
services) that can be reconfigured quickly with minimal effort [32] [27]. Its vital
features have considerably reduced IT costs, contributing to its swift adoption
by businesses and governments worldwide.

As a result, CC has drastically transformed the way in which Information
Technology (IT) services are created, delivered, accessed and managed. Such a
transformation, that offers many technological and economic benefits, has pro-
duced substantial interest in both academia and industry. However, despite all
its benefits, CC poses numerous security threats with devastating consequences.
As a result, many organisations do not move their business IT infrastructure
completely to the cloud mainly due to the fears of cloud-related security threats.
Some of these fears among others are due to the issues such as processing of sen-
sitive data outside organisations, shared data and ineffectiveness of encryption,
etc. [28] [18].

Considering its security requirements (confidentiality, integrity, availability,
accountability, and privacy-preservability), this paper presents an analysis of se-
curity threats associated with CC. To this end, we identify both common and
underexplored cyber-security attacks carried out in Cloud Computing environ-
ments (CCEs). Accordingly, we will also propose emerging solutions and lines
of defence against each attack vector with a view to mitigating such threats.
Our study will also provide insights into the future security perspectives related
to the CC. This study only focuses on analysing the technical aspects of cyber-
security threats in cloud. To this end, this analysis emphasises the complexity,
intensity, duration and distribution of the attacks, outlining the major challenges
in safeguarding against each attack. Investigating other security aspects such as
organisational, compliance, physical security of data centers, and the way in
which an enterprise can meet regulatory requirements is outside the scope of
this paper. Similarly, providing an exhaustive list of attack vectors is outside the
scope of this study. The remainder of the paper is structured as follow.

The remainder of the paper is structured as follow. Section 2 analyses attack
vectors while Section 3 discusses countermeasures. The paper is concluded in
Section 4.

2 Attack Vectors

There are certain vulnerabilities associated with computing hardware that at-
tackers can exploit to launch destructive attacks which often go undetected by
the existing software countermeasures against embedded device systems within
cloud environments. One of the usual characteristics of a computer hardware
component can be malfunction or some kinds of abnormal behaviour which can



result in providing a backdoor access to a potential adversary. The following
sub-sections analyse the cyber-attacks that can be carried out due to physical
hardware flaws.

2.1 Side-Channel Attacks

Side Chanel Attacks (SCAs) are a type of hardware-targeted attacks that is al-
most impossible to detect. SCAs are based on Side-Channel information that
leak through a medium that is not intended for communications. This medium
is called a Side-Channel. Side-Channel information can be acquired from an
encrypted digital device. SCAs could also stem from a leakage produced by elec-
tronic circuits as by-products that render it possible for an adversary without
access to circuit, itself, to determine how the circuit operates and what type of
data it is processing (heat and electromagnetic leakage are both feasible sources
of information for an adversary). SCAs can be very detrimental if proper defence
mechanisms are not implemented on a target device. The three major types of
side-channel attacks can be categorised based on the leaked information, includ-
ing: time, trace [22] and access-driven [49]. All the three types acquire sensitive
information by observing the execution time or power consumption variations
produced through cache hits and misses. However, they tend to vary on the de-
tails of the captured information. The time-driven attack observes the aggregate
profile and the total number of cache hits and misses. It can be of two types:
passive if adversaries have no direct access to the victims machine or active if
there is a physical access to the machine [33] [31] [30] [35]. The following sub-sub
sections provide an analysis of the variants of SCAs.

Prime+Probe Attacks Through a Prime+Probe Attack, a variation of CB-
SCAs, the adversary could potentially attain co-residency and perform load mea-
surement. The theft of sensitive information can be accomplished by exploiting
three probable channels: pre-emptive scheduling, hyper-threading, and multi-
core. In the first channel, the adversary exploits the context switch between his
VM and the victims VM to observe the cache status as the victim had left it. In
the second channel, the malicious operation is performed by breaching the CPU
core sharing. In this case, the attacker exploits the multi-tenancy, realised with
multiple threads running on a single processor. The third stage involves reading
the L3 cache that is the only one shared when VMs are allocated to multiple cores
instead of multiple threads [22]. Furthermore, by performing a Prime+Probe At-
tack, the attackers could extract an RSA secret key from a co-located instance
in CCEs [19]. A Prime+Probe attack can also be launched against different pro-
cessor caches such as the L1 data cache, L1 instruction cache and the branch
prediction cache. Similarly, adversaries could also exploit Prime+Probe for LLC
attacks by leveraging hardware elements that are beyond the control of the CSPs
but activated in the VMM for operation reasons [26].



