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Abstract  

This thesis focuses on the design and development of the random time-frequency access 

protocol in Machine-to-Machine (M2M) communication systems and covers different 

aspects of the data collision problem in these systems. 

The randomisation algorithm, used to access channels in the frequency domain, represents 

the key factor that affects data collisions. This thesis presents a new randomisation 

algorithm for the channel selection process for M2M technologies. The new algorithm is 

based on a uniform randomisation distribution and is called the Uniform Randomisation 

Channel Selection Technique (URCST). This new channel selection algorithm improves 

system performance and provides a low probability of collision with minimum complexity, 

power consumption, and hardware resources. Also, URCST is a general randomisation 

technique which can be utilised by different M2M technologies. The analysis presented in 

this research confirms that using URCST improves system performance for different M2M 

technologies, such as Weightless-N and Sigfox, with a massive number of devices.  

The thesis also provides a rigorous and flexible mathematical model for the random time-

frequency access protocol which can precisely describe the performance of different M2M 

technologies. This model covers various scenarios with multiple groups of devices that 

employ different transmission characteristics like the number of connected devices, the 

number of message copies, the number of channels, the payload size, and transmission 

time. 

In addition, new and robust simulation testbeds have been built and developed in this 

research to evaluate the performance of different M2M technologies that utilise the random 

time-frequency access protocol. These testbeds cover the channel histogram, the 

probability of collisions, and the mathematical model. The testbeds were designed to 

support the multiple message copies approach with various groups of devices that are 

connected to the same base station and employ different transmission characteristics. 

Utilising the newly developed channel selection algorithm, mathematical model, and 

testbeds, the research offers a detailed and thorough analysis of the performance of 

Weightless-N and Sigfox in terms of the message lost ratio (MLR) and power 

consumption. The analysis shows some useful insights into the performance of M2M 

systems. For instance, while using multiple message copies improves the system 

performance, it might degrade the reliability of the system as the number of devices 

increases beyond a specific limit. Therefore, increasing the number of message copies can 

be disadvantageous to M2M communication performance.  
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Chapter 1  

Introduction 
 

1.1 Introduction 

Wireless communication has grown tremendously over the last decade, especially now that 

the Internet has become an essential part of many peoples’ lives, and billions of devices are 

using wireless communication to connect to the Internet. Although it seems that it is 

mainly human use, such as mobile phones and laptops, there is another significant form of 

wireless communication which is entirely different. This class of communication is called 

Machine-to-Machine (M2M) communication (or Machine Type Communication MTC), 

which is based on applications for devices that can work autonomously and do not require 

human intervention during the operation phase. M2M communications are not initiated 

by people but occur according to the function of the device. M2M communication has 

unique characteristics which need to be considered in the design and implementation of 

wireless systems (Al-Shammari et al., 2018; Webb, 2015; Anton-Haro and Dohler, 2015; 

Webb, 2012c).  

1.2 M2M Communication Architecture and Features 

The importance of M2M communication systems has been increasing recently, especially 

with the emergence of the Internet of Things (IoT) and smart cities. IoT refers to the 

connectivity of any physical object to the internet so that it can send and receive data and 

information. M2M communication represents the cornerstone of the IoT and smart cities, 

where most of the connected devices comprise sensors and actuators (Ding et al., 2019; Jia 

et al., 2019; Al-Shammari et al., 2018). 

M2M systems are mainly based on short messages/low rate communication between 

devices. In general, the architecture of M2M systems is principally comprised of three 

domains: M2M device domain, M2M Network domain, and M2M application domain. 

Devices in the M2M device domain can either communicate directly to the base station or 

communicate with each other to form a device area network. Communication technologies 

used to connect devices in this domain should be aware of the individual requirements of 

M2M communication. Therefore, many M2M communication technologies have been 

proposed in the last couple of decades with distinctive design consideration to fulfil these 

requirements. Figure 1.1 illustrates an overview of a typical M2M communication system 

where devices can send and receive data to the network via the base station (Al-Shammari 
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et al., 2018; Verma et al., 2016; Ghavimi and Chen, 2015; Webb, 2015; Anton-Haro and 

Dohler, 2015).  

 

 

M2M communication should provide ubiquitous connectivity between devices with a 

broad range of applications. Therefore, M2M communication should offer unique features 

and characteristics which can be summarised as follows (Webb, 2015; Anton-Haro and 

Dohler, 2015; Webb, 2012c): 

• Support of a massive number of nodes. Each base station can serve hundreds of 

thousands of devices. 

• Excellent coverage. Each base station should offer communication for all devices 

connected to the M2M device domain. Some M2M technologies provide a 

communication range of 2-5 km in urban areas with 100% outdoor and indoor 

coverage. 

• Ultra-low power consumption. Devices should work with minimum power 

consumption so that a network lifetime of 10 years on a single battery can be 

offered. 

• Low cost. The total cost should be within $2- $5 for terminal devices with only a few 

dollars a year for a network subscription. 

 

Figure 1.1: An overview of a typical M2M communication system (Digital Technology Poland, 
2019). 
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• Diverse Quality-of-Service (QoS). Some applications required high quality of service 

(QoS) with guaranteed message delivery while other applications allow lossy 

communication. M2M technologies should offer services for both types of 

applications. 

• Low data rate. M2M communication is quite distinct from human communications 

and can be accomplished using only a few hundreds to several thousand bits per 

second (bps). 

• Low message rate. Most M2M communication requires a low message rate within 

the range of several messages per day up to one message per minute. 

•  Short messages. Most of the information exchanged between M2M devices can be 

achieved with short messages that only have several bytes of data. 

These special attributes pose some critical challenges to the design and implementation of 

M2M technologies, especially supporting a massive number of devices with minimum 

power consumption. 

1.3 Problem Statement 

M2M communication is a very promising paradigm especially with the extension of 

Internet into physical objects. Many M2M communication technologies have been 

proposed to meet the unique set of requirements and characteristics of M2M systems. With 

the wide diversity of applications in the IoT and smart cities, a massive number of devices 

is expected to be connected to each base station (Mekki et al., 2019; Al-Shammari et al., 

2018; Goursaud and Gorce, 2015; Pereira and Aguiar, 2014). This represents the most 

critical challenge to the M2M communication systems, where data collisions become an 

inevitable problem that substantially affect message delivery and system performance and 

reliability (Li et al., 2017; Centenaro et al., 2017; Vejlgaard et al., 2017; Lauridsen et al., 

2016). The process of designing a communication technology that can support such an 

enormous number of devices and maintain other M2M system requirements, such as low 

power consumption and low cost, is quite challenging. Although the use of 

acknowledgements, synchronisation, and channel sense mechanisms can improve system 

performance, it significantly increases power consumption and the cost of terminal devices. 

Therefore, most M2M technologies rely on the random time-frequency access protocol 

(ALOHA-based random access protocol) with the frequency hopping technique to reduce 

the probability of collisions while retaining the other virtues of the M2M communication. 

In addition, some M2M technologies utilise a multiple-message copies approach in order 

to increase the rate of successful message delivery and improve system performance. This 
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can significantly improve system performance within specific limits which are related to 

other system characteristics, like the number of connected devices, the number of channels, 

and the payload size. Using this approach poses some other challenges to the evaluation 

and modelling of M2M communication technologies. 

With the random time-frequency access protocol, the randomisation algorithm used to 

access channels is the key factor that affects the probability of collisions and system 

performance. Using high performance randomisation algorithms, like Mersenne Twister 

algorithm, can significantly reduce the probability of collisions. However, such algorithms 

are highly complex and require high computational time and hardware resources. This can 

significantly increase the cost and power consumption of terminal devices. Therefore, it is 

crucial to develop a random channel selection protocol that offers the lowest probability of 

collisions with minimum complexity, power consumption, and hardware resources. 

It is also essential to evaluate how efficient the designed technique is. This step is vital 

during the early stages of system design to ensure its reliability and represents another 

major challenge for the design and implementation of M2M communication systems. This 

is due to the high complexity and cost of conducting such evaluation in real systems with 

a massive number of devices. Therefore, it is crucial to provide a reliable evaluation 

environment for such systems by developing simulation testbeds and mathematical 

models.  

The work presented in this thesis covers different aspects of the data collision problem in 

M2M systems. It provides a novel channel selection technique, simulation testbeds, and a 

mathematical model for M2M technologies that employ random time-frequency access 

protocol with the frequency hopping technique and the multiple message copies method. 

1.4 Aims and Objectives 

Data collisions represent the most important challenge for the IoT and M2M 

communication technologies due to the interference between the enormous number of 

connected devices. Although collisions are directly related to the number of nodes, it is 

also dependent on other system characteristics. Therefore, the aims of this research are: 

• Design a new channel selection technique that can provide a low probability of 

collisions for M2M communication technologies that utilise the random time-

frequency access protocol with minimum power consumption, complexity, and 

hardware resources. 
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• Develop a reliable evaluation environment (rigorous mathematical model and robust 

testbeds) to study the effect of different transmission characteristics on the collisions 

in M2M communication technologies that employ the random time-frequency access 

protocol. 

The objectives of this research are: 

1. Investigate the existing M2M communication technologies and explore the collision 

mitigation techniques that are implemented in these technologies. 

2. Design and develop new simulation testbeds (called URCST simulators) that can be 

used to evaluate the effect of different transmission characteristics on the 

performance of M2M systems in terms of collisions. These new developed simulators 

are capable of analysing system performance involving multiple groups of devices 

with variant transmission characteristics and the multiple message copies approach. 

3. Provide a mathematical model that can accurately describe the performance of M2M 

technologies that utilise the random time-frequency access protocol with multiple 

groups of devices and the multiple message copies approach including different 

transmission characteristics. 

4. Evaluate the performance of the newly developed channel selection algorithm in 

comparison with the standard algorithm and other prominent randomisation 

algorithms using some well known M2M technologies. 

5. Study the effects of various transmission characteristics, such as the number of 

message copies and the payload size, on the performance of different M2M 

technologies with the presence of a massive number of devices. 

6. Evaluate the performance of different M2M technologies in terms of collisions and 

power consumption using a practical IoT application that requires a vast number of 

devices like smart meters. 

1.5 Research Contributions 

The research contributions presented in this thesis cover different aspects of the data 

collision problem in M2M communication. The key outcomes of this work can be 

summarised as follows: 

1. An extensive study of a broad range of M2M communication technologies with a 

particular focus on collision avoidance techniques. 
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2. Design and development of a novel random channel selection technique that 

provides a low probability of collisions with minimum complexity, power 

consumption, and hardware resources. 

3. Design and development of robust simulation testbeds for M2M technologies which 

utilise the random time-frequency access protocol. These testbeds support multiple 

groups, multiple message copies, and diverse system parameters. 

4. Derivation of a rigorous mathematical model for the random time-frequency access 

protocol with the support of multiple groups of devices and multiple message copies. 

5. A thorough and comprehensive analysis of two prominent M2M technologies in 

terms of collisions and power consumption, which offers some fresh insights into the 

performance of ALOHA-based M2M technologies and the effect of different 

transmission characteristics on the collisions problem. 

1.6 Scope of Work 

Supporting millions of connected devices in the IoT and smart cities inevitably creates a 

competition over the transmission channel for the existing M2M technologies. Many of 

them have been specifically developed to resolve these challenges and fulfil M2M 

communication requirements. Most of these technologies utilise the random time-

frequency access protocol to maintain low complexity, low cost, low power consumption, 

and low probability of collisions. In general, the incumbent protocols only work to 

optimise one parameter such as message interference at the expense of other equally 

important requirements of power consumption and cost. On the other hand, the novel 

communication channel access randomisation algorithm developed in this thesis offers 

superior performance for each criterion.  

In order to evaluate the performance of the newly developed channel selection technique 

and the newly developed mathematical model, it is vital to select appropriate M2M 

technologies. In general, short-range M2M technologies, like Zigbee and Bluetooth, are 

mainly designed for home and residential IoT applications with several tens to several 

hundreds of devices per cell over distances of less than 100 m. This may not put a 

significant strain on the communication channel, as explained in Chapter 2.  Therefore, 

Low Power Wide Area (LPWA) technologies are the most proper choice for this intention.  

To study the collision problem with the massive number of devices that are required in the 

IoT and smart cities, two candidate LPWA M2M technologies, namely Weightless-N and 

Sigfox, are nominated as case studies for this research. Both technologies utilise the 
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ALOHA-based random time-frequency access protocol without acknowledgements, 

synchronisation, or any channel sense mechanism. In addition, these two technologies 

employ the frequency hopping technique with a large number of ultra-narrow band (UNB) 

channels to extend the wireless system capability and support a massive number of nodes. 

Furthermore, both technologies utilise multiple message copies to mitigate the effect of 

collisions on the system performance and reduce the probability of lost messages 

(Weightless-SIG, 2015c; Abbas et al., 2017; Sigfox, 2019a; Sigfox, 2017b; Sigfox, 2017a; 

Sigfox, 2017c). Both technologies claim to support an extremely large number of connected 

devices within the range of several hundreds of thousands up to one million devices, as 

described in Chapter 2. Therefore, Weightless-N and Sigfox represent the preferred 

wireless technologies to study the effect of collisions and assess the developed technique 

and model. 

1.7 Thesis Structure 

This thesis is structured into six chapters. Following the general introduction presented in 

this chapter, the rest of the thesis is organised as follows: 

• Chapter 2. This chapter provides a detailed study of the characteristics of M2M 

communication. Various M2M technologies are presented in this chapter with a 

detailed description of each technology specifications with a focus on the number of 

connected devices and the collisions avoidance techniques utilised by these 

technologies. 

• Chapter 3. This chapter presents the novel developed channel selection technique 

called Uniform Randomisation Channel Selection Technique (URCST), which 

provides a low probability of collision with minimum complexity and power 

consumption. The chapter also offers a comparison of system performance using the 

Weightless-N standard algorithm, the URCST algorithm, and the standard uniform 

random distribution algorithm called Mersenne Twister (MT19937). 

• Chapter 4. The newly derived mathematical model for the random time-frequency 

access protocol is described in this chapter. First, previous contributions in the 

mathematical modelling of ALOHA-based wireless communication systems are 

presented. Second, a thorough description of the mathematical derivation of the new 

model is demonstrated for different system scenarios including multiple groups of 

devices and multiple message copies. Third, model validation is presented using 
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Weightless-N and Sigfox M2M technologies with different working scenarios. Finally, 

the chapter demonstrates the limitations of the presented model. 

• Chapter 5. In this chapter, an evaluation of the performance of Weightless-N and 

Sigfox technologies is demonstrated in terms of the message lost ratio and power 

consumption. The analysis presented in this chapter is based on the newly developed 

channels selection technique and the newly developed mathematical model. The 

evaluation considers various scenarios and studies the effect of different transmission 

parameters on system performance including the number of devices, the number of 

message copies, the payload size, the transmission time, and the number of utilised 

channels. Also, this chapter offers a detailed analysis of smart meters as a case study 

for IoT and smart cities applications. 

• Chapter 6. This chapter concludes the study presented in this thesis and offers 

recommendations for future research directions. 
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Chapter 2  

M2M Technologies and Collisions Avoidance Techniques 
 

2.1 Introduction 

The internet of things (IoT) and smart cities represent the new revolutionary era in internet 

technology and telecommunication systems. IoT is aimed at the ability of connecting 

everyone and every physical device in the world to the internet (Ding et al., 2019; Jia et al., 

2019; Bao et al., 2018; Farooq and Zhu, 2018; Xu et al., 2018; Esfahani et al., 2017; 

Centenaro et al., 2017; Waidner and Kasper, 2016). This poses several critical challenges 

to wireless communication technologies like the coverage range, the number of connected 

devices, the power consumption, and the cost of the network. However, with such a wide 

diversity of applications, a massive number of devices is expected to be connected to each 

base station (Mekki et al., 2019; Goursaud and Gorce, 2015; Pereira and Aguiar, 2014). 

Consequently, the data collision problem becomes a vital factor that affects system 

performance and reliability. This represents one of the most important challenges that face 

the design and implementation of wireless communication technologies. This chapter 

provides a general background of diverse wireless communication technologies that are 

mainly designed for IoT applications. It focuses on the data collision problem and discusses 

the collision avoidance techniques utilised by different wireless technologies to mitigate its 

effect on system performance.   

In general, the IoT is mainly based on the machine type communication (MTC), or 

machine-to-machine (M2M) communication systems, where sensors and actuators 

represent most of the connected devices to the IoT (Ding et al., 2019; Al-Shammari et al., 

2018; Xu et al., 2018; Esfahani et al., 2017; Qian et al., 2017; Goursaud and Gorce, 2015; 

Biral et al., 2015; Pereira and Aguiar, 2014). A machine-to-machine communication 

system denotes the communication technologies between devices that work autonomously 

without the interaction of humans during the operation phase (Al-Shammari et al., 2018; 

Anton-Haro and Dohler, 2015; Kim et al., 2014; Pereira and Aguiar, 2014; Laya et al., 

2014; Chen, 2013). M2M systems can be considered as to have evolved from the classic 

Wireless Sensor Networks (WSN), which can provide reliable communication for 

monitoring and control applications. Supervisory control and data acquisition (SCADA) 

systems can be assumed as a primitive form of M2M communication, which is based on 

controlling multiple separated systems via a central control unit (Kim et al., 2014; Lien et 

al., 2011). However, with the massive number of connected devices that are required in 
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smart cities and the IoT, it is not feasible to use such a system. The total number of 

connected devices will increase significantly in the next few years, and it is predicted that 

there will be 50 billion devices connected to the IoT by the end of 2020 (Zhang et al., 2019; 

Mekki et al., 2019; Jia et al., 2019; Al-Shammari et al., 2018; Xu et al., 2018; Evans, 2011; 

Webb, 2015; Ghavimi and Chen, 2015; Vermesan and Friess, 2014; Ofcom, 2014). 

M2M communication systems are mainly built on a short message low rate exchange 

approach between devices (Webb, 2015; Anton-Haro and Dohler, 2015; Webb, 2012c). 

For instance, a smart meter sends more than a few messages per a day, considering it 

typically reports to the utility every 15 minutes (Andreadou et al., 2018; Wang et al., 2018; 

Barai et al., 2015; Karimi et al., 2015; Balachandran et al., 2014; Budka et al., 2014). On the 

other hand, some M2M systems should maintain high reliability and Quality of Service 

(QoS) with minimum power consumption, which requires special technical consideration 

and improvements to the design of these systems. This creates the need for new 

communication systems with unique characteristics that are entirely different from the 

available human communication systems. Figure 2.1 shows a typical M2M 

communication system architecture in which devices can send and receive data to the 

database via the base station (Webb, 2015; Anton-Haro and Dohler, 2015). 

 

 

This chapter provides a general background of M2M communication systems and 

describes in detail the prominent M2M technologies and the collision mitigation 

 

Figure 2.1: M2M communication system architecture (Webb, 2015). 
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techniques utilised by them. In this chapter, the M2M communication technologies are 

divided into two main categories: short-range M2M technologies, which are described in 

section 2.3, and long-range M2M technologies, which are discussed in section 2.4. In 

addition, the chapter provides a summary of each category, as presented in sections 2.3.8 

and 2.4.9 respectively. Finally, a general summary of the M2M communication 

technologies is presented in section 2.5. 

2.2 Machine-To-Machine Technologies and Collision Avoidance 
Techniques 

A number of platforms and architectures have been proposed in the last couple of decades 

to meet the special requirements of M2M communication, particularly the communication 

range, the supported data rate, the power consumption, and the number of connected 

devices. These characteristics will be outlined and discussed in the next sections. A detailed 

comparison between the well-known M2M technologies is provided with a particular focus 

on the problem of interference between devices and the data collision and the techniques 

that are used to mitigate this problem.  

Various channel access schemes are utilised by different M2M technologies to mitigate the 

data collision problem and improve the successful packet transmission. A few examples 

include the ALOHA random access protocol, Listen Before Talk (LBT) mechanism, and 

the carrier sense multiple access with collision avoidance (CSMA/CA) mechanism. The 

ALOHA protocol was developed in 1968 at the University of Hawaii to connect computers 

from different locations and form a radio-linked computer network as an alternative to the 

conventional wire communication system (Abramson, 2009). It is based on a random time-

frequency access scheme where devices send data at any time using available channels 

without checking the status of channel occupancy (Goursaud and Mo, 2016; Abramson, 

2009; Abramson, 1970). In contrast, Listen Before Talk (LBT) is a sort of carrier sense 

mechanism that was first designed to deal with the coexistence issue. It is used in wireless 

communication systems whereby a wireless transmitter first senses its wireless 

environment before starting a transmission. If the channel is occupied, the sensing process 

will be continuously repeated until the channel is clear (Yin et al., 2016; Centenaro et al., 

2016; Enocean Alliance, 2017). On the other hand, CSMA/CA is a media access control 

(MAC) protocol developed in 1985 at Xerox Palo Alto Research Centre with a similar 

channel access approach but with backoff time. In a CSMA/CA network, if a node tries 

to transmit, it checks the channel status first. If there is another transmission on the 

network, the node will refrain from transmitting for a selected amount of time (backoff) in 
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order to avoid packet collisions and then try to access the channel again (Umar and Gupta, 

2016; Khan et al., 2010; IEEE 802.3, 2008). 

In this chapter, M2M technologies are divided into two main categories: short-range M2M 

technologies and long-range M2M technologies. Although there is no specific definition 

for short-range wireless communication (Centenaro et al., 2016; Webb, 2012c; Guvenc et 

al., 2011; Kraemer and Katz, 2009), in this chapter it will be defined as the technologies 

that can cover a communication range of shorter than 100 metres from any router or base 

station (Webb, 2012c). Other technologies will be assumed as long-range technologies. 

This distinction includes the coverage of both indoor and outdoor devices. First, section 

2.3 clarifies the main characteristics of short-range M2M technologies and provides a 

comparison between their features. Second, section 2.4 explores the main characteristics 

of low-power long-range M2M technologies (or Low Power Wide Area Networks 

LPWANs) and provides a comparison of these technologies.  

2.3 Short-Range Technologies 

Short-range M2M technologies are mainly intended for Wireless Personal Area Networks 

(WPANs) and home IoT applications (Zhang et al., 2019; Zhang and Hu, 2017; Pan et al., 

2018; Webb, 2012c). The terminal devices communicate with a specified M2M technology 

router which forwards terminals’ data to a cloud database for later access. The 

characteristics of the main short-range M2M technologies are described in the following 

sections. 

2.3.1 Zigbee 

ZigBee is a low-power, low rate, and narrowband M2M wireless communication 

technology that is based on the IEEE 802.15.4 standard. In 2004, ZigBee Alliance 

published the first ZigBee specifications standard, which was based on IEEE 802.15.4-2003 

physical (PHY) layer and medium access control (MAC) layer, as shown in Figure 2.2 

(Ajah et al., 2015; Sivasankari et al., 2014; M Chen et al., 2013; Usman and Shami, 2013; 

Gratton, 2013; Lavric et al., 2012; ZigBee Alliance, 2012; Abouzar et al., 2011; Gomez and 

Paradells, 2010; Hunn, 2010b). 

In 2007, ZigBee Alliance utilised the IEEE 802.15.4-2006 PHY and MAC layers and 

produced two ZigBee standards: the ZigBee-2007, which is simply just called ZigBee, and 

the ZigBee Pro. ZigBee is specialised for simple applications with limited memory and 

processing capabilities. On the other hand, ZigBee Pro was designed to fulfil large networks 
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requirements with high processing capability and up to 30 hops across the network. 

Another major improvement of this version is the frequency agility function, which 

provides the ability to move the network between different channels if high noise is 

detected. In 2009, ZigBee Alliance adopted the use of IPv6 over low-power wireless 

personal area networks (6LoWPAN) above the MAC layer to simplify the connection to 

web-based applications with the maintenance of the low power and low cost requirements 

of M2M communication systems (Kumar and Mane, 2016; Sivasankari et al., 2014; ZigBee 

Alliance, 2014; Gomez and Paradells, 2010; Huq and Islam, 2010; Hunn, 2010b; Hauer et 

al., 2009; Lee et al., 2007). 

 

ZigBee utilises the Industrial, Scientific, and Medical (ISM) bands of 868 MHz, 915/920 

MHz, and 2.4 GHz with maximum data rates of 20 kbps, 40 kbps, and 250 kbps 

respectively. ZigBee supports a maximum payload size of 104 bytes with a maximum 

message size of 127 bytes. In addition, ZigBee employs the direct sequence spread 

spectrum (DSSS) as a spreading technique, and uses Binary Phase Shift Keying (BPSK) or 

Offset Quadrature Phase Shift Keying (OQPSK) as a modulation scheme (Punj and 

Kumar, 2019; Zhang and Hu, 2017; ZigBee Alliance, 2012; Gomez and Paradells, 2010; 

Hunn, 2010b; Adame et al., 2014; Sivasankari et al., 2014; ZigBee Alliance, 2014; ZigBee 

Alliance, 2016; Watteyne, 2015; García-Hernando et al., 2008; Severino, 2008; Lee, 2005; 

Insteon, 2013b; Gratton, 2013). Table 2.1 and Figure 2.3 below show the general radio 

specifications of ZigBee and the number of channels used in each band (Hunn, 2010b; 

ZigBee Alliance, 2016; Adame et al., 2014; Lee et al., 2007; Severino, 2008; Sahinoglu and 

Guvenc, 2011). 

 

Figure 2.2: ZigBee technology architecture. 
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Table 2.1: ZigBee radio specifications. 

Frequency Channels 
Channel bandwidth 

(MHz) 
Data rate 

(kbps) 
Region 

868 MHz 1 0.3 20 Europe 

915/920 MHz 10 0.6 40 USA/Japan 

2.4 GHz 16 2 250 Worldwide 

 

 

 

 

ZigBee can provide a coverage range of 10 m – 100 m, reliant on environmen 

characteristics and terminal devices’ power transmission. Although ZigBee end devices 

can work with an output power range from 1 mW up to 100 mW (0 dBm – 20 dBm), the 

typical output transmission power for ZigBee devices is maintained to be in the range 1 

mW – 20 mW (Punj and Kumar, 2019; Zhang et al., 2019; Kos et al., 2019; Qadir et al., 

2018; Shende et al., 2017; ZigBee Alliance, 2014; Hunn, 2010b; Ajah et al., 2015; Watteyne, 

2015; Adame et al., 2014; Hazmi et al., 2012; ZigBee Alliance, 2018; Fadlullah et al., 2011; 

Lee et al., 2007). Depending on the applications, the required intervals of transmissions, 

and the sleep mode period, ZigBee end devices can work on a single battery from months 

up to more than two years with a duty cycle of 1% (Hunn, 2010b; Ajah et al., 2015; ZigBee 

Alliance, 2016; Watteyne, 2015; Rawat et al., 2014). 

 

Figure 2.3: ZigBee Operating frequencies and bands. 
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ZigBee supports three network topologies; star, tree (or cluster-tree), and mesh. In addition, 

ZigBee defines three types of devices: ZigBee coordinator (ZC), ZigBee router (ZR), and 

ZigBee end device (ZED). These devices are divided into two categories according to their 

functionality: reduced function devices (RFD), or called child devices, and full function 

devices (FFD). In general, FFD refers to ZC and ZR (sometimes called sinks), which are 

usually powered from the main supply and are ready to receive and route packets. Each 

ZigBee network should contain only one ZC. On the contrary, ZR represents the 

intermediate routing layer of the network by relaying data from other devices to other ZR 

or the ZC. ZR is mainly implemented for network extension (Shende et al., 2017; Kumar 

and Mane, 2016; Hunn, 2010b; Koubaa et al., 2008; Usman and Shami, 2013; Severino, 

2008; Gomez and Paradells, 2010; Gratton, 2013; García-Hernando et al., 2008; Lee et al., 

2007; Lee, 2005; Cuomo et al., 2008; Korte and Tumar, 2009). Each FFD device supports 

up to 240 ZigBee end devices, while ZigBee networks can support up to 20 FFDs. 

Consequently, the maximum number of end devices that can be connected to ZigBee is 

240 devices with star network and up to 4800 devices with tree and mesh networks (Kumar 

and Mane, 2016; Hunn, 2010b; Park, 2011; Vlajic and Stevanovic, 2009; Cuomo et al., 

2008; Silicon LABS, 2018).  

ZigBee employs the carrier sense multiple access with collision avoidance (CSMA/CA) 

channel access mechanism to mitigate the collision of messages from different devices. 

ZigBee implements the CSMA/CA as a simple “listen before talk” (LBT) strategy with a 

random exponential backoff time. To transmit data, each ZigBee node will listen to the 

channel activity and determine if it is idle or busy. If the channel is busy, the node will 

choose a random time to acquire the channel status again. If it is still occupied, the node 

will increase the random time exponentially and request the channel status again. This 

technique will fairly ensure that a minimum number of nodes will access the channel at 

the same time. Conversely, this escalates the latency time for large networks (Pan et al., 

2018; Hunn, 2010b; Gomez and Paradells, 2010; Severino, 2008; Cuomo et al., 2008; 

Koubaa et al., 2008; Thonet et al., 2008). Moreover, ZigBee improves performance by using 

acknowledgements approach, which will ensure that all packets will reach their 

destinations. If the transmitter node does not receive the acknowledgement, it will 

retransmit the data again until a successful transmission is achieved or a failure is reported 

after a few tries (Severino, 2008; Koubaa et al., 2008; ZigBee Alliance, 2012; Chen, 2013). 
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2.3.2 Bluetooth 

Bluetooth is a low-power, low cost, and short-range communication technology based on 

the IEEE 802.15.1 standard. The original idea of Bluetooth was instigated by Ericsson 

Telecommunication in 1994 when it was looking for new wireless technology as a 

substitution for the wired connections between its mobiles and other accessories. In 1998, 

the Bluetooth Special Interest Group (Bluetooth SIG) was formed by Ericsson, Intel, IBM, 

Nokia, and Toshiba, and later in 1998 announced the first version of the Bluetooth 

standard. In 2010, Bluetooth SIG announced Bluetooth v4.0, which is called Bluetooth 

Low-Energy (BLE) or Bluetooth Smart that is aimed at the M2M communication systems 

with low power consumption and sleep capability. The Bluetooth protocol is based on the 

standard OSI layers, as shown in Figure 2.4 (Collotta et al., 2018; Ray and Agarwal, 2016; 

Hunn, 2010a; Garg, 2007b; Ferro and Potorti, 2005; Bluetooth SIG, 2014a; Chang, 2014; 

Latvakoski et al., 2014; Gratton, 2013; Bluetooth SIG, 2014b). 

 

In 2016, the Bluetooth SIG announced a new version of the Bluetooth low energy called 

Bluetooth 5, which is intended especially for the IoT applications. Bluetooth 5 offers some 

important advantageous over the BLE to fulfil the broad requirements for IoT applications.  

Bluetooth 5 adds two new physical (PHY) layers to the specified Bluetooth 4 PHY layers 

to keep compatibility with old devices. On the other hand, this provides new features for 

Bluetooth 5 like supporting higher data throughput and providing longer distance 

connections. Bluetooth 5 quadruples the coverage range of BLE with up to 200 meters 

outdoors and about 40 meters indoors with transmission power of 10 mW (10 dBm). In 

 

Figure 2.4: BLE protocol stack. 
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addition, it offers a data rate of up to 2 Mbps with a payload of 255 and forward error 

correction (FEC). Also, Bluetooth 5 supports mesh network topology with multiple hop 

approach which can support up 1000 devices (Qadir et al., 2018; Collotta et al., 2018; Pau 

et al., 2017; Ray and Agarwal, 2016).   

BLE and Bluetooth 5 operate in the 2.4 GHz ISM band with 40 channels each of 2 MHz 

width and utilise the Gaussian Frequency Shift Keying (GFSK) modulation scheme. These 

channels are distributed in the range 2400 – 2483.5 MHz with the first channel centre 

frequency of 2402 MHz, as shown in Figure 2.5. Three of these channels are called 

advertising channels, which are used to detect devices and initialise the connection 

between them. The advertising channels located at specific frequencies that avoid the 

interference with WiFi channels. The remaining 37 channels are called data channels and 

are used to send and receive data with a maximum payload size of 31 bytes (Collotta et al., 

2018; Pau et al., 2017; Chang, 2014; Adame et al., 2014; Latvakoski et al., 2014; Rawat et 

al., 2014; Fan and Tan, 2012; Bluetooth SIG, 2014b; Gratton, 2013).  

 

Bluetooth employs the adaptive frequency hopping spread spectrum (AFH) technique to 

reduce data collision and interference between connected devices. Figure 2.6a illustrates 

the general block diagram for the demodulation process utilised by BLE with the frequency 

hopping technique. The hopping sequence is based on the ID number and the internal 

timer of the master device with a hopping speed of 1600 hops/sec. The sequencing scheme 

is composed by generating a pseudorandom sequence based on the 27 LSBs (Least 

Significant Bits) of the timer and the 28 LSBs of the address of each device, as shown in 

Figure 2.6b (M Chen et al., 2013; Gratton, 2013; Song et al., 2007; Wu and Shi, 2007; 

 

Figure 2.5: BLE operating channels. 
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Bluetooth SIG, 2014c; Alghamdi et al., 2015). Moreover, Bluetooth utilises 

acknowledgements technique to improve the probability of successful transmission, where 

transmitters forced to retransmit unacknowledged packets (Pau et al., 2017; Ray and 

Agarwal, 2016).  

