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A Tuned Holt-Winters White-Box Model for COVID-19 Prediction 

 

Abstract 

The year 2020 has become memorable the moment the novel COVID-19 spread massively around the 

world to become a pandemic. In this paper, we analyse and predict the future trend of the COVID-19 

cases for the top ten countries with the highest number of confirmed cases to date and the top ten 

countries with the highest growth percentage within the last month. Since many recent works have 

proposed that the COVID-19 pattern follows an exponential distribution, we use a tuned approach to 

the Holt-Winters’ additive method as a white-box model. Based on the analysis, we found that most 

of the countries are still presenting an increasing trend of confirmed cases in the near future. Apart 

from vaccine and drug development, measures such as vigilance, strategic governmental actions, 

public awareness, and social distancing are unarguably continuously needed to handle the spreading 

of COVID-19 and avoid the next wave of the outbreak. 
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1. Introduction 

The year 2020 has become a memorable year for most people around the world. It is the year when a 

disease called Coronavirus Disease 2019 (COVID-19) has spread massively and took the lives of more 

than half million people globally within just six months (WHO, 2020). Although the disease could be 

traced back to the late of 2019, when it was believed that Wuhan City in the Hubei Province in China 

had become the epicentre of the disease (Li et al., 2019; Abd El-Aziz & Stockand, 2020; Acter et al., 

2020), it is in 2020 that the disease became a pandemic (Spinelli & Pellino, 2020). 

COVID-19 is a major public health issue that is caused by a novel type of coronavirus. As announced 

by the International Committee on Taxonomy of Viruses, the virus is called Severe Acute Respiratory 

Syndrome Coronavirus-2 (SARS-CoV-2) (Lai et al., 2020). This virus is known to have great 

commonalities with two previous pandemics, which took place in 2002 and 2012, respectively; these 

are the Severe Acute Respiratory Syndrome (SARS) coronavirus and the Middle Eastern Respiratory 

Syndrome (MERS) coronavirus (Park et al., 2020). It further counts with a high reproductive number, 

a long period of incubation, and a low rate of case fatality compared to SARS and MERS (Xie & Chen, 

2020). 

Due to its importance and impacts on society, a growing number of research related to COVID-19 can 

be seen daily. Some focus on drug and vaccine creation (Dhama et al., 2020; Liu et al., 2020), some on 

the strategic management of the virus (Block et al., 2020; Mandal et al., 2020), and some others on 

the prediction of the growth and trend of the virus. Research on the prediction of COVID-19 has gained 

a special interest because it could help the Government, the policymakers, other stakeholders, and 

the society at large, to take precautionary actions when facing this crisis. Various types of methods 

have been used for prediction purposes, such as mathematical models, time series analyses, and even 

sophisticated soft computing algorithms. 
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Fanelli and Piazza (2020) used a simple susceptible-infected-recovered-deaths (SIRD) model to analyse 

and forecast the COVID-19 spreading in China, Italy, and France. Meanwhile, Wangping et al. (2020) 

developed an infectious disease dynamic extended susceptible-infected-removed (eSIR) model to 

estimate the COVID-19 trend in Italy. Singhal et al. (2020) developed a Gaussian mixture model to 

predict the COVID-19 in several countries, such as India, Italy, and the United States of America (USA). 

Torrealba-Rodriguez et al. (2020) used both Gompertz and Logistic models, as well as Artificial Neural 

Network, to predict COVID-19 confirmed cases in Mexico. Similarly, Yang et al. (2020) also combined 

the susceptible-exposed-infection-removed (SEIR) model and an Artificial Intelligence (AI) approach 

to predict the epidemic. As for the time series analysis and modelling, Petropoulos and Makridakis 

(2020) applied a univariate time series model from an exponential smoothing family. Qi et al. (2020) 

experimented on 14-day exponential moving averages to find the association between COVID-19 with 

temperature and relative humidity in 30 provinces in China. Lastly, Cao et al. (2020) also implemented 

different kinds of methods for epidemic prediction of COVID-19, including the exponential smoothing 

method, the autoregressive integrated moving average (ARIMA), and the ARIMAX method. 

Moreover, many researchers have used powerful soft computing methods in COVID-19 prediction and 

analysis. Swapnarekha et al. (2020) examined that machine learning methods have been efficiently 

used in numerous literatures for prediction and diagnosis of COVID-19. Chimmula and Zhang (2020) 

predicted the COVID-19 transmission in Canada by using the long short-term memory (LSTM) network. 

