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Abstract 

Over the last ten years, Oosterhof and Todorov’s valence-dominance model has 

emerged as the most prominent account of how people evaluate faces on social 

dimensions. In this model, two dimensions (valence and dominance) underpin social 

judgments of faces. Because this model has primarily been developed and tested in 

Western regions, it is unclear whether these findings apply to other regions. We 

addressed this question by replicating Oosterhof and Todorov’s methodology across 11 

world regions, 41 countries, and 11,570 participants. When we used Oosterhof and 

Todorov’s original analysis strategy, the valence-dominance model generalized across 

regions. When we used an alternative methodology to allow for correlated dimensions 

we observed much less generalization. Collectively, these results suggest that, while 

the valence-dominance model generalizes very well across regions when dimensions 

are forced to be orthogonal, regional differences are revealed when we use different 

extraction methods, correlate and rotate the dimension reduction solution.   
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Introduction 

People quickly and involuntarily form impressions of others based on their facial 

appearance1-3. These impressions then influence important social outcomes4,5. For 

example, people are more likely to cooperate in socioeconomic interactions with 

individuals whose faces are evaluated as more trustworthy6, vote for individuals whose 

faces are evaluated as more competent7, and seek romantic relationships with 

individuals whose faces are evaluated as more attractive8. Facial appearance can even 

influence life-or-death outcomes. For example, untrustworthy-looking defendants are 

more likely to receive death sentences9. Given that such evaluations influence profound 

outcomes, understanding how people evaluate others’ faces can provide insight into a 

potentially important route through which social stereotypes impact behavior10,11. 

 Over the last decade, Oosterhof and Todorov’s valence-dominance model12 has 

emerged as the most prominent account of how we evaluate faces on social 

dimensions5. Oosterhof and Todorov identified 13 different traits (aggressiveness, 

attractiveness, caringness, confidence, dominance, emotional stability, unhappiness, 

intelligence, meanness, responsibility, sociability, trustworthiness, and weirdness) that 

perceivers spontaneously use to evaluate faces when forming trait impressions12. From 

these traits, they derived a two-dimensional model of perception: valence and 

dominance. Valence, best characterized by rated trustworthiness, was defined as the 

extent to which the target was perceived as having the intention to harm the viewer12. 

Dominance, best characterized by rated dominance, was defined as the extent to which 

the target was perceived as having the ability to inflict harm on the viewer12. Crucially, 

the model proposes that these two dimensions are sufficient to drive social evaluations 

of faces. As a consequence, the majority of research on the effects of social evaluations 

of faces has focused on one or both of these dimensions4,5. 
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 Successful replications of the valence-dominance model have only been 

conducted in Western samples13,14. This focus on the West is consistent with research 

on human behavior more broadly, which typically draws general assumptions from 

analyses of Western participants’ responses15. Kline et al. recently termed this 

problematic practice the “Western centrality assumption” and argued that regional 

variation, rather than universality, is likely the default for human behavior16.  

 Consistent with Kline et al.’s notion that human behavior is best characterized by 

regional variation, two recent studies of social evaluation of faces by Chinese 

participants indicate different factors underlie their impressions17,18. Both studies 

reported that Chinese participants’ social evaluations of faces were underpinned by a 

valence dimension similar to that reported by Oosterhof and Todorov for Western 

participants, but not by a corresponding dominance dimension. Instead, both studies 

reported a second dimension, referred to as capability, which was best characterized by 

rated intelligence. Furthermore, the ethnicity of the faces rated only subtly affected 

perceptions17. Research into potential cultural differences in the effects of 

experimentally manipulated facial characteristics on social perceptions has also found 

little evidence that cultural differences in social perceptions of faces depend on the 

ethnicity of the faces presented19-21. Collectively, these results suggest that the Western 

centrality assumption may be an important barrier to understanding how people 

evaluate faces on social dimensions. Crucially, these studies also suggest that the 

valence-dominance model is not necessarily a universal account of social evaluations of 

faces and warrants further investigation in the broadest set of samples possible. 

 Although the studies described above demonstrate that the valence-dominance 

model is not perfectly universal, to which specific world regions it does and does not 

apply are open and important questions. Demonstrating differences between British and 
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Chinese raters is evidence against the universality of the valence-dominance model, but 

it does not adequately address these questions. Social perception in China may be 

unique in not fitting the valence-dominance model because of the atypically high 

general importance placed on status-related traits, such as capability, during social 

interactions in China22,23. Indeed, Tan et al. demonstrated face-processing differences 

between Chinese participants living in mainland China and Chinese participants living in 

nearby countries, such as Malaysia24. Insights regarding the unique formation of social 

perceptions in other cultures and world regions are lacking. Only a large-scale study 

investigating social perceptions in many different world regions can provide such 

insights.  