2.3.3 Ultra-Wide Band (UWB) 

 Although UWB technology was first used in 1901 by Guglielmo Marconi in spark gap 

radio, it was restricted for military use only until 2002 when the Federal Communications 

Commission (FCC) approved the commercial use of it. The FCC determines the frequency 

range of 3.1–10.6 GHz for the UWB with a total bandwidth of 7.5 GHz and a minimum 

channel bandwidth of 500 MHz. The FCC also restrict the power emission of the UWB 

signals by a maximum power spectral density (PSD) of (-41.3 dBm/MHz or 75 nW/MHz), 

which requires a transmission power of around 0.5 mW (-3 dBm). Nowadays, UWB 

technology is mostly used in Micro-location and real time location tracking applications 

(Jia et al., 2019; Amini et al., 2019; Rashid et al., 2019; Kshetrimayum, 2009; Kartsakli et 

al., 2014; Sahinoglu et al., 2009; Garg, 2007a). 

 

a) General demodulation black diagram. 

 

b) Basic hop selection kernel for the hop system (selection box). 

Figure 2.6: BLE hop system (Bluetooth SIG, 2014c). 
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UWB is based on the IEEE 802.15.3a standard which designed to provide a high data rate 

of up to 110 Mbps at a distance of 10 m and up to 480 Mbps at 2 m using the Multiband 

Orthogonal Frequency Division Multiplexing (MB-OFDM) or direct sequence OFDM 

(DS-OFDM) (Punj and Kumar, 2019; Garg, 2007a; Obaidat and Misra, 2014; Lee et al., 

2007). However, in 2007 IEEE task group 4a (TG4a) proposed a new standard for the 

UWB technology named IEEE 802.15.4a, which is specialised for a low rate and low-

power wireless sensor networks (WSNs) with data rates between 110 kbps and 27 Mbps 

with a maximum payload of 4095 bytes. According to the IEEE 802.15.4a specifications, 

the UWB signals can be transmitted using ultra-short duration pulses (in nanosecond 

range) called Impulse Radio UWB (IR-UWB) with either pulse position modulation 

(PPM) or the polarity of the pulses (Amini et al., 2019; Kshetrimayum, 2009; Sahinoglu et 

al., 2009; Sahinoglu and Guvenc, 2011). 

IR-UWB utilises three frequency bands as specified by the IEEE 802.15.4a standard: the 

sub-1GHz band in the frequency range 250–750 MHz, the low band in the frequency range 

3.244 – 4.742 GHz, and the high band in the frequency range of 5.944 – 10.234 GHz. A 

total number of 16 overlapped channels are supported on these bands, as shown in Figure 

2.7 and Table 2.2 (Sahinoglu and Guvenc, 2011; Sahinoglu et al., 2009). Channels 0, 3, 

and 9 are mandatory channels for each band respectively, while other channels are 

optional, and each device working in one of these bands should support mandatory 

channel of the working band. 

 

Figure 2.7: IR-UWB channels. 
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Table 2.2: IR-UWB channels. 

Channel 
No. 

Centre frequency 
(MHz) 

Channel bandwidth 
(MHz) 

Band Mandatory 

0 499.2 499.2 Sub-GHz Yes 

1 3494.4 499.2 Low band No 

2 3993.6 499.2 Low band No 

3 4492.8 499.2 Low band Yes 

4 3993.6 1331.2 Low band No 

5 6489.6 499.2 High band No 

6 6988.8 499.2 High band No 

7 6489.6 1081.6 High band No 

8 7488.0 499.2 High band No 

9 7987.2 499.2 High band Yes 

10 8486.4 499.2 High band No 

11 7987.2 1331.2 High band No 

12 8985.6 499.2 High band No 

13 9484.8 499.2 High band No 

14 9984.0 499.2 High band No 

15 9484.8 1354.97 High band No 

 

Low power consumption and use of the Impulse radio technique enable terminal devices 

to work for years using a single battery (Rawat et al., 2014). However, one of the main 

drawbacks of the low power requirements of the UWB technology is the interference from 

other higher power signals in the same frequency range, especially the IEEE 802.11a which 

works in the frequency range 5.725–8.825 GHz with a bandwidth of 100 MHz (Sahinoglu 

et al., 2009; Garg, 2007a). 

IR-UWB is based on a peer-to-peer piconet network topology with a maximum number of 

eight connected devices (Lee et al., 2007). IR-UWB employs an ALOHA-based channel 

access mechanism which is aimed at the random time access approach without inspecting 

if the channel is busy or not. To reduce the probability of packets collisions, IR-UWB 

employs a special time hopping technique (TH-UWB) that is achieved by adding a 

pseudorandom time shift to each pulse, which enables channel sharing for multi-devices. 

Moreover, it utilises acknowledgements to ensure the reception of each transmission. If the 

transmitter does not receive the acquired acknowledgement, it will resend the data after a 

random backoff (Wang Chen et al., 2013; Shao and Beaulieu, 2011; Sahinoglu and 

Guvenc, 2011; Sahinoglu et al., 2009; Kshetrimayum, 2009; Zhang et al., 2007; Win and 

Scholtz, 2000). 



Chapter 2                                M2M Technologies and Collisions Avoidance Techniques 
 

 

21 

2.3.4 Z-Wave 

In 2005, the company ZenSys developed the former version of the Z-Wave technology, 

which is a low power wireless communication technology tailored for residential 

automation and remote-control applications. In 2008, ZenSys became a division of Sigma 

Designs which promoted the formation of Z-Wave Alliance. In 2013, it announced the 

new version of the Z-Wave technology that is based on ITU-T Recommendation G.9959 

(2012) physical and MAC layers (Fuller et al., 2017; Badenhop et al., 2017; Z-Wave 

Alliance, 2019; Gomez and Paradells, 2010; Rawat et al., 2014; Spadacini et al., 2014; 

International Telecommunication Union, 2012; Insteon, 2013b; Rohini and 

Venkatasubramanian, 2015). 

Z-Wave uses the sub-1GHz band with two main frequency bands of 868 MHz and 900 

MHz in different regions around the globe (Z-Wave Alliance, 2019; Z-Wave Alliance, 

2016; Tuna et al., 2013). It might utilise one, two, or three channels, each with a bandwidth 

of 300 kHz and FSK modulation scheme to provide a data rate of 9.6 kbps and 40 kbps. 

On the other hand, it employs the GFSK modulation and a bandwidth of 400 kHz to 

provide a data rate of 100 kbps. The length of the Z-Wave message is variable between 14 

bytes in standard mode and 28 bytes in extended mode, with a payload size between 4 and 

6 bytes (Punj and Kumar, 2019; Fuller et al., 2017; Badenhop et al., 2017; Ghamari et al., 

2016; Mendes et al., 2015; Fadel et al., 2015; Sharma and Sharma, 2014; Z-Wave Alliance, 

2018; Rohini and Venkatasubramanian, 2015; Insteon, 2013b). 

Z-Wave can offer an indoor coverage range of 30 m based on a mesh network topology 

with a source routing approach. This means that the message route is determined and 

attached to each frame by the source with a maximum number of 4 hops. The Z-Wave 

network is divided into domains, where each domain represents a set of nodes that are 

connected to the same medium. Each domain is identified by a 32-bit ID while each node 

is identified by an 8-bit ID with up to 232 nodes in each domain. In each domain, there is 

only one controller, which is called the domain master, that can send control messages and 

commands to other devices in the domain. Other devices called slaves which are 

responsible for executing commands or replying to the controller. In addition, controllers 

perform the function of inter-domain bridges (IDB), which ensures communication 

between nodes in different domains, as shown in Figure 2.8. The Z-Wave network is a self-

organising network, which means that all nodes can dynamically detect neighbour nodes 

and update the routing table and inform the controller about any of these nodes (Gomez 
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and Paradells, 2010; Huq and Islam, 2010; Spadacini et al., 2014; Insteon, 2013b; 

International Telecommunication Union, 2012). 

The maximum transmission power of Z-Wave devices is restricted by the local regulations 

and is not specified by the ITU-T G.9959 recommendations. In general, Z-Wave devices 

work with a typical transmission power of 2 mW (3 dBm) (Baviskar et al., 2015). 

Furthermore, most Z-Wave devices are powered by a single battery, and the low power 

consumption with the use of the periodic sleep technique expands the battery life span to 

several years (Rawat et al., 2014). 

Z-Wave employs the CSMA/CA channel access mechanism with a random backoff 

algorithm to reduce the probability of collisions and ensure a clear channel for 

transmission. The backoff time is determined by the ITU-T G.9959 recommendations to 

be in the range of 10 – 40 milliseconds. Furthermore, Z-Wave utilises other mechanisms 

like frame acknowledgement, data verification, and frame retransmission to achieve better 

system robustness and ensure message delivery (Gomez and Paradells, 2010; Insteon, 

2013b; International Telecommunication Union, 2012). 

2.3.5 INSTEON 

INSTEON is a short-range, low-power, low cost, and low data rate M2M technology 

developed by SmartLabs Inc. in 2005 for home automation applications. INSTEON 

provides an individual feature among other M2M technologies by supporting two 

communication schemes to connect devices: RF and powerline. INSTEON RF 

communication employ three ISM sub-1GHz frequencies: 915 MHz in the US, 869.85 

MHz in Europe, and 921 MHz in Australia. It provides an unobstructed line-of-sight 

coverage area of up to 45 m with 12 dBm (≈ 16 mW) transmission power, which is reduced 

 

Figure 2.8: Z-Wave network architecture. 
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by the presence of obstacles. INSTEON RF communication provide a data rate of 38.4 

kbps with the FSK modulation scheme and a channel bandwidth of 64 kHz (Punj and 

Kumar, 2019; Talbot et al., 2018; Ervin et al., 2018; Lumpkins, 2015; Gomez and Paradells, 

2010; Spadacini et al., 2014; Baviskar et al., 2015; Insteon, 2013b; Insteon, 2013a; Irwin et 

al., 2011). On the other hand, powerline uses BPSK modulation with a carrier frequency 

of 131.65 kHz and can provide a maximum data rate of 13.165 kbps for instantaneous 

packets, and 2.88 kbps for sustained packets (Punj and Kumar, 2019; Lumpkins, 2015; 

Mendes et al., 2015; Insteon, 2013b; Insteon, 2013a; Irwin et al., 2011). 

 

 

INSTEON is based on a peer-to-peer dual-mesh (dual-band RF and powerline) network 

topology without a network controller or routing technique, as shown in Figure 2.9. Any 

INSTEON device can act as a sender, responder, or repeater by relaying messages. 

INSTEON supports multiple hops to achieve communication between devices located on 

different ranges or domains. The maximum number of hops is limited to three hops by two 

2-bit fields in each message. One field represents the maximum hops permitted for the 

message, and the other field contains the number of hops remaining (Hops Left). Unless 

 

Figure 2.9: INSTEON network architecture. 
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the device is the destination of the message, it will retransmit it and decrease the remaining 

hops field by one. If this field of the received message is zero, the message will be neglected. 

The sender will automatically resend the message again when it does not receive an 

acknowledgement from the recipient. In general, each sender starts by sending the message 

with a zero hop and increases the maximum hops field with each transmission retry to 

increase the number of devices that relay the message and achieve a wider coverage range. 

If the sender does not receive the acknowledgement after five attempts, the message will 

be lost (Lumpkins, 2015; Insteon, 2013a; Irwin et al., 2011). 

INSTEON supports two message types: standard message with 10 bytes, and extended 

message with 24 bytes. The standard message does not contain any user data and is 

designed for direct commands and controls, which represent the two-bytes payload of the 

standard message. On the other hand, extended messages contain all standard message 

fields in addition to 14 bytes of user data payload. Since each INSTEON powerline packet 

contains only 24 bits, the standard message will be sent using five packets and the extended 

message will be sent using 11 packets, as shown in Figure 2.9 (Lumpkins, 2015; Insteon, 

2013a; Insteon, 2013b; Irwin et al., 2011). 

INSTEON can support up to 1000 devices with a special collision avoidance and message 

synchronisation approach (Punj and Kumar, 2019; Baviskar et al., 2015; Insteon, 2019). 

This is achieved by utilising the simulcasting technique, which means that all devices 

within the same range transmit the same message at the same time. Using simulcasting 

increases the probability of receiving the message by the intended recipient and improves 

system performance. All devices should be synchronised to avoid message collision and 

ensure that devices will not jam each other. INSTEON employs the powerline zero 

crossing for message synchronisation. To ensure synchronisation of prospective 

retransmitted messages by RF devices, a sender should wait for extra time after sending 

the last packet. This extra time is set to one zero crossing for the standard message and two 

zero crossing for the extended message. Therefore, 6 zero crossings are required to send a 

standard message, and 13 zero crossings are required to send an extended message. These 

periods are called timeslots, in which each message will be sent synchronously by all 

devices in the range, as shown in Figure 2.10. In addition, INSTEON dual-band devices 

will first retransmit any received message from powerline using RF immediately after 

receiving the last packet of the message. In the next timeslot, the message will be 

retransmitted on the powerline. If the message was received via RF, the dual-band devices 

will first send it on the powerline in the next timeslot, then it will be retransmitted using 
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RF instantly after sending the last packet on the powerline. This approach guarantees that 

any asynchronous RF message will be synchronised on the next timeslot (Insteon, 2013a; 

Insteon, 2013b). 

Although simulcasting improves system performance and message delivery possibilities, 

there is a high probability of data collision due to synchronisation problems. RF-Only 

devices send messages asynchronously based on the ALOHA protocol and might collide 

with messages from other RF-Only devices or dual-band devices. Moreover, powerline 

devices might lose synchronisation due to a high level of noise caused by other electrical 

appliances and high amplitude spikes generated by motors, dimmers, and fluorescent lights 

(Insteon, 2013a; Insteon, 2013b; Irwin et al., 2011). 

2.3.6 EnOcean 

EnOcean is an ultra-low power, short-range, and small packets wireless M2M 

communication system for residential and industrial applications. EnOcean sensors and 

switches are designed to work without batteries, which means that devices are self-

powered. EnOcean is based on an innovative technique called energy harvesting where 

EnOcean devices derive energy from surrounding environment changes like light, 

temperature, vibration, and mechanical energy. EnOcean GmbH, which is a Germany 

 

Figure 2.10: INSTEON standard and extended messages and timeslots. 
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company located in Oberhaching, is the originator of the energy harvesting technique. It 

was founded in 2001 as an adjunct to Siemens Research and provided its first products to 

the market in 2002. In April 2008, EnOcean GmbH and several companies from Europe 

and the USA established the EnOcean Alliance to promote and develop the EnOcean 

technology worldwide. EnOcean Alliance announced its first official release of the 

EnOcean standard in 2009, which then modified in 2011 to support telegrams. In April 

2012, the EnOcean wireless protocol standard was approved as an international standard 

by the International Organization for Standardization (ISO) and the International 

Electrotechnical Commission (IEC) and was titled ISO/IEC 14543-3-10 (Ghamari et al., 

2016; Mendes et al., 2015; Xiaohui Li et al., 2014; Rawat et al., 2014; Gratton, 2013; 

Enocean Alliance, 2018a; Enocean Alliance, 2016d; Obaid et al., 2014; Ploennigs et al., 

2010; Enocean Alliance, 2012; Enocean Alliance, 2015d; Enocean Alliance, 2019b; 

Enocean Alliance, 2019a; ISO and IEC, 2012). 

The ISO/IEC 14543-3-10 standard is specially optimised for the ultra-low power Wireless 

Short-Packet (WSP) protocol and utilises two frequencies: 315 MHz and 868.3 MHz with 

a channel bandwidth of 280 kHz. In 2015, the ISO/IEC expanded the EnOcean standard 

and announced the new release ISO/IEC 14543-3-11, which supports the frequencies 

902.875 MHz and 928.35 MHz with an FSK modulation for the USA and Japan 

respectively. At first, the Amplitude Shift Keying (ASK) modulation scheme was 

employed by EnOcean until 2017 where the Frequency Shift Keying (FSK) was also 

utilised by EnOcean. In both cases, EnOcean provides a data rate of 125 kbps (Purkovic et 

al., 2019; Enocean Alliance, 2017; Xiaohui Li et al., 2014; Enocean Alliance, 2016d; 

Enocean Alliance, 2015d; Enocean Alliance, 2016b; Enocean Alliance, 2016c; Enocean 

Alliance, 2015a; Enocean Alliance, 2015c; Enocean Alliance, 2016a; Enocean Alliance, 

2019d; Enocean Alliance, 2019c; Enocean Alliance, 2011).  

EnOcean WSP protocol, shown in Figure 2.11, can provide a coverage range of 30 m for 

indoor applications and up to 300 m in free field line-of-sight connections with maximum 

transmission power of 10 dBm (10 mW). However, it can attain the indoor coverage with 

only mere 50 µW (-13 dBm) of energy, which represents the typical output power of 

EnOcean devices (Arcari et al., 2017; Xiaohui Li et al., 2014; Enocean Alliance, 2016d; 

Rawat et al., 2014; Obaid et al., 2014; Enocean Alliance, 2015d; Enocean Alliance, 2015a; 

Enocean Alliance, 2016a; Enocean Alliance, 2018b; Enocean Alliance, 2011; ISO and 

IEC, 2012). On the other hand, the indoor range is significantly affected by the wall, 
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furniture, and other obstacles and might be reduced to 10 m in some buildings (Enocean 

Alliance, 2018b). 

EnOcean supports point-to-point and star network topologies, and by using repeaters, it 

can support mesh topology also. In addition, repeaters might be used for range extension 

with a maximum number of two repeaters for each network. The EnOcean network 

consists of switches, sensors, actuators, and a controller, and might include a gateway, 

which supports different types of wired protocols for remote monitoring and control, as 

shown in Figure 2.11. Each device in the EnOcean network is identified by a 32-bit ID 

number. Switches and sensors are self-powered devices, and all other devices in the 

network are powered from the power line. Switches and sensors work as unidirectional 

transmitters only, while actuators are unidirectional receivers with synchronisation 

functionality. The controller, the gateway, and repeaters are bidirectional devices and can 

support synchronisation and smart acknowledgements (ISO and IEC, 2012; Enocean 

Alliance, 2018b; Enocean Alliance, 2016d; Enocean Alliance, 2017). 

In general, bidirectional devices support a message payload of 1 – 14 bytes that includes 

user data, acknowledgement, and control commands. On the other hand, sensors’ 

messages support a payload of 1 – 4 bytes and switches support a payload of one byte only 

(Purkovic et al., 2019; Arcari et al., 2017; Enocean Alliance, 2017; Enocean Alliance, 

2015b; Xiaohui Li et al., 2014; Gratton, 2013; Enocean Alliance, 2016d; Enocean Alliance, 

2011).  

 

Figure 2.11: EnOcean protocol architecture. 
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To reduce the power consumption for unidirectional devices, EnOcean employs an 

ALOHA-based random access protocol without synchronisation, acknowledgement, and 

channel sensing mechanism. On the other hand, to increase the number of devices with a 

lower probability of collision, EnOcean sends each message using short sub-telegrams that 

last for less than one millisecond. In addition, EnOcean sends identical multi-copies of 

each sub-telegram on different time slots that selected by adding a random time delay. The 

total period of these time slots should not exceed a maximum transmission maturity period 

of 40 milliseconds. EnOcean sends three copies of the original sub-telegram within 40 

milliseconds period and two copies of the repeated sub-telegram within 30 milliseconds 

time period. The 40 milliseconds transmission maturity period is divided into four 10 

milliseconds windows each containing 10 time slots of one millisecond, as shown in Figure 

2.13 and Table 2.3 (Yi-Chang Li et al., 2014; Gratton, 2013; Ploennigs et al., 2010; Enocean 

Alliance, 2017; Enocean Alliance, 2016d; Enocean Alliance, 2011; ISO and IEC, 2012). 

 

Figure 2.12: EnOcean system architecture. 

 

Figure 2.13: EnOcean sub-telegrams time slots. 
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Table 2.3: The appropriate allocation of time to the corresponding telegrams. 

Status 1st sub-telegram 2nd sub-telegram 3rd sub-telegram 

Original 0 1 … 9 20 … 39 

Level 1 repeated 10 … 19 20 … 29  

Level 2 repeated 0 … 9 20 … 29  

 

Furthermore, to reduce the probability of collision, EnOcean supports the CSMA/CA 

technique for powered devices only (actuators, repeaters, gateways, and controllers). If the 

channel is occupied, the sender will add a delay of a random time range and check the 

channel again. If the sender finds that the calculated time delay exceeds the transmission 

maturity time, it sends the current sub-telegram despite the current channel status. 

Although the LBT technique is highly recommended, it is an optional feature of the 

EnOcean system (Gratton, 2013; Ploennigs et al., 2010; Enocean Alliance, 2017; Enocean 

Alliance, 2016d; Enocean Alliance, 2011; ISO and IEC, 2012). 

The optimal number of connected devices to each EnOcean network is 100 devices, which 

is suitable for most home automation applications. This number can be escalated up to 200 

devices with a successful transmission probability of more than 99.9% for devices that 

transmit data once a minute, as shown in Figure 2.14. Increasing the number of connected 

device for more than 200 devices significantly affects the system performance and 

dramatically increases data collisions (Arcari et al., 2017; Ploennigs et al., 2010; Enocean 

Alliance, 2011). 

 

Figure 2.14: The transmission probability of EnOcean system versus the number of connected 
devices (Enocean Alliance, 2011). 



Chapter 2                                M2M Technologies and Collisions Avoidance Techniques 
 

 

30 

2.3.7 ANT 

ANT is an ultra-low power short-range wireless protocol that was initially developed by 

Dynastream Innovations Inc. in 2000 to solve the commercial problems of health and 

sports monitoring systems. In 2003, the ANT protocol was utilised by Nordic 

Semiconductor to create the first version of ANT devices that work in the 2.4 GHz ISM 

band, which then released in 2004. In 2005, the ANT+ Alliance was created to provide an 

international framework for the technology and to achieve better interoperability as a 

practical wireless sensor network (WSN). In December 2006, Dynastream became a 

wholly-owned subsidiary of Garmin Ltd (Rong and Xin, 2016; Kartsakli et al., 2015; 

Gratton, 2013; ANT+ Alliance, 2019c; ANT+ Alliance, 2019b; ANT+ Alliance, 2019a; 

ANT+ Alliance, 2019d). 

ANT supports different types of network topologies including peer-to-peer, tree, star, and 

mesh. ANT network can support up to 500 nodes that share the same channel using the 

Time Division Multiple Access (TDMA) technique. Each ANT powered node can act as 

a receiver, transmitter, or relay to ensure data routing without the need of a coordinator, 

especially as these nodes have the ability of channel sense and time slot selection. In 

addition, ANT devices might undertake different roles simultaneously on different 

channels (Dynastream Innovations Inc., 2018; Gratton, 2013; Dynastream Innovations 

Inc., 2014a; Dynastream Innovations Inc., 2015).  

The ANT communication system is based on a channel connection scheme, which means 

that communications between any two devices are achieved by initialising a specific 

channel with special characteristics. Each channel must contain at least one master device 

and one slave device. There are two types of channels for any ANT communications: the 

independent channel, for a peer-to-peer connection, and the shared channel for a single 

master device and multiple slave devices. In general, ANT devices can work on more than 

one channel simultaneously, and some devices can support up to 15 channels. Three types 

of messages are defined for ANT devices, which are broadcast, acknowledgement, and 

burst messages. Broadcast messages are used by the master devices to initialise the 

connections with slave devices and to set the channel characteristics. On the other hand, 

burst transmission is used to send large message data or to increase the transmission speed. 

Sending data from the master device to the slave devices is mandatory and is called forward 

direction, while sending data from slave devices to the master device is optional and is 

called reverse direction, as shown in Figure 2.15. Each transmission should be held on a 

specific time slot based on a previously defined channel period (Tch). According to the 
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channel period, a frequency of 0.5 – 200 Hz can be achieved. ANT employs the GFSK 

modulation scheme with a data rate of 20 kbps in normal mode and up to 60 kbps with 

advanced burst mode. The payload of each ANT message is variable within the range of 1 

– 8 bytes. In addition, ANT utilises 125 working channels in the frequency range of 2400 

– 24125 MHz with a 1 MHz step and can provide a communication range of 5 – 10 metre 

with a maximum transmission power of 4 dBm (2.5 mW) (Mehmood et al., 2016; Rong 

and Xin, 2016; Kartsakli et al., 2015; Gratton, 2013; Dynastream Innovations Inc., 2014a; 

Dynastream Innovations Inc., 2015; Dynastream Innovations Inc., 2010; Dynastream 

Innovations Inc., 2016c; Dynastream Innovations Inc., 2016b; Dynastream Innovations 

Inc., 2016a; Dynastream Innovations Inc., 2011; Dynastream Innovations Inc., 2014b; 

Dynastream Innovations Inc., 2013). 

Data collision in ANT system is known as “channel collisions”, which occurs when two 

(or more) devices try to access the channel simultaneously. In such a case, one of the 

channels will be initialised correctly, and the other will be denied. If the data was sent by 

a slave device, the data will be lost while for the master channel, the data will be saved in 

the buffer until next channel period. If there is no new data, the master device will 

retransmit the data again. Otherwise, the data will be lost. In general, applications with 8 

Hz channel period and higher are liable to provide collisions. The channel period is one of 

the vital factors that affect the probability of collisions. However, reducing the channel 

frequency is not suitable for all applications. Moreover, using a high number of 

simultaneous channels intensifies the probability of collisions as a consequence of 

decreasing the free radio bandwidth. In addition, dropping a slave channel into search 

mode will significantly increase the odds of collisions since it occupies the channel for a 

relatively long period. Consequently, channel collisions may drop slave devices into search 

mode and proliferates the probability of collisions again. Therefore, developers should be 

aware of this situation and avoid it at application design phase (Dynastream Innovations 

 

Figure 2.15: ANT transmission time slots. 
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Inc., 2014a; Dynastream Innovations Inc., 2015; Dynastream Innovations Inc., 2016c; 

Dynastream Innovations Inc., 2016a). 

2.3.8 A comparative summary of short-range M2M technologies 

The short-range M2M communication systems are mainly designed for industrial, health, 

and residential automation applications. The practical start of these systems was by 

developing the Bluetooth technology in 1998. However, several M2M technologies were 

developed in the next few years with different characteristics and specifications (see Figure 

2.16). Over the last two decades, these technologies have been developed and enhanced to 

fulfil the requirements of the new applications and market. 

In general, ZigBee provides the largest coverage range for short-range low-power M2M 

communication systems, but with the highest transmission power. On the other hand, the 

minimum power consumption can be achieved by EnOcean technology with only 50 µW 

transmission power as shown in Figure 2.17. 

 

Figure 2.16: Short-range M2M communication technologies timeline. 

 

Figure 2.17: Short-range M2M technologies coverage range in metres versus the transmission 
power in mW. 
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Each M2M technology employs a certain collision avoidance technique to improve system 

performance and intensify the number of connected devices with a minimum collision 

probability. In general, ZigBee network offers the biggest number of terminal devices with 

up to 4800 nodes, while UWB technologies provide communication between 7 slave 

nodes. On the other hand, Bluetooth, EnOcean, Z-Wave, ANT, and INSTEON can 

support practically a few hundred to one thousand nodes with an acceptable probability of 

collision, as shown in Figure 2.18. 

UWB offers the highest data throughput of up to 27 Mbps, while Bluetooth provides a data 

rate of 2 Mbps, which allow these two technologies to be suitable for a wide range of 

applications including applications that require audio and video streaming. However, 

other technologies provide a data rate that is adequate for most M2M monitoring and 

control applications, as shown in Figure 2.19. 

 
Figure 2.18: Short-range M2M technologies maximum number of connected devices. 

 

Figure 2.19: Short-range M2M technologies maximum data rate in kbps. 
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Table 2.4 and Figure 2.20 show a detailed comparison between the previous short-range 

M2M communication technologies. 

Table 2.4: Summary of the short-range M2M technologies features and characteristics. 

Characteristic ZigBee Bluetooth UWB Z-Wave INSTEON EnOcean ANT 

Operating 
frequency (MHz) 

868.3, 
915/920, 

2400 
2400 

499.2, 
3244 – 4742, 
5944 – 10234 

868, 
900 

869.85, 
915, 
921 

315, 868.3, 
902.875, 
928.35 

2400 

Number of 
channels 

1, 
10, 
16 

40 
1, 
4, 
11 

1, 2, 3 1 1 125 

Channel 
bandwidth (kHz) 

300, 
600, 
2000 

2000 

499200, 
1331200, 
1081600, 
1354970 

300, 400 64 280 1000 

Modulation 
scheme 

BPSK, 
OQPSK GFSK Impulse FSK, GFSK FSK, BPSK ASK/FSK GFSK 

Channel 
access/collision 

avoidance 
technique 

CSMA/C
A with 
random 
backoff 

AFH 
ALOHA 

with Time 
hopping 

CSMA/CA 
with random 

backoff 

Slotted 
simulcasting 

Controllers / 
Gateways: 

Slotted 
CSMA/CA TDMA / 

CSMA/CA Sensors: 
ALOHA / 3 

copies of 
telegrams 

Acknowledgement Yes Yes Yes Yes Yes 

Controllers / 
Gateways: 

Yes Yes 

Sensors: NO 

Network topology Star, tree, 
mesh 

Star, 
mesh 

Peer-to-peer Mesh Peer-to-peer, 
dual-mesh 

Peer-to-peer, 
start, mesh 

Peer-to-peer, 
tree, start, 

mesh 

Number of nodes 4800 1000 7 232 1000 200 500 

Data rate (kbps) 20, 40, 250 2000 110, 27000 9.6, 40, 100 
38.4, 

13.165, 2.88 125 20, 60 

Payload (Byte) 104 255 4095 6 14 4, 14 8 

Coverage range (m) 10 – 100 1 – 40 10 30 45 30 – 300 5 - 10 

Transmission 
power (dBm) 

0 – 20 
(13) -20 – 10 -3 3 12 

-13 – 10 
(-13) 4 

 

 
Figure 2.20: A comparison of short-range M2M technologies in terms of the number of connected 

devices, the coverage range, and the transmission power. 
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2.4 Long-Range Technologies (LPWANs) 

Long-range M2M communication technologies (or LPWANs) are aimed at providing a 

robust communication system over a broad coverage area with a single base station and 

minimum network complexity. This wide coverage area should be achieved with 

minimum power consumption to fulfil the long battery life requirement of the M2M 

communication system. In addition, these technologies are designed to maintain high 

system reliability with low complexity and low cost even with a massive number of 

connected devices. To accomplish these objectives, some long-range technologies use 

different collision avoidance techniques without using synchronisation techniques or 

acknowledgements between the base station and end devices. In general, the most 

important characteristics of the long-range M2M communication systems can be 

summarised in four main points (Qadir et al., 2018; Ayoub, Mroue, et al., 2018; Webb, 

2015; Anton-Haro and Dohler, 2015; Centenaro et al., 2016; Xiong et al., 2015; Webb, 

2012c). First, supporting a vast number of terminals, so that each base station can support 

thousands to several hundreds of thousands of devices. Second, the low cost for both 

hardware and services such that the total cost of the terminal will be in a range of $2 to $5. 

Third, low power consumption so that terminals can work on a single battery for about ten 

years without any external power supply. Finally, excellent coverage that requires a 100% 

coverage for indoor and outdoor devices. 

In the next sections, an outline of the characteristics of the main long-range M2M 

communication technologies with a detailed comparison between them is presented. 

2.4.1 DASH7 

The DASH7 Alliance protocol was first proposed in 2009 for radio frequency identification 

(RFID) and wireless sensors applications at a frequency of 433 MHz. In 2013, the DASH7 

Alliance expanded the frequency range to sub-1GHz bands of 868 MHz and 915 MHz for 

Europe and the USA respectively. The Dash7 Alliance protocol is based on the ISO/IEC 

18000-7 standard with seven OSI protocol layers, as shown in Figure 2.21 (Aravind et al., 

2018; Ayoub, Samhat, et al., 2018; Ayoub, Nouvel, et al., 2018; Ayoub, Mroue, et al., 2018; 

Berkvens et al., 2017; Grabia et al., 2017; Shahid and Masud, 2015; Piromalis et al., 2013; 

DASH7 Alliance, 2017; DASH7 Alliance, 2015; Weyn et al., 2015; Tuset-Peiró et al., 2014; 

Weyn et al., 2013). 
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DASH7 uses a BLAST network technology, which stands for Bursty, Light, 

Asynchronous, Stealth, and Transitional. “Bursty” means that data are sent as short 

sporadic packets according to the request-response topology. “Light” stands for the small 

packet size that is limited to a maximum size of 256 bytes with a payload of 0 – 250 bytes. 