Kırbaş et al. (2020) also used and compared the LSTM method with ARIMA and nonlinear 

autoregression neural network (NARNN) in forecasting the COVID-19 cases. Mei et al. (2020) 

implemented various kind of AI methods, such as convolutional neural network (CNN), support vector 

machine (SVM), random forest (RF), and multilayer perceptron (MLP) during their study to find an AI-

enabled system that could rapidly diagnose COVID-19 suspects. Yan et al. (2020) applied the 

supervised XGBoost classifier as the predictor model in predicting COVID-19 patients at the highest 

risk to reduce the mortality rate. Lastly, Hasan (2020) proposed and reported the effectiveness of a 

hybrid model that uses ensemble empirical mode decomposition (EEMD) and artificial neural network 

(ANN) in COVID-19 prediction. 

Although prediction models for COVID-19 have multiplied in number, some critical appraisals have 

emerged in the academic literature. Wynants et al. (2020) specifically screened around 4900 titles and 

further examined 51 studies that describe 66 prediction models for COVID-19. They found that the 

proposed models are poorly reported, give a high risk of bias, with overly optimistic results. 

Furthermore, Roda et al. (2020) argued that predictions by using sophisticated models, also known as 

black-box models (such as Machine Learning methods), might not be more reliable than using a 

simpler one. This is because there is still much we do not know or understand yet about the pandemic; 

hence, we need models that we can clearly explain to stakeholders how they behave, how they 

produce predictions, and what the influencing variables might be; in other words, we need white-box 

models. This is the rationale that guided us in the choice of model for the present paper. The following 

Table 1 provides a brief comparison between black-box and white-box models, highlighting their 

advantages and disadvantages. 
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Table 1. 

A Comparison Between Black-Box Models and White-Box Models. 

Black-box models White-box models 

Address highly non-linear structures. Address linear or stepwise linear or curve linear 

structures. 

Logically well-defined and mathematically 

complex. 

Logically and mathematically well defined, and 

simple. 

Large number of parameters; hence, models are 

high-dimensional. 

Small number of parameters. 

Large number of features. Relatively small number of features. 

Statistical hypothesis testing is irrelevant. Statistical hypothesis testing is relevant. 

High computational complexity. Low computational complexity. 

Lack clarity around inner workings. The input-output relationship is visible, and the 

process through which the output is produced is 

also visible. 

Large data set. Relatively small data set. 

Do not warrant any statistical distributional 

assumptions. 

Warrant statistical distributional assumptions. 

Modelling is usually a trial and error and 

iterative process. 

Modelling is less of a trial and error process and 

more of a systematic approach. 

Guided by rules of thumb. Guided by established criteria. 

Results depend on the hyperparameter tuning 

strategy. 

Results depend on the statistical estimation 

properties. 

Lower explainability or interpretability. Higher explainability or interpretability. 

Lower transparency and accountability.  Higher transparency and accountability. 

Higher accuracy. Relatively lower accuracy. 

 

In this study, we aim to analyse and predict the future trend of the COVID-19 cases for the top ten 

countries with the highest number of confirmed cases to date (14 June 2020) and the top ten countries 

with the highest growth percentage within the last month. After China lifted Wuhan City lockdown on 

8 April 2020 (BBC, 2020), a growing number of countries have also lifted or eased the lockdown 

restrictions in May and June 2020 (Pharmaceutical Technology, 2020). Therefore, the prediction of 

COVID-19 during this time period could reveal which countries may be affected mostly by the next 

wave of COVID-19. Since many recent works imply that the COVID-19 pattern follows an exponential 

distribution (Leung et al., 2020; Tuli et al., 2020), we will use a modified approach to Holt-Winters’ 

additive method, as reported in Hansun et al. (2019). 

2. Data Source and Applied Algorithm 

Since the early time of the COVID-19 outbreak, a team of scientists at Johns Hopkins University (JHU) 

have responded to the public health crisis by developing an online real-time interactive dashboard to 

visualise and track reported cases of COVID-19 (Dong et al., 2020). They used GitHub as a data 

repository for COVID-19 Dashboard, which is operated by the JHU Center for Systems Science and 

Engineering (JHU CSSE, 2020). The repository consists of nation-wide and global data, such as 

confirmed, recovered, and death cases (Tiwari et al., 2020). In this study, we use the confirmed cases 
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around the world from 22 January 2020 to 14 June 2020 to predict the future values for the top ten 

countries with the highest number of confirmed cases to date (14 June 2020) and the top ten countries 

with the highest growth percentage within the last month. 

