

An Overview of Prevention/Mitigation against Memory
Corruption Attack

Mahmood Jasim Khalsan, Michael Opoku Agyeman
Department of Computing, University of Northampton, UK

Abstract—One of the most prevalent, ancient and devastating
vulnerabilities which is increasing rapidly is Memory
corruption. It is a vulnerability where a memory location
contents of a computer system are altered because of
programming errors allowing execution of arbitrary codes.
It particularly happens in low-level programming
languages such as C, C++ because of their lack of memory
safety. Many defense techniques against this kind of
attacks have been presented and implemented to prevent
it. However, an advanced version of the attack can bypass
some of these techniques and harm the system. In this
work, we present an overview of the Memory corruption
attacks and the existing mitigation techniques for both
compilers and operating systems. We hope that this survey
will provide sufficient details that can be useful for
researchers and system designer.

Index terms: Memory Corruption,Vulnerabilities,attacks,
technique to prevent hacking.

I. INTRODUCTION
In the past two decades, Memory Corruption attacks

have captured the attention of security research community
[1]. The first recognized worm that exploited a memory
corruption attack to spread itself was called the Morris Worm.
This kind of attack is well-known for its high exploitability
that allows the attackers to simply execute arbitrary codes. It
takes control of the remote code execution according to latest
Microsoft report [2].

There are three main types of memory errors that can
cause the Memory corruption: accessing uninitiated, accessing
out-of-bounds as well as accessing freed memories. Also,
different software bugs can cause these errors. For example,
out of bound memory might be occurred due to incorrect
bound check, incorrect allocation or lack of bound check or
others [3]. A well-known example of memory corruption
attacks is buffer overflow exploitation.

This attack happens when a program tries to read or
write exceeding the end of a buffer (also known as a bounded
array). Some popular string manipulation functions, which are
normally used along with an array variable as their
parameters, are strcpy(), memcpy() and strcmp (). These

functions are generally vulnerable when a form bound
checking is missing [4]. The security research community has
implemented different techniques to prevent such attacks but
advanced attack with a combination of complex strategies can
still bypass them. In this paper, a survey of the memory
corruption vulnerabilities is being presented as well as some of
the existing mitigation techniques against them.

The rest of the survey is organized as the follows:
Section II describes the buffer overrun attacks and Section III
present the existing countermeasures. Section VI presents the
summary and conclusions are concluded in Section V.

II. BUFFER OVERFLOW

A. General information about buffer overflow attacks
 This section introduces the concept of buffer overflow
and how malicious users or hackers can attack the Memory
Corruption, it can be exploited by buffer overflow. A buffer
overflow happens when the size of the data that entered to the
buffer is larger than the size of the data that the buffer can
handle. In another word, buffer overflow is simply occurs
when data size reaches the out-of-bounds of the memory [5]
Based on that, many attackers can exploit this vulnerability to
force a system crash, and control-flow hijacking as well as
some malicious users can run an arbitrary code. Plenty of the
applications that built by some programming languages are
mostly leading to buffer overflow as the buffer that has been
specified is not large enough or the developers of these
applications do not pay attention of checking overflow issues.

These common mistakes particularly occur with C/C++
as these two languages have lack to build prediction
against buffer overrun. According to the aforementioned,
applications that build in C/C++ programming languages are
more vulnerable to attack [6].

Generally, there are two most common techniques that
can be utilized by an attacker to attack through buffer
overflow attacks. The two techniques are stack and heap
attacks.
To make the buffer overflow more understandable, an
example has been used for this purpose (Figure 1).

Figure 1: An example to clarify buffer overflow.

In the example the buffer is overflow with 2 bytes

because the buffer is allocated for 8 bytes in the code and the
data that has been entered is 10 bytes. Underlying cause that is
the strcpy() does not inspect bounds so attackers can write
anything outside the buffer space. Furthermore, these two
bytes can be utilized to run shell code by attackers.

B. Stack–relied buffer overrun attacks.
In this part of study, we produce that how attackers can

exploit stack-based buffer overflow. As we mentioned
previously that a buffer overflow occurs when the input data
size is which should be handled by buffer is larger than the size
of buffer itself. On another word can be descried as it happens
when insufficient boundary checking [7]. Consequently, an
attacker can exploit this drawback point to write malicious data
in the memory out of buffer,

An example has been utilized to clear stack-rely buffer
overflow attacks. Suppose we have this code.