“Asynchronous” means that there is no synchronisation between terminals and the base 

station. DASH7 is assumed to be “Transitional” because it is an upload-centric 

communication system where nodes send requests to the gateway at any time and wait for 

the gateway acknowledgement. Finally, the term “Stealth” refers to the fact that it does 

not support discovery beacons, so that endpoints can only respond to pre-approved devices 

(Aravind et al., 2018; Ayoub, Samhat, et al., 2018; Ayoub, Nouvel, et al., 2018; Ayoub, 

Mroue, et al., 2018; Piromalis et al., 2013; DASH7 Alliance, 2017; Ghamari et al., 2016; 

Weyn et al., 2015; DASH7 Alliance, 2015; Vilajosana et al., 2014; Weyn et al., 2013; Lee et 

al., 2013). 

DASH7 employs the GFSK modulation scheme and supports three channel classes with 

different characteristics, namely lo-rate, normal, and hi-rate. The lo-rate class provides a 

data rate of 9.6 kbps with fifteen channels each with 108 kHz bandwidth and channel 

spacing of 25 kHz. The normal class provides a data rate of 55.555 kbps with eight channels 

each with 216 kHz bandwidth and 200 kHz channel spacing. Finally, the hi-rate class 

provides 166.667 kbps with four 432 kHz channels and 200 kHz channel spacing (Bembe 

et al., 2019; Aravind et al., 2018; Ayoub, Samhat, et al., 2018; Ayoub, Nouvel, et al., 2018; 

Ayoub, Mroue, et al., 2018; Grabia et al., 2017; DASH7 Alliance, 2017; Weyn et al., 2015; 

 

Figure 2.21: The DASH7 protocol stack. 
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DASH7 Alliance, 2015; Ergeerts et al., 2015; Vilajosana et al., 2014; Tuset-Peiró et al., 2014; 

Weyn et al., 2013; Piromalis et al., 2013; Lee et al., 2013). 

DASH7 supports three network topologies: star, tree with two hops, and mesh. It can 

achieve a coverage range between 1 to 3 km for each cell with transmission power of 0 – 

16 dBm (1 – 40 mW). DASH7 is designed to support up to 10000 nodes by utilising a tag 

addressing scenario, rather than using the ID address, and tag collection scheme (Bembe 

et al., 2019; Aravind et al., 2018; Ayoub, Samhat, et al., 2018; Grabia et al., 2017; Shahid 

and Masud, 2015; Piromalis et al., 2013; Lee et al., 2013; Weyn et al., 2013; DASH7 

Alliance, 2014; Tuset-Peiró et al., 2014). 

In addition, DASH7 employs the slotted ALOHA protocol with the CSMA/CA technique 

to reduce the probability of collision. It supports three collision avoidance algorithms: 

Adaptive Increase No Division (AIND), Random Adaptive Increase No Division 

(RAIND), and Random Increase Geometric Division (RIGD), as shown in Figure 2.22 

(Ayoub, Samhat, et al., 2018; Grabia et al., 2017; Lee et al., 2013; DASH7 Alliance, 2017; 

Weyn et al., 2015; DASH7 Alliance, 2015; Weyn et al., 2013). 

 

 

In AIND mode, a linear slot backoff time is implemented, and the CSMA process is 

executed at the beginning of the slot. The slot length is fixed and approximately equals the 

 

Figure 2.22: DASH7 collision avoidance models. 
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duration of the transmission. If the transmission fails, the transmitter will wait for a random 

duration that is equal to a multiple of the slot duration. If the total wait duration exceeds a 

certain time limit, called contention time, the transmission fails. RAIND applies the same 

process above for AIND except that a random wait duration is initially implemented before 

executing the CSMA process. RIGD is similar to RAIND, but the slot length decays by a 

factor of (1/(2𝑛𝑛+1)) for each transmission attempt (Ayoub, Samhat, et al., 2018; Vilajosana 

et al., 2014; Weyn et al., 2015; DASH7 Alliance, 2015; Weyn et al., 2013; Lee et al., 2013; 

DASH7 Alliance, 2017). As reported by (Lee et al., 2013), simulation results show that 

AIND algorithm provides the lowest collision avoidance among the previous methods. 

2.4.2 Ingenu 

In 2013 the Company Ingenu, which was formerly known as On-Ramp Wireless and re-

branded in September 2015, announced its first LPWAN system specifications by adapting 

its previous industrial wireless network to fulfil the modern M2M communication systems. 

Ingenu is a founder member of the IEEE 802.15.4k task group, which adopts the use of the 

On-Ramp innovative channel access method called Random Phase Multiple Access 

(RPMA) protocol. Ingenu employs the RPMA technology with the direct sequence spread 

spectrum (DSSS) technique, a Viterbi channel coding algorithm, message spreading, and 

other error correction algorithms to achieve the long-range requirement in the 2.4 GHz 

frequency band with a minimum Bit Error Rate (BER) (Bembe et al., 2019; Kail et al., 2018; 

Carlsson et al., 2018; Centenaro et al., 2016; Sanchez-Iborra and Cano, 2016; Myers et al., 

2009; Evans-Pughe, 2013). 

Ingenu employs the BPSK modulation scheme with a transmission power of 21 dBm (125 

mW) and a low receiver sensitivity of -145 dBm to attain its long-range communication. 

Ingenu claims that each base station provides a line of sight communication of up to 65 

km and non-line of sight communication of about 15 km. It also provides a coverage range 

of 5 km in urban areas and 2 km for underground nodes. Furthermore, it claims that with 

such a transmission power the battery life can be between 10 to 20 years depending on the 

number of messages per day (Carlsson et al., 2018; Centenaro et al., 2016; Sanchez-Iborra 

and Cano, 2016; Myers et al., 2009; Ofcom, 2014; Ingenu, 2015a; Ingenu, 2015b).  

Ingenu utilises a message payload of 11 bytes with a data rate of 19 kbps. It also utilises a 

channel width of 1 MHz and channel spacing of 2 MHz, which provides a total number of 

80 channels in the 80 MHz available bandwidth for the 2.4 GHz band, as shown in Figure 

2.23. However, Ingenu uses only 8 channels from these available channels to mitigate the 
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interference with other channels and with the coexistence signals like the WiFi 802.11. 

Although RPMA technique supports the demodulation of up to 1200 overlapped signals, 

Ingenu base station utilises 1000 overlapped signals from different nodes on each channel. 

This provides a total number of up to 8000 devices that can be connected in a star topology 

with the base station. Moreover, Ingenu supports the tree network topology (Bembe et al., 

2019; Ofcom, 2014; Sanchez-Iborra and Cano, 2016; Ingenu, 2015a; Myers et al., 2009; 

Ingenu, 2015b; Ingenu, 2016a). 

 

The data scheduling process used by Ingenu technology to reduce the probability of 

collision is a mix between the random time access and a frame synchronisation technique. 

First, the base station synchronises the start time of the transmission frame with all nodes, 

then each node will choose a random time delay to start its data transmission. The random 

time delay plus the frame length should always be less than a time slot that is defined by 

the base station to listen to the nodes, as shown in Figure 2.24.  

To simplify the demodulation process, the base station uses a blind demodulation 

technique that is based on the hypothesis that all data have been received correctly. The 

base station then uses the cyclic redundancy check (CRC) technique to indicate any error 

in the received data. If an error is detected, the message will be neglected, and no 

acknowledgement will be sent to the end node. Therefore, the end node should send the 

message again until receiving the acknowledgement. The collision occurs in RPMA system 

when more than one node chooses the same random time delay to start its transmission. 

 

Figure 2.23: RPMA operating channels (Ingenu, 2016a). 
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In such a case the base station cannot demodulate the signals separately (Ingenu, 2015a; 

Myers et al., 2009; Ingenu, 2015b; Ingenu, 2016b; Ingenu, 2016a). 

 

 

2.4.3 IEEE 802.11ah 

IEEE 802.11ah is a long-range wireless communication technology designed by the IEEE 

802.11ah task group (called TGah) to fulfil the long range and low power requirements of 

the M2M systems. In 2010, the IEEE 802.11ah task group was founded to design the new 

IEEE 802.11ah standard, and in 2013 the task group announced the first version of the 

IEEE 802.11ah standard. Later in 2017, TGah published the final version of IEEE 

802.11ah specifications standard (Bembe et al., 2019; Sun et al., 2017; IEEE Computer 

Society, 2017; Domazetovic et al., 2016; Khorov et al., 2015; Park, 2015; Adame et al., 

2014). IEEE 802.11ah supports the periodic sleeping approach to reduce the power 

consumption with a maximum communication range of 1 km. In addition, the maximum 

payload size supported by IEEE 802.11ah is limited to 256 bytes, which is adequate for 

most M2M applications (Kos et al., 2019; U. and A. V., 2019; Soares and Carvalho, 2019; 

Bembe et al., 2019; Qiao et al., 2018; Liu et al., 2018; Rao et al., 2018; Kocan et al., 2017; 

Domazetovic and Kocan, 2017; Khorov et al., 2015; Aust et al., 2015). 

IEEE 802.11ah supports a wide range of sub-1 GHz ISM bands, excluding the TV white 

space spectrum, as shown in Figure 2.25. Moreover, it employs different modulation 

schemes including BPSK, QPSK, 16-QAM, 64-QAM, and 256-QAM with a channel 

 

Figure 2.24: RPMA scheduling scheme. 



Chapter 2                                M2M Technologies and Collisions Avoidance Techniques 
 

 

41 

bandwidth of 1 MHz, 2 MHz, 4 MHz, 8 MHz, or 16 MHz depending on the used band, 

the maximum required throughput, and the coverage range. IEEE 802.11ah provides an 

extensive range of data rates within the range of 150 kbps up to 347 Mbps. Furthermore, 

IEEE 802.11ah supports a transmission power of 0 – 30 dBm (1 – 1000 mW) with a battery 

lifetime from months up to several years, especially that terminals are able to sleep for up 

to 5 years without disassociation from the access point (AP) (U. and A. V., 2019; Kos et 

al., 2019; Bembe et al., 2019; Liu et al., 2018; Rao et al., 2018; Sun et al., 2017; Domazetovic 

and Kocan, 2017; Kocan et al., 2017; Tian et al., 2017; Domazetovic et al., 2016; Damayanti 

et al., 2016; IEEE Computer Society, 2017). 

 

 

IEEE 802.11ah is based on the star and the tree network topologies and was first designed 

to handle up to 6000 end devices, which are called stations (STAs), then it was extended 

to supports up to 8191 STAs (U. and A. V., 2019; Chang et al., 2019; Rao et al., 2018; 

Gopinath and Nithya, 2018; Tian et al., 2017; Damayanti et al., 2016; Park, 2015; Khorov 

et al., 2015; Aust et al., 2015; Ji et al., 2015; Adame et al., 2014). Stations in the IEEE 

802.11ah are divided into three types according to the channel access mechanism and the 

data transmission scheme illustrated in Figure 2.26 (U. and A. V., 2019; Chang et al., 2019; 

Soares and Carvalho, 2019; Ali et al., 2019; Gopinath and Nithya, 2018; Bel et al., 2018; 

Tian et al., 2017; Sun et al., 2017; Khorov et al., 2015; Park, 2015; Adame et al., 2014; Park 

et al., 2014; Park, 2014; IEEE Computer Society, 2017). These types are: 

 

Figure 2.25: ISM bands utilised by the IEEE 802.11ah standard. 
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1. Traffic indication map (TIM) stations, which are intended for high traffic nodes with 

minimum power consumption by employing a periodic data transmission approach. To 

send and receive data, TIM stations should first listen to the AP beacons and access the 

channel within a restricted time window called Restricted Access Window (RAW). 

2. Non-TIM stations, which can directly connect to the AP at any time and send data in a 

periodically restricted access window (PRAW) that defined by the AP. 

3. Unscheduled stations, which are designed for applications that need to send data 

irregularly. These stations can send an immediate channel access request to the AP at 

any time. The AP then defines a special access window to receive data from these 

stations, which should be outside both RAW and PRAW windows. 

 

 

Moreover, IEEE 802.11ah employs packet acknowledgements to improve system 

performance and reduce the probability of lost messages. However, the channel access 

approach described above provides a high network latency as the number of stations 

becomes high. Moreover, the probability of collision will be high especially if many 

stations received the same beacon from the AP and try to access the channel at the same 

RAW. Also, if many unscheduled stations need to transmit data at the same time, the 

probability of collision will be high. Therefore, increasing the number of stations is one of 

the most important factors that significantly affects system reliability and performance 

(Soares and Carvalho, 2019; Chang et al., 2019; Gopinath and Nithya, 2018; Damayanti 

et al., 2016; Aust et al., 2015; Khorov et al., 2015; Park, 2015; Park, 2014).  

2.4.4 LoRaWAN 

In January 2015 LoRa Alliance published the first version of its new M2M communication 

technology named LoRaWAN, which was formerly designed by Semetch Corporation. 

LoRa intended to provide long-range communication with low power and low data rate 

 

Figure 2.26: IEEE 802.11ah channel access approach (Adame et al., 2014). 
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by utilising the Chirp Spread Spectrum (CSS) technique with the FSK modulation scheme. 

It supports three channel bandwidths of 125 kHz, 250 kHz, and 500 kHz, and is designed 

to work in sub-1GHz bands of 430 MHz, 433 MHz, 868 MHz, and 915 MHz. In addition, 

LoRaWAN supports 3 channels in Europe and 8 channels in the US. It also provides a 

data rate of 0.3 – 50 kbps with a maximum payload of 250 bytes. Furthermore, LoRaWAN 

supports an adaptive data rate scheme, in which the terminal node automatically changes 

its data rate according to the channel conditions. LoRaWAN provides a communication 

range of 5 km in urban areas and up to 15 km in rural areas with typical transmission power 

of 14 – 20 dBm (25 – 100 mW) in Europe and up to 27 dBm (500 mW) in the US. Despite 

this high transmission power, LoRa claims that the battery lifetime of end devices can be 

in the range of 5 – 10 years based on data scheduling. LoRaWAN utilises different 

spreading factors (SF) in the range of 7 – 12, where using a higher spreading factor increases 

the communication range and decreases the transmission throughput.  (Mekki et al., 2019; 

Bembe et al., 2019; Kos et al., 2019; Ayoub, Samhat, et al., 2018; Carlsson et al., 2018; Croce 

et al., 2018; Dias and Grilo, 2018; Lee and Ke, 2018; Nugraha et al., 2018; Qadir et al., 

2018; Fehri et al., 2018; Adelantado et al., 2017; Casals et al., 2017; Lavric and Popa, 2017a; 

Lavric and Popa, 2017b; LoRa Alliance, 2017; Bor et al., 2016; Centenaro et al., 2016; 

Nolan et al., 2016; Mehboob et al., 2016; Sanchez-Iborra and Cano, 2016; Semtech, 2017; 

LoRa Alliance, 2015; Semtech, 2015). Figure 2.27 demonstrates the frame structure and 

the transceiver physical block diagram for LoRaWAN (Ghanaatian et al., 2019). 

 

 

 

Figure 2.27: LoRaWAN frame structure and PHY block diagram (Ghanaatian et al., 2019). 
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Figure 2.28 shows the LoRaWAN protocol architecture (Qadir et al., 2018; Casals et al., 

2017; Lavric and Popa, 2017b; LoRa Alliance, 2017; LoRa Alliance, 2015). LoRa supports 

bidirectional communication with an asynchronous uplink scheme. It also supports three 

types of terminal devices based on LoRaWAN MAC layer classes: Class A, Class B, and 

Class C (Mekki et al., 2019; Ayoub, Samhat, et al., 2018; Fehri et al., 2018; Carlsson et al., 

2018; Qadir et al., 2018; Adelantado et al., 2017; Casals et al., 2017; Lavric and Popa, 2017a; 

Lavric and Popa, 2017b; LoRa Alliance, 2017; Bor et al., 2016; Centenaro et al., 2016; 

Nolan et al., 2016; Mehboob et al., 2016; Sanchez-Iborra and Cano, 2016; LoRa Alliance, 

2019). 

 

 

These classes can be summarised as follows: 

• Class A - Lowest power bi-directional end-devices: Devices in Class A send data 

according to their needs asynchronously with a random time access scheme based on 

the ALOHA protocol. Each uplink transmission followed by two short downlink 

receive windows, as shown in Figure 2.29. Other received data should wait until the 

next uplink request from the terminal. This operation offers the lowest power 

consumption for the LoRaWAN since Class A devices can enter long period sleep mode 

without the need for periodic wakeup. 

• Class B - Bi-directional end-devices with scheduled receive slots: Class B devices 

support the random receive windows of Class A. In addition, Class B devices add extra 

downlink windows at scheduled times, which can be opened after receiving a time 

 

Figure 2.28: LoRaWAN architecture and classes (LoRa Alliance, 2017). 
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synchronized Beacon from the gateway. This synchronises the terminal downlink 

communication with the server at certain time slots. 

• Class C - Bi-directional end-devices with maximal receive slots: Class C offers a 

continuous receiving window, which only closes in the transmission period. This 

reduces communication latency and ensures that all downlinks will be received at any 

time. However, continuous listening significantly increases the power consumption and 

reduces battery life, where the receiver power consumption is about 50 mW. Therefore, 

Class C devices are mostly suitable for applications where continuous power is 

available. 

LoRa is based on a star-of-stars network topology with a single hop and a single gateway 

for each sub-star, as shown in Figure 2.30. Gateways work as a transparent bridge and 

relay messages between terminal nodes and the LoRa network server. Moreover, devices 

can communicate with multiple gateways at the same time (Bembe et al., 2019; Dias and 

Grilo, 2018; Lee and Ke, 2018; Qadir et al., 2018; Adelantado et al., 2017; Casals et al., 

2017; Lavric and Popa, 2017b; LoRa Alliance, 2017; Bor et al., 2016; Centenaro et al., 2016; 

Sanchez-Iborra and Cano, 2016). 

 

 

 

Figure 2.29: LoRaWAN receive slots timing. 
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Since LoRaWAN is based on the ALOHA protocol, it depends on low duty cycle 

transmission and the use of random frequency hopping to mitigate the collision problem. 

In addition, LoRaWAN employs the message acknowledgement approach to increase 

system reliability. End devices retransmit the same message if the acknowledgement is not 

received. This will be continued until either an acknowledgement is received or attempts 

of 8 retransmissions are reached, after which the message will be dropped. Furthermore, 

LoRa gateways are designed with the capability of receiving multiple messages on up to 9 

channels simultaneously. Moreover, LoRa gateways can decode different messages on the 

same channel with different spreading factors. This increases the LoRaWAN network 

capacity (Mekki et al., 2019; Lee and Ke, 2018; Qadir et al., 2018; Fehri et al., 2018; 

Adelantado et al., 2017; Casals et al., 2017; LoRa Alliance, 2017; Centenaro et al., 2016; 

Mikhaylov and Petäjäjärvi, 2016; LoRa Alliance, 2015).  

In general, LoRaWAN was designed to support several thousands of devices for each 

network cell. However, using the ALOHA protocol with a limited number of channels 

(only 3 channels in Europe) provides a high probability of collision. Studies presented by 

Adelantado et al. and Mikhaylov and Petäjäjärvi (Adelantado et al., 2017; Mikhaylov and 

Petäjäjärvi, 2016) show that the practical range of connected devices may vary from several 

hundred up to 5000 devices based on the spreading factor and the number of packets per 

hour. 

 

Figure 2.30: LoRaWAN network architecture. 
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2.4.5 Sigfox 

The company Sigfox was formed in 2008 by Ludovic Le Moan and Christophe Fourtet in 

Labege, France. Later in 2009, SIGFOX announced its new low-power wide area network 

(LPWAN) for M2M communication systems by utilising the ultra-narrow band (UNB) 

technology. Sigfox employs three ISM bands: the 868 MHz band for Europe and the 

Middle East, the 902 MHz band for North America, and the 923 MHz band for other 

countries (Bembe et al., 2019; Sigfox, 2019a; Sigfox, 2019b; Kail et al., 2018; Qadir et al., 

2018; Adelantado et al., 2017; Centenaro et al., 2016; Mehboob et al., 2016; Cendo´n, 2015). 

Sigfox uses the Differential Binary Phase Shift keying (DBPSK) modulation scheme for 

the upload link with a channel bandwidth of 100 Hz and a low data rate of 100 bps. It also 

limits the payload with a maximum size of 12 bytes and a total message size of 26 bytes. 

The maximum message rate of Sigfox is limited to 140 messages per day for each device. 

On the other hand, Sigfox employs the GFSK modulation scheme with a channel 

bandwidth of 600 Hz and a bit rate of 600 bps for the downlink. Sigfox limits the number 

of downlink messages by a maximum rate of 4 messages per day each with a maximum 

payload of 8 bytes. Sigfox was first designed to utilise 400 UNB channels and in 2017 

Sigfox extended the base station bandwidth to support up to 1920 channels (Mekki et al., 

2019; Bembe et al., 2019; Lavric et al., 2019; Sigfox, 2019a; Carlsson et al., 2018; Chung et 

al., 2018; Qadir et al., 2018; Adelantado et al., 2017; Li et al., 2017; Ali et al., 2017; Vejlgaard 

et al., 2017; Sigfox, 2017a; Sigfox, 2017c; Nolan et al., 2016; Centenaro et al., 2016; 

Mehboob et al., 2016; Sanchez-Iborra and Cano, 2016; Goursaud and Gorce, 2015; 

Cendo´n, 2015). 

Sigfox is based on the star network topology to cover a wide area with a massive number 

of devices using a single base station. Sigfox claims that each base station can handle up to 

one million devices and a communication range of about 3 – 10 km in urban areas. The 

coverage range is much higher for rural areas and can be in the range of 30 – 50 km. This 

coverage area can be achieved by Sigfox with a transmission power of 14 dBm (25 mW). 

With such low power consumption and a low data rate, Sigfox devices can work with a 

single battery for up to 10 years (Mekki et al., 2019; Bembe et al., 2019; Lavric et al., 2019; 

Carlsson et al., 2018; Kail et al., 2018; Chung et al., 2018; Qadir et al., 2018; Ali et al., 2017; 

Sigfox, 2017b; Lauridsen et al., 2017; Vejlgaard et al., 2017; Nolan et al., 2016; Centenaro 

et al., 2016; Mehboob et al., 2016; Sanchez-Iborra and Cano, 2016; Cendo´n, 2015).  

Although Sigfox supports a massive number of connected devices, it utilises the pure 

ALOHA technique (random time-frequency access) and does not implement the 
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acknowledgement process or any collision avoidance mechanism. In contrast, to mitigate 

the collision problem, Sigfox employs the frequency hopping (FH) technique over a large 

number of ultra-narrow band channels. In addition, Sigfox employs a multiple message 

copies approach to further mitigate the effect of collisions on the system performance. Each 

Sigfox device sends three identical copies of each transmitted message on three different 

randomly selected channels. This increases the probability of successful transmission and 

improves system reliability (Lavric et al., 2019; Sigfox, 2019a; Adelantado et al., 2017; Li 

et al., 2017; Sigfox, 2017b; Vejlgaard et al., 2017; Goursaud and Gorce, 2015). Moreover, 

the low message rate and the small packet size utilised by Sigfox also reduce the effect of 

collisions on the system performance. 

2.4.6 Weightless 

Weightless is a LPWAN open standard designed by Weightless Special Interest Group 

(Weightless-SIG), which was formed in 2011 and based in Cambridge, England. 

Weightless-SIG promotes the use of TV white space and the sub-GHz spectrum for its new 

Weightless technology with three different standards: Weightless-W, Weightless-N, and 

Weightless-P. Each one of these standards was designed with particular characteristics and 

specifications to fulfil a wide range of applications and markets, as will be explained in the 

following sections (Webb, 2015; Webb, 2013; Webb, 2012a; Webb, 2012b; Webb, 2012c; 

Weightless-SIG, 2015b; Weightless-SIG, 2015g). 

A. Weightless-W 

In 2013, Weightless-SIG published the final release of the Weightless-W standard, which 

provides extensive features with an average cost in comparison with other LPWAN 

technologies. It employs the TV white space spectrum with a frequency range of 470 – 790 

MHz and a channel bandwidth of 6 or 8 MHz depending on the local regulations. 

Weightless-W supports different modulation schemes including 16-QAM, QPSK, BPSK, 

and DBPSK with a wide range of data rates from 1 kbps up to 10 Mbps. The minimum 

payload supported by Weightless-W is 10 bytes, and the maximum limit is 255 bytes. In 

addition, Weightless-W is based on the star network topology with a coverage range of up 

to 5 km in urban areas. Weightless-W terminal nodes can achieve such a communication 

range with 40 mW (16 dBm) transmission power. Weightless-W supports periodic sleeping 

so that terminals can work on a single battery from three to five (3 – 5) years depending on 

the message rate (Bembe et al., 2019; Carlsson et al., 2018; Adelantado et al., 2017; Ali et 

al., 2017; Sanchez-Iborra and Cano, 2016; Xiong et al., 2015; Goursaud and Gorce, 2015; 

Webb, 2013; Weightless-SIG, 2015b; Weightless-SIG, 2013; Weightless-SIG, 2015d). 
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Weightless-W is designed to support up to one million terminals for each base station with 

a restricted time and frequency synchronisation approach. Moreover, it uses the Time 

Division Duplex (TDD) technique to divide the data frame between the downlink and the 

uplink in each transmission. To handle such a vast number of terminal devices, Weightless-

W employs Time Division Multiple Access (TDMA) and Frequency Division Multiple 

Access (FDMA) techniques (Adelantado et al., 2017; Xiong et al., 2015; Webb, 2013; 

Weightless-SIG, 2013). 

For the downlink communication, TDMA is utilised on a single carrier and a single TV 

channel (6 MHz or 8 MHz) to send commands and synchronisation from the base station 

to terminal devices. In contrast, Weightless-W employs both TDMA, narrowband FDMA 

and the frequency hopping technique for uplink communication, as shown in Figure 2.31. 

It divides each TV channel into 24 narrowband sub-channels and leaves blank spaces 

between them to reduce the interference between these sub-channels. Furthermore, it 

utilised only 16 sub-channels to further mitigate the interference problem. To handle the 

total number of terminals, the base station groups each of 65536 terminals in a single sub-

channel using TDMA. Therefore, each terminal should strictly send its data in a certain 

time slot and on a single sub-channel (Weightless-SIG, 2013). 

In addition, Weightless-W employs different techniques like DSSS, message spreading, 

forward error correction (FEC), cyclic prefixes and postfixes, and a Cyclic Redundancy 

Check (CRC). All these techniques are implemented to minimise the bit error rate (BER) 

as much as possible and maintain the synchronisation between the base station and 

terminals. However, this leads to a complex network structure, high terminal cost, and 

short battery lifespan, especially with a high message rate. Although this approach does 

not provide any probability of collisions, there is still a possibility of losing synchronisation 

between the base station and terminal devices due to (Weightless-SIG, 2013; Webb, 2012a; 

Webb, 2012c): 

• the interference with other terminals on the same sub-channel; 

• interference with other sub-channels; 

• interference with other adjacent channels that are occupied by high power TV 

Transmitters. 
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B. Weightless-N 

Weightless-N was designed for low cost and long battery life applications with a 

unidirectional communication scheme. Weightless-SIG announced the final version of the 

Weightless-N standard in April 2015, which is intended to use the frequency range of 863 

– 870 MHz in Europe and the frequency range of 902 – 928 MHz in the USA. It uses the 

ultra-narrow band (UNB) approach with a channel width of 200 Hz in Europe and 100 Hz 

in the USA. Weightless-N employs a large number of UNB channels on six different bands 

as 1200, 1500, 2499, 3000, 9990, and 15000 channels. Weightless-N utilises the DBPSK 

and provides a low data rate of 100 bps with a maximum message rate of one message per 

minute. Using a periodic sleeping technique and a low message rate can expand battery 

life for up to 10 years with a transmission power of 14 dBm (Bembe et al., 2019; Carlsson 

et al., 2018; Kail et al., 2018; Mehboob et al., 2016; Sanchez-Iborra and Cano, 2016; 

Weightless-SIG, 2015c). 

Weightless-N provides a coverage area of up to 5 km in urban areas with tens of thousands 

of terminal nodes. To mitigate the collision problem with such a massive number of 

devices, Weightless-N uses ALOHA protocol and the frequency hopping technique 

(random time-frequency access) (Bembe et al., 2019; Carlsson et al., 2018; Kail et al., 2018; 

Goursaud and Gorce, 2015). In addition, each node sends multiple copies of each message 

to reduce the probability of losing the message due to the collision. The number of message 

copies can be set in the range of 3 – 8 message copies depending on the application and the 

 

Figure 2.31: Weightless-W frame structure (Weightless-SIG, 2013). 
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required quality of service (QoS). The frequency hopping sequence used by the Weightless-

N is designed to randomise the selected channel on each transmission and ensure that 

different channels will be selected by different nodes at the same time (Abbas et al., 2017; 

Weightless-SIG, 2015c). 

The Weightless-N channel selection process is divided into two stages. The first stage is by 

dividing each band into three frequency segments called macro-channels. Each macro-

channel contains a number of UNB channels called micro-channels. Before each 

transmission, each node selects one of these macro-channels using a special randomisation 

algorithm that is based on the internal timer of this node. The second stage is designed to 

randomise the selection of micro-channels in each macro-channel based on the internal 

timer and the ID of the sender node. These two randomisation stages reduce the probability 

of selecting the same channel by any two different nodes at the same time. Nevertheless, 

there is a high probability of losing the message due to collisions and other factors that 

affect communication medium like noise and interference, especially that Weightless-N 

does not employ any synchronisation or acknowledgement mechanism (Abbas et al., 

2017). 

C. Weightless-P 

In December 2015, Weightless-SIG with the cooperation of M2Comm published the final 

version of its newest M2M standard named Weightless-P. It is designed to work in all sub-

1GHz ISM bands including the frequency bands of 138 MHz, 169 MHz, 433 MHz, 470 

MHz, 780 MHz, 868 MHz, 915 MHz and 923 MHz (Weightless-SIG, 2015b; Weightless-

SIG, 2015e; Weightless-SIG, 2015f; Weightless-SIG, 2015d; Weightless-SIG, 2015g; 

Weightless-SIG, 2015a). Weightless-P supports a broad range of data rates for the uplink 

from 0.625 kbps up to 100 kbps. Weightless-P employs the Gaussian Minimum Shift 

Keying (GMSK) and the Offset Quadrature Phase Shift Keying (OQPSK) modulation 

schemes with a typical transmission power of 14 dBm (25 mW). It also provides a coverage 

range of 2 km in urban areas and battery lifetime of 3 – 8 years (Bembe et al., 2019; Carlsson 

et al., 2018; Ali et al., 2017; Sanchez-Iborra and Cano, 2016; Goursaud and Gorce, 2015; 

Weightless-SIG, 2015b; Weightless-SIG, 2015e). 

Weightless-P provides fully acknowledged bidirectional communication and employs the 

TDD technique to divide each frame between the downlink and the uplink with a similar 

structure to the Weightless-W frame, see Figure 2.31. For the downlink, Weightless-P 

utilises a single channel with a bandwidth of 100 kHz and TDMA scheme to provide a 

data rate of 100 kbps. On the other hand, it utilises 8 narrowband sub-channels each with 
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12.5 kHz bandwidth for the uplink to form a total channel width of 100 kHz. It also 

employs the TDMA and FDMA for the uplink to handle up to 10000 connected devices 

simultaneously (Sanchez-Iborra and Cano, 2016; Goursaud and Gorce, 2015; Weightless-

SIG, 2015b; Weightless-SIG, 2015e; Weightless-SIG, 2015d; Weightless-SIG, 2015g). 

Furthermore, to handle such a large number of nodes, Weightless-P supports a long frame 

duration of up to 16 seconds with a maximum payload of 48 bytes. Each frame is sent in 

multiple timeslots of 50 ms. However, this provides a high system latency. Weightless-P 

also uses the frequency hopping technique to reduce the interference problem and improve 

system robustness (Weightless-SIG, 2015e).  

2.4.7 NB-IoT (Narrowband Internet of Things LTE CAT-N) 

In 2016, the 3rd Generation Partnership Group (3GPP) announced the first version of the 

NB-IoT specifications standard which is designed for M2M communication systems. NB-

IoT inherits most features of the Long-Term Evolution (LTE) cellular system like operating 

frequency bands. Unlike LTE, NB-IoT was designed with lower cost, lower power 

consumption, lower data throughput, and a higher network capacity. NB-IoT supports a 

transmission power of 23 dBm (200 mW) with battery life of up to 10 years. It also offers 

a coverage range of 2 km in urban areas and up to 10 km in rural areas (Mekki et al., 2019; 

Wan et al., 2019; Andres-Maldonado et al., 2019; Martinez et al., 2019; Xu et al., 2018; Ali 

et al., 2018; ElNashar and El-saidny, 2018; Carlsson et al., 2018; Ayoub, Samhat, et al., 

2018; Lauridsen et al., 2017; Vejlgaard et al., 2017; Ali et al., 2017; Shin and Jo, 2017; 

Ratasuk et al., 2016; Vodafone Group, 2017).  