In this study, a modified approach to the Holt-Winters’ additive method is applied. Holt-Winters (HW) 

is one of the most commonly used methods in the exponential smoothing family (Hansun, 2017). In 

2019, Hansun et al. (2019) proposed new formulas for finding the initial values in the HW additive 

method. In summary, the proposed formulas for the initial overall smoothing (𝑆) and the initial trend 

smoothing (𝑏) are shown in Eq. (1) and Eq. (2) below: 

 𝑆 =
𝐿𝑦𝐿+(𝐿−1)𝑦(𝐿−1)+⋯+(𝐿−𝑛+2)𝑦(𝐿−𝑛+2)+(𝐿−𝑛+1)𝑦(𝐿−𝑛+1)

𝐿+(𝐿−1)+⋯+(𝐿−𝑛+2)+(𝐿−𝑛+1)
, (1) 

 𝑏 =
1

𝐿2
(
2𝐿𝑦2𝐿+(2𝐿−1)𝑦(2𝐿−1)+⋯+(𝐿+2)𝑦(𝐿+2)+(𝐿+1)𝑦(𝐿+1)

2𝐿+(2𝐿−1)+⋯+(𝐿+2)+(𝐿+1)
−

𝐿𝑦𝐿+(𝐿−1)𝑦(𝐿−1)+⋯+2𝑦2+𝑦1

𝐿+(𝐿−1)+⋯+2+1
), (2) 

where 𝐿 is the season length, 𝑛 is the span period of the forecasting formula, and 𝑦 is the real data. 

Meanwhile, the initial values for the seasonal indices are computed by averaging every observed 

season, dividing every observed value by the season’s average, and lastly, by averaging each of these 

numbers across the observed seasons. 

By using all the initial values, we follow the HW additive method procedure to find the overall 

smoothing, trend smoothing, and seasonal smoothing, as shown in Eq. (3) – Eq. (5): 

 𝑆𝑡 = 𝛼(𝑦𝑡 − 𝐼𝑡−𝐿) + (1 − 𝛼)(𝑆𝑡−1 + 𝑏𝑡−1), (3) 

 𝑏𝑡 = 𝛾(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛾)𝑏𝑡−1, (4) 

 𝐼𝑡 = 𝛽(𝑦𝑡 − 𝑆𝑡−1 − 𝑏𝑡−1) + (1 − 𝛽)𝐼𝑡−𝐿, (5) 

where 𝑆𝑡 is the overall smoothing, 𝑏𝑡 is the trend smoothing, 𝐼𝑡 is the seasonal smoothing, 𝑦𝑡 is the 

actual data, and 𝑡 is an index denoting a time period. The season length (𝐿) refers to the number of 

data points that indicate the beginning of a new season. 𝛼, 𝛽, and 𝛾 are constant parameters between 

0 and 1, which should be estimated in such a way so as to minimise the error measurements. Lastly, 

the forecasted value can be calculated using Eq. (6): 

 𝐹𝑡+𝑚 = 𝑆𝑡 +𝑚𝑏𝑡 + 𝐼𝑡−𝐿+𝑚, (6) 

where 𝐹𝑡+𝑚 is the forecast at 𝑚 periods ahead. 

The main difference between the modified approach and the original HW additive method lies in the 

process of determining the initial values for overall smoothing and trend smoothing. The initial value 

for overall smoothing in the original approach can be found simply by using the last observed value. 

Meanwhile, in the modified approach, the weighting factor calculation from several recent 

observations is applied to get the initial value for overall smoothing, as shown in Eq. (1). Similarly, 

while the initial value for trend smoothing in the original approach only concerns the difference 

between observations in the first and second seasons, in the modified approach, we added the 

weighting factor calculation from those seasons before taking the difference, as shown in Eq. (2). 

Moreover, we also implement a brute force approach to get the best constant parameters (α, β, and 

γ) in the training phase of this study.  
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3. Data Analysis 

In the present work, we use the global confirmed cases of COVID-19 from JHU CSSE, which have been 

recorded daily from 22 January 2020 to 14 June 2020. However, as previously mentioned, in the data 

analysis, we are not only using the highest number of confirmed cases, but also the highest growth 

percentage of confirmed cases in the world within the last month. The motivation behind this decision 

is to predict the changing situation of COVID-19 more accurately, especially due to the easing of the 

lockdown restrictions that happened in most countries in May and June 2020. Therefore, there are 

two kinds of data that are of our interest, i.e., the data concerning the top ten countries with the 

highest number of confirmed cases to date and the data concerning the top ten countries with the 

highest growth percentage of confirmed cases within the last month. Moreover, to help with the data 

analysis, we use Python 3.7 programming language within the Anaconda 3 environment. The following 

Figure 1 shows the process that we followed in this paper.  

