
DOI: 10.4018/IJSSE.2017070103

International Journal of Secure Software Engineering
Volume 8 • Issue 3 • July-September 2017

﻿
Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

ABSTRACT

This article describes how earlier detection of security problems and the implementation of solutions 
would be a cost-effective approach for developing secure software systems. Developing, gathering 
and sharing similar repeatable programming knowledge and solutions has led to the introduction of 
Patterns in the 90’s. The same concept has been adopted to realise reoccurring security knowledge 
and hence security patterns. Detecting a security problem using the patterns in requirements models 
may lead to its early prevention. In this article, the authors have provided an overview of security 
patterns in the past two decades, followed by a summary of i*/Tropos goal modelling framework. 
Section 2 outlines model-driven development, meta-models and model transformation, within the 
context of requirements engineering. They have summarised security access control types, and 
formally described role-based access control (RBAC) in particular as a pattern that may occur in 
the stakeholder requirements models. Then the authors used the i* modelling language and some 
elements from its constructs - model-driven queries and transformations - to describe the pattern 
enforcement. This is applied to a number of requirements models within the literature, and the 
pattern-based transformation tool they designed has automated the detection and resolution of this 
security pattern in several goal-oriented stakeholder requirements. Finally, the article also reflects 
on a variety of existing applications and future work.

Keywords
Access Control, Goal Models, Model Transformations, RBAC, Security Patterns

Goal Modelling for Security Problem 
Matching and Pattern Enforcement
Yijun Yu, School of Computing and Communications, The Open University, Milton Keynes, UK

Haruhiko Kaiya, Kanagawa University, Hiratsuka, Japan

Nobukazu Yoshioka, GRACE Center, NII, Tokyo, Japan

Zhenjiang Hu, GRACE Center, NII, Tokyo, Japan

Hironori Washizaki, Waseda University, Tokyo, Japan

Yingfei Xiong, Peking University, Beijing, China

Amin Hosseinian-Far, Faculty of Business & Law, The University of Northampton, Northampton, UK

1. INTRODUCTION

Today, security is considered as a key requirement in almost all systems. Implementation and 
architecting software systems with the incorporation of security considerations would be a cost-
effective approach to preventive software maintenance. Security patterns were a programming 
rethinking approach so that security and safety features get embedded within the system at earlier 
stages of its development lifecycle. Patterns were initially proposed to outline recurring software 
engineering problems and solutions with a view to be used during software design phase (Vlissides, 
Helm, Johnson, & Gamma, 1995). It is also commonly recognised that there is a need for a pattern 

42



International Journal of Secure Software Engineering
Volume 8 • Issue 3 • July-September 2017

43

language to categorise security problems in software designs (Fernandez & Rouyi, 2001; Ruiz, Arjona, 
Mana, & Rudolph, 2017). Moreover, there have been further attempts to formalise and develop security 
patterns catalogues (Schumacher et al., 2013; Hamid, Gurgens, & Fuchs, 2016). These catalogues 
have gathered common solutions to known security problems using systems engineering and software 
development techniques. Identification and correction of errors early in the development lifecycle 
would cost less than fixing accumulated errors in design and implementation (Menzies, Nichols, 
Shull, & Layman, 2017). For security problems, therefore, one may ask a relevant question “Can we 
detect security problems and even resolve them early before it is too late?” This question has led to 
active research on the representation and analysis of security requirements (Liu, Yu, & Mylopoulos, 
2003; Haley, Laney, Moffett, & Nuseibeh, 2008; Giorgini, Massacci, Mylopoulos, & Zannone, 2005; 
Souag, Mazo, Salinesi, & Comyn-Wattiau, 2016). There are various approaches for eliciting security 
requirements of a system-to-be. Abe, Hayashi, & Saeki (2015) propose an elicitation approach by 
which security functions are extracted from target documents, in line with the international standard of 
Common Criteria - ISO/IEC 15408. Riaz, Stallings, Singh, Slankas, & Williams (2016) have developed 
a framework within which security patterns are collected and security goals are identified. Work in 
the domain of this research assumes that security requirements can be elicited by arguing thoroughly 
about vulnerability in existing requirements models, such as trust assumptions (Haley, Robin, Moffett, 
& Nuseibeh, 2004), anti-goals (Van Lamsweerde, 2004; Li, Paja, Mylopoulos, Horkoff, & Beckers, 
2016), misuse cases (Sindre & Opdahl, 2005; Ikram, Siddiqui, & Khan, 2014), abuse frames (Lin, 
Nuseibeh, Ince, Jackson, & Moffett, 2003), risk analysis (Massacci, Prest, & Zannone, 2005; Asnar et 
al., 2007; Souag et al., 2016), etc. Yet little has been done to suggest systematic changes in requirements 
models to resolve these vulnerabilities. Partly due to the fact that it is impossible to detect and resolve 
once-for-all the vulnerabilities, especially when not all problematic trust assumptions or anti-goals 
may be detected. Therefore, an appropriate approach would be helpful to slot in new security patterns. 
Capturing lessons learnt from the past as well-known security patterns, one may still need to enforce 
them to a requirements model for a new software project. In this paper, we have represented security 
patterns formally on basis of existing requirements modelling languages, such that an analysis tool 
can be developed to detect and resolve security problems in the modelled requirements. For such 
automated analysis, it is a reasonable assumption for stakeholder requirements to be modelled using a 
formal language: once requirements have been modelled as such, the tool could guarantee all instances 
of the security pattern can be detected and necessary changes can be suggested. To illustrate, we tried 
a single security pattern for recurring problems in role-based access control. Despite the possibility 
of selecting a different formal requirement modelling language for defining a security pattern, we 
selected elements from the goal oriented requirements modelling language i*/Tropos (Yu, 1996; 
Bresciani, Perini, Giorgini, Giunchiglia, & Mylopoulos, 2004) for two reasons. One, it is widely used 
in early requirements engineering which leads to many published models in the literature. Second, we 
have developed a tool support using the Eclipse Modelling Framework, which enables the techniques 
presented here. Our main contribution is to show that such formally defined security pattern can be 
directly used to detect and resolve the security problem on requirements models published in the 
literature. The key techniques used are model-driven query and transformation (Graaf, Weber, & 
Van Deursen, 2008) and model-driven development of requirements models (Budinsky, Brodsky, & 
Merks, 2003), both are integrated in our requirements engineering tools. The remainder of the paper 
is organised as follows. Section 2 explains key techniques used, including a language for modelling 
stakeholder requirements, model-driven software development and model-driven transformations; 
Section 3 briefly outlines access control mechanisms and types. The following section discusses the 
enforcing of a role-based access control pattern, and reviews several applications of the tool. Sections 