Time-Driven Attacks In a Time-Driven Attack, the attackers extract cipher
keys by exploiting side-channel information vulnerabilities triggered by the exe-
cution of cryptographic algorithms and data-dependent behaviour of cache mem-
ory. A Time-Driven Attack determines the run times of victim processes by ex-
ploiting the connection between the secret key and the number of cache misses
which in turn establishes the runtime to infer the key. Regardless of the differ-
ences between these approaches, the Cache-Based Timing Attacks rely upon the
impacts that the number of cache misses have on the execution time of an en-
cryption process. Furthermore, Time-Driven Attacks can be performed against
AES in a virtualisation setting [10] [17] [9] [2] [36] [22]. An example of such an
attack is the PikeOS Microkernel Virtualization Framework (Wei et al., 2014),
which was can be mounted against AES on an actual CPS. Similarly, Address
Space Layout Randomization (ASLR), a security technique used to prevent ex-
ploitation of memory corruption vulnerabilities, can be bypassed by applying
the branch-target buffer.

It is also possible to locate the place in the kernel where codes were run based
on the mapping from virtual addresses to the branch-target buffer cache [12].
In addition, a malicious operating system could potentially reverse-engineer the
control flow of SGX enclaves via branch-prediction analysis or branch shadow-
ing [25]. Likewise, adversaries might be able to mount Timing Attacks against
secret-dependent data access patterns on the sliding-window modular exponen-
tiation implementation [26] [1] [8]. The Scatter-Gather technique, a commonly-
implemented method to stop Time-Based Attacks, can also be exploited through
a variation of Timing Attack called CacheBleed [48], which takes advantage
of cache-bank collisions [13](Intel, 2016) to generate quantifiable timing differ-
ences [14]. In general, Time-Driven Attacks are simple to execute since they
require less leaked information [6] [2].

Access-Driven Attacks In cases when multi tenancy is employed through
Hyper-Threading method, information on cypher algorithms as RSA and AES
could potentially be observed by the attackers. One of the most recent attacks
is the Access-Driven Attack, via which the attacker can control the cache sets
that the cipher process changes. For instance, the attacker is likely to be able to
determine which aspects of the lookup tables have been accessed by the cipher.
Another type of attack is Boot Integrity Attack, in which adversaries with ei-
ther logical or physical access are likely to be able to damage boot integrity with
bootkits or particular form of malware that exists outside the OS (e.g. within
System Management Mode (SMM)).

Considering its location, this kind of malware is predominantly threatening as
it can reinfect new OS installations. Susceptibilities have been discovered in the
BIOS, UEFI, Master Boot Record (MBR), CPU Management Engines and PCI
device option ROMs [46]. Access-driven attacks exploit the connection between
the secret key and the cache use of a crypto process. Because the cache is divided



between various processes, an adversary might be able to gain the cache usage
of the victim process by monitoring a carefully created process, which executes
together with the victim process [24].

2.2 Cache-Based Attacks

Confidential data can be safeguarded against unauthorized access by storing it
in an encrypted form and transmitting it over encrypted channels. However, at
some point, data need to be decrypted so as to perform the computation. Ad-
versaries could potentially exploit the multi-tenant environment to gain access
to physical resources such as memory bus, disk bus, and data and instruction
caches in which they can locate decrypted data and the cryptographic keys of
well-known algorithms (AES, DES, RSA) and of other VMs instances. An in-
stance of this concerns the shared memory hierarchy of an Intel Pentium 4 with
hyper-threading features. Both the L1 and L2 caches with the hyper-threading
feature turned on can leak information from one process to the other [33] [31] [41].
This is called a Cache-Based Side-Channel Attack (CBSCA) and is part of a
family known as Cross-VM Side-Channel Attacks. This attack evades the logical
isolation provided by the hypervisor layer and can be launched by two types
of malicious actors including: insider attackers (often cloud employees abusing
their privileged position) and malicious customers (that in a first phase must
land in the victim server and then initiate the attack).