 

Fig. 1. Process Diagram. 

First, the data set is divided into two parts, one for the training phase and another one for the testing 

phase. The tuning strategy is implemented in the training phase, where the initial values (overall 

smoothing, trend smoothing, seasonal indices) and parameters (α, β, γ) are chosen to give the smallest 

error from the model implemented. Next, the best-found parameters are used in the testing phase of 

the model to get the prediction of future numbers of COVID-19 confirmed cases. Then, the prediction 

results can be used as a foundation for the policy recommendations of the countries considered in 

this study. 

3.1 Top Ten Countries with the Highest Growth Percentage of Confirmed Cases 

Figure 2 shows the general algorithm to import all the needed libraries, read the CSV data, get the 

countries’ names, and extract the start date up to the last date of the data given. 
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Fig. 2. General starting procedure. 

Next, as shown in Figure 3, we performed the analysis of the percentage growth by getting the last 

four weeks' dates from the data set. Then, we extracted the data records for the associated dates and 

calculated the growth percentage of confirmed COVID-19 cases. We saved the growth percentage 

data in a new data column and got the rank of each country. Lastly, we selected the top ten rank and 

plotted the result, as depicted in Figure 4. 
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Fig. 3. Analysis of the Growth Percentage of Confirmed COVID-19 Cases. 
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Fig. 4. Top Ten Countries with the Highest Growth Percentage of COVID-19 Cases. 

As shown in Figure 4, most of the top ten countries with the highest growth percentage within the last 

month (17 May – 14 June 2020) are located in Africa. This result aligns with the global comparison 

report from Ritchie et al. (2020) and Roser et al. (2020), but may change due to the rapidly changing 

situation of COVID-19 worldwide. 

3.2 Top Ten Countries with the Highest Number of Confirmed  COVID-19 Cases 

To get the top ten countries with the highest number of confirmed COVID-19 cases, we need to get 

the rank of each country based on the number of the last date confirmed cases, save it in a new data 

column, select only the top ten rank, and plot the result (Figure 5). The top ten countries with the 

highest number of confirmed COVID-19 cases (until 14 June 2020) is shown in Figure 6. 

 

Fig. 5. Analysis of the Highest Number of Confirmed COVID-19 Cases. 
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Fig. 6. Top Ten Countries with the Highest Number of Confirmed COVID-19 Cases. 

The interested reader can access the codes illustrated in Sections 3.1 and 3.2 above in the GitHub 

repository at https://github.com/profvc/Prediction_COVID19.git. 

4. Prediction Results 

In this section, we show the prediction results for the top ten countries with the highest number of 

confirmed COVID-19 cases to date and the top ten countries with the highest growth percentage of 

cases within the last month by using a modified approach to the HW additive method, as explained in 

Section 2. We divide the data set into two parts for the training and testing phases, with 80:20 ratio. 

For the training phase, we use the data from 22 January 2020 to 16 May 2020 (116 data points), while 

for the testing phase, we use the data from 17 May 2020 to 14 June 2020 (29 data points). From the 

training phase, we get the best parameters for 𝛼, 𝛽, and 𝛾, together with their Mean Absolute 

Percentage Error (MAPE) values for each country, as shown in Table 2 and Table 3.  In this experiment, 

we use MAPE to estimate the prediction error for each country. We also use seven seasonal lengths 

with four span data periods as the input parameters for the modified approach.  

Table 2. 

Best Parameters for the Top Ten Countries with the Highest Growth Percentage of Confirmed COVID-19 Cases. 

Country Name Best 𝛼 Best 𝛽 Best 𝛾 MAPE 

Ethiopia 0.46 0.44 0.20 7.8364 

Haiti 0.86 0.30 0.04 8.4836 

Mauritania 0.46 0.58 0.02 8.6591 

Nepal 0.98 0.04 0.04 8.2386 

Nicaragua 0.88 0.32 0.02 6.2598 

Suriname 0.44 0.56 0.00 6.3195 

Zimbabwe 0.92 0.26 0.02 7.8247 

Libya 0.98 0.22 0.00 6.3946 

Malawi 0.96 0.28 0.00 7.2290 

Comoros 0.52 0.36 0.04 6.1156 
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Table 3. 