NB-IoT utilises the licenced spectrum band of 700 – 900 MHz with the BPSK and the 

QPSK modulation schemes. NB-IoT supports three operating modes in this band: stand-

alone mode, guard-band mode, and in-band mode, as shown in Figure 2.32. For the stand-

alone operation, NB-IoT uses a dedicated carrier inside the Global System for Mobile 

communication (GSM) spectrum, but it is outside LTE channels, with a bandwidth of 200 

kHz. In the guard-band operating mode, NB-IoT utilises the guard bands of the LTE 

operating spectrum with a bandwidth of 180 kHz. On the other hand, the same LTE 

channels are employed by the NB-IoT for the in-band operation with a 180 kHz bandwidth 

(Bembe et al., 2019; Mekki et al., 2019; Wan et al., 2019; Ayoub, Samhat, et al., 2018; Xu et 

al., 2018; Ali et al., 2018; ElNashar and El-saidny, 2018; Oh and Song, 2018; Ali et al., 

2017; Yu et al., 2017; Ratasuk et al., 2016; Vodafone Group, 2017).  
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NB-IoT employs Orthogonal Frequency-Division Multiple Access (OFDMA) scheme for 

the downlink communication with 12 subcarriers each of 15 kHz width. For the uplink 

transmission, NB-IoT uses two channel access schemes: mandatory single-tone Frequency-

Division Multiple Access (FDMA), like LTE, and optional multi-tone Single-Carrier 

Frequency Division Multiple Access (SC-FDMA). Single-tone transmission supports two 

different channel bandwidths: 15 kHz and 3.75 kHz. The 15 kHz channel bandwidth 

supports four different numbers of subcarriers: 1, 3, 6, and 12. On the other hand, the multi-

tone transmission is based only on the 15 kHz subcarrier spacing. With such specifications, 

NB-IoT offers a maximum data rate of up to 200 kbps for download communication with 

a maximum payload size of 85 bytes. In contrast, for upload communication, it provides 

either up to 144 kbps with the multi-tone transmission or up to 20 kbps with the single-tone 

transmission with a maximum payload size of 128 bytes.  (Bembe et al., 2019; Mekki et al., 

2019; Wan et al., 2019; Andres-Maldonado et al., 2019; Bao et al., 2018; Ayoub, Samhat, 

et al., 2018; Xu and Darwazeh, 2018; Xu et al., 2018; Ali et al., 2018; ElNashar and El-

saidny, 2018; Oh and Song, 2018; Chen et al., 2018; Ayoub, Mroue, et al., 2018; Kim et al., 

2018; Vejlgaard et al., 2017; Ali et al., 2017; Yu et al., 2017; Andres-Maldonado et al., 2017; 

Sinha et al., 2017; Lin et al., 2016; Wang et al., 2017; Elsaadany et al., 2017; Persia and Rea, 

2016; Dawaliby et al., 2016). 

 

Figure 2.32: NB-IoT operating modes. 
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NB-IoT is based on the star network topology and was designed to support up to 50 

thousand nodes for each cell, based on low rate end devices (Wan et al., 2019; Xu and 

Darwazeh, 2018; Xu et al., 2018; Song et al., 2017; Ratasuk et al., 2016; Wang et al., 2017; 

Biral et al., 2015). To handle such a large number of connected devices, NB-IoT offers two 

channel access mechanisms for the uplink transmission: Narrowband Physical Uplink 

Shared Channel (NPUSCH) and Narrowband Physical Random Access Channel 

(NPRACH). NPUSCH used by terminal nodes to send acknowledgements to the base 

station to ensure receiving commands and resources allocations. On the other hand, 

NPRACH is used by connected devices to send its data to the base station (Wan et al., 

2019; Andres-Maldonado et al., 2019; Martinez et al., 2019; Harwahyu et al., 2019; Ayoub, 

Samhat, et al., 2018; Ali et al., 2018; ElNashar and El-saidny, 2018; Yu et al., 2017; Andres-

Maldonado et al., 2017; de Andrade et al., 2016). To transmit data, devices need to perform 

a random request among the available channels (NPRACH) by sending a randomly chosen 

preamble. The total number of narrowband channels is either 12 in the case of 150 kHz 

channel width or 48 in the case of 3.75 kHz channel width. The base station can detect the 

non-collided packets and send random access response messages with a dedicated time 

offset for each detected preamble. Devices then send data on these dedicated resources 

(Andres-Maldonado et al., 2019; Harwahyu et al., 2019; Ayoub, Samhat, et al., 2018; 

ElNashar and El-saidny, 2018; Andres-Maldonado et al., 2017; Lin et al., 2016; Wang et 

al., 2017). 

When two or more nodes select the same channel to send the preamble or select the same 

channel to send data, due to the same preamble selection, collisions occur. To mitigate the 

collision effect, NB-IoT utilises the frequency hopping technique with a pseudorandom 

channel selection sequence to send the preamble and the data on different channels each 

time. Furthermore, NB-IoT devices use acknowledgements to ensure data reception. In 

addition, NB-IoT employs another key feature called message repetitions approach to 

further reduce the effect of collisions and increase the coverage range. If devices do not 

receive the acknowledgement, they will resend the packet again using the same random 

channel access technique. The main advantage of the repetitions approach implemented 

by the NB-IoT is the large number of supported repetitions, where a maximum number of 

128 repetitions is permitted. However, although this increases the probability of successful 

transmission, it significantly increases the network latency (Andres-Maldonado et al., 2019; 

Martinez et al., 2019; Harwahyu et al., 2019; Ayoub, Samhat, et al., 2018; Chen et al., 2018; 
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ElNashar and El-saidny, 2018; Yu et al., 2017; Bonnefoi et al., 2018; Alavikia and Ghasemi, 

2018; Lin et al., 2016; Wang et al., 2017; Wiriaatmadja and Choi, 2015; Aijaz, 2014). 

2.4.8 LTE-M (LTE CAT-M2) 

LTE-M, or LTE-MTC (Long-Term Evolution – Machine Type Communication) or LTE 

CAT-M (category MTC), is a new low power long range communication system based on 

the legacy LTE cellular system to fulfil M2M and IoT communication requirements. In 

2016, the 3GPP announced the first version of the LTE-M specifications in the LTE 

Release 13 called CAT-M1.  CAT-M1 was designed to utilise the same LTE licenced 

spectrum in the 800 MHz, 1800 MHz, and 2600 MHz bands with a channel bandwidth of 

1.4 MHz. It offers 6 narrowband subchannels called Physical Resource Blocks (PRBs) with 

a special enhanced machine type communication (eMTC) and a new Machine-type 

Physical Download Control Channel called (MPDCCH) to adopt the low power and low 

data rate IoT communication in the legacy LTE cellular system. In 2017, a new LTE-M 

version was published by the 3GPP called CAT-M2 (Release 14). This version supports a 

new channel bandwidth of 5 MHz with 24 PRBs in addition to the original 1.4 MHz 

channel (Bembe et al., 2019; Carlsson et al., 2018; ElNashar and El-saidny, 2018; Elsaadany 

et al., 2018; Hsieh et al., 2018; Benhiba et al., 2018; Dawaliby et al., 2018; El Fawal et al., 

2018; Elsaadany et al., 2017; Deshpande and Rajesh, 2017; Dawaliby et al., 2017; Ratasuk 

et al., 2017; Persia and Rea, 2016; Dawaliby et al., 2016; Lauridsen et al., 2016; Fawal et al., 

2017).  

CAT-M2 provides a data rate of up to 1 Mbps for both downlink and uplink using the 

QPSK and the 16-QAM modulation schemes with the OFDMA technique and a payload 

of up to 1024 bytes. Also, CAT-M2 provides a battery lifetime of 10 years for low data rate 

devices (with about 200 bytes per day) with power consumption of 20 dBm (100 mW). 

Moreover, CAT-M2 offers a coverage range of up to 7 km in urban areas and up to 15 km 

in rural areas with coverage enhancement (CE) technique, where a Maximum Coupling 

Loss (MCL) of up to 155 dB can be achieved. To attain such an MCL value and this large 

coverage area, CAT-M2 utilises the message repetitions approach with two coverage 

enhancement modes: CE Mode A and CE Mode B. For CE Mode A, devices can select a 

repetition number from the set {1, 2, 4, 8, 16, and 32}. In comparison, for CE Mode B the 

maximum number of repetitions can be configured up to 2048 repetitions. The repetitions 

number can be chosen automatically by terminal devices based on the signal power 

received from the base station (ElNashar and El-saidny, 2018; Elsaadany et al., 2018; Hsieh 

et al., 2018; GSM Association, 2018; Benhiba et al., 2018; Elsaadany et al., 2017; Dawaliby 



Chapter 2                                M2M Technologies and Collisions Avoidance Techniques 
 

 

56 

et al., 2017; Ratasuk et al., 2017; Dawaliby et al., 2016; Hongli Zhao and Hailin Jiang, 2016; 

Lauridsen et al., 2016; Fawal et al., 2017; Sierra Wireless, 2017; MathWorks, 2019). 

LTE CAT-M2 is designed to support up to 100 thousand devices by utilising the Physical 

Upload Shared Channel (PUSCH) with the frequency hopping technique and the message 

repetition approach. To handle such a large number of devices and mitigate the effect of 

collisions, connected devices send data on randomly selected PRBs and use 

acknowledgements to ensure message delivery. If a transmission is unacknowledged, the 

device randomly selected another PRB from the available 24 PRBs and resend the message 

until the maximum number of allowed repetitions reached based on the CE operating 

mode. This improves system performance and raises the probability of successful 

transmission. However, it escalates the power consumption and degrades the network 

throughput (ElNashar and El-saidny, 2018; Hsieh et al., 2018; Elsaadany et al., 2017; 

Ratasuk et al., 2017; Lauridsen et al., 2016; Fawal et al., 2017; Biral et al., 2015; MathWorks, 

2019).   

2.4.9 A comparative summary of long-range M2M technologies 

Long-range M2M communication systems are designed to support a broad range of 

applications especially those that are intended for smart cities and the IoT with a long-

range coverage, a massive number of connected devices, minimum power consumption, 

and minimum complexity. Over the last several years, the long-range M2M technologies 

have been developed by different companies to fulfil these requirements at low cost (see 

Figure 2.33). 

The maximum number of end nodes for each base station is a vital factor that must be 

considered for the M2M technologies, especially with the enormous number of devices 

that will be connected in smart cities and IoT applications. Sigfox and Weightless-W 

support a tremendous number of devices with up to one million devices for each cell, as 

shown in Figure 2.34. However, Weightless-W employs TDMA and FDMA techniques 

 

Figure 2.33: Long-range M2M communication technologies timeline. 
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to support this number of devices, while Sigfox depends only on a low message rate 

approach, the frequency hopping technique, and multiple message copies. Furthermore, 

Weightless-N and LTE-M CAT-M2 claim to support up to 100000 nodes for each base 

station while NB-IoT claims to support up to 50000 devices. In contrast, other technologies 

offer a network scale within a range of several thousands of nodes. Furthermore, to 

improve system performance and reduce the probability of lost messages with such a 

massive number of devices, some technologies employ acknowledgements and CSMA 

techniques. However, this can significantly escalate power consumption and shorten the 

battery lifetime. 

As most end nodes are powered by a single battery, the power consumption is another key 

factor that affects the selection of the appropriate technology for specific applications. In 

general, most of the long-range M2M technologies claim a battery lifetime of several years, 

depending on the data rate and the number of messages per day. However, reducing 

transmission power might significantly influence the communication range. Sigfox offers 

the most extended coverage range of 10 km. On the other hand, IEEE 802.11ah offer a 

range of 1 km but with higher transmission power in comparison with other long-range 

technologies. Figure 2.35 depicts the maximum indoor cell coverage range in urban areas 

in km in relation to the maximum transmission power in mW for different long-range 

M2M technologies. 

 

Figure 2.34: The maximum number of connected devices for long-range M2M technologies. 



Chapter 2                                M2M Technologies and Collisions Avoidance Techniques 
 

 

58 

IEEE 802.11ah provides an extensive range of data rates from 150 kbps up to 347 Mbps. 

Though high throughputs cannot be achieved with long communication range and the data 

rate is significantly affected by the distance between the node and the AP. Similarly, 

Weightless-W offers a wide range of throughputs from 1 kbps up to 10 Mbps. On the other 

hand, Sigfox and Weightless-N provide the lowest data rate among the long-range M2M 

technologies with a throughput of 100 bps (see Figure 2.36). 

 

Figure 2.35: Long-range M2M technologies coverage range in km versus the transmission power in 
mW. 

 

Figure 2.36: The maximum data rate for the long-range M2M technologies. 
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Figure 2.37 and Table 2.5 show a detailed comparison between long-range M2M 

communication technologies discussed previously. 

 

 

 

Figure 2.37: A comparison of long-range M2M technologies in terms of the number of connected 
devices, the coverage range, and the transmission power. 
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Table 2.5: Summary of the long-range M2M technologies features and characteristics. 

Characteristic DASH7 Ingenu IEEE 802.11ah LoRa SIGFOX 
Weightless 

NB-IoT CAT-M2 
W N P 

Operating frequency (MHz) 433, 868, 915 2400 755 – 928 430, 433, 868, 
915 

868, 902, 923 470 – 790 868, 915 

138, 169, 
433, 470, 
780, 868, 
915, 923 

700 – 900 800, 1800, 
2600 

Number of channels 15, 8, 4 8 1 8, 3 1920 16 
1200, 1500, 
2500, 3000, 
9999, 15000 

1, 8 12, 48 6, 24 

Channel bandwidth 108, 216, 432 
kHz 

1 MHz 1, 2, 4, 8, 16 
MHz 

125, 250, 500 
kHz 

100 Hz 6, 8 MHz 100, 200 Hz 100, 12.5 
kHz 

200, 180 kHz 1.4, 5 MHz 

Modulation scheme GFSK BPSK 

BPSK, QPSK, 
16-QAM, 64-
QAM, 256-

QAM 

CSS / FSK DBPSK 
DBPSK, 

BPSK, QPSK, 
16-QAM 

DBPSK 
GMSK, 
OQPSK BPSK, QPSK 

QPSK, 16-
QAM 

Channel access / collision 
avoidance technique 

CSMA/CA 
with slotted 

ALOHA 

RPMA with 
random time 

access 

Slotted 
ALOHA 

ALOHA / 
Slotted 

ALOHA 

ALOHA / FH 
with 3 message 

copies 

TDMA, 
FDMA with 

FH 

ALOHA / 
FH with 3 – 
8 message 

copies 

TDMA, 
FDMA with 

FH 

ALOHA / 
Slotted 

ALOHA with 
FH / 128 
repetition 

ALOHA / FH 
/ 32, 2048 
repetition 

Acknowledgement Yes Yes Yes Yes No Yes No Yes Yes Yes 

Network topology 
Star, tree, 

mesh Star Star, tree Star-of-stars Star Star Star Star Star Star 

Maximum number of nodes 10000 8000 8191 5000 1000000 1000000 100000 10000 50000 100000 

Data rate 
9.6, 55.555, 

166.667 kbps 19 kbps 
150 kbps – 347 

Mbps 0.3 – 50 kbps 100 bps 
1 kbps – 10 

Mbps 100 bps 
0.625 – 100 

kbps 
200, 144, 20 

kbps 1 Mbps 

Maximum payload (byte) 250 11 256 256 12 255 20 48 128 1024 

Coverage range (km) 3 5 1 5 10 5 5 2 2 7 

Transmission power (dBm) 0 – 16 
(Typical 16) 

21 0 – 30 14 – 20 
(Typical 14) 

14 16 14 14 23 20 

C
hapter 2 

M
2M

 
T
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C
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2.5 Summary 

The new era of smart cities and IoT poses formidable challenges to the current wireless 

communication systems, including the coverage area, the number of connected devices, 

the devices power consumption, and the cost of both end devices and the network. In this 

chapter, the prominent M2M communication technologies are reviewed and a detailed 

study of their features and characteristics is presented. With respect to the number of 

connected devices, the data collision problem is highlighted, and an in-depth description 

of the utilised channel access mechanism and collision avoidance techniques is presented. 

In general, short-range M2M communication technologies provide the best solution for 

home and residential automation applications. On the other hand, long-range M2M 

technologies offer a wide coverage area with an enormous number of connected devices, 

which can be placed anywhere, even underground, and connected to a single base station. 

These technologies might be the most feasible solution for smart cities applications like 

smart grid, smart meters, traffic monitoring, environment monitoring, and agriculture 

applications.  

All M2M communication technologies should maintain reliable communication over the 

whole network with minimum cost and power consumption, especially with a large 

network size. Therefore, most of these technologies do not support complex 

synchronisation techniques that are used in other power consuming and expensive 

terminals like mobile devices. On the contrary, they rely on using simple collision 

avoidance techniques like frequency hopping and random time access based on the 

ALOHA protocol. Although these techniques do not ensure message delivery, they can 

significantly reduce the probability of collision and improve system performance. On the 

other hand, some M2M technologies employ acknowledgements, CSMA/CA, TDMA, 

FDMA, or message repetitions to enhance system performance and reliability. However, 

this could affect the network latency, especially with a massive number of nodes, and 

escalates the power consumption and the devices cost in comparison to other M2M 

technologies. Figure 2.38 illustrates the channel access and collisions avoidance techniques 

employed by different M2M technologies.   

Despite other factors that might influence M2M systems performance and consistency like 

channel noise and interference with other coexisting signals, the collisions problem is the 

vital factor that affects their reliability and restricts applications range. 
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Figure 2.38: Channel access and collisions avoidance techniques utilised by different M2M 
technologies. 



 

63 

Chapter 3  

Development of A Novel Random Channel Selection 

Technique 
 

3.1 Introduction 

The ALOHA like random access technique is widely used in wireless communication 

systems (Abramson, 2009). LPWAN technologies employ this technique to support low 

data rate M2M communication with low complexity, cost, and power consumption 

(Anton-Haro and Dohler, 2015; Anteur et al., 2014; Centenaro et al., 2016; Al-Shammari 

et al., 2018; Laya et al., 2015). However, with the new era of the IoT and smart cities, 

billions of devices are predicted to be connected to these systems in the next decade (Al-

Shammari et al., 2018; Laya et al., 2015; Webb, 2015; Gomez and Paradells, 2015). With 

such an enormous number of connected devices that work without synchronisation, 

acknowledgement, and carrier sensing mechanisms, interference between devices and the 

packet collision problems have a substantial impact on the system reliability and 

performance (Li et al., 2017; Centenaro et al., 2017; Vejlgaard et al., 2017; Yu et al., 2017; 

Lauridsen et al., 2016; Goursaud and Mo, 2016; Do et al., 2014; Biral et al., 2015; Reynders 

et al., 2016). 

Some LPWANs, like Weightless-N and Sigfox, utilise the UNB scheme with a frequency 

hopping technique to mitigate the collision problem and interference between connected 

devices. In such systems, the random channel selection algorithm that is used to generate 

the frequency hopping sequence is the vital factor that affects data collision and system 

performance. Most M2M standards, as detailed in the second chapter, do not include 

acknowledgements to confirm message delivery or guarantee of the quality of service. Even 

if they do, message retransmission will be required in the case of a collision which drains 

power. It is therefore paramount to design communication protocols that minimise 

message collisions. Current algorithms do not exhibit uniform distribution over 

communication channels which leads to an increase in lost messages. Hence, there is a 

need to develop a new algorithm to improve system reliability (Abbas et al., 2017). 

This chapter presents a detailed description of the standard channel selection algorithm 

used by the Weightless-N technology and the novel randomisation algorithm. The new 

developed random channel selection algorithm, which is called a Uniform Randomisation 

Channel Selection Technique (URCST), provides a lower probability of collision in 

comparison with the standard Weightless-N algorithm. Also, the chapter provides a 
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comparison of the system performance using the two algorithms in addition to the standard 

uniform random distribution algorithm, the Mersenne Twister (MT19937), with a variable 

number of devices, message copies, and payload. In addition, a comparison between the 

URCST and MT19937 algorithms is presented in this chapter in terms of performance, 

complexity, and implementation. 

3.2 Weightless-N Channel Selection Algorithm 

The details of the weightless-N channel selection algorithm have been provided in the 

previous chapter. However, a brief recapitulation of the main facts is reintroduced here to 

keep the flow information. Weightless-N utilises the sub-GHz ISM band of 868 MHz in 

Europe and divides this band into six wide bands, as shown in Table 3.1 (Weightless-SIG, 

2015c; Abbas et al., 2017). Each base station will be associated with one of these six wide 

bands and can detect all transmissions within its range of frequency. On the other hand, 

terminal devices work on an ultra-narrow frequency band of 200 Hz, called micro-

channels. This offers a large number of UNB channels that can be used by any terminal. 

Furthermore, Weightless-N divides each wideband into three sub-bands called macro-

channels, with each containing a number of micro-channels. For example, each macro-

channel in the 0.6 MHz band contains 1000 channels. 

Table 3.1: Weightless-N frequency bands. 

Band No. Lower band (MHz) Upper band (MHz) Bandwidth (MHz) Number of channels 

1 863 864.998 1.998 9990 

2 865 868 3 15000 

3 868 868.6 0.6 3000 

4 868.7 869.2 0.5 2499 

5 869.4 869.64 0.24 1200 

6 869.7 870 0.3 1500 

 

Weightless-N supports a bit rate of 100 bps and limits the number of messages for each 

device by a maximum rate of one message per minute. It also supports a payload of up to 

20 bytes with a total packet size of 37 bytes. Each message sent from a terminal consists of 

7 blocks, as shown in Table 3.2, where FCS represents a Frame-Check Sequence to indicate 

any error in the message. The base station will check the FCS, and if any error occurs, the 

message will be neglected. Otherwise, the base station will check the timestamp, which is 

a count of minutes on the terminal’s internal timer. Messages that have the same timestamp 

are assumed to be copies of the same message. 
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Table 3.2: The Weightless-N message structure. 

Preamble ID Data length Time stamp payload MAC FCS 

3 bytes 6 bytes 5 bits 19 bits 0 – 20 bytes 24 bits 16 bits 

 

In addition, Weightless-N utilises the approach of using multiple copies of each message 

to mitigate the effect of the collision on system performance and increase the probability 

of successful message delivery. Each terminal sends three identical copies of each message 

on different macro-channels and micro-channels using the frequency hopping regime, as 

shown in Figure 3.1. However, according to the Weightless-N standard, the total number 

of message copies can be increased to 8 for applications requiring a high QoS. 

 

 

The channel selection algorithm used by the Weightless-N is based on the two least 

significant bytes of both the ID and the internal timer of the terminal counting in seconds. 

This randomisation scheme is implemented so that any connected device generates a 

different hopping sequence on each message transmission since the internal timer will be 

increased at least by 60 seconds on each transmission. Moreover, this reduces the 

probability of selecting the same hopping sequence by two different devices since each one 

generates a dissimilar sequence based on its ID. 

Figure 3.1: Weightless-N channels with three message copies. 
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Assuming that the two least significant bytes of the ID is represented by 0xZZZZ (in 

hexadecimal format) and the two least significant bytes of the timer are 0xMMSS, the 

Weightless-N standard channel selection algorithm is divided into two stages: macro-

channel selection and micro-channel selection (Weightless-SIG, 2015c; Abbas et al., 2017). 

These stages are explained in the following two sections for three message copies. For 

message copies that are more than three, the same procedure will be repeated to define the 

next macro-channels and micro-channels for each message copy. 

3.2.1 Tier-1 Macro-Channels Selection 

The least significant byte of the device’s internal timer 0xSS is used to define the macro-

channel sequence for all message copies in Weightless-N. The first macro-channel M1, 

which will be used to send the first message copy, will be selected according to the formula, 

given by Equation 3.1: 

 𝑀𝑀1 = 0𝑥𝑥𝑥𝑥𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 3 3.1 

M2 and M3 which are used to send the second and third message copies will be selected 

based on the result of the formula given by Equation 3.2: 

 0𝑥𝑥𝑥𝑥𝑥𝑥 𝑚𝑚𝑚𝑚𝑑𝑑 2 3.2 

If the result of the second formula equals zero, then the lower remaining macro-channel 

index will be chosen for the second message copy and the higher macro-channel index will 

be used to send the third message copy. Conversely, the highest remaining macro-channel 

index will be used for the second message copy and the lower index for the third message 

copy if the result of the second formula equals one. 

3.2.2 Tier-2 Micro-Channel Selection 

After defining the macro-channels sequence, each message copy will be sent on a randomly 

selected micro-channel inside the corresponding macro-channel as shown in Figure 3.1. 

The micro-channel selection algorithm is based on the two least significant bytes of both 

the device ID and its internal timer. 

Assuming that n represents the number of message copies and the total number of channels 

in each macro-channel is NC, the micro-channels index (mcj) for each message copy are 

given by Equations 3.3, 3.4, and 3.5, where 𝑗𝑗 = 1, 2, …𝑛𝑛. 



Chapter 3                     Development of A Novel Random Channel Selection Technique  
 

 

67 

 𝑚𝑚𝑚𝑚1 = (0𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  𝑋𝑋𝑋𝑋𝑋𝑋  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁𝑁𝑁 3.3 

 𝑚𝑚𝑚𝑚2 = (0𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑂𝑂𝑂𝑂    𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁𝑁𝑁 3.4 

 𝑚𝑚𝑚𝑚3 = (0𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  𝐴𝐴𝐴𝐴𝐴𝐴  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁𝑁𝑁 3.5 

 

Figure 3.2 shows the hopping sequence generated by the Weightless-N standard algorithm 

and the packets timing for two different transmissions from the same device on two 

different times. In addition, message timing shows that there is a time of 0.3 seconds 

between any two message copies. This time was obtained from the experiments that was 

done on the Weightless-N development kit shown in Figure 3.3. 

 

  

  

a) Internal timer = 5 sec. b) Internal timer = 605 sec. 

 

Figure 3.2: Weightless-N hopping sequence and messages timing for the same device and 
different transmissions, where device ID = 17, macro-channels = 3, micro-channels = 
3000, NC = 1000, n = 3 and payload = 12 bytes. 
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On the other hand, Figure 3.4 presents the hopping sequence of two different devices with 

different IDs and the same internal timer. The packets timing is the same as the case in 

Figure 3.2 since the same payload is used. 

 

 

  

a) Device ID = 17. b) Device ID = 204. 

 

According to the Weightless-N standard (Weightless-SIG, 2015c), the same channel 

selection procedure will be repeated for the next three message copies (4th, 5th, and 6th) and 

then will be repeated for the 7th and 8th message copies. However, these message copies will 

be sent on different time slots and have a different probability of collision. 

Figure 3.3: Weightless-N development kit. 

Figure 3.4: Weightless-N hopping sequence for different devices and the same transmission time, 
where internal timer = 5, macro-channels = 3, micro-channels = 3000, NC = 1000, n = 
3 and payload = 12 bytes. 
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In fact, to obtain a good understanding of the system performance and the collision 

problem with a massive number of devices, a full channel histogram for all transmissions 

from all devices is required. This is discussed in more details in the next section 3.2.3. 

3.2.3 Weightless-N Channel Distribution 

A channel histogram can demonstrate a detailed view of the system performance and the 

distribution of messages over all channels for different devices and transmission times. An 

analysis was made to evaluate the standard Weightless-N algorithm with a total number 

of 8000 devices (k = 8000) and three message copies (n = 3). The analysis employs the 0.6 

MHz band with 3000 channels (N = 3000) and shows the total number of sent messages 

on each micro-channel and the total number of lost messages on these channels. Moreover, 

the total number of devices were divided into four groups with different characteristics to 

achieve more realistic results as follows, see Figure 3.5: 

• Group 1 (G1): represents 40% of the total number of devices and each device sends a 

message periodically every 2 minutes. Each message payload was set to be 8 bytes. 

• Group 2 (G2): represents 20% of the total number of devices and each device sends a 

message randomly in the period of 1 – 2 minutes. Each message payload was set to 

be 10 bytes. 

• Group 3 (G3): represents 20% of the total number of devices and each device sends a 

message periodically every 4 minutes. Each message payload was set to be 12 bytes. 

• Group 4 (G4): represents 20% of the total number of devices and each device sends a 

message randomly in the period of 2 – 4 minutes. Each message payload was set to 

be 14 bytes. 

 

G1 40%
Periodic 2 minutes

8 bytes payload

G2 20%
Random 1-2 minutes

10 bytes payload

G3 20%
Periodic 4 
minutes
12 bytes 
payload

G4 20%
Random 2-4 minutes

G1 G2 G3 G4

Figure 3.5: Analysis groups’ characteristics. 



Chapter 3                     Development of A Novel Random Channel Selection Technique  
 

 

70 

The simulation was carried out for one hour assuming that all devices start working 

randomly within the first 10 minutes.  

Figure 3.6 shows the Macro-channels histogram, which represents the total number of sent 

messages on each macro-channel from all devices for one hour. It is important to notice 

from this figure that the three message copies from all devices are equally distributed over 

the three macro-channels. This signifies that the Weightless-N standard algorithm used to 

select the macro-channels sequence provides a uniform distribution.  

 

 

Figure 3.7(a) presents the total number of sent messages from all devices for one hour on 

each micro-channel and Figure 3.7(b) shows the total number of lost messages on each 

channel. It is evident from Figure 3.7(a) that the Weightless-N micro-channels selection 

algorithm does not provide a uniform distribution over all channels and the channel request 

is crowded at the first part of each macro-channel. This increases the probability of 

collisions and leads to a high number of lost messages. In particular, this is due to the fact 

that Equations 3.4 and 3.5 provide a high probability of selecting the same channels from 

different terminals at the same time, as illustrated in Figure 3.8. For example, the logical 

AND operation of number 1 with all even numbers gives 0 and gives 1 with all odd 

numbers. Moreover, ANDing many different numbers leads to zero which significantly 

increases the selection of this channel. This rises the probability of selecting the first few 

channels in each macro-channel, especially channel number 0. In addition, Figure 3.8(a)  

Figure 3.6: Weightless-N macro-channels histogram, where k = 8000, n = 3, the total number of 
sent messages = 200568. 



Chapter 3                     Development of A Novel Random Channel Selection Technique  
 

 

71 

 
a) Total messages histogram. 

 

b) Lost messages histogram. 

 

shows that using the XOR logical operation, which is implemented in Equation 3.3 for the 

first message copy, provides a more equitable distribution of messages over the whole 

band. However, the messages’ collisions of the first message copy are still affected by the 

non-uniform distribution of other messages provided by the 2nd and 3rd message copies, as 

illustrated in Figure 3.8(b). Moreover, Figure 3.9 depicts a 3D view for the sent and lost 

messages from all devices over all channels. It is apparent from this figure that all devices 

from all groups with different specifications face the same problem and it is not related to 

certain groups or characteristics. 

Therefore, developing a new channel selection algorithm that can provide a better channel 

distribution is important to reduce the data collision and improve the system performance. 

Figure 3.7: Weightless-N micro-channels histogram, where N = 3000, k = 8000, n = 3, The total 
number of sent messages = 200568, the total number of lost messages = 5427, and the 
MLR = 2.71 %. 
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a) 1st message copy total messages 
histogram. 

b) 1st message copy total collisions 
histogram. 

  

c) 2nd message copy total messages 
histogram. 

d) 2nd message copy total collisions 
histogram. 

  

e) 3rd message copy total messages 
histogram. 

f) 3rd message copy total collisions 
histogram. 

 

Figure 3.8: Weightless-N individual message copies histogram for G1, where group = G1, N = 
3000, k(G1) = 3200, n = 3, M = 3, The total number of sent messages = 87962, the total 
number of lost messages = 2159. 
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a) Total messages 3D-histogram. 

 

b) Lost messages 3D-histogram. 

 

 

Figure 3.9: Weightless-N micro-channels 3D histogram, where N = 3000, k = 8000, n = 3, M = 3, 
The total number of sent messages = 200568, the total number of lost messages = 5427, 
and the MLR = 2.71 %. 
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3.3 Uniform Randomisation Channel Selection Technique (URCST) 

The aim of developing the new algorithm is to provide better message spreading in the 

frequency domain for all message copies from different devices and achieve uniform 

distribution over all channels. Since the macro-channel selection procedure utilised by the 

Weightless-N standard, which is described in section 3.2.1, offers a uniform distribution 

for the three macros, the same selection process will be implemented by the new developed 

algorithm called the Uniform Randomisation Channel Selection Technique (URCST). In 

addition, the procedure will be repeated for any message copy that is larger than three. 

On the other hand, the micro-channel selection procedure utilises a random number 

generator that is based on a ring shift register of the internal timer of the terminal. For each 

hop, the micro-channel will be selected by shifting the timer 0xMMSS to the left by one bit 

and the most significant bit will be fed to the least significant bit of the register. Then, an 

XOR logical operation will be applied to the resulting number of the ring register and the 

terminal’s ID, as shown in Figure 3.10. This reduces the probability of selecting the same 

channel by different terminals at the same time and provides a better channel distribution 

in comparison with the standard algorithm for all message copies.  