Figure 2: An example to clarify buffer overflow with stack-
based overrun attack.

Indeed, the code in Figure 2 demonstrates that the size of
buffer is constant so very simple that the string in argv[1]
might be exceeded the size of the buffer size which results
stack-based buffer overrun attacks. Consequently, the code
allows attackers to write malicious data to memory outside of
buffer.

C. Heap-relied Buffer overrun Attack.
 Heap overflow is a kind of buffer overrun. It occurs

once a chunk of memory is assigned to heap also data is
typing to this memory with no limitation of checking the size
of the data that have been written. Hence, this vulnerable
allows attackers to overwrite some important data structure in
the heap for instance the heap header.

Furthermore, there are two kinds of heap with windows
can be explained as follow. The first type is default heap
which is utilized with windows32 to manage and specify
memory for both local and global variable as well as local
memory by using functions [malloc()]. Second type is
dynamic heap is made by some methods like HeapCreate()
which returns the address to a memory chunk that includes the
heap header [8].

 In the example (Figure 3) the attacker has modified the
return address therefore call procedure with the new address
return address as a result the attacker can control by executing
the malicious code which has been allocated somewhere in the

process.
 Figure 3: An example to illustrate buffer overrun with

heap-based overrun attack [27].

D. Block started by symbol-relid buffer overflow attacks
The whole idea of Block started by symbol (BSS) is

any program starts running, all variables either local or global
which are not assigning value as initial or these variables
initialized with zero for these variables, BSS will generate
automatically. Consequently, the BSS area results buffer
overrun in the buffer which has been created as BSS area.
Subsequently, the BSS area can be exploited by some hackers
to overwriting some data [9].

E. Other hacking techniques relevant Buffer Overrun.

1) Format String Exploit: The vulnerabilities of these kind
of techniques are resulted by incorrect invocations of some of
function like printf, sprintf and syslog. An attacker can exploit
that by entering incorrect data for the first parameter of the
printf () function, as we expect the first parameter has to be
printf(‘’%s’’,buffer) to clearly that an example has been used
for this purpose (Figure 4).

We assume that the attacker inputs in the first argument
of the printf() function ‘’ "\x10\x01\x48\x08 %x %x %x %x
%s"’’. This vulnerability provides to the attacker the
possibility of overwriting essential program flags which leads
that can control access privileges. On another hand, the
attacker can write arbitrary data into memory. Moreover,
overwriting the return address on the stack by using function
pointer [10].

 Figure 4: An example to clearly Format String Attack [11].

2) Vulnerability in Numerical Handlin: The problem of
numeric treatment that when we do incorrect math operation
or numeric conversion. Numeric handling includes integer
Overflow or Wraparound and particularly they are utilized with
buffer Overflow attacks [12]. Integer Overflow happens once
doing an operation such as multiplying for two numbers and

the result of the operation is too large which it exceeds the
range of algorithm expression which determines for data type
that cause buffer overflow. That leads to exploit by attackers
as did mention in the section that has illustrated buffer
overflow attacks [13].

III. THE CURRENT TECHNIQUES AGAINST MEMORY
CORRUPTION ATTACKS.

This section sheds some light on the different
countermeasures that have been used in operating system
through complier and linkers.

A. OS countermeasures.

We consider five main techniques that have been used
in the operating systems (OS) in order to prevent an attacker.

1) Data Execution Prevention (DEP): This technique is
used to force the memory to be writable with no possibility to
be executable or it is executable but must be read-only such as
code segments. The protection technique has developed in
order to hinder or at least reduce the normal exploits such as
the vulnerabilities that attacked by existing code or writing
malicious code inside data segments [13]. The fundamental
purpose of this mechanism is preventing the program code of
any possibility to execute in stack area and heap area
furthermore shared libraries. DEP with windows can be
divided for two types as following: Software-enforce as
explained previously it assists to prevent code of executing in
stack or heap area.