Best Parameters for the Top Ten Countries with the Highest Number of Confirmed COVID-19 Cases 

Country Name Best 𝛼 Best 𝛽 Best 𝛾 MAPE 

Brazil 0.98 0.24 0.28 11.5175 

France 0.94 0.00 0.62 5.8901 

Germany 0.90 0.04 0.68 4.5761 

India 0.90 0.14 0.32 6.6059 

Italy 0.80 0.04 0.98 4.9094 

Peru 0.98 0.36 0.12 11.8567 

Russia 0.90 0.32 0.44 8.5482 

Spain 0.98 0.08 0.52 9.3054 

United Kingdom 0.72 0.04 0.64 6.5180 

US 0.92 0.00 0.98 4.5649 
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Fig. 7. Prediction Results for the Top Ten Countries with the Highest Growth Percentage of COVID-19 Cases. 
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Fig. 8. Prediction Results for the Top Ten Countries with the Highest Number of Confirmed COVID-19 Cases. 

Figure 7 and Figure 8 visually exhibit the prediction results for both sets of data in both the training 

and testing phases. Using the best parameters found as shown in Table 2 and Table 3, we predict the 

future values for each country in the testing phase. Table 4 shows the MAPE and future prediction of 

confirmed COVID-19 cases for the top ten countries with the highest growth percentage of COVID-19 

cases within the last month. Table 5 shows the values of the same attribute for the top ten countries 

with the highest number of confirmed COVID-19 cases. Moreover, we also show the upward or 

downward trend percentage for the prediction that is compared to the last known values in the data 

set. 

Table 4. 

Future Trend Prediction for the Top Ten Countries with the Highest Growth Percentage of Confirmed COVID-19 

Cases. 

Country Name MAPE Future Prediction Trend 

Ethiopia 5.8079 3 459 Up + 3.41% 
Haiti 6.1507 4 225 Up + 1.44% 
Mauritania 13.9907 1 711 Down – 4.07% 
Nepal 7.6191 5 923 Up + 2.82% 
Nicaragua 7.0589 1 491 Up + 1.83% 
Suriname 21.1618 197 Down – 5.46% 
Zimbabwe 7.8912 390 Up + 1.78% 
Libya 8.1164 469 Up + 3.26% 
Malawi 7.3473 554 Up + 1.25% 
Comoros 5.2031 177 Up + 0.54% 
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Table 5. 

Future Trend Prediction for the Top Ten Countries with the Highest Number of Confirmed COVID-19 Cases. 

Country Name MAPE Future Prediction Trend 

Brazil 1.4276 894 678 Up + 3.12% 
France 0.5540 189 959 Up + 0.19% 
Germany 0.0958 187 774 Up + 0.14% 
India 0.9635 330 842 Up + 3.09% 
Italy 0.0519 237 372 Up + 0.16% 
Peru 1.5836 234 366 Up + 2.02% 
Russia 0.3835 539 696 Up + 2.16% 
Spain 0.1120 244 354 Up + 0.18% 
United Kingdom 0.1997 297 510 Up + 0.55% 
US 0.2092 2 114 721 Up + 0.99% 

 

From Table 4, we can conclude that almost all of the ten countries still have an increasing trend of 

COVID-19 confirmed cases, except for Suriname and Mauritania, who present a decreasing trend 

instead. Among the top ten countries with the highest growth percentage of confirmed COVID-19 

cases within the last month, Ethiopia, Libya, and Nepal are the three countries that present more than 

2.5% increasing trend percentage, so they are most likely to have an increasing number of confirmed 

COVID-19 cases in the near future. 

Moreover, if we check the prediction for the top ten countries with the highest number of confirmed 

COVID-19 cases, we see that all these countries still have an increasing trend in the near future. 

However, most of these countries have a relatively small increasing trend percentage, which is less 

than 1%. The exceptions are Brazil, India, Russia, and Peru; these are countries that have more than 

2% increasing trend percentage of confirmed cases. The following Figure 9 and Figure 10 visually 

depict the trend percentage based on the last column in Table 4 and Table 5, respectively. 

 

Fig. 9. Trend Percentage Projection for the Top Ten Countries with the Highest Growth Percentage of 

Confirmed COVID-19 Cases. 
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Fig. 10. Trend Percentage Projection for the Top Ten Countries with the Highest Number of Confirmed COVID-

19 Cases. 

5. Implications for practice and conclusions 

As a response to the changing global situation caused by the COVID-19 pandemic, we analysed and 

predicted the future trend for the top ten countries with the highest number of confirmed COVID-19 

cases to date (14 June 2020) and the top ten countries with the highest growth percentage within the 

last month (May-June 2020). We used a tuned approach to the Holt Winters’ additive method as a 

white-box model and found that the applied method could predict the future trend of the most 

affected countries. In this sense, results indicate that most of the top ten countries with the highest 

growth percentage are located in the African continent. Moreover, the top ten countries with the 

highest number of confirmed COVID-19 cases are countries that have a high population number.  