 

 

 

With n representing the number of message copies, the micro-channel number for the 

current hop can be obtained by Equation 3.6. 

Figure 3.10: URCST micro-channels selection algorithm. 
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 𝑚𝑚𝑚𝑚𝑖𝑖 = �0𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  𝑋𝑋𝑋𝑋𝑋𝑋  (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≪ 𝑖𝑖)�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁𝑁𝑁 3.6 

 𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 0,1,2, … ,𝑛𝑛 − 1   

 

Also, Figure 3.11 shows the pseudocode of the URCST algorithm. 

 

URCST Algorithm: Pseudocode of channel selection algorithm 

SET t = Timer, id = ID, n = number of message copies, M = Macros, mc = Micros,  
NC = number of channels 
 
T1 = t AND 0xFF 
M(1) = T1 mod 3 
If (T1 mod 2) == 0 
     M(2,3) = sort remaining values of 1,2,3 ascendingly 
Else 
     M(2,3) = sort remaining values of 1,2,3 in a descending order 
End 
 
T2 = t AND 0xFFFF 
id = id AND 0xFFFF 
 
For i = 0 to n-1 
     Select Macro from M      
     mc(i) = (T2 XOR id) mod NC 
     B15 = T2 AND 32768 
     B15 = B15 >> 15 
     T2 = T2 << i+1 
     T2 = T2 OR B15 
end 

 

 

3.3.1 URCST Channel Distribution 

The micro-channels histogram of the URCST algorithm shown in Figure 3.12 clearly 

demonstrates that this algorithm provides a much better uniform channel distribution 

among all micro-channels. This significantly reduces the probability of collision and the 

percentage of lost messages (MLR), which is in this case 1.18% in comparison with 2.71 

% for the Weightless-N standard algorithm. 

 

Figure 3.11: Pseudocode of the URCST algorithm. 
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a) Total messages histogram. 

 
b) Lost messages histogram. 

 

3.3.2 Final URCST Algorithm Without Macro-channels 

In general, design and implementation of LPWANs is a trade-off between complexity and 

performance. Therefore, algorithm complexity is an important factor to be consider in such 

systems, and reducing complexity leads to the reduction of power consumption and cost.  

In this section, a critical improvement on algorithm complexity is presented by eliminating 

the macro-channels part of the algorithm. From Figure 3.12 it is clear the macro-channel 

segments do not have any effect on the micro-channels distribution. In fact, since URCST 

algorithm provides a uniform distribution over all micro-channels in each individual 

macro-channel, it can be implemented for the whole band as a single segment. 

Figure 3.12: URCST micro-channels histogram using three macro-channels, where N = 3000, k = 
8000, n = 3, M = 3, The total number of sent messages = 198299, the total number of 
lost messages = 2347, and the MLR = 1.18 %. 
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Figure 3.13 shows the channels histogram (will be called channels not micro-channels for 

the rest of the thesis) for the same system without using the macro-channels. The system 

still provides similar performance with a uniform distribution over all channels using the 

micro-channels selection part only. 

 

a) Total messages histogram. 

 

b) Lost messages histogram. 

 

In addition, Figure 3.14 shows a 3D view for the sent and lost messages from all devices 

over all channels. It is also evident from this figure that the URCST algorithm provides 

almost a uniform distribution for all devices from all groups despite variable IDs and 

transmission times. 

Figure 3.13: URCST channels histogram without macro-channels, where N = 3000, k = 8000, n = 
3, The total number of sent messages = 195252, the total number of lost messages = 
2158, and the MLR = 1.11 %. 
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a) Total messages 3D-histogram. 

 

b) Lost messages 3D-histogram. 

 

 

Figure 3.14: URCST micro-channels 3D histogram, where N = 3000, k = 8000, n = 3, The total 
number of sent messages = 195252, the total number of lost messages = 2158, and the 
MLR = 1.11 %. 
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Another two tests are presented in this section to ensure that the URCST algorithm 

provides the same performance with and without the macro-channels by implementing the 

two approaches for a variable number of devices and a variable number of message copies, 

as depicted in Figure 3.15, and check the system performance. These tests demonstrate that 

eliminating macro-channels does not affect the algorithm functionality and the system still 

provides similar performance despite using a variable number of devices and message 

copies while it reduces the algorithm complexity.  

 

 

a) MLR versus the number of devices k, where n = 3. 

 
b) MLR versus the number of message copies n, where k = 8000. 

 

Figure 3.15: Weightless-N system performance using the URCST algorithm with and without 
macro-channels, where N = 3000. 



Chapter 3                     Development of A Novel Random Channel Selection Technique  
 

 

80 

3.4 Mersenne Twister Algorithm (MT19937) 

Mersenne Twister MT19937 algorithm is one of the most prominent pseudorandom 

number generators that is widely used in high performance computing applications (Tian 

and Benkrid, 2009; Li et al., 2012). It is well-known for long period generation of (219937 −

1) and its uniform distribution over all generated numbers. MT19937 can generate 623-

dimensional equidistributional 32-bit numbers while using a working area of 624 words 

(Matsumoto and Nishimura, 1998; Echeverría and López-Vallejo, 2013). However, the 

complexity of MT19937 is very high in comparison with the Weightless-N and URCST 

algorithms since a high number of iterations and two matrix multiplications are required 

to generate each random number. The iteration complexity of the MT19937 algorithms 

can be expressed, according to the Big-O notation, as 𝑂𝑂(𝑝𝑝2) where p is the degree of the 

polynomial, which is 19937 in this case (Matsumoto and Nishimura, 1998; Echeverría and 

López-Vallejo, 2013; Saito and Matsumoto, 2013; Bonato et al., 2013). Figure 3.16 

illustrates the MT19937 algorithm structure (Li et al., 2012). 

 

To evaluate the system performance using the MT19937 algorithm, the same approach 

used in the URCST algorithm is implemented here by removing the macro-channels and 

employing the MT19937 for the whole band as a single segment. The results illustrated in 

Figure 3.17 shows that the resulting channels histograms are similar to the results obtained 

with the URCST algorithm and the MLR are almost the same in both cases. 

Figure 3.16: Mersenne Twister MT19937 algorithm’ architecture (Li et al., 2012). 
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a) Total messages histogram. 

 

b) Lost messages histogram. 

 

It is important to highlight here that the high complexity of the MT19937 rises the cost and 

power consumption of terminal devices which is not preferred in M2M applications. On 

the other hand, URCST provides similar performance with much lower cost and power 

consumption. To have a good understanding of the system performance with different 

algorithms, the next section presents a detailed evaluation of the system using the three 

algorithms with several working scenarios. 

Figure 3.17: MT19937 channels histogram, where N = 3000, k = 8000, n = 3, The total number of 
sent messages = 198440, the total number of lost messages = 2226, and the MLR = 
1.12 %. 
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3.5 System Evaluation and Performance Analysis 

In this section, an evaluation of the three aforementioned algorithms is presented based on 

the four groups scheme employed in section 3.2.3. The evaluation is divided into three 

working scenarios: a variable number of connected devices, a variable number of message 

copies, and a variable payload. The system performance is assessed based on the message 

lost ratio (MLR) for the three algorithms in each analysis. The percentage of the lost 

messages shown on the graphs represent the total number of the lost messages from all 

devices for one hour. In addition, the analysis considers all the available range for the 

message copies (n = 1 – 8) although it is limited to be in the range (3 – 8) by the Weightless-

N standard. 

3.5.1 Variable Number of Devices 

Figure 3.18 shows the MLR for the standard algorithm, the URCST algorithm, and the 

MT19937 versus a different number of devices. As the number of connected devices 

increases, the probability of collision rises. The analysis shows that the MLR rises 

exponentially as the number of devices increases. It also shows that as the number of 

devices increases the URCST algorithm provides better performance than the Weightless-

N standard algorithm and almost the same MLR in comparison with the MT19937 

algorithm.  

 

 

Figure 3.18: MLR versus the number of devices (k) using the MT19937, URCST, and standard 
algorithms, where N = 3000 and n = 3. 
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3.5.2 Variable Number of Message Copies 

Figure 3.19 illustrates the MLR for the three algorithms versus a different number of 

message copies. Both the URCST algorithm and the MT19937 provide nearly the same 

percentage of lost messages that declines as the number of message copies increase. On the 

other hand, the standard algorithm provides the best performance at four message copies. 

Nevertheless, the percentage of lost messages rises for more than four message copies. It is 

clear from this analysis that URCST algorithm provides much lower MLR for 𝑛𝑛 > 4, 

which is important for applications that require a high QoS. 

 

 

 

3.5.3 Variable Payload 

As the payload size in bytes increases, the packet size enlarges, and the probability of 

collision escalates. Therefore, another test is presented in this section to evaluate the system 

performance with a variable payload using the three algorithms. 

Figure 3.20 demonstrates the MLR versus different payload size for the MT19937, 

URCST, and the standard algorithms. Again, URCST offers lower MLR than the standard 

algorithm for the whole range of the used payloads. In addition, it provides similar 

performance in comparison with the MT19937 algorithm. 

Figure 3.19: MLR versus the number of message copies (n) using the MT19937, URCST, and 
standard algorithms, where N = 3000 and k = 8000. 
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3.6 A Comparison Between URCST and MT19937 Algorithms 

Although the URCST and the MT19937 algorithms provide almost the same system 

performance with different working scenarios, using the URCST algorithm has many 

advantages over the MT19937 algorithm in IoT and M2M systems. Low cost and power 

consumption are two crucial requirements for feasible LPWANs. High complexity and 

resources required to implement MT19937 in comparison to URCST can significantly 

increase both cost and power consumption for terminal devices.  

More specifically, URCST can be implemented using a 16-bit microcontroller with a tiny 

volatile memory (RAM) of about 64 bytes, while MT19937 requires at least 32-bit 

microcontroller and a RAM of more than 5 kB. These two factors increase the cost of each 

node, and with millions of devices that are requires to be used in IoT applications the cost 

of the whole system will be relatively high. 

Furthermore, the high iteration complexity of the MT19937 algorithm, which is 𝑂𝑂(𝑝𝑝2), in 

comparison with the URCST algorithm, which is only 𝑂𝑂(𝑛𝑛), demands much more power 

to be executed. This significantly shorten the battery lifespan.  

On the other hand, the period of number generation, after which the sequence will be 

repeated, for the URCST algorithm is too short in comparison with the period of the 

MT19937. URCST can only generate a sequence of up to 16 numbers while MT19937 

Figure 3.20: MLR versus payload size in bytes using the MT19937, URCST, and standard 
algorithms, where N = 3000, k = 8000, and n = 3. 
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period is up to (219937 − 1). However, the maximum period that is required for each 

transmission is only eight (8), which makes the URCST algorithm more suitable for any 

M2M application. Table 3.3 summarises the comparison between the URCST algorithm 

and the MT19937 algorithm. 

 

Table 3.3: A summary of the comparison between URCST and MT19937. 

No. Terms URCST MT19937 

1 
Microcontroller 

type 
Can be implemented using 16-bit 
microcontrollers or above. 

Can be implemented using 32-bit 
microcontrollers or above. 

2 
Resources 

(RAM) 
Uses a tiny memory to store a few 
16-bit variables (<64 bytes). 

Requires a large memory to save 
matrices (> 5k bytes). 

3 
Programming 

complexity 

Very easy to implement by 
microcontrollers, only employs 
simple logical operations. 

Complex to implement by 
microcontrollers, because of 
matrices multiplication and other 
complex operations. 

4 
Iteration 

complexity 

Low iteration complexity of 𝑂𝑂(𝑛𝑛), 
which even reduces the time 
required to calculate the channel 
index and the power consumption. 

High iteration complexity of 𝑂𝑂(𝑝𝑝2), 
which affects the calculation time 
and the power consumption. 

5 Period length Short period length of up to (16). 
Very long period of up to (219937 −
1). 

 

 

3.7 Summary 

The data collision problem is one of the most important challenges that faces LPWANs, 

especially with the massive number of devices that are expected to be connected to these 

systems with the era of the IoT and smart cities. Therefore, a new channel selection 

algorithm is proposed in this chapter that can mitigate the collision problem and maintain 

the low complexity, low power consumption, and low cots requirements for successful 

LPWANs design and implementation. 

The URCST algorithm provides a better system performance and a lower probability of 

collisions in comparison to the standard Weightless-N algorithm for different working 

scenarios. Moreover, the URCST algorithm provides better performance as the number of 

message copies increase while the standard algorithm provides the best performance at four 

message copies. This might be very useful for applications requiring a high QoS like 
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security, fire alarms, heart disease monitoring, and Electronic Point of Sale (EPOS) 

(Ofcom, 2014; Al-Fuqaha et al., 2015).  

In addition, the URCST algorithm provides a uniform distribution over all available 

channels and offers a system performance that is similar to the standard uniform random 

number generator the MT19937 algorithm. On the other hand, the URCST algorithm can 

be implemented using simple microcontrollers with much lower hardware resources and 

much less complexity, computational time, and power consumption in comparison to the 

MT19937 algorithm. 
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Chapter 4  

Mathematical System Modelling 
 

4.1 Introduction 

Most LPWAN technologies focus on reducing the complexity of the terminal devices to 

achieve the low cost and low power consumption which are essential requirements of 

modern M2M communication systems. Therefore, the majority of these technologies 

eliminate the synchronisation process and rely on the ALOHA-based random time-

frequency access protocol. For instance, Weightless-N and Sigfox technologies employ the 

random time-frequency access with the frequency hopping (FH) technique over a wide 

range of ultra-narrow band channels. 

Moreover, Weightless-N and Sigfox utilise the multiple message copies approach to 

mitigate the effect of the collision on system performance and increase the probability of 

successful message delivery (Weightless-SIG, 2015c; Abbas et al., 2017; Sigfox, 2019a; 

Sigfox, 2017b; Sigfox, 2017a; Sigfox, 2017c). This places another challenge to the system 

modelling and increases the complexity of the collision probability analysis. 

Multiple studies have been conducted to try to calculate the packet loss ratio and model 

the system performance with ALOHA-based random access. However, most of these 

studies are limited by modelling the probability of collision in one domain, either time or 

frequency (Li et al., 2017; Goursaud and Mo, 2016; Do et al., 2014). A few other works 

have been dedicated to the collision modelling in random time-frequency access wireless 

communication systems based on the duality of the random access in both domains 

(Anteur et al., 2014; Li et al., 2017; Goursaud and Mo, 2016; Csibi and Gyorfi, 1996; 

Savaux et al., 2017). 

The mathematical model presented in this chapter offers a novel and flexible model for the 

random time-frequency access with the multiple message copies approach, which is 

derived by combining the Poisson distribution and the Binomial distribution. The Poisson 

distribution is implemented to model the packet arrival in the time domain and calculate 

the probability of successful transmission in the time-frequency plane. The Binomial 

distribution is applied to find the probability of successful transmission with multiple 

message copies. 

In addition, the chapter presents a review of the existing works on the collision modelling 

in ALOHA-based LPWANs. It also discusses the collision probability analysis for different 
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scenarios and offers a detailed description of how the mathematical model is derived for 

each scenario. Then, the chapter describes the evaluation method that is used to calculate 

the model accuracy based on the normalised root mean square error (NRMSE) and Nash-

Sutcliffe coefficient of efficiency (NSE). The developed model is validated by 

implementing it on both Weightless-N and Sigfox technologies as a case study and 

comparing the resulting MLR to the one that obtained from the simulation for all 

scenarios.  

4.2 Time-Frequency Probability Analysis 

ALOHA is a long-known medium access protocol (Abramson, 1970; Roberts, 1975), and 

there is a notable amount of work that evaluates the performance of wireless 

communication systems that are based on this protocol. However, with the emergence of 

the IoT and M2M communication technologies, the ALOHA protocol has regained the 

interest of researchers especially for the performance analysis of LPWANs. 

Models of wireless communication systems that employ random access protocol are 

mainly based on the Poisson distribution (Abramson, 1970; Kaynia and Jindal, 2008; Win 

et al., 2009; Kaur and Gregory, 2011). This is well suited for the packet arrival in the time 

domain even for devices that send messages periodically on a fixed timing scheme since 

all devices start sending messages randomly in real systems. Another study by Do et al. (Do 

et al., 2014) models the probability of collision in the frequency domain for the UNB 

LPWANs based on the impulse response and the signal-to-interference-plus-noise ratio 

(SINR).  

Nevertheless, modelling transmitted message collisions in one domain, either time or 

frequency, offers only a limited insight into the LPWANs performance. Therefore, the 

joint analysis in time and frequency domains is a crucial step to evaluate the real system 

capacity and reliability with the massive number of connected devices. 

In Csibi and Gyorfi’s paper (Csibi and Gyorfi, 1996), the probability of collision in random 

time-frequency access is evaluated assuming pure ALOHA. The Poisson distribution is 

implemented to model the packet arrival, and the frequency domain effect is combined in 

the exponential form of the model. The model provided in this work focuses on the channel 

coding effect on the system performance. 

In the paper by Anteur et al. (Anteur et al., 2014), the performance of the UNB technique 

for the LPWANs is studied by modelling the collision problem in the time-frequency plane. 

In the time domain, the Poisson distribution is employed to model the packet arrival 
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average while the geometry analysis is utilised to calculate the probability of collision with 

the frequency drift effect in the frequency domain. 

The performance of the UNB technique for the LPWANs is also evaluated by Goursaud 

and Mo (Goursaud and Mo, 2016) based on the joint analysis of both domains. The 

Poisson distribution is used to model the packet transmission rate in pure unslotted 

ALOHA and time-slotted ALOHA. The probability of successful transmission in the time 

domain is based on the exponential approximation proposed by Abramson (Abramson, 

1970). Goursaud and Mo combine the spectral collision in the frequency domain with 

exponential form in the time domain to calculate the final probability of successful 

transmission. 

Another study by Savaux et al. (Savaux et al., 2017) was dedicated to analysing the 

interference between multiple cells based on the spatial Poisson process in the time 

domain. The occupancy problem from the probability theory is employed to calculate the 

probability of collision in the frequency domain and evaluate the system throughput for a 

variable number of connected devices. 

Nonetheless, it remains that the aforementioned studies assume that all devices have the 

same packet size and transmission time, which stops short from modelling important 

practical applications with different characteristics. In addition, they lack the multiple 

message copies approach used by Weightless and Sigfox and evaluate the system 

performance based on a single message copy. 

Li et al. (Li et al., 2017) use the stochastic geometry model in the time-frequency domain to 

evaluate the performance of LPWANs and analyse the probability of collision based on 

the Card Tossing Game model. Furthermore, the capture effect and, more importantly, the 

multiple message copies are considered in this work. However, it also lacks the practical 

system analysis that supports various applications and assumes that all devices have the 

same packet size and transmission time. Moreover, the model provides a relatively high 

message loss ratio (MLR) for a single and three message copies even with zero connected 

devices in the case of Sigfox technology. Therefore, it might not best describe the 

probability of collision and system performance for UNB LPWANs in terms of the 

multiple message copies. 

The performance of the LoRa, Sigfox, and NB-IoT is also evaluated by Mroue et al. (Mroue 

et al., 2018) based on the probability of collisions for a number of symbols in each packet 

using the basic probability theory. However, the paper suffers from a lack of clarity in 
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defining the effect of multiple message copies on the Sigfox performance. Again, the 

analysis presented in this study assumes that all devices have the same transmission 

characteristics. It also assumes that all packets are sent within a one-minute time slot 

utilising only 200 UNB channels. This assumption leads to a very high probability of 

collisions and shows that Sigfox can only supports up to several hundreds of devices. This 

does not represent the practical case for Sigfox, where the minimum transmission duration 

is limited to 10 minutes and the total number of available UNB channels is 1920.    

Another study by Vejlgaard et al. (Vejlgaard et al., 2017) was dedicated to study the 

coverage and capacity of Sigfox, LoRa, GPRS, and NB-IoT technologies and provide a 

comparison among these LPWANs. For GPRS the study utilises the existing Telenor 

cellular site grid in Northern Denmark while it employs mathematical models for other 

technologies. The model presented in this paper for Sigfox is based on the exponential 

approximation proposed by Abramson (Abramson, 1970) and Goursaud and Mo 

(Goursaud and Mo, 2016) in time-frequency domain. Furthermore, the multiple message 

copies are considered in this work where the probability of successful transmission is 

calculated based on the Binomial distribution. However, the paper does not provide 

validation for the presented model. Moreover, it also lacks the practical system analysis 

that supports various applications assuming that all devices have the same transmission 

characteristics and fixed three message copies.  

In the work presented by Lavric et al. (Lavric et al., 2019), the effect of data collisions on 

the performance of Sigfox was evaluated by simulation. The analysis conducted in this 

paper is implemented for two cases: a single message copy and three message copies. 

Results show that Sigfox offers a high probability of collisions even with several hundreds 

of nodes. However, the paper lacks the practical system consideration and assumes that all 

packets are sent within a one-minute time slot. It also suffers from a lack of data validation 

and rely on simulation results only. Moreover, the paper does not offer any mathematical 

model for the analysis.    

This chapter provides a general mathematical model for the probability of collision in 

random time-frequency access wireless communication systems with the multiple message 

copies approach, which is based on the Poisson distribution and the Binomial distribution. 

The modelling method implemented in this chapter focuses on the intercell interference 

neglecting any other source of interference and noise. This assumption is used to evaluate 

the system reliability and emphasise the degradation of performance with the massive 
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number of connected devices regardless of other factors like noise and coexistence 

problem.  

Unlike previous works, the model and analysis presented in this chapter consider the case 

of multiple groups of devices that work simultaneously with different transmission 

characteristics and multiple message copies. This includes an analysis using a variable 

number of devices, message copies, payload, transmission time, and channels. 

 

4.3 System Model 

In the modelling of the probability of collision, the analysis presented in this section 

considers that k devices are sending messages on N channels to a single base station. Each 

device sends multiple message copies independently on randomly selected channels. The 

analysis considers that all devices experience flat channels and all packets are perceived to 

have a balanced power level at the base station (Goursaud and Mo, 2016; Do et al., 2014; 

Csibi and Gyorfi, 1996). The analysis is also based on the worst-case scenario of message 

collision, which calculates the message lost ratio (MLR) by assuming that even a weak 

overlap between two packets in the time-frequency domain leads to the loss of both. In 

addition, a uniform channel distribution is utilised in the analysis, considering that all 

channels have an equally likely probability of selection from all devices (Li et al., 2017; 

Goursaud and Mo, 2016; Anteur et al., 2014; Savaux et al., 2017; Csibi and Gyorfi, 1996). 

Consequently, the analysis in the frequency domain can be simplified and modelled 

independently of the time domain. Therefore, the analysis presented in this chapter is based 

on the Uniform Randomisation Channel Selection Technique (URCST) described in 

section 3.3 in Chapter 3. 

The model presented in this section is divided into three different scenarios: a single group 

with periodic or random transmission scheme, multiple groups with various transmission 

scheme and the same number of message copies, and multiple groups with various 

transmission scheme and multiple numbers of message copies. This could cover the 

performance evaluation for LPWANs with the broad applications in the IoT and smart 

cities. Table 4.1 reports all the used notations in the analysis of these scenarios. 
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Table 4.1: Table of notations. 

Symbol Description 

k The total number of devices. 

N The total number of channels. 

λ Average packets per channel (the number of total packets per N channels). 

τ Packet duration. 

T Average transmission time. 

𝑡𝑡0 The transmission time for periodic transmission. 

𝑡𝑡1 The minimum transmission time for on-demand transmission. 

𝑡𝑡2 The maximum transmission time for on-demand transmission. 

𝑝𝑝𝑟𝑟 The packet generation rate for each device. 

𝑝𝑝𝑟𝑟𝑟𝑟  The total packet generation rate. 

m The number of message copies. 

𝑃𝑃𝑠𝑠𝑠𝑠  The probability of successful transmission with a single message copy. 

𝑃𝑃𝑠𝑠 The final probability of successful transmission with multiple message copies. 

𝑃𝑃𝑓𝑓  The final probability of lost messages (MLR) with multiple message copies. 

G The number of groups. 

i The groups’ number (i = 1, 2, …, G). 

j The index of a specific group. 

𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗  The packet generation ratio of group j. 

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟  The packet generation rate for group j. 

𝑃𝑃𝑓𝑓𝑓𝑓  The probability of lost messages for group j. 

𝑃𝑃𝑠𝑠𝑠𝑠  The probability of successful transmission with multiple message copies of group j. 

L The total number of data points for the goodness of fit calculations. 

𝑦𝑦𝑦𝑦 Observed data from simulation. 

𝑦𝑦𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚 The maximum value in observed data. 

𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  The minimum value in observed data. 

𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  The mean of observed data. 

𝑦𝑦𝑦𝑦 The predicted data from the model. 

PL The message payload. 

 

4.3.1 Single Group Scenario 

In the single group scenario, all devices have identical characteristics, where the same 

number of message copies, transmission time, and packet size are used. Regarding 

transmission time, the analysis considers two different transmission schemes: periodic 

transmission on constant time intervals and on-demand (random) transmission between 

two-time intervals. 
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Modelling of the system needs to be divided into two steps: the time-frequency analysis 

and the multiple message copies analysis. The collision in the time domain can be 

calculated based on the Poisson distribution given by 

 𝑃𝑃(𝑥𝑥) =
𝜆𝜆𝑥𝑥

𝑥𝑥!
𝑒𝑒−𝜆𝜆 4.1 

 

Where λ is the average packets per channel, which represent the total number of packets 

accessing N channels at any time. The probability of successful transmissions can be 

calculated by setting 𝑥𝑥 = 0 as (Goursaud and Mo, 2016; Abramson, 1970; Martolos and 

Anděl, 2013; Matlab, 2018): 

 𝑃𝑃(𝑥𝑥 = 0) = 𝑒𝑒−𝜆𝜆 4.2 

 

Assuming that the packet duration is τ in seconds and each device transmits m packets for 

each message on the average transmission time of T seconds, the packet generation rate 

for each device can be calculated as follows: 

 𝑝𝑝𝑟𝑟 = 𝑚𝑚
𝜏𝜏
𝑇𝑇

 4.3 

 

Where m denotes the number of message copies. Then, the total packet generation rate 𝑝𝑝𝑟𝑟𝑟𝑟 

for all k devices is given by 

 𝑝𝑝𝑟𝑟𝑟𝑟 = 𝑚𝑚𝑚𝑚
𝜏𝜏
𝑇𝑇

 4.4 

 

By neglecting the capture effect and assuming that the overlap between any two packets 

causes the loss of both packets, the time interval of collision will be 2τ (Abramson, 1970; 

Roberts, 1975; Goursaud and Mo, 2016). Since all packets during this period are uniformly 

distributed over the N channels, λ is calculated as follows: 

 𝜆𝜆 =
2𝑝𝑝𝑟𝑟𝑟𝑟
𝑁𝑁

=
2𝑚𝑚𝑚𝑚
𝑁𝑁

×
𝜏𝜏
𝑇𝑇

 4.5 
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Then, the probability of successful transmission in the time-frequency domain for a single 

message copy is given by 

 𝑃𝑃𝑠𝑠𝑠𝑠 = 𝑒𝑒−𝜆𝜆 = 𝑒𝑒
−2𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁  

4.6 

 

Since each message copy is independent of other copies and is sent on a randomly selected 

channel, the multiple message copies approach can be solved using the Binomial 

distribution. Furthermore, as the successful transmission can be achieved with at least one 

successful transmission for any message copy, the final probability of successful 

transmission can be obtained from the cumulative distribution function (CDF) of the 

Binomial distribution. Therefore, the final system successful transmission probability 𝑃𝑃𝑠𝑠 is 

given by  

 𝑃𝑃𝑠𝑠 = ��
𝑚𝑚
𝑙𝑙
�

𝑚𝑚

𝑙𝑙=1

(𝑃𝑃𝑠𝑠𝑠𝑠)𝑙𝑙(1 − 𝑃𝑃𝑠𝑠𝑠𝑠)(𝑚𝑚−𝑙𝑙) 4.7 

 

Then, the final probability of lost messages, which represent the MLR, is given by 

 𝑃𝑃𝑓𝑓 = 1 − 𝑃𝑃𝑠𝑠 = 1 −  ��
𝑚𝑚
𝑙𝑙
�

𝑚𝑚

𝑙𝑙=1

(𝑃𝑃𝑠𝑠𝑠𝑠)𝑙𝑙(1 − 𝑃𝑃𝑠𝑠𝑠𝑠)(𝑚𝑚−𝑙𝑙) 4.8 

 

The average transmission time T can be calculated based on the transmission scheme, 

where devices either send packets periodically, on specific time intervals 𝑡𝑡0, or on-demand, 

randomly between two-time limits 𝑡𝑡1 and 𝑡𝑡2. Therefore, T can be obtained as follows: 

 𝑇𝑇 = 𝑡𝑡0                     𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 4.9 

 𝑇𝑇 =
𝑡𝑡1 + 𝑡𝑡2

2
           𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 4.10 

 

In addition, the packet duration τ is directly related to the message payload and can be 

calculated as follows (Botter et al., 2012): 

 𝜏𝜏 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑏𝑏𝑏𝑏𝑏𝑏)
 4.11 
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4.3.2 Multiple Group Scenario with the Same Number of Message Copies 

In practical systems, devices that work together have different transmission characteristics, 

where various transmission times and packet sizes are used according to the intended 

applications. However, the same number of message copies might be used for all the 

connected devices due to the power consumption, application requirements, or technical 

specifications. For example, Sigfox employs only three message copies for all devices. In 

such a case, the packet generation rate is calculated as the summation of the packet 

generation rate for each group of similar devices.  

By assuming that there are G groups and devices in each group have the same packet 

duration and transmission time, the total packet generation rate 𝑝𝑝𝑟𝑟𝑟𝑟  and the average 

packets per channel λ are calculated as follows: 

 𝑝𝑝𝑟𝑟𝑟𝑟 = 𝑚𝑚 × �𝑘𝑘𝑖𝑖
𝜏𝜏𝑖𝑖
𝑇𝑇𝑖𝑖

𝐺𝐺

𝑖𝑖=1
 4.12 

 𝜆𝜆 =
2𝑝𝑝𝑟𝑟𝑟𝑟
𝑁𝑁

=
2𝑚𝑚
𝑁𝑁

× �𝑘𝑘𝑖𝑖
𝜏𝜏𝑖𝑖
𝑇𝑇𝑖𝑖

𝐺𝐺

𝑖𝑖=1

 
4.13 

 

Where 𝑘𝑘𝑖𝑖 , 𝜏𝜏𝑖𝑖 , and 𝑇𝑇𝑖𝑖  denote the number of devices, the packet duration, and the 

transmission time for each group respectively. Then, Equations 4.6 and 4.8 can be used to 

calculate the final probability of lost messages 𝑃𝑃𝑓𝑓 as follows: 

 𝑃𝑃𝑠𝑠𝑠𝑠 = 𝑒𝑒−𝜆𝜆 = 𝑒𝑒
−2𝑚𝑚
𝑁𝑁 ×∑ 𝑘𝑘𝑖𝑖

𝜏𝜏𝑖𝑖
𝑇𝑇𝑖𝑖

𝐺𝐺
𝑖𝑖=1  

4.14 

 𝑃𝑃𝑓𝑓 = 1 −  ��
𝑚𝑚
𝑙𝑙
�

𝑚𝑚

𝑙𝑙=1

(𝑃𝑃𝑠𝑠𝑠𝑠)𝑙𝑙(1 − 𝑃𝑃𝑠𝑠𝑠𝑠)(𝑚𝑚−𝑙𝑙) 4.15 

 

4.3.3 Multiple Group Scenario with Various Numbers of Message Copies 

With the broad range of IoT applications, designers may choose a variable number of 

message copies for each node based on the application requirements and the desired quality 

of service. The Binomial distribution (Equations 4.7 and 4.8) cannot be implemented 

directly to calculate the probability of successful transmission since m is not the same for 
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all devices. In such a case, devices will be divided into groups according to the number of 

message copies despite other characteristics. The analysis is based on finding the MLR for 

each group and then combining results to obtain the final probability of lost messages.  

The total packet generation rate for all devices 𝑝𝑝𝑟𝑟𝑟𝑟 and the average packets per channel λ 

are given by 

 𝑝𝑝𝑟𝑟𝑟𝑟 = �𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖
𝜏𝜏𝑖𝑖
𝑇𝑇𝑖𝑖

𝐺𝐺

𝑖𝑖=1
 4.16 

 𝜆𝜆 =
2𝑝𝑝𝑟𝑟𝑟𝑟
𝑁𝑁

=
2
𝑁𝑁

× �𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖
𝜏𝜏𝑖𝑖
𝑇𝑇𝑖𝑖

𝐺𝐺

𝑖𝑖=1

 4.17 

 

Where 𝑚𝑚𝑖𝑖 denotes the number of message copies for each group. 