Software DEP can describe as blocking for hackers who
use exception-handing in windows to write malicious code.
Hardware-enforce DEP can be defined as making mark for
memory that have to be non-executable. This enforcement
helps to make all memory locations in a process are not
executable excluding of that the code which includes
executable code. The DEP is starting with windows XP SP2
and especially with windows 32 bits version as feature
security which uses in both Advanced Micro Devices (AMD)
and Intel. The processor that support this feature has No-
Execute (NX) as known ADM / Execute Disable Bit (XD) as
known Intel. The primary key that should be mentioned is that
any processor which supports these features, the processor has
to be executing when Physical Address Extension (PAE)
feature is enable [14]. However, the attackers can use more
intricate techniques to corrupt memory for example, using
return-to-libc and return-oriented-programming [15].

2) ASCII: ASCII-armor is a prophylactic security
technology which designed by evolving Exec-Shield function
through Red Hat, Inc. ASCII-armor is based on the Exec-
Shield where ASCII-armor becomes enable when we assign
the Exec-Shield option in addition re-link the kernel. While
when we assign the non-Exec-Shield in this case ASCII-armor

becomes disable. In very briefly, this technique utilizes with
sharing library as we know sharing library provides ability to
extend some external codes which executed in run time, some
attackers exploit this vulnerability to inject vector into
memory. At the end, the ASCII-armor feature uses to block
attackers copying malicious code into memory [16].

3) Address Space Layout Randomization (ASLR): The
first starting of using ASLR was in 2001 with Linux as known
Linux patch while in 2007 was the first using this protecting
technology with windows operation systems and especially
with Vista. Utilizing ASLR with windows operating systems
provide 256 address space locations. More specifically, adding
ASLR feature to Vista raises the number of probability for
address space locations. Consequence of this, the possibility of
pinpointing the correct location to run code with Vista after
adding ASLR became very complicated so attackers have
solely one chance out of 256. However, 2011 was the first
beginning of using ASLR with Mac OSX and both iOS as well
as google android [17]. This mechanism becomes very
powerful prediction against memory misuse when it integrates
with Data Execution Prevention (DEP) technology.

This technology randomizes system’s virtual memory
layout when each new code runs, or the system is booted.
That’s leading to, an attacker cannot find out the virtual address
of related memory locations that required to make a control-
flow or other hacking techniques. The main aim of ASLR is to
prevent attackers of executing shellcode in stack area or heap
area additionally shared libraries by randomizing them. That’s
mean, it randomizes the locations of stack area and heap area
moreover share libraries.

At the end of this section, we can take two advantages
of using this effective protection technology.
Firstly, it can defense against remote attacks. Secondly, local
attacker would not be able to attack memory because of
randomly offsetting memory structures and module base
addresses. Although, ASLR does not prevent buffer overflow at
all it just makes the ability of exploiting memory is very
difficult [23]. Even that, ASLR has two drawbacks: Lack of
entropy. Leak information.

4) Kernel Address space layout Randomization

(kASLR): This mechanism attempts to randomize both
program and data locations in kernel area when the kernel start
up (Figure 5). The main advantage of this technology is
moving the interrupt descriptor table (IDT) in a way form
most of the kernel to a location in read-only memory. As well-
known SIDT instruction assists to find out the location of IDT
which previously utilized to detect the location of kernel code,
so the technique does give any possibility for adversary to use
it because IDT has located in elsewhere.

Furthermore, kASLR is used to safeguard overwriting

because it is read-only. Finally, the Kernel ASLR has been

used with Linux kernel 3.14 version therefore has been
developed to include randomization of the module load
location In Linux kernel 3.15 [18].

 Figure 5: clarification of kernel ASLR [28].

Figure 6 gives a comparative summary of bits of entropy in
Linux vs PaX vs ASLR_NG.

B. Compiler and Linker Countermeasures.

1) GCC Compiler Options: In this part of work, we
introduce the technologies that have been added in GCC and
supported by compiler options.

a) IO2BO detection.

Integer Overflow-to-buffer-overrun (IO2BO) is one of the
most common vulnerabilities that used by attackers. As
illustrated previously in (Vulnerability in Numerical
Handling) section of the paper that Integer Overflow occurs
when the output of any calculation such as (multiplication or
dividing by zero) is surpass the range of the data type [19].