2.3 Flush+Reload Attacks

By exploiting resource sharing features in virtual environments, adversaries will
be able to carry out cross-VM Flush+Reload Attacks against VMs in a hyper-
visor such as VMware [20]. As a result, they could potentially extract an AES
keys in OpenSSL 1.0.1 running inside a victims VM. Likewise, shared memory
controllers are susceptible to Flush+Reload Attacks that could exploit memory
interferences as timing channels [44]. Similarly, covert channels shared between
processor resources could be exploited to facilitate secret communication between
malign processes. Trojans and spies could be utilised to compromise Processor
Branch Prediction Units [11]. By exploiting Branch Predictor conflicts, adver-
saries could establish covert channels enabling them to launch Flush+Reload
attacks against Computing hardware devices.

2.4 Rowhammer Attacks

If a particular row of a Double Data Rate (DDR) memory bank is constantly
activated (opened) and pre-charged (closed) within a Dynamic Random-Access
Memory (DRAM) refresh interval, one or more-bit flips take place in physi-
cally adjacent DRAM rows to an incorrect value. Such disturbance is known as



Rowhammer [23]. An advanced attacker can exploit the Rowhammer to com-
promise the DRAM of a computing device. This occurs by evading the defence
mechanisms often deployed through traditional security software and features
such as memory isolation to conduct the memory disturbance attack. Similarly,
a Rowhammer Fault Injection, a recently discovered real-time Microarchitec-
tural Attack, can be launched remotely to gain full access to the DRAM of a
CC device. A Rowhammer Attack can pollute system memory, access and alter
sensitive data and gain full control of the system.

2.5 Hardware Threading Attacks

Attackers can also exploit hardware threading to examine a competing threads
L1 cache usage in real time [14] [36]. Simultaneous multithreading (the sharing
of the operation resources of a superscalar processor between multiple execution
threads) is a feature implemented into Intel Pentium 4 processors. Under this
implementation, the sharing of processor resources between threads spreads be-
yond the operation units. This denotes that the threads also share access to the
memory caches. Such shared access to memory caches can facilitate side channels
and enable a malign thread with restricted privilege to scan the operation of an-
other thread. In turn, this results in allowing the attackers to steal cryptographic
keys [15] [26] [36]. Additionally, by exploiting side-channel information based on
CPU delay, adversaries could potentially mount TBSCAs against the Data En-
cryption Standard (DES) implemented in some applications. Such cryptanalysis
technique applies side-channel information on encryption processing to gather
plaintexts for cryptanalysis and infers the information on the extended key from
the acquired plaintexts [42]. Through this attack, the adversary will be able to
break the cipher with plaintexts [33] [31] [30].

2.6 Data Loss and Data Breach

Data stored in the cloud could be lost because of the hard drive failure, its acci-
dental deletion by CSPs or malicious modification by adversaries, etc. Data loss
can have disastrous impacts on enterprises such as bankruptcy. A data breach
occurs when a VM accesses data from another VM on the same physical host
(when the tenants of the two VMs are different customers). For example, a data
breach can be carried out through a Side-Channel Attack, in which adversaries
could potentially access data from one VM through another by utilising their
shared components such as processors cache.

3 Countermeasures

Shared Technology: Cloud Security Alliance (CSA) (Hubbard and Sutton, 2010)
recommends a defence in depth strategy that should include compute, storage,



and network security enforcement and monitoring. According to recommenda-
tion, CSPs could deploy robust compartmentalization to ensure that individual
customers do not affect the operations of other tenants running on the same
CSP. This denotes that customers must not be able to have access to any other
tenants actual or residual data, network traffic, etc. Data Loss and Data Breach:
Thus, one of the most effective ways to safeguard against data loss is to have in
place a proper data backup, which resolves data loss issues.