The total probability of successful transmission with a single message copy 𝑃𝑃𝑠𝑠𝑠𝑠 is given by 

 𝑃𝑃𝑠𝑠𝑠𝑠 = 𝑒𝑒−𝜆𝜆 = 𝑒𝑒
−2
𝑁𝑁 ×∑ 𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖

𝜏𝜏𝑖𝑖
𝑇𝑇𝑖𝑖

𝐺𝐺
𝑖𝑖=1  4.18 

 

The probability of successful transmission for each group 𝑃𝑃𝑠𝑠𝑠𝑠 is calculated based on the 

number of message copies for the group 𝑚𝑚𝑗𝑗 as: 

 

Where j represents the index of the intended group.  

The probability of lost messages generated by individual groups 𝑃𝑃𝑓𝑓𝑓𝑓  is calculated by 

multiplying the MLR of each group by the group’s packet generation ration 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 as: 

 𝑃𝑃𝑓𝑓𝑓𝑓 = (1 − 𝑃𝑃𝑠𝑠𝑠𝑠) × 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 4.20 

 

 𝑃𝑃𝑠𝑠𝑠𝑠 = ��
𝑚𝑚𝑗𝑗

𝑙𝑙
�

𝑚𝑚𝑗𝑗

𝑙𝑙=1

(𝑃𝑃𝑠𝑠𝑠𝑠)𝑙𝑙(1 − 𝑃𝑃𝑠𝑠𝑠𝑠)�𝑚𝑚𝑗𝑗−𝑙𝑙� 4.19 
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The packet generation ratio for individual groups 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 can be calculated from the ratio of 

the packet generation rate of each group 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟  to the total packet generation rate of all 

groups 𝑝𝑝𝑟𝑟𝑟𝑟 as: 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 =
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑟𝑟𝑟𝑟

=
𝑚𝑚𝑗𝑗𝑘𝑘𝑗𝑗

𝜏𝜏𝑗𝑗
𝑇𝑇𝑗𝑗

∑ 𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖
𝜏𝜏𝑖𝑖
𝑇𝑇𝑖𝑖

𝐺𝐺
𝑖𝑖=1

 4.21 

 

Now, the final probability of lost messages is calculated by the summation of 𝑃𝑃𝑓𝑓𝑓𝑓 over all 

groups as: 

 𝑃𝑃𝑓𝑓 = �𝑃𝑃𝑓𝑓𝑓𝑓

𝐺𝐺

𝑗𝑗=1

 4.22 

 

 

4.4 Evaluation of the Model 

The Normalised Root Mean Square Error (NRMSE) and the Nash-Sutcliffe coefficient of 

efficiency (NSE) are two well-known statistical methods used to measure the goodness of 

fit of mathematical models (Nash and Sutcliffe, 1970; Legates and McCabe Jr., 2005; 

Gupta and Kling, 2011; Faridnasr et al., 2016). These performance metrics are used in this 

chapter to evaluate the model accuracy using the predicted data from the mathematical 

model and the observed data from the simulation. Simulation of both Weightless-N and 

Sigfox technologies were implemented in MATLAB software based on the Uniform 

Randomisation Channel Selection Technique (URCST) to achieve the uniform 

distribution over all channels. 

NRMSE and NSE are calculated in the following equations: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
�∑ (𝑦𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖)2𝐿𝐿

𝑖𝑖=1
𝐿𝐿

𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
 

4.23 

 𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑦𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖)2𝐿𝐿
𝑖𝑖=1

∑ (𝑦𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝐿𝐿
𝑖𝑖=1

 4.24 
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NRMSE varies on the range [0,1]  where smaller values indicate a better agreement 

between the observed and the predicted data. On the other hand, NSE has a value in the 

range [−∞, 1] where a value of 1.0 refers to the best agreement. 

4.5 Validation of the Model 

The model validation is based on calculating NRMSE and NSE for the predicted data from 

the model in comparison with the observed data that obtained from the simulation. The 

model is implemented to calculate the message lost ratio (MLR) in Weightless-N and 

Sigfox technologies with different scenarios including a variable number of devices, 

message copies, payloads, transmission time, and the number of channels in the 

Weightless-N case. Both technologies utilise the sub-GHz ISM band of 868 MHz in 

Europe and employ the UNB technique without synchronisation, acknowledgement, and 

any carrier sensing mechanism. 

The single group scenario is implemented only in the Weightless-N case with a variable 

number of connected devices to evaluate the model accuracy in this special case, where all 

devices have the same transmission characteristics and the number of message copies. 

Other analyses consider the general case of multiple groups. In the case of multiple group 

scenario, the analysis employs the same assumption used in section 3.2.3 in Chapter 3 by 

implementing four groups of devices that are connected to the same base station with 

different transmission characteristics, which are denoted by G1, G2, G3, and G4. G1 

represents 40% of the total number of connected devices while each of the other groups 

represents 20%. 

4.5.1 Weightless-N Technology 

Weightless-N employs UNB channels each with 200 Hz bandwidth and a bit rate of 100 

bps. It also supports a payload of up to 20 bytes with a total packet size of 37 bytes (𝜏𝜏 =

1.44𝑠𝑠 − 2.96𝑠𝑠), and message copies in the rage from three to eight. However, the analysis 

includes all the possible range starting from one message copy. Weightless-N limits the 

number of messages for each device by a maximum rate of one message per minute (𝑇𝑇 ≥

60 𝑠𝑠𝑠𝑠𝑠𝑠). In addition, Weightless-N utilises six frequency bands with six different numbers 

of channels: 1200, 1500, 2499, 3000, 9990, and 15000 (Weightless-SIG, 2015c; Abbas et 

al., 2017). 

The analysis presented in this section is based on using 1200 channels, except for the case 

of multiple numbers of channels. Also, the characteristics of each group of devices are in 



Chapter 4  Mathematical System Modelling 
 

 

99 

general as shown in Table 4.2. Also, the payload and transmission time will be variable for 

the variable PL and the variable T analysis presented in sections 4.5.2.2 and 4.5.2.3 

respectively. 

 

Table 4.2: Weightless-N group general characteristics. 

Group 
name 

Percentage of total 
devices (%) 

Transmission 
scheme 

Transmission time 
(minutes) 

Payload (Byte) 

G1 40 Periodic 𝑡𝑡0 = 2 8 

G2 20 Random 𝑡𝑡1 = 1 and 𝑡𝑡2 = 2 10 

G3 20 Periodic 𝑡𝑡0 = 4 12 

G4 20 Random 𝑡𝑡1 = 2 and 𝑡𝑡2 = 4 14 

 

4.5.1.1 Variable Number of Devices 

The analysis presented in this section illustrates the model validation in the case of 

Weightless-N with a variable number of devices based on two scenarios: single group and 

multiple groups. The analysis also evaluates the model accuracy with a single message 

copy and three message copies. These different analyses are presented to ensure that the 

mathematical model can accurately describe the system performance for all working 

scenarios, as presented in the next sections. 

A. The Single Group Scenario 

For the single group scenario, all devices have the same transmission characteristics and 

the number of message copies. G1 characteristics shown in Table 4.2 are utilised for the 

periodic transmission analysis while all devices are set to G2 for the random transmission 

analysis. 

Figure 4.1(a) shows the simulated and modelled MLR versus the number of connected 

devices with a single message copy (𝑚𝑚 = 1) for the periodic transmission case with 𝑡𝑡0 = 2 

minutes and 𝑃𝑃𝑃𝑃 = 8 bytes. The model provides very close results to the data obtained from 

the simulation with NRMSE = 0.021 and NSE = 0.996. On the other hand, Figure 4.1(b) 

shows the MLR versus the number of connected devices with a single message copy (𝑚𝑚 =

1) for the random transmission scheme with 𝑡𝑡1 = 1 minutes, 𝑡𝑡2 = 2 minutes, and 𝑃𝑃𝑃𝑃 = 10  

bytes. The model also provides very close results to the data obtained from the simulation 

with NRMSE = 0.029 and NSE = 0.991. 
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Figure 4.2(a) and (b) depict the MLR versus the number of connected devices with three 

message copies ( 𝑚𝑚 = 3 ) for the periodic and the random transmission schemes 

respectively. The model provides very close results to the data obtained from the simulation 

for both cases as shown in Figure 4.2(a) and (b). It is clear from Figure 4.1 and Figure 4.2 

that as the number of devices increases the model accuracy slightly decreases.  

 

a) A single group with a periodic transmission, where 𝑡𝑡0 = 2 min and 𝑃𝑃𝑃𝑃 = 8 bytes.  
NRMSE = 0.021 and NSE = 0.996. 

 

b) A single group with a random transmission, where 𝑡𝑡1 = 1 min, 𝑡𝑡2 = 2 min, and 𝑃𝑃𝑃𝑃 = 10 bytes. 
NRMSE = 0.029 and NSE = 0.991. 

Figure 4.1: The simulated and modelled MLR with a varying number of connected devices k for 
Weightless-N with a single group and a single message copy, where N = 1200 and m = 1. 
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a) A single group with a periodic transmission, where 𝑡𝑡0 = 2 min and 𝑃𝑃𝑃𝑃 = 8 bytes.  
NRMSE = 0.021 and NSE = 0.996. 

 

b) A single group with a random transmission, where 𝑡𝑡1 = 1 min, 𝑡𝑡2 = 2 min, and 𝑃𝑃𝑃𝑃 = 10 bytes. 
NRMSE = 0.028 and NSE = 0.993. 

 

B. The Multiple Group Scenario 

Figure 4.3 shows the simulated and modelled MLR versus the number of connected 

devices for the multiple group scenario with a single message copy and three message 

copies. In this analysis, all devices have the same number of message copies. It is apparent 

Figure 4.2: The simulated and modelled MLR with a varying number of connected devices k for 
Weightless-N with a single group and three message copies, where N = 1200 and m = 3. 
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that the model provides a precise evaluation of the system performance with multiple 

groups that implement different transmission characteristics. Again, it also shows that the 

model accuracy decreases as the number of devices increases. 

 

 
a) Multiple groups with a single message copy (m = 1).  

NRMSE = 0.021 and NSE = 0.996. 

 

b) Multiple groups with three message copies (m = 3). 
NRMSE = 0.020 and NSE = 0.996. 

Figure 4.3: The simulated and modelled MLR with a varying number of connected devices k for 
Weightless-N with multiple groups and the same number of message copies, where All 
groups have the same number of message copies in each analysis with N = 1200. 
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Figure 4.4 demonstrates the MLR versus the number of connected devices for the multiple 

group scenario with various numbers of message copies, where each group employ a 

different number of message copies. It is evidence from this figure that the model still 

provides very close results in comparison to the simulation data for both individual groups 

and the final probability of lost messages. 

 

 

 

4.5.1.2 Variable Number of Message Copies 

Figure 4.5 illustrates the effect of using multiple message copies on the Weightless-N 

system performance using multiple groups, where all the groups have the same number of 

message copies in each analysis. Figure 4.5(a) shows the simulation and model data of the 

MLR for individual groups and the final MLR of the system in the case of using 4000 

devices. Figure 4.5(b) shows the simulated and modelled final MLR versus the number of 

message copies for different numbers of devices. Similarly, analysis depicts that the 

presented model can precisely describe the system performance with the multiple message 

copies approach and provides very close results in comparison to the simulation data over 

the whole range of the applicable number of message copies. 

Figure 4.4: The simulated and modelled MLR with a varying number of connected devices k for 
Weightless-N with multiple groups and multiple numbers of message copies, where N 
= 1200, G1: m = 2, G2: m = 3, G3: m = 3, and G4: m = 4. NRMSE = 0.020 and NSE = 
0.996. 
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a) Multiple groups with k = 4000.  
NRMSE = 0.010 and NSE = 0.999. 

 

b) Multiple groups with different numbers of devices. 
2000 devices: NRMSE = 0.010 and NSE = 0.999 
3000 devices: NRMSE = 0.005 and NSE = 1 
4000 devices: NRMSE = 0.010 and NSE = 0.999 

Figure 4.5: The simulation and model MLR with a varying number of message copies m for 
Weightless-N with multiple groups, where All groups have the same number of message 
copies in each analysis with N = 1200. 
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4.5.1.3 Variable Payload 

Figure 4.6 depicts the effect of using a variable payload on the final probability of lost 

messages for Weightless-N. It shows the simulated and modelled MLR versus the payload 

in bytes, and thus the packet duration τ, for both single and three message copies. It is 

apparent from Figure 4.6 that the model provides close results to the simulation data for 

the whole range of used payload with different numbers of message copies.  

 

a) Multiple groups with k = 3000 and m = 1.  
NRMSE = 0.032 and NSE = 0.989. 

 

b) Multiple groups with k = 3000 and m = 3. 
NRMSE = 0.016 and NSE = 0.997 

Figure 4.6: The simulation and model MLR with a varying payload PL for Weightless-N with 
multiple groups, where All groups have the same number of message copies in each 
analysis with N = 1200 and k = 3000. 
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4.5.1.4 Variable Transmission Time 

The analysis presented in this section is based on the single group scenario to evaluate the 

model accuracy with variable transmission time. All groups have the same characteristics 

as a periodic transmission scheme. Figure 4.7 shows the probability of lost messages for 

the Weightless-N technology using different transmission time and three message copies 

and demonstrates the simulated and modelled MLR versus a variable number of connected 

devices. It is evident from Figure 4.7 that the model offers close results in comparison to 

the simulation data for variable transmission time. It also depicts that as the transmission 

time increases the model accuracy slightly decreases. 

 

a) T = 2 min, NRMSE = 0.021 and NSE = 0.996. 

 

b) T = 5 min, NRMSE = 0.026 and NSE = 0.994. 
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4.5.1.5 Variable Number of Channels 

In this analysis, the multiple group scenario is implemented to evaluate the model accuracy 

using all utilised frequency bands by Weightless-N with different numbers of ultra-narrow 

band channels. Figure 4.8 shows the simulated and modelled final probability of lost 

messages with a varying number of connected devices employing different numbers of 

 

c) T = 10 min, NRMSE = 0.037 and NSE = 0.988. 

 

d) T = 15 min, NRMSE = 0.047 and NSE = 0.980. 

Figure 4.7: The simulated and modelled MLR with a varying number of connected devices k for 
Weightless-N with a single group and a single message copy, where N = 1200 and m = 1. 
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channels. The analysis is also based on using three message copies (m = 3) for all groups. 

In the case of 1200 channels, NSE is 0.996 and in the case of using 1500 channels NSE is 

0.997. Also, in the case of 2499 channels, NSE is 0.996 and in the case of using 3000 

channels NSE is also 0.996. Also, NSE is 0.995 in the case of utilising 9990 channels and 

NSE is 0.999 when 15000 channels are used. Again, Figure 4.8 depicts that the model 

provides a precise description of the Weightless-N system performance in comparison to 

the simulation data for all the six bands. 

 

4.5.2 Sigfox Technology 

Sigfox utilises a total bandwidth of 192 kHz in the 868 band in Europe with 1920 UNB 

channels each with a bandwidth of 100 Hz and a bit rate of 100 bps. Sigfox also supports 

a payload of up to 12 bytes with a total packet size of 26 bytes (𝜏𝜏 = 1.2𝑠𝑠 − 2.086𝑠𝑠 ). 

Moreover, Sigfox employs the multiple message copies approach with three message 

copies for each transmission. In addition, Sigfox limits the minimum transmission time by 

approximately a message every 10 minutes,  where the maximum number of messages for 

each device is limited by a rate of 140 message per day (Sigfox, 2019a; Vejlgaard et al., 

2017; Nolan et al., 2016; Sigfox, 2017b; Sigfox, 2017c; Sigfox, 2017a; Ofcom, 2014; Burns 

et al., 2015). 

The analysis presented in this section considers only the case of three message copies to 

evaluate the model accuracy. In the variable number of devices case, both the single group 

Figure 4.8: The simulated and modelled MLR with a varying number of connected devices k for 
Weightless-N with multiple groups and multiple numbers of channels, where m = 3. 
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and multiple groups are implemented while in the variable payload scenario only the single 

group is considered. 

4.5.2.1 Variable Number of Devices 

Figure 4.9(a) demonstrates the simulated and modelled MLR for the Sigfox technology 

with a varying number of connected devices and three message copies (𝑚𝑚 = 3). In this 

analysis, a single group scenario is implemented using a periodic transmission with 𝑡𝑡0 =

10 minutes and 𝑃𝑃𝑃𝑃 = 12 bytes.  

 
a) A single group with a periodic transmission, where 𝑡𝑡0 = 10 min and 𝑃𝑃𝑃𝑃 = 12 bytes.  

NRMSE = 0.044 and NSE = 0.983. 

 

b) Multiple groups. NRMSE = 0.034 and NSE = 0.990 

Figure 4.9: The simulated and modelled MLR with a varying number of connected devices k for 
Sigfox with a single group and multiple groups, where all groups have the same number 
of message copies in each analysis with m = 3. 



Chapter 4  Mathematical System Modelling 
 

 

110 

Figure 4.9(b) shows the simulated and modelled MLR versus the number of connected 

devices with a multiple group scenario. All groups employ three message copies with 

different transmission characteristics, as shown in Table 4.3.  

 

Table 4.3: Sigfox group general characteristics. 

Group 
name 

Percentage of total 
devices (%) 

Transmission 
scheme 

Transmission time 
(minutes) 

Payload (Byte) 

G1 40 Periodic 𝑡𝑡0 = 10 12 

G2 20 Random 𝑡𝑡1 = 10 and 𝑡𝑡2 = 15 10 

G3 20 Periodic 𝑡𝑡0 = 15 8 

G4 20 Random 𝑡𝑡1 = 15 and 𝑡𝑡2 = 20 6 

 

Like the case of Weightless-N technology, the analysis presented in this section shows that 

the mathematical model offers an accurate description for the collision problem in the 

Sigfox technology and provides close results to the simulation data using different 

scenarios and multiple message copies. 

The analysis also depicts that the model accuracy is related to the number of connected 

devices k. As the number of devices increases the model accuracy declines and the 

difference between the simulation data and model data increases. However, it still provides 

a reasonable accuracy to describe the system performance with different transmission 

characteristics.   

4.5.2.2 Variable Payload 

Figure 4.10 illustrates the simulated and modelled probability of lost messages for the 

Sigfox technology with a varying payload size in bytes for different numbers of connected 

devices. The analysis was implemented using the single group scenario with three message 

copies and a periodic transmission of (𝑡𝑡0 = 10 minutes). In the case of using 50000 devices, 

NRMSE is 0.06 and NSE is 0.97 while in the case of using 100000 devices, NRMSE 

increases to 0.102 and NSE decreases to 0.911. Moreover, when 150000 devices are 

connected, NRMSE increases to 0.117 and NSE drops to 0.883. It is apparent from Figure 

4.10 that the model provides close results to the simulation data for the whole range of 

used payload. Again, it is apparent from Figure 4.10 that the model accuracy is mainly 

dependent on the number of connected devices and as the number of devices increases the 

model accuracy decreases. 
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4.6 Model Accuracy 

Using the model to evaluate the performance of two LPWAN technologies shows that it 

provides close results to the simulation data with high goodness of fit and minimum error 

metrics. On the other hand, the model accuracy varies according to the system 

characteristics, and it is mainly dependant on the transmission time and the number of 

connected devices. However, results depict that the model can still provide a precise 

evaluation for the practical LPWANs performance. 

Figure 4.11 demonstrates the effects of transmission time T and the number of connected 

devices k on the model accuracy based on the Nash-Sutcliffe coefficient of efficiency 

(NSE). It is apparent from this figure that as T and k increase, the model accuracy decreases 

and the NSE gradually declines. However, it is evident from Figure 4.11 that the model 

still offers an acceptable range of error and can reasonably describe the LPWANs 

performance even with a massive number of devices and a wide range of transmission time. 

Furthermore, the model provides an accurate predicted data for the practical range of 

devices and transmission time where the probability of lost messages is within the range of 

ten per cent (10%). 

Figure 4.10: The simulated and modelled MLR with a varying payload PL for Sigfox with multiple 
numbers of devices, where m = 3 and 𝒕𝒕𝟎𝟎 = 𝟏𝟏𝟏𝟏. 
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4.7 Summary 

The mathematical model approach presented in this chapter proposes a novel and general 

model for the random time-frequency access utilised by LPWANs in terms of the 

probability of lost messages. It is also flexible and easy to implement for different systems 

and various working scenarios.  The modelling is based on the Poisson distribution to 

model the time-frequency access and the Binomial distribution to calculate the final 

probability of lost messages with the multiple message copies approach. Results show that 

the model provides an excellent fit to the simulation data for different working scenarios. 

It also offers an advantageous understanding of LPAWNs performance with different 

applications and various transmission characteristics. In addition, the chapter presents a 

systematic analysis of practical applications focussing on various groups of devices that are 

connected to the same base station and employ different transmission times, payloads, and 

numbers of message copies. 

 

Figure 4.11: NSE versus the number of devices k for Weightless-N with a single group and various 
periodic transmission time, where N = 1200 and m = 3. 
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Chapter 5  

Evaluation of LPWANs Performance Using the URCST 

Algorithm 
 

5.1 Introduction 

With the broad range of applications used in the IoT and smart cities and the enormous 

number of devices that are expected to be connected to each base station, a comprehensive 

analysis in terms of packet collision is required to evaluate the performance of LPWA 

technologies that utilise the random time-frequency access protocol. Such analysis is a 

crucial step to be considered in the early stage of any wireless system design to ensure its 

reliability. However, due to the high cost and complexity of conducting such evaluation in 

real systems, especially with a massive number of connected devices, it is reasonable to 

perform the analysis by utilising simulation tools and mathematical modelling. 

Having illustrated the new channel selection algorithm (URCST) and the modelling 

approach used to model the probability of lost messages in the two previous chapters, the 

performance of the LPWANs is evaluated by presenting analysis results of two candidate 

LPWA technologies, namely Weightless-N and Sigfox. The evaluation described in this 

chapter is based on analysing the system performance with respect to the power 

consumption and the message lost ratio (MLR) using the URCST algorithm with various 

working scenarios.  

This chapter provides a systematic and thorough analysis of the LPWANs performance in 

terms of the MLR versus other system transmission parameters including the number of 

connected devices, the number of message copies, the payload in bytes, the transmission 

time, and the number of channels. Simulations of Weightless-N and Sigfox LPWAN 

technologies offer some important insights into the LPWANs performance. For example, 

increasing the number of message copies reduces the MLR but only up to a certain number 

of connected devices. After which, the redundancy in packet transmission is no longer 

beneficial. 

The analysis presented in this chapter was conducted by utilising the MATLAB software 

to develop three simulation testbeds to evaluate the performance of the two nominated 

technologies, as presented in section 5.2. Other sections are organised as follows: section 

5.3 presents the performance evaluation of the Weightless-N technology with a variable 

number of devices, message copies, payload, transmission time, and channels. In section 
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5.4, the performance of the Sigfox technology is evaluated using a variable number of 

devices, message copies, payload, and transmission time. Section 5.5 illustrates the power 

consumption in terminal devices for both technologies with the multiple message copies 

approach. In section 5.6, the performance of the two technologies is evaluated with a 

particular case of smart meters and a study of the optimum number of message copies for 

this application is presented. Finally, section 5.7 provides a summary of the LPWANs 

performance evaluation. 

5.2 Simulation Testbeds 

Studying and analysing the effect of packet collision on wireless communication in real 

systems is immensely complex since it is not only dependent on the number of connected 

devices, but it is also related to several other system characteristics like packet size and 

transmission time.  Due to the high cost of connecting a massive number of devices and 

the high complexity of such systems, it is vital to use simulators to study and evaluate the 

effect of collisions on the system performance and reliability.  

This section presents a general description of the simulation testbeds that were developed 

by the author during the research period and used to simulate the effect of the packet 

collision on the LPWANs performance utilising the Weightless-N and Sigfox technologies 

as a case study. Three different simulators were developed to imitate all parameters 

affecting the packet collision, namely URCST channel histogram simulator, URCST 

collision simulator, and URCST system modelling simulator. These simulators provide a 

comprehensive analysis environment for the packet collision problem in LPWANs and 

facilitate the study of the effect of other system’s parameters on the probability of collision. 

Each simulator supports four groups of devices and offers the capability of changing 

different transmission characteristics for each group individually including the number of 

connected devices, the number of message copies, the number of macro-channels, the 

payload size, and the transmission scheme and time. Simulators also offer the functionality 

of using different channel selection algorithms and various bandwidths. They also facilitate 

saving a simulation result in different file formats like the MATLAB file format, Microsoft 

office, and various image formats. 

5.2.1 URCST Channel Histogram Simulator 

This simulator provides a detailed view of the channel histogram, including both macro-

channels and micro-channels, in terms of the total number of transmissions, the total 
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number of collisions, and the total number of lost messages on each channel. It consists of 

five tabs each with different functionality, as shown in Figure 5.1.  

 

The first tab represents the main graphical user interface (GUI), which can be used to run 

the simulation and set all transmission parameters, as shown in Figure 5.1. It also offers a 

statistical overview for individual groups in addition to the average energy and power 

consumption of devices in each group. Moreover, analysis can be implemented as a single 

group or multiple groups. 

Figure 5.2 illustrates an example of the second tab which provides the channel histogram 

of each group separately. In addition, it depicts the histogram of each discrete message 

copy for each group. This offers a detailed understanding of the collision problem in each 

group with specific transmission characteristics and offers fresh insights into the system 

behaviour with different application and the interference between these applications. 

The third tap depicts the histogram of the total number of transmissions, the total number 

of collisions, and the number of lost messages on each channel versus both devices and 

running time, as demonstrated in Figure 5.3. This is useful to understand the uniformity 

of the message distribution over all channels for different devices and working periods. 

Figure 5.1: An example of the URCST Channel histogram simulator 1st tab (Histogram 
Simulator). 
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Figure 5.2: An example of the channel histogram simulator 2nd tab (Groups-Messages). 

Figure 5.3: An example of the channel histogram simulator 3rd tab (Devices-Time). 
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Figure 5.4: Channel histogram simulator 4th tab example (3D Devices-Time-Channels). 
 

 

Figure 5.4 shows an example of the fourth tab which illustrates the 3D histogram graph 

for both devices and time. This offers a clear view of the distribution of transmissions, 

collisions, and lost messages over the whole bandwidth with different groups of devices 

and various transmission characteristics. 

The fifth tab of the channel histogram simulator facilitates the understanding of collisions 

for individual packets, as shown in Figure 5.5. In this tab, each packet collision is illustrated 

in detail in both time and frequency domains. The simulator demonstrates the start and 

end time of each collided packet and shows the channel where the collision appears. 

Furthermore, it shows other packet information like the devices ID and the message copy 

number on which the collision happened. All packets’ power is normalised and assumed 

with a unity amplitude.  

This tab also offers another useful functionality by facilitating a batch simulation process. 

Using this function, several analyses can be conducted sequentially by providing a list of 

analysis information in a special text box. 
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5.2.2 URCST Collision Simulator 

The URCST collision simulator provides an extensive testbed for random time-frequency 

access LPWANs in terms of the collision problem and the probability of lost messages. It 

offers a wide range of analysis methods that can be utilised to evaluate system performance 

using various transmission characteristics and working scenarios. The analysis provided 

by this simulator is based on finding the MLR with respect to varying other parameters 

including the number of connected devices, the number of message copies, the number of 

macros, the payload size, the transmission time, and the percentage of devices in each 

group. It also facilitates the use of different channel selection algorithms, bandwidths, 

devices IDs, and idle time. In addition, it offers the capability of analysing the system as 

either a single group or multiple groups. In multiple group scenario, all variable parameters 

can be set to a single group, individual groups, or all groups. Furthermore, the parallel 

processing toolbox of MATLAB was utilised to improve simulator capabilities and shorten 

the simulation time. 

Figure 5.5: An example of the channel histogram simulator 5th tab (Batch Operation & Collided 
Messages). 
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This simulator consists of five tabs each with different functionality, as shown in Figure 

5.6. The first tab represents the main GUI, which can be used to set all transmission 

characteristics and depicts the MLR versus other variable parameters. It offers various 

types of simulations including the number of devices, the number of message copies, and 

the payload with full control over all analysis boundaries. Furthermore, multiple 

algorithms can be simulated simultaneously, provided that all other parameters are the 

same during the analysis, which provides a more reliable comparison. Moreover, the graph 

window can be set to illustrate the total number of messages, collisions, and lost messages. 

In addition, this tab provides detailed information about the average energy and power 

consumption of devices in each group. 

This tab also facilitates the capability of implementing analysis on different working 

scenarios. For example, in the case of the multiple group scenario, the variable parameter 

can be applied either for all groups at the same time or for a part of the groups. This offers 

high flexibility to cover different applications and study the interference between these 

applications. 

Figure 5.6: An example of the collision simulator 1st tab (Collision Simulator). 
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Figure 5.7 shows the second tab which demonstrates the final MLR versus other 

parameters for the whole system and the MLR for individual groups. In addition, this tab 

offers detailed tabular values for each group, including the total number of messages, the 

total number of collisions, the total number of lost messages, and the MLR. 

The third tab facilitates the comparison of system performance with different scenarios and 

various transmission parameters, as shown in Figure 5.8. It offers the capability of loading 

multiple analysis at the same time with full details of each analysis. It also provides a full 

control over the resultant graph by adding, deleting, hiding, and showing different analyses 

and the feature of managing the graph’s theme. 

The fourth tab of this simulator offers full details of all packets from all devices, as shown 

in Figure 5.9. All message copies of each message can be demonstrated on time and 

frequency domains based on the device ID and the transmission index. This facilitates a 

good understanding of the packet distribution over both domains. In addition, this tab 

offers the capability of the batch simulation, which can be used to conduct multiple 

simulations sequentially by providing a list of the required analysis in a special text box. 

Figure 5.7: An example of the collision simulator 2nd tab (Groups Collisions). 
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Figure 5.8: Collision simulator 3rd tab example (Performance Comparator). 

Figure 5.9: Collision simulator 4th tab example (Batch Operation & Message Analysis). 



Chapter 5               Evaluation of LPWANs Performance Using the URCST Algorithm 
 

 

122 

 

Figure 5.10: An example of the collision simulator 5th tab (Power Analysis). 

 

Figure 5.10 shows the fifth tab which illustrates the analysis and calculations of the 

consumed energy and power by terminal devices when other transmission characteristics 

are varied. Analysis includes a variable number of message copies, payload, transmission 

time, and idle time for both technologies. 

5.2.3 URCST System Modelling Simulator 

This simulator was developed to evaluate the performance of LPWANs in terms of the 

MLR based on the mathematical model presented in Chapter 4. It consists of a 

comprehensive GUI that facilitate the implementation of different scenarios with various 

transmission characteristics, as illustrated in Figure 5.11. It also offers the capability of 

importing analysis conducted in the collision simulator described in section 5.2.2 and 

calculating the goodness of fit in comparison with the mathematical model results. 

Furthermore, it can be used to import multiple analysis and compare them together at the 

same time and provide a detailed description of the parameters used in each analysis. 
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Having proved in the previous chapter that the mathematical model offers a precise 

description of the LPAWNs performance in terms of the MLR, this simulator will be used 

in next sections to evaluate the performance of the two candidate LPWA technologies: 

Weightless-N and Sigfox. 

5.3 Weightless-N Technology 

Weightless-N employs the random time-frequency access protocol with six different 

numbers of UNB channels (see section 3.2 in Chapter 3 and section 4.5.1 in Chapter 4). 

The analysis presented in this section is based on the 1200 channels band, except for the 

case of multiple channel analysis. Various scenarios and transmission characteristics are 

implemented in this section to evaluate the performance of Weightless-N including a 

variable number of devices, a variable number of message copies, a variable payload, 

variable transmission time, and a variable number of channels. In some analysis, where a 

single group scenario is utilised, all connected devices have the same characteristics.  Cases 

where devices exhibit different transmission characteristics, the total number of devices is 

divided into four groups to attain more realistic results. These groups are denoted by G1, 

Figure 5.11: URCST system modelling simulator example. 
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G2, G3, and G4, where G1 represents 40 per cent of the total number of connected devices 

while each of the other groups represents 20 per cent. All notations used in this section are 

denoted in Table 5.1. 

Table 5.1: Table of notations. 

Symbol Description 

k The total number of devices. 

N The total number of channels. 

T Average transmission time. 

𝑡𝑡0  Transmission time for periodic transmission. 

𝑡𝑡1  Minimum transmission time for random transmission. 

𝑡𝑡2  Maximum transmission time for random transmission. 

m The number of message copies. 

G1, G2, G3, and G4 Group’s number. 

PL The message payload. 

 

5.3.1 Variable Number of Devices 

Figure 5.12 illustrates the effect of increasing the number of devices on system performance 

for three different scenarios: a single group with periodic data transmission, a single group 

with random data transmission, and multiple groups with various transmission schemes. 