The fundamental reason that made Integer Overflow is
extremely popular because lots of programmer have not yet

pay to the magnitude of the danger that comes from integer
overflow.

Figure 6: comparative summary of bits of entropy [29].

 Based on the threads of integer overflow compiling has

supported by –ftrapv Option which uses to detect integer
overflow with addition, subtraction, multiplication, and
division for signed integers when a program is running.
Obviously, when a program identify integer overflow must be
stop. The first appearing was in GCC version 3.4.
However, it is not possible way to detect dividing by zero, so
it is not completely detection for integer overflow [20].

b) Address Sanitizer.
This tool is very fast way to detect an error in memory.
Basically, it was evolved by Google. In short, this option has
been implemented in GCC to detect six type of ways that used
by attackers to hack the memory.
The six types can be listed as following: Out-of-bounds, Use-
after-free, Use-after-return, Use-after-scope, Double-free,
invalid free and Memory leaks. Defiantly, when these kind of
hacking techniques detected, the program will stop
immediately to prevent attackers of exploiting these
vulnerabilities by corrupting the memory [21].

c) Stack Smashing Protector (SSP).

This option was released in GCC as a patch before
4.1 and has been applied in 4.1 version. Most importantly, this
security feature has been developed to defense against
memory attacks such as return address, frame pointers as well
as pointers in stack area. This mechanism was added to the
compiler to protect program against stack mashing attacks.
The main idea of SSP is to detect that the return address has
been modified before the function returns by inserting
‘’canary’’ word underneath return address on the stack as
shown in (Figure 7). Therefore, checking whether the canary
is intact or not before moving to return address [22].
In fact, canary can be used merely when the buffer size is 8
bytes or larger while a canary would be able to enter in buffer
when the size is 4 bytes or over with Ubuntu 10.10.

Additionally, to prevent hackers of finding the canary value or
its location by buffer overflow. For this purpose, 32-bits
random number has been used as value for the canary to make
the possibility of guessing canary value by attackers is very
complicated. These 32-bits random numbers will be selected
when the program starts up.

 Figure 7: using Canary to protect against Stack
smashing attacks [30 [1] [1] [1]].

d) Automatic Fortification.

Automatic Fortification is a function has been
implemented in GCC especially in 4.0 version. Most
importantly, the Automatic Fortification has been added to
prevent Format String attacks.
As well-known, Format String attacks is one of ways that
results buffer overflow (illustrated in Format String Exploit of
this paper) and that assists attackers to write or insert
malicious code. Depending on that, any function has a buffer
must be substituted with safe functions. Automatic
Fortification due inspecting string size, if it is larger than
buffer size that has been determined for storing the string at
runtime. That’s mean, checking whether the buffer size is
sufficient or not before calling the function that results buffer
overrun.

Finally, this feature is not effective way to prevent
Format String attacks at all, but it is only reducing it. Because
this feature is not being able to detect the Format String
attacks when a function passes a buffer for another function as
a parameter.

2) Stack-Shield protection.: This technology is one of the
runtime techniques which has been implemented to guard
return address. Basically, the key idea is copy the return
address and keep it in somewhere that should not be
overflowed memory space at runtime. Thus, the return address
that has been saved somewhere will be used instead of

utilizing the return address on the stack that could be exploited
by an attacker. In this case, this tool can reduce risk magnitude
that comes from the exploiting return address [24].

IV. OTHER TECHNOLOGIES AGAINST MEMORY CORRUPTION
ATTACKS.

Instruction Set Randomization (ISR) is one of the

techniques that has been implemented to defense against code
injection attacks by randomly modifying the instructions.
More specifically, this feature is used to prevent Return-
Oriented Programming attacks.
 Ultimately, ISR is not enough way to avoid control flow
hijacking attacks because some of techniques are not
necessary require to know the Instruction Set such as return-
to-libc attack. Moreover, using LibsafePlu for Runtime Buffer
Overflow Protection [25]

Pin, this tool has been implemented for security reason
at runtime which used to defense against return address. It
works as following, when the program starts running, it is
potentially analysis and create Binary Translation for the code
that has been inserted by user.
Eventually, Pin is supported by these operating systems Linux,
Windows, and OS X [26].