3.1 Side-Channel Countermeasures

The purpose of a SCA countermeasure must be to hide the leakage or reduce it
so that it holds minor or no valuable information against which an adversary is
motivated to launch an attack. One of the most widely used defence mechanisms
against a SCA relies on rendering the security operation time delay constant or
random irrespective of the microarchitecture components utilised [14]. However,
implementing constant-time execution code is difficult because optimisations
presented by the compiler must be circumvented. Therefore, dedicated constant-
time libraries have been introduced to enable security developers to safeguard
their applications against SCAs. Hardware partitioning can also be used as a
countermeasure to safeguard against SCAs. This hardware partitioning must be
based on inactivating hardware threading, page sharing, presenting Hardware
Cache Partitions, quasi-partitioning, and migrating VMs within cloud services.
Considering that SCAs exploit physical elements of a system, its countermea-
sures must take the approach of enhancing the security of the system design
and development such as that of cache architectures. These cache mechanisms
should be offered without vast performance costs.

Furthermore, efficient implementation of Advanced Encryption Standard (AES)
algorithm in hardware could be utilised as a defence mechanism against SCAs.
There are currently few manufacturers implementing better hardware support
in the design of their processor technologies to offer better constant-time cryp-
tography operations. For instance, Intel has introduced AES New Instructions
(AES NI), which is a new encryption instruction set that enhances on the AES
algorithm and speeds up the encryption of data in the two categories of Intel
Xeon processor and the Intel Core processor. AES-NI provides an advantage in
relation to speed over other implementations. Moreover, since AES-NI, which
consists of seven new instructions, was specifically developed to be constant-
time, it provides a better protection against SCAs over some other software
implementations.

3.2 Cache-Based Countermeasures

Configurable Cache Architecture could be used as a countermeasure to provide
hardware assisted defence against CBSCA [45]. The cache is dynamically divided



into safeguarded regions and can be configured for an application. In partitioned
caches, there is a section of the cache that is assigned exclusively to the safe-
guarded process so as to avert information leakage. Therefore, partitioned cache
mechanism can be deployed as a line of defence against CBSCAs. A partitioned
cache must be included in devices that are susceptible to SCAs to separate the
cache behaviour of one process to another. This will prevent process interfer-
ence by providing adequate space to store the entire S-box in cache (It will be
locked when it is pre-loaded). Segregation does not permit forcible flushing of
the cache; furthermore, partitioned cache employs longer cache lines that render
attacks more problematic. Similarly, a method called Partition-Locked Cache
(PLcache) [45] can be used to deal with cache sharing issues. This method will
rely on a fine-grained locking control to isolate only the cache lines that contain
important data. By making private partitions only those cache lines that are of
interest are locked.

McBits [3] and Bitslice implementation of the AES [4] is another constant
time countermeasure. By not using any lookup tables, this implementation could
essentially prevent information from leaking out via a side channel. Another
countermeasure is to carry out Cache Warming or Pre-Fetching. Time-Driven
and Trace-Driven SCAs distinguish cache-miss and cache-hits. Eliminating this
distinction can be a robust countermeasure [34]. So as to prevent information
from the leakage, one needs to warm up the cache into which the Lookup Tables
must be loaded prior to the runtime being initiated. In this situation, no cache
misses will occur on condition that data is loaded to cache prior to the runtime.
As a result, there will be no leakage of data.

3.3 Rowhammer Countermeasures

To perform a successful Rowhammer attack, adversaries must undertake four
steps consisting of identifying the target device and its specific memory archi-
tecture characteristics, activating rows in each bank in a swift manner to trigger
the Rowhammer vulnerability, accessing the aggressor physical address from
userland [40] and exploiting bit flips [23]. In order to counteract a Rowham-
mer Attack, Rowhammer-induced bit flips must be blocked by altering DRAM,
memory controllers or the combination of both. It is important that specific rows
not be repeatedly triggered during a specific refresh point if the adjacent rows
are not simultaneously refreshed. Targeted Row Refresh (TRR) mode and Max-
imum Activate Count (MAC) metadata field could also be used by a memory
controller as countermeasures to safeguard against Rowhammer Attacks [21]. In
the TRR, a memory controller would need the DRAM device to refresh a rows
neighbours. In contrast, MAC metadata field specifies the number of activations
that a given row can safely cope with before its neighbours require refreshing.