In addition, three different numbers of message copies are utilised by each analysis to assess 

the effect of the multiple message copies method on the collisions with a variable number 

of devices. It is noticeable that using two or three message copies instead of one can 

significantly reduce the MLR, provided that the number of devices is fewer than a certain 

limit. For instance, Figure 5.12(a) shows the MLR versus the number of connected devices 

for a single group scenario with periodic transmission of four minutes. It depicts that using 

two message copies can significantly reduce the MLR, provided that the number of devices 

is fewer than 34000 devices. Similarly, using three message copies improves system 

performance in comparison with two message copies when the number of devices is fewer 

than 20000 devices. Exceeding this threshold increases the MLR and deteriorates the 

system performance. Moreover, using three message copies shows a higher MLR than 

using a single message copy with devices more than 27000 devices. 

In Figure 5.12(b) a single group scenario is implemented where all devices send messages 

randomly between one and four minutes. Similarly, this figure shows that using multiple 

message copies can be beneficial when devices are less than certain thresholds. 
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a) A single group with a periodic transmission, where 𝑡𝑡0 = 4 min,  PL = 8 bytes. 

 
b) A single group with a random transmission, where 𝑡𝑡1 = 1 min, 𝑡𝑡2 = 4 min,  PL = 8 bytes. 

 
c) Multiple groups with: 

G1: 𝑡𝑡0 = 2 min, PL = 8 bytes; G2: 𝑡𝑡1 = 1 min, 𝑡𝑡2 = 2 min, PL = 10 bytes;   
G3: 𝑡𝑡0 = 4 min, PL = 12 bytes; G4: 𝑡𝑡1 = 2 min, 𝑡𝑡2 = 4 min, PL = 14 bytes. 

Figure 5.12: The MLR with a varying number of connected devices k for Weightless-N with three 
different numbers of message copies, where m = 1, 2, 3. 
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Figure 5.12(c) illustrates the probability of lost messages versus the number of connected 

devices with the multiple group scenario where various transmission characteristics are 

used. Again, the analysis shows that using multiple message copies should be employed 

when the number of devices is fewer than specific limits. Otherwise it can have 

disadvantageous effects on system performance.  

The results show that for a specific transmission time and packet size the maximum 

number of devices that can be connected to the system is related to the number of message 

copies and vice versa. Furthermore, increasing the number of message copies decreases the 

upper limit of connected devices that have a low MLR. This provides an important insight 

into the performance of LPWANs with the multiple message copies approach. Increasing 

the number of message copies could dramatically increase the collision and degrade system 

performance and reliability. 

Figure 5.13(a) illustrates the consequences of increasing the number of message copies on 

the system performance using all the applicable range utilised by Weightless-N with the 

multiple group scenario. It is apparent from this figure that the upper limit of the connected 

devices, which can provide a lower MLR, declines as the number of message copies 

increases. For instance, using two message copies provides a higher MLR than using a 

single message copy if the connected devices are larger than 18000 devices while using 

three message copies poses a higher MLR than two message copies if devices exceed 10000 

devices. Likewise, using four message copies worsens the system performance in 

comparison with three message copies when devices are more 8000 devices. Moreover, it 

is evident from Figure 5.13(a) that using multiple message copies can provide a higher 

MLR in comparison with a single message copy, provided that the number of devices is 

higher than a certain limit. As the number of message copies increases, this limit declines. 

For example, while this limit is 18000 devices for the two message copies, it becomes 14000 

devices with three message copies and decreases to 12000 devices when using four message 

copies, and so on. Using eight message copies drops this limit down to less than 8000 

devices with the group combination employed in this analysis. 

Figure 5.13(b) focuses on the first part of the analysis where the higher number of message 

copies does not provide a higher MLR in comparison with the lower number of message 

copies. Using two message copies significantly reduces the MLR in comparison with a 

single message copy and using three message copies considerably declines the MLR in 

comparison with using two message copies.  
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It is clear from Figure 5.13(b) that using five and six message copies slightly improves 

system performance while employing seven or eight message copies has no effect on the 

MLR in comparison with six message copies. This offers another important insight into 

the performance of LPWANs that employ the multiple message copies approach, where 

increasing the number of message copies is not necessarily beneficial even with a limited 

number of connected devices. 

 

a) MLR versus k with a full range. 

 

b) MLR versus k with a specific range. 

Figure 5.13: The MLR with a varying number of connected devices k for Weightless-N with different 
numbers of message copies, where multiple groups are utilised with G1: 𝒕𝒕𝟎𝟎 = 𝟐𝟐 min, PL 
= 8 bytes; G2: 𝒕𝒕𝟏𝟏 = 𝟏𝟏 min, 𝒕𝒕𝟐𝟐 = 𝟐𝟐 min, PL = 10 bytes;  G3: 𝒕𝒕𝟎𝟎 = 𝟒𝟒 min, PL = 12 bytes; 
G4: 𝒕𝒕𝟏𝟏 = 𝟐𝟐 min, 𝒕𝒕𝟐𝟐 = 𝟒𝟒 min, PL = 14 bytes; m = 1, 2, 3, …, 8. 
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5.3.2 Variable Number of Message Copies 

In this section, the effect of using a variable number of message copies on the system 

performance is presented with specific numbers of connected devices. Figure 5.14 depicts 

the probability of lost messages versus the number of message copies for different numbers 

of connected devices. The analysis is based on the multiple group scenario where all 

devices from all groups have the same number of message copies with various transmission 

characteristics. It is apparent from Figure 5.14 that sending redundant messages increases 

the likelihood of their receipt when 3000 devices are connected. However, the system 

exhibits almost a flat MLR for (m = 5 to 7) for the case of 4500 devices and the MLR starts 

to rise for (m = 8). In such a case, using more than five message copies wastes valuable 

battery power without tangible improvement in the system performance. Moreover, with 

6000 connected nodes, the system offers the best performance using four message copies. 

Increasing the number of message copies after this point drops the system performance and 

increases the MLR. On the other hand, when the connected devices are 7500 devices, the 

optimum number of message copies becomes three. This confirms that the relationship 

between the number of message copies and the message lost ratio is not independent of the 

number of connected nodes. Therefore, sending redundant messages will not necessarily 

guarantee a successful reception when the number of nodes gets bigger. 

 

 
Figure 5.14: The MLR with a varying number of message copies m for Weightless-N with different 

numbers of devices, where multiple groups are utilised with G1: 𝒕𝒕𝟎𝟎 = 𝟐𝟐 min, PL = 8 
bytes; G2: 𝒕𝒕𝟏𝟏 = 𝟏𝟏 min, 𝒕𝒕𝟐𝟐 = 𝟐𝟐 min, PL = 10 bytes;  G3: 𝒕𝒕𝟎𝟎 = 𝟒𝟒 min, PL = 12 bytes; G4: 
𝒕𝒕𝟏𝟏 = 𝟐𝟐 min, 𝒕𝒕𝟐𝟐 = 𝟒𝟒 min, PL = 14 bytes; k = 3000, 4500, 6000, and 7500. 
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Figure 5.15(a) and (b) show the effect of using a distinct number of message copies for 

different groups of devices with a total number of 4500 devices. In this particular scenario, 

some groups have a variable number of message copies while others use a constant 

number. As seen in Figure 5.15, increasing the number of message copies improves the 

overall system performance, stipulated that the number of message copies is less than a 

certain threshold.  

 

 

a) G1: variable message copies, 
G2, G3, and G4: m = 3. 

 

b) G1 and G2: variable message copies, 
G3 and G4: m = 3. 

Figure 5.15: The MLR with a varying number of message copies m for Weightless-N with various 
groups of devices that employ different numbers of message copies, where multiple 
groups are utilised with G1: 𝒕𝒕𝟎𝟎 = 𝟐𝟐 min, PL = 8 bytes; G2: 𝒕𝒕𝟏𝟏 = 𝟏𝟏 min, 𝒕𝒕𝟐𝟐 = 𝟐𝟐 min, PL 
= 10 bytes;  G3: 𝒕𝒕𝟎𝟎 = 𝟒𝟒 min, PL = 12 bytes; G4: 𝒕𝒕𝟏𝟏 = 𝟐𝟐 min, 𝒕𝒕𝟐𝟐 = 𝟒𝟒 min, PL = 14 bytes; 
k = 4500. 
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Increasing the number of message copies in a part of the groups decreases the MLR for 

these specific groups as expected. On the other hand, the probability of message collision 

of the other groups, which use a constant number of message copies rises. Consequently, 

the overall system performance changes depending on how crowded the channel is. From 

Figure 5.15, the final probability of lost messages increases after a specific number of 

message copies which depends on all groups’ characteristics. This point represents the 

optimum number of message copies that can provide the best performance for the current 

system. For instance, Figure 5.15(a) shows that the optimum number of copies that should 

be used for G1 is three. In contrast, Figure 5.15(b) depicts that using four message copies 

for both G1 and G2 offers the minimum MLR and the best system performance in this 

specific case. 

This draws attention to another important feature of the system design and 

implementation. In the case of various applications that involve different numbers of 

message copies, selecting an optimum number of message copies for each application is a 

key factor that should be considered in the design phase in order to reduce the power 

consumption while retaining a good quality of service. In general, selecting the number of 

message copies for some applications is a trade-off between the required QoS and the 

impact on other devices that are connected to the same base station. 

5.3.3 Variable Payload 

Figure 5.16(a) shows the probability of lost messages versus the payload in bytes for 

different numbers of message copies and a total number of 3000 devices employing the 

multiple group scenario. All devices in all groups have the same payload on each analysis.   

It is reasonable to assume that the larger the packet size, the higher the probability of 

collision. However, employing the multiple message copies approach significantly 

improves system performance and reduces the MLR for up to five message copies in this 

case. Using more than five message copies is not beneficial since the system exhibit almost 

the same performance from five up to eight message copies. 

On the other hand, when 6000 devices are connected, system performance considerably 

improved with up to three message copies, as demonstrated in Figure 5.16(b). Using four 

message copies slightly enhances the system performance, provided that the payload is less 

than 16 bytes. Similarly, using five message copies enhances system performance to some 

extent in comparison with four message copies when the payload is below 8 bytes. 

Exceeding these limits increases the MLR and degrades the system performance. 
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Moreover, using five message copies shows a higher MLR than using two message copy 

with payloads more than 18 bytes. More importantly, with eight message copies, the 

system poses a higher MLR in comparison with using four message copies when the 

payload is larger than three bytes. Furthermore, it presents a higher MLR in comparison 

with even a single message copy if the payload is 18 bytes or more.  

 

 

a) k = 3000 devices. 

 

b) k = 6000 devices. 

Figure 5.16: The MLR as a function of the payload in bytes for Weightless-N with different numbers 
of message copies, where multiple groups are utilised with G1: 𝒕𝒕𝟎𝟎 = 𝟐𝟐 min; G2: 𝒕𝒕𝟏𝟏 = 𝟏𝟏 
min, 𝒕𝒕𝟐𝟐 = 𝟐𝟐 min; G3: 𝒕𝒕𝟎𝟎 = 𝟒𝟒 min; G4: 𝒕𝒕𝟏𝟏 = 𝟐𝟐 min, 𝒕𝒕𝟐𝟐 = 𝟒𝟒 min; m = 1, 2, 3, …, 8. 
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It is evident from Figure 5.16(b) that the MLR increases as message copies are incremented 

with respect to the packet size if the number of connected devices exceeds a certain limit. 

Consequently, using a higher number of message copies might provide a higher MLR in 

comparison with the lower number of message copies for specific payloads as in the case 

of using more than three message copies.  

Figure 5.17 depicts the effect of using different payloads on the system performance with 

a variable number of message copies using multiple group scenario with 4500 connected 

devices, where all groups have the same payload. It is clear from Figure 5.17 that the larger 

the payload, the higher the probability of obtaining higher MLR as the number of message 

copies increases. For example, using a payload of four bytes shows that the system 

performance improves as the number of message copies increases while the system offers 

almost a flat MLR for (m = 6 to 8) for the case of a payload of eight bytes. In comparison, 

the system presents the lowest MLR at five message copies when the payload is 12 bytes, 

and the MLR starts to rise where m is larger than five. In contrast, using four message 

copies represents the optimum value that should be used in this system for a payload of 16 

to 20 bytes. Again, this emphasises the importance of the selection of groups’ specifications 

in relation to the number of message copies and connected devices. 

 

 

Figure 5.17: The MLR with a varying number of message copies m for Weightless-N with different 
payloads PL in bytes, where multiple groups are utilised with G1: 𝒕𝒕𝟎𝟎 = 𝟐𝟐 min; G2: 𝒕𝒕𝟏𝟏 =
𝟏𝟏 min, 𝒕𝒕𝟐𝟐 = 𝟐𝟐 min; G3: 𝒕𝒕𝟎𝟎 = 𝟒𝟒 min; G4: 𝒕𝒕𝟏𝟏 = 𝟐𝟐 min, 𝒕𝒕𝟐𝟐 = 𝟒𝟒 min; k = 4500 and PL = 4, 
8, 12, 16, and 20 bytes. 
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5.3.4 Variable Transmission Time 

This section presents the effect of transmission time (T) on the probability of collision and 

system performance. All simulations are based on a single group scenario where all devices 

have the same transmission time and other transmission characteristics. Figure 5.18 

demonstrates the MLR versus the number of connected devices with different values of 

transmission time using three message copies and a payload of eight bytes. It is reasonable 

to assume that the larger the transmission time, the lower the probability of collision. 

However, it is apparent from Figure 5.18 that the transmission time has a substantial 

impact on the system performance in terms of collisions. As the transmission time declines, 

the MLR starts dramatically increasing versus the number of connected devices. For 

instance, with a transmission time of (T = 4 minutes), the MLR slightly escalates in 

comparison with (T = 5 minutes). In contrast, with (T = 1 minute), the system exhibits an 

extreme increment in the MLR compared to using transmission time of two minutes. 

 

 

Figure 5.19 depicts the effect of using variable transmission time on the system 

performance and the MLR using different payloads and 12000 devices. It is clear from this 

figure that using a short transmission time has a significant effect on system performance.  

 

Figure 5.18: The MLR with a varying number of devices k for Weightless-N with different 
transmission time T, where a single group is utilised with a periodic transmission and 
m = 3, PL = 8 bytes, and T = 1, 2, 3, 4, 5, and 10 minutes. 
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It is also evident from Figure 5.19 that the MLR increases as the payload is incremented 

with respect to the transmission time. As the payload increases, the increment in the MLR 

is enlarged with different transmission times. 

Figure 5.20 illustrates the effect of using a variable number of message copies on the MLR 

with different values of transmission time. The figure shows the MLR versus the number 

of message copies using different values of transmission times with 6000 devices and a 

payload of 16 bytes. 

By increasing the transmission time of five minutes and above, the probability of collision 

generally drops with multiple message copies sent. However, as the transmission time 

dropped to four minutes (T = 4 min), the system offers a flat MLR for (m = 6 to 8). On the 

other hand, as for a short transmission time of three minutes, the MLR starts to rise for six 

message copies or above. In this case, the system provides the best performance with five 

message copies. Likewise, the system offers the lowest MLR at three message copies when 

the transmission time is reduced to two minutes (T = 2 min). Using a higher number of 

message copies significantly increases the MLR as shown in Figure 5.20. It is also 

important to highlight that these optimum points are related to other system parameters 

like the payload and the number of connected devices.   

 

Figure 5.19: The MLR with varying transmission time T for Weightless-N with different payloads 
in bytes, where a single group is utilised with a periodic transmission and m = 3, k = 
12000, PL = 4, 8, 12, 16, and 20 bytes. 
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5.3.5 Variable Number of Channels 

It is sensible that increasing the total number of utilised channels reduces the probability 

of collision and improves system performance. This depends on the base station bandwidth 

and the bandwidth used by the UNB channel to send data from terminal devices. 

Weightless-N utilises six different bands with 1200, 1500, 2499, 3000, 9990, and 15000 

channels. 

Figure 5.21 shows the MLR versus the number of connected devices for all the available 

bands using three message copies (m = 3). The multiple group scenario is implemented in 

this section to evaluate the system performance where devices utilise various transmission 

characteristics with the same number of channels on each analysis. It is evident from Figure 

5.21 that changing the employed band has a significant impact on the system performance 

with respect to the number of connected devices. For example, using bands with (N = 9990) 

or (N = 15000) channels significantly reduces the MLR in comparison with the two bands 

of (N = 1200) and (N = 1500) channels. This emphasises the importance of the selection of 

the appropriate band in relation to the number of connected devices and the intended QoS 

for different applications. Using some bands might not be the best option for some 

applications such as smart meters, where a considerably high number of devices are 

required to be connected to each base station. 

 

Figure 5.20: The MLR with a varying number of message copies m for Weightless-N with variable 
transmission time, where a single group is utilise with a periodic transmission and k = 
6000, PL = 16 bytes, and T = 2, 3, 4, 5, and 10 minutes. 
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5.4 Sigfox Technology 

Sigfox utilises 1920 UNB channels each with 100 Hz bandwidth and supports a payload 

of up to 12 bytes with a bit rate of 100 bps (see section 4.5.3 in Chapter 4). It also employs 

the multiple message copies approach with three message copies. In addition, Sigfox limits 

the number of messages for each device by a maximum rate of 140 messages per day, or 

approximately a message every 10 minutes.  

Various scenarios and transmission characteristics are implemented in this section to 

evaluate the performance of Sigfox including a variable number of devices, a variable 

number of message copies, a variable payload, and variable transmission time. Although 

Sigfox restricts the number of message copies to three, the analysis presented in this section 

considers a single, two, and three message copies to evaluate the effect of using multiple 

message copies on the system performance.  In the case of multiple groups, the analysis is 

based on the four groups scenario that is implemented with the Weightless-N technology 

in section 5.3. All notations used in this section are denoted in Table 5.1. 

 

 

 

Figure 5.21: The MLR with a varying number of devices k for Weightless-N with different numbers 
of channels, where multiple groups are utilised with G1: 𝒕𝒕𝟎𝟎 = 𝟐𝟐 min, PL = 8 bytes; G2: 
𝒕𝒕𝟏𝟏 = 𝟏𝟏 min, 𝒕𝒕𝟐𝟐 = 𝟐𝟐 min, PL = 10 bytes;  G3: 𝒕𝒕𝟎𝟎 = 𝟒𝟒 min, PL = 12 bytes; G4: 𝒕𝒕𝟏𝟏 = 𝟐𝟐 min, 
𝒕𝒕𝟐𝟐 = 𝟒𝟒 min, PL = 14 bytes; m = 3 and N = 1200, 1500, 2499, 3000, 9990, and 15000 
channels. 
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5.4.1 Variable Number of Devices 

This section presents the effect of increasing the number of connected devices on the Sigfox 

system performance and evaluate the impact of using multiple message copies on the 

MLR. Figure 5.22 shows the MLR versus the number of connected devices for the Sigfox 

technology with three scenarios: a single group with a periodic transmission, a single group 

with a random transmission, and multiple groups with various transmission 

characteristics. Also, to assess the consequences of using the multiple message copies 

method on the system performance, three different numbers of message copies are utilised 

where (m = 1, m = 2, and m = 3). Given that the number of devices is fewer than a certain 

threshold, using two or three message copies significantly reduces the MLR in comparison 

with the use of a single message copy 

Figure 5.22(a) illustrates the MLR versus the number of connected devices for a single 

group scenario with periodic transmission of ten minutes (T = 10 min) and a payload of 

eight bytes. It is apparent from this figure that using two message copies can considerably 

decrease the MLR, provided that the number of devices is fewer than 160000 devices. 

Likewise, using three message copies improves system performance in comparison with 

two message copies when the number of devices is fewer than 90000 devices. Exceeding 

this threshold increases the MLR and worsens the system performance. Moreover, when 

the connected devices are more than 125000 devices, the system offers a higher MLR with 

three message copies in comparison with a single message copy. 

Similarly, when a single group scenario is applied with random transmission, where all 

devices send messages between 10 and 20 minutes, using multiple message copies is 

advantageous to the system performance if the connected devices are less than certain 

thresholds. As demonstrated in Figure 5.22(b), the system offers a higher MLR with two 

message copies than a single message copy when the devices are larger than 235000 

devices. Also, using three message copies provides a higher MLR in comparison with two 

message copies if the connected devices exceed 140000 devices.    

Comparably, Figure 5.22(c) illustrates the probability of lost messages versus the number 

of connected devices with multiple groups. It depicts that using multiple message copies 

should be employed when the number of devices is fewer than specific limits. Exceeding 

these limits considerably raises the MLR.  
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a) A single group with a periodic transmission, where 𝑡𝑡0 = 10 min,  PL = 8 bytes. 

 

b) A single group with a random transmission, where 𝑡𝑡1 = 10 min, 𝑡𝑡2 = 20 min,  PL = 8 bytes. 

 

c) Multiple groups with: 
G1: 𝑡𝑡0 = 10 min, PL = 6 bytes; G2: 𝑡𝑡1 = 10 min, 𝑡𝑡2 = 15 min, PL = 8 bytes;   
G3: 𝑡𝑡0 = 15 min, PL = 10 bytes; G4: 𝑡𝑡1 = 15 min, 𝑡𝑡2 = 20 min, PL = 12 bytes. 

Figure 5.22: The MLR with a varying number of connected devices k for Sigfox with three different 
numbers of message copies, where m = 1, 2, 3. 
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5.4.2 Variable Number of Message Copies 

Figure 5.23 illustrates the effect of using a variable number of message copies on the 

probability of lost messages using different numbers of connected devices. The analysis 

presented in the section is based on the single group scenario where all devices have the 

same number of message copies and the same transmission characteristics. The minimum 

transmission time is employed in this analysis with (T = 10 minutes) and a payload of 12 

bytes. It is evident from Figure 5.23 that sending redundant messages increases the 

probability of their receipt when 60000 devices are connected. On the other hand, the 

system provides almost a flat MLR with two and three message copies for the case of 80000 

devices. In comparison, with 100000 connected devices, the system offers the lowest MLR 

using two message copies. Increasing the number of message copies after this point drops 

the system performance and increases the MLR. More importantly, if the connected 

devices are 1400000 devices or more, the system exhibits the minimum MLR with a single 

message copy. In such a case, using multiple message copies is not beneficial for the 

system. This confirms that sending redundant messages will not necessarily guarantee a 

successful reception when the number of nodes is high.  

 

 

 

Figure 5.23: The MLR with a varying number of message copies m for Sigfox with different numbers 
of devices, where a single group is utilised with a periodic transmission and T = 10 
minutes, PL = 12 bytes, and k = 60000, 80000, 100000, and 120000. 
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5.4.3 Variable Payload 

This section focuses on the effect of using a variable payload on the Sigfox system 

performance and evaluate the advantage of employing the multiple message copies 

method. Figure 5.24 shows the probability of lost messages versus the payload in bytes for 

different numbers of message copies using different numbers of connected devices. The 

analysis is based on the single group scenario with (T = 10 minutes). Figure 5.24(a) 

demonstrates the MLR versus the payload in bytes with 60000 devices and three different 

message copies (m = 1, 2, and 3). It makes sense that increasing the packet size increases 

the probability of collision. However, employing the multiple message copies approach 

significantly improves system performance and reduces the MLR for both two and three 

message copies in this case.  

When the connected devices are increased to 100000, the system offers a lower MLR using 

three message copies in comparison with two message copies only if the payload is less 

than six bytes, as illustrated in Figure 5.24(b). Moreover, Figure 5.24(b) depicts that as the 

number of message copies increases, the rate of the MLR is projected to rise sharply with 

respect to the payload size. 

On the other hand, when 120000 devices are connected, system performance is moderately 

improved with two message copies in comparison to a single message copy, provided that 

the payload is less than 11 bytes, as shown in Figure 5.24(c). Furthermore, employing three 

message copies does not improve the system performance in comparison with two message 

copies even with a payload of one byte. Using a payload of three bytes or more deteriorates 

the system performance and provides a higher MLR than using two message copies. 

Moreover, when three message copies are employed, the rate of the MLR escalates, and 

the system offers a higher MLR than using a single message copy with a payload larger 

than five bytes. Again, this emphasises the awareness of the selection of the groups’ 

specifications and characteristics limitations.  

These results further support the fact that utilising the multiple message copies approach 

does not necessarily have a beneficial effect on the probability of lost messages and can 

have an adverse impact on the system performance depending on other transmission 

characteristics. As these characteristics change, using the redundancy of sent messages can 

have a contrary impact on the system performance and increases the MLR. 
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a) k = 60000 devices. 

 
b) k = 100000 devices. 

 
c) k = 120000 devices. 

Figure 5.24: The MLR as a function of the payload in bytes for Sigfox with different numbers of 
message copies, where m = 1, 2, 3. 
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5.4.4 Variable Transmission Time 

Figure 5.25 illustrates the effect of transmission time (T) on the Sigfox system performance. 

It shows the MLR versus the number of connected devices with different values of 

transmission time. The analysis presented in this figure is based on the single group 

scenario where all devices have the same transmission time with three message copies and 

a payload of eight bytes. It is reasonable that decreasing the transmission time escalates the 

probability of collision. However, it is evident from Figure 5.25 that as the transmission 

time declines, the rate of the MLR considerably raises with respect to the number of 

connected devices. For example, the system offers a moderately higher MLR when using 

transmission time of 30 minutes in comparison with a transmission time of 25 minutes. On 

the other hand, the system offers a significant increase in the MLR when (T = 10 minutes) 

in comparison with (T = 15 minutes). 

 

 

Figure 5.26 demonstrates the effect of using different numbers of message copies on the 

MLR with a varying value of transmission time. The figure depicts the MLR versus 

transmission time (T) in minutes using different values of message copies. The number of 

connected devices used in this analysis is (k = 200000) devices, and all devices utilise a 

payload of (PL = 8 bytes). 

 

Figure 5.25: The MLR with a varying number of devices k for Sigfox with different transmission 
time T, where a single group is utilised with a periodic transmission and m = 3, PL = 8 
bytes, and T = 10, 15, 20, 25, and 30 minutes. 
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Again, it is apparent from Figure 5.26 that as the number of message copies increases, the 

degree of the change of the MLR substantially increases. Therefore, using multiple message 

copies can have an adverse effect on the system performance when the transmission time 

is below certain limits. For example, using two message copies improves the system 

performance only if the transmission time is larger than 13 minutes. Reducing the 

transmission time below this threshold increases the MLR in comparison with the provided 

MLR in the case of a single message copy. This is also evident in the case of using three 

message copies, where the system exhibits a higher MLR than the case with two message 

copies, provided that the transmission time is less than 22 minutes. Moreover, when three 

message copies are implemented, the system provides the same MLR in comparison to a 

single message copy if the transmission time is decremented to 16 minutes. Using 

transmission time that is less than this limit has a substantial impact on the system 

performance and significantly increases the MLR. 

These analysis cases confirm that the relationship between the number of message copies 

and the MLR is not independent of other system parameters and emphasise the importance 

of the tuning of these parameters to obtain the optimum performance. Furthermore, 

sending multiple message copies wastes valuable battery power, which significantly 

shortens the battery lifetime. If there is no tangible improvement in the system 

 

Figure 5.26: The MLR with variable transmission time T for Sigfox with different numbers of 
message copies, where a single group is utilised with a periodic transmission and k = 
200000, PL = 8 bytes, and m = 1, 2, and 3. 
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performance, it is essential to avoid sending these redundant messages and preserve battery 

power. Next section studies the effect of different system characteristics on the power 

consumption including the impact of sending multiple message copies.  

5.5 Power Consumption 

Reducing power consumption is one of the crucial requirements for any M2M 

communication system and IoT device since most connected nodes rely on battery supply. 

Therefore, LPWA technologies were designed with maximum battery life in mind, 

presuming that devices can last several years while working on a single coin-cell battery. 

To achieve the low power consumption and prolong battery lifetime, the design of LPWA 

technologies is aimed at minimising the radio activity and allowing devices to reside in low 

power sleep mode most of the operating time and wake up at regular short intervals.  

However, selecting the optimum transmission power is related to other system 

characteristics like the modulation scheme and the coverage area (Al-Kaseem and Al-

Raweshidy, 2016a; Al-Kaseem and Al-Raweshidy, 2016b; Baker et al., 2017; Mekki et al., 

2019; Ali et al., 2016; Xiong et al., 2015; Bel et al., 2018; Jha et al., 2013; Botter et al., 2012; 

Sethi and Sarangi, 2017; Zhu et al., 2015; International Telecommunication Union, 2012). 

In general, the power consumption of LPWANs devices is based on three power states: 

active mode, idle mode, and sleep mode. Active mode represents the device’s transmitting 

mode where messages are transmitted to the base station. Idle mode denotes the state of 

the device before each transmission, where the device is activated to read data, select the 

transmission channel, and set the transmitter for the next hop. Finally, sleep mode 

indicates the case when the device enters the deep sleep state with minimum power 

consumption (Al-Kaseem and Al-Raweshidy, 2016a; Al-Kaseem and Al-Raweshidy, 

2016b; Bel et al., 2018; Botter et al., 2012). Figure 5.27 illustrates the power consumption 

diagram for the LPWANs devices with three message copies including all the three 

working modes.  From Figure 5.27, the total power consumption is calculated as follows: 

 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚𝑚 ∗ (𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗
𝜏𝜏
𝑇𝑇

) + 𝑚𝑚 ∗ (𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇

) + (𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇

) 5.1 

 

Where m is the number of message copies and time is in seconds. Note that the active time 

is equal to the packet duration τ. Also 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the summation of idle state power 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

and the transmission power 𝑃𝑃𝑡𝑡𝑡𝑡 that is required by the transmitter for data transmission. 

Therefore, 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 can be given by the following equations: 
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 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1
𝑇𝑇
�𝑚𝑚𝑚𝑚(𝑃𝑃𝑡𝑡𝑡𝑡 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑚𝑚(𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + (𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)� 5.2 

 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1
𝑇𝑇
�𝑚𝑚𝑃𝑃𝑡𝑡𝑡𝑡𝜏𝜏 + 𝑚𝑚𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜏𝜏 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� 5.3 

 

It is reasonable to assume that 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are the same for different technologies since 

the transmission power 𝑃𝑃𝑡𝑡𝑡𝑡  is the dominant power and the one that is mostly changes 

among different technologies. Therefore, 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  calculations for both 

technologies are based on the experiments that were implemented on the Weightless-N 

development kit. 

In general, the 𝑃𝑃𝑡𝑡𝑡𝑡  is calculated based on the transmission power specified by each 

technology. For instance, both Weightless-N and Sigfox utilise transmission power of 14 

dBm in Europe (Weightless-SIG, 2015c; Raza et al., 2017; Nolan et al., 2016; Burns et al., 

2015; Ofcom, 2014). Then, the transmission power is given by: 

 𝑃𝑃𝑡𝑡𝑡𝑡(𝑚𝑚𝑚𝑚) = 10
𝑃𝑃𝑡𝑡𝑡𝑡(𝑑𝑑𝑑𝑑𝑑𝑑)

10 = 101.4 = 25 𝑚𝑚𝑚𝑚 5.4 

 

More precisely, the power consumption during transmission time is slightly higher than 

the designated transmission power due to the electric current required by other electronic 

 

Figure 5.27: Device’s power diagram with three message copies. 
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components on the board, like the transmitter circuit and the serial connection between the 

microcontroller and the transmitter. Therefore, the Weightless-N development kit was 

used to calculate the exact value of the power consumption for all working modes including 

the transmission power, as shown in Figure 5.28. 