 To establish the world regions to which the valence-dominance model applies, 

we replicate Oosterhof and Todorov’s methodology12 in a wide range of world regions 

(Africa, Asia, Australia and New Zealand, Central America and Mexico, Eastern Europe, 

the Middle East, the USA and Canada, Scandinavia, South America, the UK, and 

Western Europe; see Table 1). Our study is the most comprehensive test of social 

evaluations of faces to date, including more than 11,000 participants. Participating 

research groups were recruited via the Psychological Science Accelerator project25-27. 

Previous studies compared two cultures to demonstrate regional differences17,18. By 

contrast, the scale and scope of our study allows us to generate the most 

comprehensive picture of the world regions to which the valence-dominance model 

does and does not apply.  

 

We test two specific competing predictions: 

 

Prediction 1. The valence-dominance model applies to all world regions. 
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Prediction 2. The valence-dominance model applies in Western-world regions, but not 

other world regions.  

 

Results  

Analyzed data set. Following the planned data exclusions (see supplemental materials 

for a breakdown of these exclusions, CODE 1.5), the analyzed data set is summarized 

in Table 2. 

Main analysis (principal component analysis, PCA, CODE 2.1). Oosterhof 

and Todorov reported the results of a PCA with orthogonal components, no rotation, 

and retaining components with eigenvalues > 1. We conducted an identical analysis and 

report (1) the number of components extracted per the registered criteria, (2) if the 1st 

and 2nd components had the same primary pattern as Oosterhof and Todorov, and (3) 

the similarity of the 1st and 2nd factors as quantified with a congruence coefficient. 

We extracted the same number of components (2) as Oosterhof and Todorov in 

two world regions, Africa and South America, and a different number of components (3) 

in the other world regions (see Figure 1). In the world regions where a third component 

was extracted, the trait ratings of “unhappy” and “weird’ tended to have the highest 

loadings on that component, but those ratings also crossloaded on the first component. 

We hesitate to interpret or describe this component with any authority because it varied 

across world regions, consisted of crossloaded traits, and explained only a small 

proportion of additional variance. 

The primary pattern reported by Oosterhof and Todorov (a first component that 

strongly correlated with rated trustworthiness, but not with rated dominance, and a 

second component that strongly correlated with rated dominance, but not with rated 

trustworthiness) was present in all world regions except Eastern Europe, where 
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dominance was correlated with the first component more strongly than our registered 

criterion (that dominance would correlate weakly with the first component < .5). Figure 1 

shows the full loading matrices for each region and Table 3 shows how these relate to 

our registered criteria. 

We report Tucker’s coefficient of congruence, ϕ, which quantifies the loading 

similarity of Oosterhof and Todorov’s reported component to the corresponding 

component we extracted. However, it is important to interpret ϕ with caution when the 

number of components differs across the solutions being compared. When comparing 

loadings across solutions, an assumption is that the configuration of the traits to 

components is the same (i.e., configural invariance). To the extent that the structure of 

the loading matrices differs across solutions, the comparability of the loadings is 

compromised (i.e., loadings estimated from different dimensional spaces are not on the 

same scale). For world regions that did not have the same configuration of traits to 

components (different number of components extracted, different primary pattern 

observed), ϕ is uninterpretable. This is because the differences in configuration across 

the two solutions are conflated with the loading differences.  

Our analyses indicated that the first component was equal to (ϕ > .95) the first 

component in Oosterhof and Todorov’s original study for all world regions. The second 

component was equal to (ϕ > .95) or fairly similar to (ϕ > .85) the second component 

reported by Oosterhof and Todorov in all of the world regions except Asia (ϕ = 

.848). Table 4 summarizes these results. 

Together, these results suggest the valence-dominance model generalizes 

across world regions when using an identical analysis to Oosterhof and Todorov’s 

original study. Thus, the results of our PCA support Prediction 1 (that the valence-

dominance model will apply to all world regions), but not Prediction 2 (that the valence-
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dominance model will apply in Western world regions, but not other world regions). 

However, we note here that in most world regions, we extracted a 3rd component not 

extracted in the original study, that Eastern Europe did not demonstrate the same 

primary pattern, and that ϕ should be interpreted with caution for all world regions 

except Africa and South America.  

Robustness analyses (Exploratory Factor Analysis, CODE 2.2). Following 

our analysis plan, we conducted additional robustness analyses that directly addressed 

criticisms of the type of statistical analyses used by Oosterhof and Todorov (see42 for a 

discussion of these criticisms). These robustness analyses employed EFA with an 

oblimin rotation as the model and used parallel analysis to identify the number of factors 

to extract. The goal of an EFA with an oblimin rotation is to simplify the loading matrix 

and yield interpretable factors.  