Among the top ten countries with the highest growth percentage, Suriname and Mauritania are the 

two countries that have a decreasing trend prediction. On the other hand, three countries have more 

than 2.5% increasing trend percentage; these countries are Ethiopia (3.41%), Libya (3.26%), and Nepal 

(2.82%). Moreover, all countries included in the top ten countries with the highest number of 

confirmed COVID-19 cases have an increasing trend prediction, although for most of them, the 

percentage is relatively small, less than 1%. The exceptions are posed by Brazil (3.12%), India (3.09%), 

Russia (2.16%), and Peru (2.02%).  

A debate has recently ensued with regards to whether the COVID-19 pandemic is unfolding in “waves” 

or it is only “one big wave” with ups and downs, although the World Health Organization stated that 

there is no evidence of seasonal variations (The Guardian, 2020). Nevertheless, independent of how 

we wish to perceive the behaviour of the virus, our results support the argument that measures such 

as vigilance and strategic governmental actions, effective communication strategies, public awareness 

and education, and social distancing are unarguably continuously needed to handle the spreading of 

COVID-19, especially considering that vaccine and drug development will take a long time (about 12-

18 months, according to ‘The race against COVID-19’, 2020) and herd immunity has not yet been 

achieved (Graeden et al., 2020). As Sabat et al. (2020) stated, “policymakers and public health experts 

have to persuade their citizens to make behavior changes and respect future containment 

interventions while facing the difficulty of enforcing such regulations” (p. 2). Otherwise, the near 
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future will inevitably bring the “next wave” or the “next up of the one big wave” of the COVID-19 

outbreak.  

There is, however, the critical issue of striking a balance between saving lives and saving livelihoods 

(Sabat et al., 2020), with a large part of the population becoming more and more concerned about 

the negative impact of the pandemic on the economy. The proposed model and our results could be 

used as an early warning system by means of helping relevant governments and stakeholders to 

monitor the current situation and use our forecasts to prevent further transmissions. The lifting of 

lockdown restrictions has become a subject of increasing public debate and scrutiny, with critical 

questions being raised in regard to timing, risks, and consequences (The New York Times, 2020). 

Guided by the short-term forecasts, the localised lockdown periods and other measures could be 

adjusted accordingly. 

Large amounts of data within the framework of big data are constantly being generated at an 

exponential rate; and by depicting more and more complex scenarios and interrelationships, these 

data hold the potential to expand the opportunities for making better decisions at strategic, tactical, 

and operational levels (Charles, Tavana, & Gherman, 2015). Transforming these data into meaningful 

knowledge (Charles & Gherman, 2013) in a timely manner represents a key factor of success in the 

fight against the COVID-19 pandemic. As we noted in the introductory section, recent studies have 

used a range of artificial intelligence and machine learning approaches (or black-box models) to 

develop sophisticated prediction models to make sense of these rather large data sets; but, as Roda 

et al. (2020) argued, these models might not be more reliable than using a simpler one. This is because 

there is still much we do not know or understand yet about the pandemic; hence, we need models 

that we can clearly explain to stakeholders how they behave, how they produce predictions, and what 

the influencing variables might be. 

In view of this, using a white-box model, such as Hansun et al. (2019)’s tuned HW method, was 

considered to be suitable. Of course, there is always a trade-off between using black-box and white-

box models. While black-box models provide higher accuracy and are said to outperform white-box 

models even when dealing with less complex scenarios, they lack clarity around inner workings; white-

box models avoid such shortcomings by allowing higher explainability or interpretability. In our case, 

having higher interpretability is meaningful, since as mentioned, the COVID-19 pandemic is still less 

than well understood; hence, the fact that we do not yet count with enough practical experience 

deems the ability to interpret the models we create as rather valuable. Furthermore, future research 

could complement these analyses with additional insights gathered from more qualitative approaches 

(Charles & Gherman, 2018), which would help to provide a more comprehensive picture of the 

unstructured data gathered, and thus, of the COVID-19 pandemic and the measures taken to fight 

against it; this, in turn, would generate even more societal value.  
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