 

Figure 5.28 illustrates the experimental measurements of the input current to the 

Weightless-N development kit using a current-to-voltage converter with an internal 

resistance of 10 ohms. As a result, the current is given as follows:    

 𝐼𝐼 =
𝑉𝑉
10

 5.5 

 

It is clear from Figure 5.28 that the current needed for data transmission is (11.6 mA) while 

the idle state current 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is equal to (0.8 mA). In addition, experiment results showed that 

the sleep state current 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is equal to (0.035 mA). Assuming that the power source is a 

coin cell battery with a constant voltage of (3 volts) for all modes, the transmission power 

𝑃𝑃𝑡𝑡𝑡𝑡 can be calculated as follows: 

 𝑃𝑃𝑡𝑡𝑡𝑡 = 𝑉𝑉 ∗ 𝐼𝐼𝑡𝑡𝑡𝑡 = 3𝑣𝑣 ∗ 11.6𝑚𝑚𝑚𝑚 = 34.8 𝑚𝑚𝑚𝑚 5.6 

 

Similarly, the power consumption during the idle mode is given by: 

 

Figure 5.28: Weightless-N development kit input current with three message copies, where 𝐈𝐈𝐭𝐭𝐭𝐭 =
𝟏𝟏𝟏𝟏.𝟔𝟔 𝒎𝒎𝒎𝒎 and 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟎𝟎.𝟖𝟖 𝒎𝒎𝒎𝒎 
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 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉 ∗ 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 3𝑣𝑣 ∗ 0.8𝑚𝑚𝑚𝑚 = 2.4 𝑚𝑚𝑚𝑚 5.7 

Likewise, the power consumption during the sleep state mode is calculated as follows: 

 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉 ∗ 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 3𝑣𝑣 ∗ 0.035𝑚𝑚𝑚𝑚 = 0.11 𝑚𝑚𝑚𝑚 5.8 

Now, from Equation 5.3, the total power consumption of each device can be calculated in 

milliwatts as:  

 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1
𝑇𝑇
�34.8𝑚𝑚𝑚𝑚 + 2.4𝑚𝑚(𝜏𝜏 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 0.11𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝� 𝑚𝑚𝑚𝑚 5.9 

 

Since the idle time is given by (0.33 sec.), as shown in Figure 5.29, Equation 5.9 can be 

rewritten as: 

 

 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1
𝑇𝑇
�34.8𝑚𝑚𝑚𝑚 + 2.4𝑚𝑚(𝜏𝜏 + 0.33) + 0.11𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� 𝑚𝑚𝑚𝑚 5.10 

 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1
𝑇𝑇
�37.2𝑚𝑚𝑚𝑚 + 0.11𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.79𝑚𝑚� 𝑚𝑚𝑚𝑚 5.11 

 

 

Figure 5.29: Weightless-N development kit input current timing with three message copies, where 
𝐓𝐓𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 = 𝟎𝟎.𝟑𝟑𝟑𝟑 𝒔𝒔𝒔𝒔𝒔𝒔  
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In addition, sleeping time Tsleep can be expressed in terms of τ and T as follows: 

 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇 −𝑚𝑚(𝜏𝜏 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑇𝑇 −𝑚𝑚(𝜏𝜏 + 0.33) 5.12 

 

Then, Equation 5.11 becomes: 

 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1
𝑇𝑇

{37.2𝑚𝑚𝑚𝑚 + 0.11(𝑇𝑇 −𝑚𝑚(𝜏𝜏 + 0.33)) + 0.79𝑚𝑚} 𝑚𝑚𝑚𝑚 5.13 

 

Finally, the total power consumption for each device connected to either Weightless-N or 

Sigfox network is given by the following equation: 

 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1
𝑇𝑇

(37.09𝑚𝑚𝑚𝑚 + 0.11𝑇𝑇 + 0.75𝑚𝑚) 𝑚𝑚𝑚𝑚 5.14 

 

It is apparent from Equation 5.14 that the total power consumption is inversely 

proportional to the average transmission time T and is directly proportional to the number 

of message copies m and the packet duration τ. τ is directly related to the payload and can 

be calculated as follows (Botter et al., 2012): 

 𝜏𝜏 =
packet size(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑏𝑏𝑏𝑏𝑏𝑏)
 5.15 

 

Packet size represents the message payload in addition to other message information like 

the device’s identification number (ID), the timestamp, the MAC address, and the Frame-

Check Sequence (FCS). These additional information bytes are defined by 17 bytes (136 

bits) for Weightless-N and by 14 bytes (112 bits) for Sigfox. As both technologies utilise a 

data transmission rate of 100 bps, the packet duration τ is presented in the following 

equations for each technology respectively based on the payload size PL in bytes: 

 𝜏𝜏 =
136 + (8 ∗ 𝑃𝑃𝑃𝑃)

100
   𝑠𝑠𝑠𝑠𝑠𝑠           𝑓𝑓𝑓𝑓𝑓𝑓 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑁𝑁 5.16 
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 𝜏𝜏 =
112 + (8 ∗ 𝑃𝑃𝑃𝑃)

100
   𝑠𝑠𝑠𝑠𝑠𝑠                             𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 5.17 

 

Since both technologies utilise the same transmission power of 14 dBm and the same data 

transmission rate, it is clear from Equations 5.16 and 5.17 that Sigfox offers lower power 

consumption than Weightless-N if the same number of message copies, payload, and the 

average transmission time are used. The next sections study the effects of various system 

characteristics on the total power consumption using the two nominated LPWA 

technologies, Weightless-N and Sigfox. The analysis presented in the following sections is 

based on a single group scenario with a periodic transmission scheme. 

 

5.5.1 Weightless-N Technology 

Figure 5.30 illustrates the Weightless-N devices power consumption versus a variable 

number of message copies using different values of transmission time T. It is clear from 

this figure that the power consumption linearly increases with respect to the number of 

message copies. It is also evident from Figure 5.30 that as the transmission time decreases 

the rate of the power consumption increment escalates with respect to the number of 

message copies. As discussed in section 5.3.2, if there is no tangible improvement in system 

performance with a high number of message copies, reducing message copies is essential 

to reduce the power consumption and preserve battery power.  

Figure 5.31 shows the Weightless-N devices power consumption versus a variable payload 

size PL using different numbers of message copies m. It is rational that the higher the 

payload, the higher the power consumption. It is apparent from Figure 5.31 that the power 

consumption linearly rises as the payload increases. It is also clear that increasing the 

payload has less effect on power consumption in comparison with the impact of increasing 

the number of message copies. However, it is vital for system designers to utilise the 

optimum number of message copies and the minimum payload, which can provide the 

necessary data for each application, not only to minimise the collision, but also to maintain 

valuable battery power.  
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Figure 5.32 depicts the effect of the average transmission time on the power consumption 

in Weightless-N using different numbers of message copies. It is clear from Figure 5.32 

that the power consumption dramatically increases as the transmission time decreases. 

Moreover, as the number of message copies increases, the rate of change in the power 

consumption enlarges with respect to the transmission time. 

 

Figure 5.30: Weightless-N power consumption with a varying number of message copies m using 
different values of transmission time T, where PL = 8 bytes and T = 1, 2, 3, 4, 5, and 
10 minutes. 

 

Figure 5.31: Weightless-N power consumption with a varying payload PL using different numbers 
of message copies m, where T = 2 minutes and m = 1, 2, 3, and 4. 
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5.5.2 Sigfox Technology 

Figure 5.33 shows the Sigfox devices power consumption with a varying number of 

message copies using different values of transmission time T. As the number of message 

copies increases, the power consumption linearly escalates. Furthermore, the rate of 

change in the power consumption increases with respect to the number of message copies 

as the transmission time T decreases. Again, if there is no noticeable improvement in 

system performance with a high number of message copies, reducing message copies is 

essential to preserve valuable battery power.  

 

Figure 5.32: Weightless-N power consumption with varying transmission time T using different 
numbers of message copies m, where PL = 8 bytes and m = 1, 2, 3, and 4. 

 

Figure 5.33: Sigfox power consumption with a varying number of message copies m using different 
values of transmission time T, where PL = 8 bytes and T = 10, 12, 14, 16, 18, and 20 
minutes. 
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Figure 5.34 demonstrates the power consumption versus a variable payload size PL using 

different numbers of message copies m. Similarly, it is apparent from Figure 5.34 that the 

power consumption is linearly related to the payload and correspondingly to the packet 

duration τ. 

Figure 5.35 illustrates the power consumption of Sigfox devices with varying transmission 

time T using different numbers of message copies m. It is clear from Figure 5.35 that the 

power consumption increases as the transmission time decreases. Furthermore, it is evident 

from Figure 5.35 that the higher the number of message copies, the larger the rate of change 

in power consumption. 

 

Figure 5.34: Sigfox power consumption with a varying payload PL using different numbers of 
message copies m, where T = 10 minutes and m = 1, 2, and 3. 

 

Figure 5.35: Sigfox power consumption with varying transmission time T using different numbers 
of message copies m, where PL = 8 bytes and m = 1, 2, and 3. 
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Figure 5.36 shows a comparison between Weightless-N and Sigfox in terms of the power 

consumption with a variable value of the transmission time T using different numbers of 

message copies. It is fair to say that Sigfox technology offers a lower power consumption 

than Weightless-N as it utilises a shorter packet duration with the same payload. In 

addition, it is noticeable from Figure 5.36 that as the number of message copies increases 

the difference in power consumption between Weightless-N and Sigfox increases. 

The next section provides a detailed comparison between the two technologies in terms of 

the message lost ratio (MLR) and the power consumption with the case of the smart 

meters. 

5.6 Evaluation of System Performance with the Smart Meters Application 

This section employs the smart meters application as a case study for the LPWANs 

performance and power consumption using both Weightless and Sigfox technologies. 

Based on the transmission characteristics of smart meters, this section offers a thorough 

analysis to choose the optimum number of message copies that can offer an adequate 

message lost ratio with the minimum power consumption for this application. It is evident 

from previous sections that optimising the number of message copies is a key factor for 

reliable LPWANs especially with such a vital application that comprises an immense 

number of connected devices.  

 

Figure 5.36: Power consumption for Weightless-N and Sigfox with variable transmission time T 
using different numbers of message copies m, where PL = 8 bytes and m = 1, 2, and 3. 
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Smart meters are the most essential component in the smart grid and play a fundamental 

role in smart cities and the IoT. Smart meters are widely utilised around the globe and with 

the current widespread popularity of smart meters, they represent one of the major parts of 

IoT devices (Wan et al., 2019; O’Dwyer et al., 2019; Jia et al., 2019; Andreadou et al., 2018; 

Wang et al., 2018; Sun et al., 2016; Lloret et al., 2016; Nielsen et al., 2015). Millions of 

devices have been already employed around the world, and millions of devices are planned 

to be connected in the next few years (Wang et al., 2018; Sun et al., 2016; Barai et al., 2015; 

Aiello and Pagani, 2014; Wenpeng Luan et al., 2013). By the end of 2018, more than 12 

million smart meters were installed in the UK, and 50 million smart meters are planned to 

be installed across Great Britain by the end of 2020 (Sun et al., 2016; Department for 

Business Energy and Industrial Strategy, 2018). 

Smart meters are powerful devices that can offer valuable information to the utility, helping 

suppliers to manage the billing system and electricity, gas, and water consumption. Even 

though a few annual readings can be adequate for the billing system, advanced metering 

infrastructure (AMI) was designed to provide more frequent information to the utility 

companies. Such statistical information is beneficial to understanding the individual 

region’s consumption scheme and to improve supply network reliability and efficiency. It 

also provides important insights into consumers’ spending habits and lifestyle (Wan et al., 

2019; Andreadou et al., 2018; Sun et al., 2016; Lloret et al., 2016; Barai et al., 2015; Budka 

et al., 2014).   

In general, smart meters employ the periodic transmission scheme with the shortest 

possible active time and very long sleeping time to minimise the power consumption, 

where a battery lifetime of 10 to 20 years is expected (Wan et al., 2019). However, there is 

a wide diversity in the literature regarding the smart meters specifications and the 

transmission characteristics utilised by them. In particular, various message sizes and 

average transmission times are exemplified by different research. Moreover, some meters 

employ data aggregation and send multiple readings in each message to further increase 

sleeping time and reduce data volume (Wan et al., 2019; Andreadou et al., 2018; Wang et 

al., 2018; Nielsen et al., 2015; Barai et al., 2015; Karimi et al., 2015; Shiobara et al., 2015; 

Wenpeng Luan et al., 2013; Budka et al., 2014; Balachandran et al., 2014; Aiello and 

Pagani, 2014).  

The analysis presented in this section is based on the most common transmission 

characteristics for smart meters with average transmission time (T) of 15 minutes and a 

payload of 8 bytes. The chosen payload is intended for meters that send basic consumption 



Chapter 5               Evaluation of LPWANs Performance Using the URCST Algorithm 
 

 

155 

information without data aggregation (Andreadou et al., 2018; Wang et al., 2018; Barai et 

al., 2015; Karimi et al., 2015; Balachandran et al., 2014; Shiobara et al., 2015; Budka et al., 

2014). 

Figure 5.37 shows the power consumption for Weightless-N and Sigfox with smart meters 

transmission characteristics using three different message copies. As the standard number 

of message copies utilised by both technologies is (m = 3), the percentage change in power 

consumption using other numbers of message copies can be calculated as follows: 

 𝑃𝑃𝑐𝑐ℎ% =
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠
× 100 5.18 

 

Where 𝑃𝑃𝑐𝑐ℎ  is the percentage change in power consumption, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠  is the standard power 

consumption with three message copies, and 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛  presents the new value for power 

consumption using other values of message copies m. 

 

 

Figure 5.37: Power consumption of smart meters for Weightless-N and Sigfox technologies with 
three different numbers of message copies m, where PL = 8 bytes, T = 15 min., and m 
= 1, 2, and 3. 
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It is evident from Figure 5.37 that using two message copies decreases the power 

consumption by 23.06 per cent in comparison with three message copies for the 

Weightless-N technology. Moreover, using a single message copy declines the power 

consumption by 46.39 per cent in comparison with three message copies. On the other 

hand, using two message copies cuts the power consumption by 22.12 per cent in 

comparison with three message copies for the Sigfox technology. Using a single message 

copy lessens the power consumption by 44.55 per cent for Sigfox in comparison with three 

message copies. Furthermore, it is clear that Weightless-N consumes more power than 

Sigfox since it utilises a larger message header, as discussed in the previous sections. 

Figure 5.38 depicts a comparison of the message lost ratio (MLR) versus the number of 

connected devices for both technologies including all utilised bands by Weightless-N. The 

analysis presented in this figure is based on the single group scenario assuming that all 

devices are smart meters. A massive number of smart meters, of up to one million, are 

presumed to be connected to a single base station. It is clear from Figure 5.38 that utilising 

the bands of 1200 and 1500 channels presents a noticeably higher MLR than other bands 

for all numbers of message copies. Therefore, it is sensible to avoid using these two band 

for the smart meters. In addition, as Sigfox utilises only 1920 channels, it is reasonable that 

it provides a higher MLR than Weightless-N, provided that Weightless-N using the four 

bands of 2499, 3000, 9990, and 15000 channels. 

It is clear from Figure 5.38 that Weightless-N with the bands of 9990 and 15000 channels 

provides a significantly lower MLR than other bands including Sigfox for all employed 

message copies. Moreover, it is evident from Figure 5.38 that as the number of message 

copies increases, other bands provide a noticeably higher MLR. As a comparison between 

Weightless-N with 15000 channels and Sigfox, Weightless-N offers a message lost ratio of 

10 per cent if the number of connected smart meters is 700000 devices while Sigfox 

provides a considerably higher message lost ratio of 95 per cent with the same number of 

connected smart meters. Furthermore, the MLR surges up to 100 per cent using Sigfox 

when the connected devices increase to one million while Weightless-N still provides a low 

MLR as little as 20 per cent only. 

According to this analysis, it is reasonable to infer that the must adequate bands for the 

application of smart meters are the 9990 and 15000 channels bands, which are utilised by 

the Weightless-N technology. In the following two sections, the analysis employs the 

15000 channels band to determine the optimum number of message copies for smart meters 

using two scenarios: a single group scenario and a multiple group scenario. 
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a) m = 1. 

 
b) m = 2. 

 
c) m = 3. 

Figure 5.38: The MLR as a function of the number of smart meters for Weightless and Sigfox with 
different numbers of channels, where PL = 8 bytes, T = 15 min., and N = 1200, 1500, 
1290, 2499, 3000, 9990, and 15000. 
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5.6.1 Smart Meters with a Single Group Scenario 

This section focuses on the optimum number of message copies that ought to be used for 

smart meters to offer a balance performance between the power consumption and the 

message lost ratio. The analysis presented in this section utilises the Weightless-N 

technology with 15000 channels assuming that all connected devices are smart meters with 

T = 15 minutes and PL = 8 bytes. It is reasonable that a relatively high MLR is adequate 

in smart meters since small gaps of data do not affect network reliability and sometimes 

gaps of hours or even days are acceptable (Lloret et al., 2016). Accordingly, the study 

offered in this section presumes that a message lost ratio of up to 20 per cent is suitable for 

smart meters.  

Figure 5.39 illustrates the effect of increasing the number of smart meters on the MLR 

using three different numbers of message copies. Despite that using a single message copy 

drops the power consumption up to 46.39 per cent in comparison with three message 

copies, it is not preferred in this case since it provides a noticeably high MLR. On the other 

hand, using two or three message copies offers a lower MLR than using a single message 

copy with up to one million smart meters. If the number of smart meters exceeds one 

million meters, the system provides a higher MLR than the acceptable limit of 20 per cent. 

Therefore, one million smart meters denotes the maximum limit of the number of 

connected devices for the considered scenario. 

It is evident from Figure 5.39 that using three message copies does not offer a perceptible 

improvement on the system performance in comparison with two message copies. 

Moreover, using three message copies offers a lower MLR than using two message copies 

only when the number of connected meters is equal to or less than 900000 meters. 

Exceeding this limit raises the MLR and there are no beneficial effects of using three 

message copies over the use of two message copies.  

According to the analysis presented in this section and the pervious section, it is sensible 

to select the two message copies as the optimum number of the message copies that can be 

used for the smart meters. Using two message copies made no significant difference to the 

message lost ratio in comparison with three message copies. Moreover, it maintains the 

MLR within the acceptable range even with an enormous number of smart meters. In 

addition, it reduces the power consumption by 23.06 per cent, which substantially saves 

valuable battery energy and prolongs network lifetime. 
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5.6.2 Smart Meters with a Multiple Group Scenario 

This section studies a more realistic working instance where different devices from multiple 

applications work simultaneously and share the medium with the smart meters. The 

analysis presented in this section focuses on the effect of using different numbers of 

message copies for the smart meters on the overall system MLR and the individual groups 

MLR. Again, the analysis is intended to determine the optimum number of message copies 

for the smart meters. It is also important to highlight that other applications are assumed 

to employ the standard three message copies in all cases.  

The analysis is based on the four groups scenario where the first group G1 represents the 

smart meters with a constant number of 800000 smart meters. Other connected devices are 

divided among the three other groups with various transmission characteristics, where G2 

represents 40% of the connected devices while each of the other two groups represents 

30%, as reported in Table 5.2. The analysis is implemented by varying the number of 

devices in G2, G3, and G4 while keeping the number of smart meters in G1 constant. As 

the MLR for each group can be calculated separately, this can be helpful to infer the 

maximum number of devices that can be connected to the same base station with the smart 

meters and maintains the MLR in the smart meters group within the sufficient range. In 

addition, the optimum number of message copies is also obtained from this analysis.  

 

Figure 5.39: The MLR with a varying number of smart meters k for Weightless-N with a single group 
scenario and three different numbers of message copies m, where PL = 8 bytes, T = 15 
min., N = 15000, and m = 1, 2, and 3. 
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Table 5.2: Groups characteristics. 

Group 
name 

Number of 
devices 

Percentage of 
total devices (%) 

Transmission 
scheme 

Transmission time 
(minutes) 

Payload 
(Byte) 

G1 800000 NA Periodic 𝑡𝑡0 = 15 8 

G2 Variable 40 Periodic 𝑡𝑡0 = 2 10 

G3 Variable 30 Random 𝑡𝑡1 = 2 and 𝑡𝑡2 = 4 12 

G4 Variable 30 Periodic 𝑡𝑡0 = 4 14 

 

Figure 5.40 shows the overall system MLR versus a variable number of devices in G2, G3, 

and G4 using three different numbers of message copies for G1. On the other hand, Figure 

5.41 illustrates the MLR for the smart meters group G1 and G2. It is apparent from Figure 

5.40 and Figure 5.41 that using a single message copy is not adequate for smart meters in 

this scenario since it provides a considerable higher MLR than using two or three message 

copies. Moreover, the MLR for G1 is always larger than 20 per cent, which is not preferred 

in smart meters application.  

 

 

   

Figure 5.40: The MLR with a varying number of devices k in G2, G3, and G4 for Weightless-N with 
a multiple group scenario and three different numbers of message copies m, where G1 
devices = 800000, G2, G3, and G4 devices = variable. m = 3 for G2, G3, and G4 and m 
= 1, 2, and 3 for G1. N = 15000. 
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It is also evident from Figure 5.40 that using three message copies offers only a slight 

improvement in the total system performance, given that the number of connected devices 

is less than 35000 devices. As the number of devices exceeds this limit, the system provides 

a higher MLR in comparison with the two message copies case. This rise of MLR is due 

to the escalation of collisions in groups G2, G3, and G4, where using three message copies 

reduces the MLR in smart meters group G1, as illustrated in Figure 5.41. 

Figure 5.41 depicts the MLR versus the number of connected devices for the smart meters 

group G1 and G2 for the same working scenario. This allows us to estimate the system 

limits and the maximum number of devices that can be connected to the same base station 

with the smart meters and preserve the MLR within the acceptable boundaries. In this 

analysis, G2 was selected to evaluate the effect of employing different numbers of message 

copies in G1. More specifically, as G2 includes the largest number of connected devices 

and utilises the shortest transmission time T, it offers the highest MLR in comparison to 

other groups. Accordingly, changing the number of message copies in G1 has a higher 

impact on G2 in comparison with G3 and G4. 

 

 

   

Figure 5.41: The MLR of G1 and G2 with a varying number of devices k with three different numbers 
of message copies m, where G1 devices = 800000, G2, G3, and G4 devices = variable. 
m = 3 for G2, G3, and G4 and m = 1, 2, and 3 for G1. N = 15000. 
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It is clear from Figure 5.41 that using three message copies reduces the MLR in comparison 

with two message copies for the smart meters. However, this has an adverse effect on other 

groups where the MLR noticeably increases in these groups. To obtain a reasonable 

evaluation of the impact of the change of message copies on each group, the percentage 

change of the MLR in each group will be calculated as follows, assuming that (k = 50000): 

  

 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐ℎ% =
𝑀𝑀𝑀𝑀𝑀𝑀3 −𝑀𝑀𝑀𝑀𝑀𝑀2

𝑀𝑀𝑀𝑀𝑀𝑀3
× 100 5.19 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐ℎ% =
17.89 − 20.17

17.89
× 100 = −12.7%      𝑓𝑓𝑓𝑓𝑓𝑓 𝐺𝐺1 5.20 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐ℎ% =
3.62 − 2.17

3.62
× 100 = 40%                  𝑓𝑓𝑓𝑓𝑓𝑓 𝐺𝐺2 5.21 

 

Where 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐ℎ represents the percentage change in the MLR, 𝑀𝑀𝑀𝑀𝑀𝑀2 is the MLR with two 

message copies, and 𝑀𝑀𝑀𝑀𝑀𝑀3 represent the MLR using three message copies. It is clear that 

using three message copies in G1 has a significant impact on the MLR in G2, where an 

increase of 40 per cent is seen in comparison with two message copies. In contrast, using 

two message copies slightly increases the MLR in the smart meters group G1 by 12.7 per 

cent. Also, G1 still provides a suitable MLR for smart meters with up to 50000 devices. 

Again, using two message copies reduces the power consumption in Weightless-N devices 

by 23.06 per cent in comparison with three message copies, which has a substantial impact 

on battery lifetime.  

From this analysis, we can infer that the optimum number of message copies that should 

be used for smart meters in the case of multiple applications is two message copies. In 

addition, the maximum number of devices that can be connected to the base station for the 

current scenario is 50000 devices. However, this maximum limit is related to other system 

characteristics like transmission time and payload. Therefore, this number is intended to 

change according to other applications that share the medium with the smart meters. 
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5.7 Summary 

This chapter presents a thorough and comprehensive study of the LPWANs performance 

in terms of collisions and power consumption employing two candidate technologies 

namely: Weightless-N and Sigfox. The analysis performed in this chapter involves various 

working scenarios with different transmission characteristics including the number of 

devices, the number of message copies, the payload size, the transmission time, and the 

number of channels. It also provides a systematic evaluation for practical systems with 

different applications that work simultaneously and connected to the same base station. In 

addition, the analysis is based on the novel channel selection algorithm (URCAT) 

described in Chapter 3 and the novel mathematical model presented in Chapter 4. The 

URCST algorithm is implemented in this chapter since it offers a lower probability of 

collisions and improves system performance in comparison with the standard algorithm. 

The chapter offers an extensive simulation environment for the LPWANs by providing 

three different simulation testbeds, which offer a detailed analysis of both technologies. 

The analysis provides by these simulators covers the LPWANs evaluation in terms of the 

channel histogram, the probability of collision, and the mathematical model. These 

simulators facilitate the system analysis for various working scenarios with high flexibility 

to change different transmission characteristics. The simulators were developed using the 

MATLAB software and used to evaluate the LPWANs using both Weightless-N and 

Sigfox technologies. 

Results show that the multiple message copies approach utilised by the nominated 

technologies can significantly reduce the message lost ratio (MLR) and improve system 

performance with certain limits. These limits are connected to other transmission 

characteristics, like the number of devices and the payload, utilised by the same application 

and other applications that are connected to the same base station. Exceeding these limits 

can substantially escalate the MLR and degrades system performance. Therefore, using a 

high number of message copies is not always beneficial to LPWANs performance. 

Moreover, increasing the number of message copies escalates the power consumption, 

which has another unfavourable impact on the system reliability and shortens network 

lifetime. 

The chapter also provides a detailed evaluation of both technologies with the smart meters, 

which plays a key factor in the IoT and comprise the majority of connected devices in 

smart cities. The analysis involves two scenarios: a single group scenario and a multiple 

group scenario where other applications can be added to the same base station and share 
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the medium with the smart meters. Results show that using the two lower bands utilised 

by Weightless-N with 9990 and 15000 channels respectively represents the best bands for 

smart meters. A significantly higher number of smart meters can be connected using these 

two bands in comparison with Sigfox and other frequency bands employed by Weightless-

N. In addition, the analysis reveals that using two message copies for smart meters offers 

the optimum system performance as it provides a balance between the MLR and the power 

consumption.  
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Chapter 6  

Conclusions and Future Work 
 

6.1 Conclusions 

The collision problem remains one of the most critical challenges that face M2M 

communication, especially with the growth of the IoT and the tremendous number of 

devices expected to be connected to M2M systems. It is evident from the literature and the 

analysis presented in this thesis that data collisions have a substantial impact on the 

performance of M2M communication and can significantly affect network reliability.  

This thesis covers different perspectives of the collision problem in M2M communication 

and provides technical solutions for the key issues caused by collisions. To investigate the 

influence of data collisions on the performance of M2M communication systems, two 

candidate M2M technologies, namely Weightless-N and Sigfox, were chosen as case 

studies for this research. Neither technologies employ acknowledgements, 

synchronisation, or any channel sense mechanism and only rely on a random time-

frequency access protocol. On the other hand, both technologies utilise the frequency 

hopping technique with the multiple message copies approach to mitigate the collision 

problem. The study presented in this thesis shows that these two technologies can support 

several hundreds of thousands of devices per base station based on other transmission 

characteristics and the number of utilised UNB channels. More importantly, supporting 

such a massive number of connected devices has been achieved by employing the new 

developed channel selection algorithm, URCST, which significantly reduces the 

probability of collisions in comparison with the standard algorithm. Using URCST can 

reduce the message lost ratio (MLR) to 62% with three message copies in Weightless-N 

and up to 92% with eight message copies. 

Another key strength of the presented study is the design and development of a 

comprehensive analysis and evaluation environment by utilising simulation testbeds which 

can demonstrate the performance of both technologies. Likewise, a general mathematical 

model has been developed to calculate the probability of lost messages for different 

ALOHA-based wireless communication technologies. Both, testbeds and the 

mathematical model, support multiple groups of devices with various transmission 

characteristics and support the multiple message copies approach. This was advantageous 

to provide a detailed and extensive study of the performance of Weightless-N and Sigfox 

and investigate the effects of different system parameters on the probability of collisions. 
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Subsequently, some important insights into the performance of M2M communication have 

been provided in this research. For instance, using multiple message copies is only 

beneficial for system performance within specific limits of transmission characteristics. 

Conversely, it might significantly increase the probability of collisions and degrade system 

performance. This contributes to the understanding of the limits of M2M technologies and 

applications connected to these technologies. 

Along with concluding remarks, the main contributions of this research can be summarised 

in the following sections.  

6.2 Channel Selection Technique 

This research presents a novel channel selection algorithm called a Uniform 

Randomisation Channel Selection Technique (URCST), which can be implemented by 

different M2M technologies that employ the frequency hopping technique. URCST can 

mitigate the collision problem and maintain low complexity, low power consumption, and 

low cost requirements for successful M2M communication technologies. It offers a lower 

probability of collisions in comparison to the standard Weightless-N channel selection 

algorithm. Moreover, the URCST algorithm provides better performance as the number of 

message copies increases while the standard algorithm provides the best performance at 

four message copies. This might be very useful for applications requiring a high QoS. 

In addition, URCST provides a uniform channel distribution comparable to the standard 

uniform random number generator, the MT19937 algorithm. On the other hand, the 

URCST algorithm can be implemented using simple microcontrollers with much lower 

hardware resources and much less complexity, computational time, and power 

consumption in comparison to the MT19937 algorithm. 

6.3 System Model 

The work presented in this thesis offers a rigorous and general mathematical model for the 

random time-frequency access protocol utilised by different M2M technologies in terms of 

the probability of lost messages. The model is flexible and easy to implement for different 

systems and various working scenarios. It is designed to support the multiple message 

copies approach with multiple groups of devices that are connected to the same base station 

and employ different transmission characteristics. To the best of the author’s knowledge, 

this is the first study that considers multiple groups of devices with various numbers of 

message copies. The model is based on the Poisson distribution to model the time-
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frequency access and the Binomial distribution to calculate the final probability of lost 

messages with the multiple message copies approach.   

6.4 Simulation Testbeds 

In this research, extensive testbeds have been provided to evaluate Weightless-N and 

Sigfox M2M technologies in terms of data collisions and study the effects of different 

transmission characteristics on the probability of collisions. Three different simulation 

testbeds were developed by the author to evaluate the impact of data collision on system 

performance from various aspects with high flexibility to change different transmission 

characteristics. These simulation testbeds cover the channel histogram, the probability of 

collisions, and the mathematical model. The testbeds were designed to support the multiple 

message copies approach with various groups of devices that are connected to the same 

base station and employ different transmission characteristics. To the best of the author’s 

knowledge, these testbeds are the first simulators that offer a complete analysis for the 

collision problem for both Weightless-N and Sigfox with multiple groups of devices and 

various numbers of message copies. 

6.5 LPWANs Performance Evaluation 

With the employment of Weightless-N and Sigfox M2M technologies as case studies, this 

research provides a comprehensive study of the LPWANs performance in terms of data 

collision problem and power consumption. The analysis presented in this research offers a 

systematic evaluation of practical systems with different applications that work 

simultaneously and connected to the same base station. The analysis involves various 

working scenarios with different transmission characteristics including the number of 

devices, the number of message copies, the payload size, the transmission time, and the 

number of channels. 

The results show that Weightless-N and Sigfox can support a massive number of devices 

(up to 1 million devices) using the URCST algorithm with the multiple message copies 

method. With certain limits, the multiple message copies can significantly reduce the 

message lost ratio and improve system performance. These limits are connected to other 

transmission characteristics, like the number of devices and the payload, and exceeding 

these limits can substantially increase the MLR and degrade system performance. 

Therefore, increasing the number of message copies can be disadvantageous to LPWANs 

performance. Furthermore, using a high number of message copies increases power 
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consumption, which has another adverse impact on system performance and reduces the 

network lifetime. 

The thesis also provides a detailed analysis of both technologies with the case of smart 

meters. The analysis considers two scenarios: a single group scenario, where all the 

connected devices are smart meters, and a multiple group scenario, where devices from 

other applications share the medium with the smart meters and connected to the same base 

station. The results show that using Weightless-N with 9990 and 15000 channels can be 

the optimum choice for smart meters, where a significantly higher number of smart meters 

can be supported in comparison with Sigfox and other frequency bands employed by 

Weightless-N. Utilising the 15000 channels band and the URCST algorithm, Weightless-

N can support up to one million smart meters with the single group scenario and up to 800 

thousand smart meters with the multiple group scenario. Moreover, another 50 thousand 

devices from other applications can be connected to the same base station in the case of 

the multiple group scenario. These enormous numbers of devices can be supported by 

Weightless-N with only two message copies. This number of message copies is lower than 

the standard number of three message copies utilised by the standard algorithm. Using two 

message copies maintains the MLR within an acceptable range and reduces the power 

consumption in Weightless-N devices by 23 per cent in comparison with three message 

copies. This significantly saves valuable battery energy and prolongs the network lifetime.   

6.6 Future Work 

This thesis addresses some of the fundamental challenges in M2M communication and 

offers the foundation for several important future research directions, which can be 

highlighted in this section as follows: 

1. URCST is a general channel selection algorithm and can be implemented by other 

technologies that employ frequency hopping technique to mitigate the collision 

problem. For example, LoRaWAN, NB-IoT, and CAT-M2 employ ALOHA 

access protocol with the frequency hopping technique, and it would be interesting 

to investigate the implementation of URCST in these technologies. Also, it can be 

used to perform the time slot selection in EnOcean technology, where EnOcean 

utilises the time hopping technique over 40 time slots with three message copies. 

2. The presented mathematical model can be further developed to evaluate the 

performance of LPWANs with the time slotted ALOHA, which implemented by 
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other technologies, and study its effect on the probability of collision with multiple 

message copies. 

3. Investigate the effects of different power levels of the received packets and the 

capture effect on the probability of collisions and extend the mathematical model 

to include these parameters which offers a better understanding of the real system 

performance.  

4. Investigate the effect of interference between devices from different cells and study 

the impact of this interference on the probability of lost messages. 
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