We conducted this analysis on Oosterhof and Todorov’s original data and found 

a similar result to their PCA solution: two factors extracted, with Factor 1 characterized 

by a high loading for trustworthiness and Factor 2 characterized by a high loading for 

dominance. However, for all other world regions, we extracted more than two factors 

using parallel analysis. Full EFA loading matrices for each region and Oosterhof and 

Todorov’s original data are shown in Figure 2. The four-factor solution for the USA and 

Canada did not converge. We did not register a contingency for nonconvergence, but 

because parallel analysis can lead to over extraction, we reran the EFA with one less 

than the number of suggested factors. The model converged when estimating three 

factors.  

In contrast to the PCA, the results of our robustness analyses showed less 

evidence that the valence-dominance model generalizes across world regions. For 

example, we extracted a different number of factors than the original solution for all 
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world regions. A summary of the results for our replication criteria is given in Table 5.  

Because the number of factors differed from the original solution in all world 

regions and the loading matrices were differentially rotated from the original solution, it 

is not valid to compare the differences in the loadings from the original solution to those 

observed in the world regions reported here, as we had initially planned. Loadings 

quantify the relationship of traits to a factor. To compare loadings across samples, we 

must first determine whether we extracted the same factor in each sample (i.e., satisfied 

the assumption of configural invariance). Our registered analyses included the 

calculation of Tucker’s coefficient of congruence, ϕ, in order to compare the 1st factor 

from the original study to the 1st factor we extracted in a given world region, and to 

compare the 2nd factor from the original study to the 2nd factor extracted in a given world 

region. However, because we extracted a different number of factors from the original 

solution in all world regions, it is not valid to compare the loadings across these different 

factors or quantify their differences using ϕ.  

The congruence coefficient is only appropriate to report when we can ensure the 

factors are comparable across samples. That the number of factors extracted did not 

replicate the original pattern and that the EFAs were rotated differently across world 

regions negates the comparability of the loadings. Consistent with our registered 

analysis code, we reported ϕ for the 1st factor from Oosterhof and Todorov to the factor 

with the most explained variance in a world region, and ϕ for the 2nd factor from 

Oosterhof and Todorov to the factor with the 2nd most explained variance in a world 

region only in the supplemental materials. However, we stress that these coefficients 

are quantifying loadings that link to different factors from different dimensional spaces 

and are not necessarily comparable.    

In summary, the results of our EFA support neither Prediction 1 (that the valence-
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dominance model will apply to all world regions) nor Prediction 2 (that the valence-

dominance model will apply to Western-world regions, but not other world regions).  

Discussion 

Our primary analyses, PCAs identical to those reported by Oosterhof and 

Todorov (2008), suggested that the valence-dominance model of social perception of 

faces generalizes well across world regions. Although most world regions showed a 

third component not discussed in the original work, this third component is actually 

similar to the third component in Oosterhof and Todorov’s original study. In Oosterhof 

and Todorov’s original study, they did not interpret the third component because its 

eigenvalue was below 1, whereas in our analyses the eigenvalues of the third 

components in most of the regions are just above 1. Nonetheless, the third component 

in each region has a factor congruence between 0.77 and 0.90 with the third component 

for Oosterhof and Todorov’s data. However, we emphasize here that many of these 

dimensions accounted for a relatively small proportion of the variance explained and, 

thus, may be of limited theoretical importance. 

 In contrast to the results of our PCAs, an alternative analysis that addressed 

common criticisms of the type of analysis Oosterhof and Todorov employed showed 

much less generalization across world regions. We used modern extraction techniques 

and EFAs with correlated factor rotations. The correlated rotation methods aim to 

simplify the loading matrix with the goal of estimating interpretable factors, and in our 

data, revealed more regional variation. These results suggest that, if the dimensions of 

face perception are indeed correlated, using analytic techniques that force these 

dimensions to be uncorrelated may be obscuring important regional differences in the 

structure of face perceptions.  
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A necessary next step for moving forward in person-perception research is to 

address which analysis model (PCA or EFA) best aligns with theory, so that those 

models and theories can be revised and expanded appropriately in future research. 

Crucially, the two models make different assumptions about trait ratings of faces. The 

PCA model does not assume that a latent factor causes the trait ratings of the faces. 

The component captures linear combinations of the original variables, maximized to 

explain variance. Furthermore, in the original valence-dominance model, those 

components were assumed to be orthogonal. By contrast, the theory underlying the 

EFA model is that a latent factor causes the trait ratings, and any unexplained variance 

in that rating is measurement error. Additionally, our EFA models allowed for the factors 

to be correlated.  

Theory can guide which model we use to analyze person-perception data. A 

person-perception theory that aligns with a PCA model would state that there are no 

underlying latent factors that cause a person to rate a face in a particular way. There 

are, instead, perceptual processes that vary across contexts, those doing the rating, 

and those being rated, and the differential processes give rise to components that can 

be used to reduce the data. This theory of person perception would move forward with 

identifying the shared processes across contexts, raters, and ratees to see if there are 

predictable patterns in how the data are reduced.  