V. SUMMARY

We derive some generic techniques that have been
implemented to defend against memory corruption attacks.
These technologies are implemented either with operating
systems by default or with Compiler and Linker as can be
illustrated as following. 1) Operating system: One most
common options that have been provided by operating system
to defense against memory corruption attacks is kernel ASLR.
Basically, ASLR is supported by new operating systems such
as Linux, windows and OS. Even if ASLR is made great
protection but is not efficiency technique because it has lack
of entropy moreover leak of information.
2) Compiler and Linker: There are many techniques such as
(Address Sanitizer, SSP, IBO and etc.) have been implemented
with Compiler and Linker by default to defense against buffer
overflow but they are enough to prevent attackers for attacking
memory. Thus, the programmer must be pay attention to
secure his/her program because there are lots vulnerabilities
that can be exploited by attackers.

VI. CONCLUSION

In this paper, we highlight most common technologies
that can be exploited by attackers to hack memory.
Additionally, we present existing countermeasures that have
been used to prevent or minimize memory corruption attacks.
Our aim in this paper is to assist researchers and system
designers who wants to improve the current countermeasures

for memory corruption attacks either by making combination
for available countermeasures or by adding new feature(s).

VII. REFERENCES

[1] L. Szekeres, M. Payer, T. Wei and D. Song, "SoK: Eternal
War in Memory," 2013 IEEE Symposium on Security and
Privacy, Berkeley, CA, pp. 48-62.
doi: 10.1109/SP.2013.13.

[2] C. Song, "Preventing Exploits Against Memory Corruption
Vulnerabilities," Georgia Institute of Technology, 2 8
2016.

[3]Tim Rains,Matt Miller,David Weston, "Exploitation
Trends:From Potential Risk to Actual Risk," San Franisco,
24 April 2015.

[4] M. Alam, D. B. Roy, S. Bhattacharya, V. Govindan, R. S.
Chakraborty and D. Mukhopadhyay, "SmashClean: A
hardware level mitigation to stack smashing attacks in
OpenRISC," ACM/IEEE International Conference on
Formal Methods and Models for System Design
(MEMOCODE), Kanpur, 2016, pp. 1-4.

 [5] A. Kundu and E. Bertino, "A New Class of Buffer
Overflow Attacks," International Conference on
Distributed Computing Systems, Minneapolis, MN, 2011,
pp. 730-739.

[6] "CWE-120: Buffer Copy without Checking Size of Input
('Classic Buffer Overflow')," 18 January 2018.

[7] G. Chen et al., "SafeStack: Automatically Patching
Stack-Based Buffer Overflow Vulnerabilities," in IEEE
Transactions on Dependable and Secure Computing, vol.
10, no. 6, pp. 368-379, Nov.-Dec. 2013.

[8] M. Mouzarani, B. Sadeghiyan and M. Zolfaghari, "A
Smart Fuzzing Method for Detecting Heap-Based Buffer
Overflow in Executable Codes," 2015 IEEE 21st Pacific
Rim International Symposium on Dependable Computing
(PRDC), Zhangjiajie, 2015, pp. 42-49.

[9] ARichard Stevens, Stephen A. Rago, "Advanced
Programming in the UNIX® Environment: Second
Edition," 17 June 2005.

[10] John Wilander, Mariam Kamkar, "A Comparison of
Publicly Available Tools for Dynamic Buffer Overflow,"
Dept. of Computer and Information Science, Link¨opings
universitet.

[11] W. Han, M. Ren, S. Tian, L. Ding and Y. He, "Static
Analysis of Format String Vulnerabilities,"First ACIS
International Symposium on Software and Network
Engineering, Seoul, 2011, pp. 122-127.

[12] M. Qingkun, W. Shameng, F. Chao and T. Chaojing,
"Predicting integer overflow through static integer
operation attributes,"International Conference on
Computer Science and Network Technology (ICCSNT),
Changchun, 2016, pp. 177-181.

[13] W. Dietz, P. Li, J. Regehr and V. Adve, "Understanding
integer overflow in C/C++," 2012 34th International
Conference on Software Engineering (ICSE), Zurich,
2012, pp. 760-770..