Another countermeasure against Rowhammer Attacks is to use the physi-
cal probing of the memory bus via a high-bandwidth oscilloscope. This can be



achieved by determining the voltage on the pins at the DIMM slots [38]. Fur-
thermore, time analysis based on the rowbuffer conflict can be used to determine
address pair that is part of the same bank and then apply this address set to
rebuild the precise map function automatically [47] [38]. Furthermore, a simple
solution requires that DRAM vendors build Rowhammer mitigations internally
within a DRAM device, which does not need special memory controller support.

There exist various other methods that can be used to mitigate Rowhammer
Attacks. For instance, by constantly refreshing the entire rows, disturbance er-
rors could be eliminated for sufficiently short refresh intervals (RI RIth) [23].
This is despite the fact that regular refreshing might diminish performance and
energy-efficiency. Furthermore, a mechanism called Probabilistic Adjacent Row
Activation (PARA) Kim et al. (2014), which is implemented in the Memory Con-
troller can also be utilised to prevent DRAM disturbance errors Manufacturers
could also retire DRAM cells, identified as victim cells, and remap them to spare
cells. The end-users, themselves, could also retire DRAM sells by assessing and
utilising system-level techniques for deactivating faulty addresses or remapping
defective addresses to reserved addresses [31] [23](Montasari, hardware Kim et
al., 2014).

Authors in (Ghasempour et al., 2015) have also suggested a Run-Time Mem-
ory Hot Detector (ARMOR) to mitigate Rowhammer attacks. ARMOR is anal-
ogous to DRAM in that it is implemented at the memory level. According to
the authors in (Ghasempour et al., 2015), ARMOR is capable of detecting all
the conceivable Row Hammer errors, screening the activation flow at the mem-
ory level and also identify hot rows (specific rows) that might be hammered at
run-time.

One method of detecting a Rowhammer attack is to implement the last-level
cache counter facility to generate an interrupt after N misses (Aweke et al.,
2016). This method involves monitoring the last-level cache misses on a refresh
interval and row access with high temporal locality on certain processors such
as Intel/AMD (Fournaris et al., 2017). In the event of missing cache surpass-
ing a threshold, a selective refresh could be performed on the vulnerable row.
Identifying the hot row (i.e. specific row or aggressor row) and refreshing its
neighbouring rows is another technique to counteract a Rowhammer attack.

The CFLUSH command available on user space (userland) for x86 devices
can also be used as a countermeasure to evict cache lines associated with the
aggressor row addresses among its memory accesses [40] [23]. However, these
countermeasures do not appear to be appropriate to deal with Rowhammer At-
tacks in CCEs. In the context of cloud, Rowhammer Attacks are executed on dif-
ferent attack interfaces (e.g. scripting language based attacks) by deploying web
browsers that are activated remotely, a view supported by the authors in [16] [5].

Therefore, it is essential to develop new eviction methods to replace the ex-
isting flush instructions so that Rowhammer attacks within cloud environments
can be addressed more effectively. These new methods must be able to iden-



tify an eviction set that would comprise of addresses which will be part of the
same cache set of the aggressor rows. For instance, this can be accomplished
by employing a Time Attack to identify the eviction set. Yet, another eviction
method could be based on the reverse engineering analysis of the system that
has come under attack [7]. However, this could be a complex task considering
the modern Intel processors. Direct Memory Access methods could be utilised
to bypass CPUs and their caches to address the Rowhammer attacks [43].

4 Conclusion

In this study, we identified and analysed both common and underexplored hardware-
based attacks associated with CCEs. We then made several recommendations
with a view to mitigating such attacks. This analysis was based on our own
experience as well as various sources in the literature such as official documen-
tations, white papers and existing research articles. As a future work, in order
to realise the fullness of our recommended countermeasures, one could perform
distinct studies related to the suggested methods. Practical assessments must be
performed for each recommendation with a view to determining how effective
the countermeasure against a given attack vector is and establish whether or
not that mitigation mechanism can be bypassed. It is only by conducting these
practical studies that we can truly provide adequate insight on the fullness of
these countermeasures.
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