A person-perception theory that aligns with an EFA model makes different 

assumptions about the processes that give rise to face ratings. This theory would state 

that latent factors (e.g., valence or dominance) cause the trait ratings and, once we 

account for the correct latent factors, any variability left in the ratings is measurement 

error. We suggest that more careful and explicit consideration of how theory connects to 
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these approaches, and of which approach is best-suited to different research questions, 

will benefit the field. 

Our study is one of several recent studies that have begun to utilize different 

statistical models and explore more dynamic theories of trait ratings21,43,44 by exploring 

how the structure of trait ratings vary systematically. This growing body of work 

catalogues variations in trait ratings by target demographic21,43, 45, target status46, target 

age47, perceiver knowledge48, and cultural factors17,18. Further, this growing body of 

work proposes dynamic theories of person perception and more flexible statistical 

models for capturing them21,43,44,49. 

Our results are consistent with this recent work in that they do not provide strong 

evidence that there are a few generalizable latent factors that cause the trait ratings 

across world regions. They do, however, suggest a dynamic process of person 

perception and elucidate the differential patterns of ratings across world regions. We 

can use these data, representing impressions formed on a global scale, to expand or 

refine our theories and guide the selection of statistical models to represent those 

theories. Given the accumulating evidence for variation in trait ratings, it is important 

that the connection between the statistical models used to represent theories of person 

perception are explicit and can accommodate the complexities of the impression 

formation process.  

 

Methods 

Ethics 

Each research group had approval from their local Ethics Committee or IRB to 

conduct the study, had explicitly indicated that their institution did not require approval 

for the researchers to conduct this type of face-rating task, or had explicitly indicated 
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that the current study was covered by a preexisting approval. Although the specifics of 

the consent procedure differed across research groups, all participants provided 

informed consent. All data was stored centrally on University of Glasgow servers. 

Procedure 

Oosterhof and Todorov derived their valence-dominance model from a principal 

components analysis of ratings (by US raters) of 66 faces for 13 different traits 

(aggressiveness, attractiveness, caringness, confidence, dominance, emotional 

stability, intelligence, meanness, responsibility, sociability, trustworthiness, 

unhappiness, and weirdness)12. Using the criteria of the number of components with 

eigenvalues greater than 1.0, this analysis produced two principal components. The first 

component explained 63% of the variance in trait ratings, strongly correlated with rated 

trustworthiness (r = .94), and weakly correlated with rated dominance (r = -.24). The 

second component explained 18% of the variance in trait ratings, strongly correlated 

with rated dominance (r = .93), and weakly correlated with rated trustworthiness (r = -

.06). We replicated Oosterhof and Todorov’s method12 and primary analysis in each 

world region we examined. 

 Stimuli in our study came from an open-access, full-color, face image set28 

consisting of 60 men and 60 women taken under standardized photographic conditions 

(Mage = 26.4 years, SD = 3.6 years, Range = 18 to 35 years). These 120 images 

consisted of 30 Black (15 male, 15 female), 30 White (15 male, 15 female), 30 Asian 

(15 male, 15 female), and 30 Latin faces (15 male, 15 female). As in Oosterhof and 

Todorov’s study12, the individuals photographed posed looking directly at the camera 

with a neutral expression, and the background, lighting, and clothing (here, a grey t-

shirt) were constant across images. 
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 In our study, adult raters were randomly assigned to rate the 13 adjectives tested 

by Oosterhof and Todorov using scales ranging from 1 (Not at all) to 9 (Very) for all 120 

faces in a fully randomized order at their own pace. Because all researchers collected 

data through an identical interface (except for differences in instruction language), data 

collection protocols were highly standardized across labs. Each participant completed 

the block of 120 face-rating trials twice so that we could report test-retest reliabilities of 

ratings; ratings from the first and second blocks were averaged for all analyses (see 

CODE 1.5.5 in the Supplemental Materials). 

Raters also completed a short questionnaire requesting demographic information 

(sex, age, ethnicity). These variables were not considered in Oosterhof and Todorov’s 

analyses but were collected in our study so that other researchers could use them in 

secondary analyses of the published data. The data from this study are the largest and 

most comprehensive open access set of face ratings from around the world with open 

stimuli by far, providing an invaluable resource for further research addressing the 

Western centrality assumption in person perception research. 

 Raters completed the task in a language appropriate for their country (see 

below). To mitigate potential problems with translating single-word labels, dictionary 

definitions for each of the 13 traits were provided. Twelve of these dictionary definitions 

had previously been used to test for effects of social impressions on the memorability of 

face photographs19. Dominance (not included in that study) was defined as “strong, 

important.”  