[14] "Microsoft Windows Server 2003 Service Pack
1Microsoft Windows Server 2003 Web Edition," 12 Jul
2017.

[15] N. Stojanovski, M. Gusev, D. Gligoroski and S. J.
Knapskog, "Bypassing Data Execution Prevention on
MicrosoftWindows XP SP2," Availability, Reliability
and Security,ARES. The Second International
Conference on, Vienna, 2007, pp. 1222-1226.

[16] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C.
Liebchen and A. R. Sadeghi, "Just-In-Time Code Reuse:
On the Effectiveness of Fine-Grained Address Space
Layout Randomization,"IEEE Symposium on Security
and Privacy, Berkeley, CA, 2013, pp. 574-588.

[17] Ryohei Watanabe,Shuta Kondo, "A Survey of
Prevention/Mitigation against Memory Corruption
Attacks," International Conference on Network-Based
Information Systems, 19 Dec 2016 .

[18] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C.
Liebchen and A. R. Sadeghi, "Just-In-Time Code Reuse:
On the Effectiveness of Fine-Grained Address Space
Layout Randomization,"IEEE Symposium on Security
and Privacy, Berkeley, CA, 2013, pp. 574-588.

[19] D. M. Stanley, D. Xu and E. H. Spafford, "Improved
kernel security through memory layout randomization,"
IEEE 32nd International Performance Computing and
Communications Conference (IPCCC), San Diego, CA,
2013, pp. 1-10..

[20] B. Zhang, C. Feng, B. Wu and C. Tang, "Detecting
integer overflow in Windows binary executables based
on symbolic execution," IEEE/ACIS International
Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed
Computing (SNPD), Shanghai, 2016, pp. 385-390.

[21] Chao ZhangTielei WangTao WeiYu ChenWei Zou,
"IntPatch: Automatically Fix Integer-Overflow-to-
Buffer-Overflow Vulnerability at Compile-Time,"
Institute of Computer Science and Technology, Peking
University, 2010. [22] K. Serebryany,
"Continuous Fuzzing with libFuzzer and
AddressSanitizer,"IEEE Cybersecurity Development
(SecDev), Boston, MA, 2016, pp. 157-157.

[23] Y. Younan, D. Pozza, F. Piessens and W. Joosen,
"Extended Protection against Stack Smashing Attacks
without Performance Loss," Annual Computer Security
Applications Conference (ACSAC'06), Miami Beach, FL,
2006, pp. 429-438.

[24] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall and J. W.
Davidson, "ILR: Where'd My Gadgets Go?," IEEE
Symposium on Security and Privacy, San Francisco, CA,
2012, pp. 571-585.
doi: 10.1109/SP.2012.39.

[25] Zhiqiang Lin, Bing Mao and Li Xie, "LibsafeXP: A
Practical and Transparent Tool for Run-time Buffer
Overflow Preventions,"IEEE Information Assurance
Workshop, West Point, NY, 2006, pp. 332-339..

[26] Naftaly, "Pin - A Dynamic Binary Instrumentation Tool,"
13 June 2012.

[27]"Home Buffer Overflow," [Online]. Available:
http://globaltechconsultants.org/?q=content/buffer-
overflow.

[Accessed 3 April 2018].
[28] D. L. Azaña, "Differences between ASLR, KASLR and

KARL," 2015. [Online].
Available:http://www.daniloaz.com/en/differences-between-

aslr-kaslr-and-karl/. [Accessed 3 April 2018].
[29]Dr. Hector Marco-Gisbert ; Dr. Ismael Ripoll,
"Exploiting Linux On 32-bit and 64-bit Systems," 16 Jun

2016. [Online]. Available: https://www.slideshare.net/
AlesJohn/exploiting-linux-on-32bit-and-64bit-systems.

[Accessed 4 April 2018].
[30]Crispin Cowan, Steve Beattie, Ryan Finnin Day,

"Protecting Systems from Stack Smashing Attacks with
 StackGuard," 2013.
[Online].Available:https://pdfs.semanticscholar.org/9d92/fa9e

aa6ca12888d303deffe8bc392b85c09f.pdf. [Accessed 5
April 2018].