 

 

 

14 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the product's webpage:

www.igi-global.com/article/goal-modelling-for-security-

problem-matching-and-pattern-

enforcement/201215?camid=4v1

This title is available in InfoSci-Journals, InfoSci-Journal

Disciplines Computer Science, Security, and Information

Technology, InfoSci-Computer Systems and Software

Engineering eJournal Collection, InfoSci-Knowledge

Discovery, Information Management, and Storage eJournal

Collection, InfoSci-Physical Sciences, Biological Sciences,

and Engineering eJournal Collection, InfoSci-Surveillance,

Security, and Defense eJournal Collection, InfoSci-Journal

Disciplines Engineering, Natural, and Physical Science,

InfoSci-Select. Recommend this product to your librarian:

 www.igi-global.com/e-resources/library-

recommendation/?id=2

Related Content

Formalization of UML Composition in OCL
Hector M. Chavez and Wuwei Shen (2013). International Journal of Software

Innovation (pp. 26-40).

www.igi-global.com/article/formalization-uml-composition-
ocl/77616?camid=4v1a

Communication and Awareness Patterns of Distributed Agile Teams
Irum Inayat, Siti Salwah Salim and Sabrina Marczak (2015). Achieving Enterprise

Agility through Innovative Software Development (pp. 1-16).

www.igi-global.com/chapter/communication-and-awareness-patterns-of-
distributed-agile-teams/135220?camid=4v1a

http://www.igi-global.com/article/goal-modelling-for-security-problem-matching-and-pattern-enforcement/201215?camid=4v1
http://www.igi-global.com/article/goal-modelling-for-security-problem-matching-and-pattern-enforcement/201215?camid=4v1
http://www.igi-global.com/article/goal-modelling-for-security-problem-matching-and-pattern-enforcement/201215?camid=4v1
http://www.igi-global.com/e-resources/library-recommendation/?id=2
http://www.igi-global.com/e-resources/library-recommendation/?id=2
http://www.igi-global.com/article/formalization-uml-composition-ocl/77616?camid=4v1a
http://www.igi-global.com/article/formalization-uml-composition-ocl/77616?camid=4v1a
http://www.igi-global.com/chapter/communication-and-awareness-patterns-of-distributed-agile-teams/135220?camid=4v1a
http://www.igi-global.com/chapter/communication-and-awareness-patterns-of-distributed-agile-teams/135220?camid=4v1a


Integrating DSLs into a Software Engineering Process: Application to

Collaborative Construction of Telecom Services
Vanea Chiprianov, Yvon Kermarrec and Siegfried Rouvrais (2014). Software Design

and Development: Concepts, Methodologies, Tools, and Applications  (pp. 570-595).

www.igi-global.com/chapter/integrating-dsls-into-software-
engineering/77723?camid=4v1a

Building Secure Software Using XP
Walid Al-Ahmad (2011). International Journal of Secure Software Engineering (pp.

63-76).

www.igi-global.com/article/building-secure-software-
using/58508?camid=4v1a

http://www.igi-global.com/chapter/integrating-dsls-into-software-engineering/77723?camid=4v1a
http://www.igi-global.com/chapter/integrating-dsls-into-software-engineering/77723?camid=4v1a
http://www.igi-global.com/article/building-secure-software-using/58508?camid=4v1a
http://www.igi-global.com/article/building-secure-software-using/58508?camid=4v1a