Participants 

Simulations determined that we should obtain at least 25 different raters for each 

of the 13 traits in every region (see https://osf.io/x7fus/ for code and data). We focused 

on ratings of attractiveness and intelligence for the simulations because they showed 



19 
 

the highest and lowest agreement among the traits analyzed by Oosterhof and Todorov, 

respectively. First, we sampled from a population of 2,513 raters, each of whom had 

rated the attractiveness of 102 faces; these simulations showed that more than 99% of 

1,000 random samples of 25 raters produced good or excellent interrater reliability 

coefficients (Cronbach’s αs >.80). We then repeated these simulations sampling from a 

population of 37 raters, each of whom rated the intelligence of 100 faces, showing that 

93% of 1,000 random samples of 25 raters produced good or excellent interrater 

reliability coefficients (Cronbach’s αs >.80). Thus, averages of ratings from 25 or more 

raters will produce reliable dependent variables in our analyses; we planned to test at 

least 9,000 raters in total. 

 In addition to rating the faces for the 13 traits examined by Oosterhof and 

Todorov, 25 participants in each region were randomly assigned to rate the targets’ age 

in light of Sutherland et al.’s results showing that a youth/attractiveness dimension 

emerged from analyses of a sample of faces with a very diverse age range30. Age 

ratings were not included in analyses relating to replications of Oosterhof and Todorov’s 

valence-dominance model. These age-ratings were collected to allow for planned 

exploratory analyses including rated age, but we did not perform these analyses. 

Analysis Plan 

The code used for our analyses is included in the Supplemental Materials and 

publicly available from the Open Science Framework (https://osf.io/87rbg/). The specific 

sections of code are cited below as (CODE x.x.x). 

 Ratings from each world region were analyzed separately and anonymous raw 

data is published on the Open Science Framework. Our main analyses directly 

replicated the principal component analysis reported by Oosterhof and Todorov to test 

their theoretical model in each region sampled (CODE 2.1). First, we calculated the 
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average rating for each face separately for each of the 13 traits (CODE 2.1.2). We then 

subjected these mean ratings to principal component analysis with orthogonal 

components and no rotation, as Oosterhof and Todorov did (CODE 2.1.3). Using the 

criteria they reported, we retained and interpreted components with eigenvalues greater 

than 1.0 (CODE 2.1.3.1).  

 Criteria for replicating Oosterhof and Todorov’s valence-dominance model. 

We used multiple sources of evidence to judge whether Oosterhof and Todorov’s 

valence-dominance model replicated in a given world region. First, we examined the 

solution from the principal components analysis conducted in each region and 

determined if Oosterhof and Todorov’s primary pattern replicated according to three 

criteria: (i) the first two components had eigenvalues greater than 1.0, (ii) the first 

component (i.e., the one explaining more of the variance in ratings) correlated strongly 

with trustworthiness ( > .7) and weakly with dominance ( < .5), and (iii) the second 

component (i.e., the one explaining less of the variance in ratings) correlated strongly 

with dominance ( > .7) and weakly with trustworthiness ( < .5). If the solution in a world 

region met all three of these criteria, we concluded that the primary pattern of the model 

replicated in that region (CODE 2.1.3.3).  

In addition to reporting whether the primary pattern was replicated in each region, 

we also reported Tucker’s coefficient of congruence31,32. The congruence coefficient, ϕ, 

ranges from -1 to 1 and quantifies the similarity between two vectors of loadings33. It is: 

 

 
 

where xi and yi are the loadings of variable i (i = 1, …, n number of indicators in the 

analysis) onto factors x and y. For the purposes of the current research, we compared 

the vector of loadings from the first component from Oosterhof and Todorov to the 
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vector of loadings from the first component estimated from each world region. We 

repeated this analysis for the second component. This produced a standardized 

measure of component similarity for each component in each world region that was not 

sensitive to the mean size of the loadings34. Further, this coefficient was fitting for the 

current study because it does not require an a priori specification of a factor structure for 

each group, as would be needed if we were to compare the factor structures in a 

multiple-group confirmatory factor analysis. Following previous guidelines34, we 

concluded that the components in Oosterhof and Todorov were not similar to those 

estimated in a given world region if the coefficient was less than .85, were fairly similar if 

it was between .85 - .94, and were equal if it was greater than .95. (CODE 2.1.4). 

 Thus, we reported whether the solution had the same primary pattern that 

Oosterhof and Todorov found and quantified the degree of similarity between each 

component and the corresponding component from Oosterhof and Todorov’s work. This 

connects to our competing predictions: 

Prediction 1 (the valence-dominance model applies to all world regions) was 

supported if the solution from the principal components analysis conducted in each 

region satisfied all of the criteria described above. Specifically, the primary pattern was 

replicated and the components had at least a fair degree of similarity as quantified by a 

ϕ of .85 or greater. 

Prediction 2 (the valence-dominance model applies in Western-world regions, but 

not other world regions) was supported if the solutions from the principal components 

analysis conducted in Australia and New Zealand, The USA and Canada, Scandinavia, 

The UK, and Western Europe, but not Africa, Asia, Central America and Mexico, 

Eastern Europe, The Middle East, or South America, satisfied the criteria described 

above.  
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Exclusions. Data from raters who failed to complete all 120 ratings in the first 

block of trials or who provided the same rating for 75% or more of the faces were 

excluded from analyses (CODES 1.5.1,1.5.3, and 1.5.5).  

 Data-quality checks. Following previous research testing the valence-

dominance model12-14, data quality was checked by separately calculating the interrater 

agreement (indicated by Cronbach’s α and test-retest reliability) for each trait in every 

world region (CODE 2.1.1). A trait was only included in the analysis for that region if the 

coefficient exceeded .70. Cases in which the coefficient does not exceed .70 will be 

reported and discussed. There were no cases in which the coefficient did not exceed 

.70. Test-retest reliability of traits was not used to exclude traits from analysis. 

 Power analysis. Simulations showed we had more than 95% power to detect 

the key effect of interest (i.e., two components meeting the criteria for replicating 

Oosterhof and Todorov’s work, as described above). We used the open data from 

Morrison et al.’s replication13 of Oosterhof and Todorov’s research to generate a 

variance-covariance matrix representative of typical interrelationships among the 13 

traits tested in our study. We then generated 1,000 samples of 120 faces from these 

distributions and ran our planned principal components analysis (which is identical to 

that reported by Oosterhof & Todorov) on each sample (see https://osf.io/87rbg/ for 

code and data). Results of >99% of these analyses matched our criteria for replicating 

Oosterhof and Todorov’s findings. Thus, 120 faces gave us more than 95% power to 

replicate Oosterhof and Todorov’s results.  

 Robustness analyses. Oosterhof and Todorov extracted and interpreted 

components with an eigenvalue greater than 1.0 using an unrotated principal 

components analysis. As described above, we directly replicated their method in our 

main analyses but acknowledge that this type of analysis has been criticized.  
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 First, it has been argued that exploratory factor analysis with rotation, rather than 

an unrotated principal components analysis, is more appropriate when one intends to 

measure correlated latent factors, as was the case in the current study35,36. Second, the 

extraction rule of eigenvalues greater than 1.0 has been criticized for not indicating the 

optimal number of components, as well as for producing unreliable components37,38.  

 To address these limitations, we repeated our main analyses using exploratory 

factor analysis with an oblimin rotation as the model and a parallel analysis to determine 

the number of factors to extract. We also recalculated the congruence coefficient 

described above for these exploratory factor analysis results (CODE 2.2.2).  

We used parallel analysis to determine the number of factors to extract because 

it has been described as yielding the optimal number of components (or factors) across 

the largest array of scenarios35,39,40 (CODE 2.2.1). In a parallel analysis, random data 

matrices are generated such that they have the same number of cases and variables as 

the real data. The mean eigenvalue from the components of the random data is 

compared to the eigenvalue for each component from the real data. Components are 

then retained if their eigenvalues exceed those from the randomly generated data41. 

 The purpose of these additional analyses was twofold. First, to address potential 

methodological limitations in the original study and, second, to ensure that the results of 

our replication of Oosterhof and Todorov’s study are robust to the implementation of 

those more rigorous analytic techniques. The same criteria for replicating Oosterhof and 

Todorov’s model described above were to be applied to this analysis (CODE 2.2.1.3).  

Protocol registration 

The Stage 1 protocol for this Registered Report was accepted in principle on 05 

November 2018. The protocol, as accepted by the journal, can be found at 

https://dx.doi.org/10.6084/m9.figshare.7611443.v1. 
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Data availability 

Full data are publicly available at https://osf.io/87rbg/ 

Code availability 

Full analysis code is publicly available at https://osf.io/87rbg/ 
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Figure legends  

 

Figure 1. Principal component analysis (PCA) loading matrices for each region. Positive 

loadings are shaded red and negative loadings shaded blue; darker colors correspond 

to stronger loadings. The proportion of variance explained by each component is 

included at the top of each table. 

 

Figure 2. Exploratory factor analysis (EFA) loading matrices for each region. Positive 
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loadings are shaded red and negative loadings shaded blue; darker colors correspond 

to stronger loadings. The proportion of variance explained by each factor is included at 

the top of each table. 

 

Tables (see following pages) 

   



36 
 

Table 1. World Regions, Countries, and Localities of Data Collection  

World region Countries and Localities
Africa Kenya, (Nigeria), South Africa 
Asia China, India, Malaysia, Taiwan, Thailand 
Australia and New Zealand Australia, New Zealand
Central America and Mexico El Salvador, Mexico 
Eastern Europe Hungary, Lithuania, Poland, Russia, Serbia, 

Slovakia
The Middle East Iran, Israel, Turkey 
The USA and Canada Canada, the USA 
Scandinavia Denmark, (Finland), Norway, (Sweden) 
South America Argentina, Brazil, Chile, Colombia, Ecuador 
The UK England, Scotland, Wales 
Western Europe Austria, Belgium, France, Germany, 

(Greece), Italy, the Netherlands, Portugal, 
Spain, Switzerland 

 

Note. We collected data from a minimum of 350 raters per world region based on the 

simulations described in the Methods section below. Countries in parentheses were 

added to the list after acceptance in principle of the Stage 1 protocol. Ecuador was 

incorrectly classified as Central America and Mexico in our Stage 1 submission, but has 

been classified as South America for analyses and our Stage 2 submission. 



Table 2. Number of participants per region and Cronbach’s alphas following data quality 

checks and exclusions 

 

Region aggressive attractive caring confident dominant emotionally 
stable intelligent mean responsible sociable trustworthy unhappy weird 

Western Europe  α = 0.978  
n = 152  

α = 0.991  
n = 147  

α = 0.976  
n = 136  

α = 0.985 
n = 156  

α = 0.973 
n = 150  

α = 0.981 
n = 141  

α = 0.975 
n = 141  

α = 0.969 
n = 120  

α = 0.978 
n = 138  

α = 0.988  
n = 188  

α = 0.978  
n = 141  

α = 0.983 
n = 140  

α = 0.982 
n = 113  

USA & Canada  α = 0.983  
n = 248  

α = 0.991  
n = 224 

α = 0.986  
n = 257  

α = 0.989 
n = 303  

α = 0.977 
n = 246 

α = 0.986 
n = 270 

α = 0.979 
n = 239 

α = 0.984 
n = 270 

α = 0.984 
n = 269 

α = 0.988  
n = 246  

α = 0.984  
n = 263  

α = 0.985 
n = 252 

α = 0.987 
n = 226 

UK  α = 0.879  
n = 16  

α = 0.949  
n = 22  

α = 0.936  
n = 34  

α = 0.93  
n = 30  

α = 0.886 
n = 34  

α = 0.9  
n = 30  

α = 0.911 
n = 34  

α = 0.87 
n = 27  

α = 0.892 
n = 37  

α = 0.932  
n = 28  

α = 0.92  
n = 27  

α = 0.937 
n = 24  

α = 0.899 
n = 18  

South America  α = 0.948  
n = 97  

α = 0.982  
n = 108 

α = 0.944  
n = 112  

α = 0.968 
n = 108  

α = 0.957 
n = 121 

α = 0.949 
n = 100 

α = 0.938 
n = 110 

α = 0.949 
n = 95 

α = 0.937 
n = 117 

α = 0.974  
n = 110  

α = 0.952  
n = 107  

α = 0.961 
n = 87 

α = 0.973 
n = 116 

Scandinavia  α = 0.95  
n = 48  

α = 0.969  
n = 44  

α = 0.949  
n = 46  

α = 0.96  
n = 56  

α = 0.941 
n = 49  

α = 0.955 
n = 67  

α = 0.958 
n = 54  

α = 0.912 
n = 36  

α = 0.915 
n = 37  

α = 0.969  
n = 64  

α = 0.949  
n = 58  

α = 0.952 
n = 55  

α = 0.952 
n = 39  

Middle East  α = 0.912  
n = 32  

α = 0.949  
n = 32  

α = 0.934  
n = 42  

α = 0.943 
n = 39  

α = 0.9  
n = 35 

α = 0.903  
n = 33 

α = 0.896 
n = 48 

α = 0.901 
n = 36 

α = 0.87  
n = 34 

α = 0.944  
n = 41  

α = 0.895  
n = 42  

α = 0.943 
n = 57 

α = 0.896 
n = 32 

Eastern Europe  α = 0.941  
n = 59  

α = 0.971  
n = 58  

α = 0.926  
n = 56  

α = 0.946 
n = 60  

α = 0.952 
n = 74  

α = 0.923 
n = 56  

α = 0.939 
n = 64  

α = 0.937 
n = 68  

α = 0.953 
n = 65  

α = 0.955  
n = 68  

α = 0.937  
n = 54  

α = 0.964 
n = 74  

α = 0.956 
n = 53  

Central America 
& Mexico  

α = 0.845  
n = 26  

α = 0.93  
n = 25  

α = 0.788  
n = 24  

α = 0.89  
n = 32  

α = 0.859 
n = 33 

α = 0.835 
n = 23 

α = 0.832 
n = 33 

α = 0.817 
n = 23 

α = 0.824 
n = 22 

α = 0.882  
n = 28  

α = 0.851  
n = 27  

α = 0.771 
n = 27 

α = 0.842 
n = 15 

Australia & New 
Zealand  

α = 0.956  
n = 77  

α = 0.98  
n = 88  

α = 0.964  
n = 90  

α = 0.972 
n = 93  

α = 0.936 
n = 66  

α = 0.957  
n = 88  

α = 0.951 
n = 81  

α = 0.947 
n = 71  

α = 0.937 
n = 68  

α = 0.972  
n = 95  

α = 0.953  
n = 72  

α = 0.948 
n = 85  

α = 0.962 
n = 70  

Asia  α = 0.932  
n = 59  

α = 0.957  
n = 52  

α = 0.948  
n = 73  

α = 0.959 
n = 72  

α = 0.917 
n = 55 

α = 0.908 
n = 55 

α = 0.927 
n = 64 

α = 0.909 
n = 51 

α = 0.931 
n = 63 

α = 0.952  
n = 65  

α = 0.93  
n = 61  

α = 0.937 
n = 61 

α = 0.942 
n = 49 

Africa  α = 0.808  
n = 45  

α = 0.873  
n = 38  

α = 0.865  
n = 44  

α = 0.805 
n = 31  

α = 0.79 
n = 38  

α = 0.779 
n = 38  

α = 0.756 
n = 37  

α = 0.889 
n = 51  

α = 0.811 
n = 36  

α = 0.819  
n = 34  

α = 0.867  
n = 49  

α = 0.795 
n = 43  

α = 0.889 
n = 37  



 

 

Table 3. Replication criteria for the principal component analysis (PCA) for each region 

 Component 1 Component 2  
Region  Trustworthy Dominant Dominant Trustworthy Replicated 
(Oosterhof & Todorov, 2008)  0.941 -0.244 0.929 -0.060 Yes  
Africa  0.924 0.271 0.843 -0.065 Yes  
Asia  0.922 0.370 0.863 -0.006 Yes  
Australia & New Zealand  0.943 0.257 0.907 -0.076 Yes  
Central America & Mexico  0.918 0.007 0.915 -0.050 Yes  
Eastern Europe  0.938 0.599 0.755 -0.113 No  
Middle East  0.831 0.490 0.810 -0.382 Yes  
Scandinavia  0.953 0.392 0.881 -0.121 Yes  
South America  0.898 0.309 0.905 -0.151 Yes  
UK  0.944 0.331 0.851 -0.121 Yes  
USA & Canada  0.966 0.406 0.841 -0.073 Yes  
Western Europe  0.957 0.357 0.875 -0.166 Yes  
 

Note. Oosterhof and Todorov’s valence-dominance model was judged to have been 

replicated in a given world region if the first component had a loading > .7 with 

trustworthiness and < .5 with dominance, and the second component had a loading > .7 

with dominance and < .5 with trustworthiness.   
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Table 4. Factor congruence for each region’s principal component analysis (PCA) 

 Component 1 Component 2
Region  Loading Congruence Loading Congruence 
Africa  0.980  equal  0.947  fairly similar  
Asia  0.974  equal  0.843  not similar  
Australia & New Zealand  0.982  equal  0.959  equal  
Central America & Mexico  0.992 equal 0.935 fairly similar 
Eastern Europe  0.953  equal  0.948  fairly similar  
Middle East  0.952  equal  0.859  fairly similar  
Scandinavia  0.973  equal  0.960  equal  
South America  0.976  equal  0.953  equal  
UK  0.976  equal  0.938  fairly similar  
USA & Canada  0.972  equal  0.952  equal  
Western Europe  0.975  equal  0.936  fairly similar  

   



40 
 

Table 5. Replication criteria for the exploratory factor analysis (EFA) for each region 

 Factor 1 Factor 2
Region Trustworthy Dominant Dominant Trustworthy Replicated 
(Oosterhof & Todorov, 2008)  0.826 0.228 0.970 -0.288 Yes  
Africa  0.786 0.200 0.069 0.214 No  
Asia  0.761 0.487 0.110 0.236 No  
Australia & New Zealand  0.730 0.157 0.071 0.281 No  
Central America & Mexico  0.268 0.108 0.241 0.591 No  
Eastern Europe  0.843 0.750 0.609 -0.322 No  
Middle East  0.177 0.502 0.600 -0.686 No  
Scandinavia  0.744 0.428 0.293 0.211 No  
South America  -0.458 0.778 0.261 0.058 No  
UK  0.338 0.249 0.265 0.510 No  
USA & Canada  0.768 0.491 0.264 0.189 No  
Western Europe  0.398 0.111 0.256 0.164 No  

 

Note. Oosterhof and Todorov’s valence-dominance model was judged to have been 

replicated in a given world region if the first factor had a loading > .7 with 

trustworthiness and < .5 with dominance, and the second factor had a loading > .7 with 

dominance and < .5 with trustworthiness.  
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