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Abstract 
 
The dynamic stiffness matrix of a functionally graded beam (FGB) is developed 
using a higher order shear deformation theory. The material properties of the FGB 
are varied in the thickness direction based on a power-law. The kinetic and potential 
energies of the beam are formulated by accounting for a parabolic shear stress 
distribution. Hamilton’s principle is used to derive the governing differential 
equations of motion in free vibration. The analytical expressions for axial force, 
shear force, bending moment and higher order moment at any cross-section of the 
beam are obtained as a by-product of the Hamiltonian formulation. The differential 
equations are solved in closed analytical form for harmonic oscillation. The dynamic 
stiffness matrix of the FGB is then constructed by relating the amplitudes of forces 
and displacements at the ends of the beam. The Wittrick-Williams algorithm is 
applied to the dynamic stiffness matrix of the FGB to compute its natural 
frequencies and mode shapes in the usual way after solving the eigenvalue problem. 
Finally, some conclusions are drawn. 
 
Keywords: Free vibration, functionally graded beams, dynamic stiffness method, 
Wittrick-Williams algorithm, parabolic shear deformation beam theory. 
 
1      Introduction 

Functionally graded materials (FGM) are characterised by continuous transition of 
material properties as a function of position along certain directions. The gradual 
variation of material properties can be designed for specific function and 
applications. The analysis of structures made of FGM has attracted many researchers 
in recent years since the concept of FGM was first introduced in Japan around the 
mid-1980s. Beam as a load carrying member in a structure is widely used in 
aeronautical, civil, mechanical and other installations. It is a potential candidate for 
FGM application. Thus, the dynamic behaviour of the functionally graded beams 
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(FGB) has become an area of concentrated research. Some recent publications [1-8] 
are included in this paper. Applying the dynamic stiffness method (DSM), the free 
vibration analysis of FGB has earlier been investigated using the Bernoulli-Euler [7] 
and Timoshenko [8] beam theories. It is well known that the Bernoulli-Euler beam 
theory does not consider the shear stresses and associated strains in the cross-section 
and it assumes that the cross-section remains plane and perpendicular to the beam 
axis after deformation. By contrast, the Timoshenko beam theory is based on the 
first order shear deformation which takes into account the effects of shear 
deformation and rotatory inertia.  Although the Timoshenko beam theory is a 
refinement over the Bernoulli-Euler theory, it is nevertheless, deficient because it 
assumes constant shear stress and shear strain distribution in the cross-section which 
clearly violates the free shear stress condition on the outer surface of the beam. A 
shape factor is often introduced in the Timoshenko beam theory, but its usage can 
sometimes be unsatisfactory and often controversial. The dynamic vibration 
behaviour of beam elements has been researched using a higher order beam theory 
[9, 10] which eliminates the ambiguity of using a fictitious shape factor. Thus the 
development of the dynamic stiffness method using a higher order shear deformation 
theory for free vibration analysis of FGB is important. This has not been attempted 
before and hence rightfully becomes the subject matter of this paper to investigate 
the free vibration behaviour of FGB in an accurate manner. The current investigation 
is no-doubt a significant step forward following the authors’ recent contributions to 
the state-of-the-art using the DSM theories of Bernoulli-Euler [7] and Timoshenko 
[8] beams, respectively.  

The DSM uses exact member theory based on frequency dependent shape functions 
obtained from the solution of governing differential equations of motion of structural 
elements in free vibration. Therefore, results for all natural frequencies and mode 
shapes are exact without making any approximation en route. Furthermore, results 
are also independent of the number of elements used in the analysis. This is of 
course, impossible in the conventional finite element method (FEM) and many other 
approximate methods. The DSM has always been distinctive and is probably the 
ultimate benchmark in free vibration analysis. Thus DSM can be used to validate the 
FEM and other approximate methods.  
 
The development of the dynamic stiffness element of a functionally graded beam 
using a higher order shear deformation theory is of course, the main focus of this 
paper. Material properties are assumed to vary continuously in the beam thickness 
direction based on a power law distribution. First the kinetic and potential energies 
of the functionally graded beam are formulated using a higher order shear 
deformation theory which accounts for parabolic distribution of the transverse shear 
strains through the thickness of the beam. Then the governing differential equations 
of motion in free vibration and the natural boundary conditions are derived using 
Hamilton’s principle which was facilitated by symbolic computation [11]. Next the 
differential equations are solved in closed analytical form for harmonic oscillation. 
By relating the amplitudes of forces to those of the displacements at the beam ends, 
the dynamic stiffness matrix is developed. Finally the Wittrick–Williams algorithm 
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[12] is applied to the ensuing dynamic stiffness matrix as the solution technique to 
yield the natural frequencies and mode shapes.  
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2 Theory 
 
2.1 Derivation of the governing differential equations 
 
A uniform rectangular cross section FGB is shown in Figure 1 in a right-handed 
Cartesian coordinate system. The beam has a length L, width b, and thickness h, 
with the mechanical properties of the beam: Young’s modulus E, Poisson’s ratio , 
shear modulus G, and mass density  . It is assumed that the material properties of 
the beam vary continuously in the thickness direction (Z) according to a power law 
distribution as follows [7, 8]: 
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where tP  and bP  are respectively the material properties at the top and bottom 
surfaces of the FGB, k dictates the material variation profile through the thickness of 
the beam and is a non-negative parameter. Three special cases are observed in the 
above equation. The linear variation of the composition of the top and bottom 
surfaces of the FGB is represented by 1k ,  0k  indicates the FGB made of full 
material of the top surface whereas k  represents the FGB made of full material 
of the bottom surface. 
 
 
 

 
 
 
 
 
 
 

Figure 1: The co-ordinate system and notation for a FGB 
 

Displacements 1v  and 1w  along the Y and Z directions of a point on the cross-
section are given by  
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where v  and w  are the corresponding displacements of the point on the neutral axis. 

)(z  is the shape function which characterises the distribution of the transverse 
shear stress through the thickness of the beam and can be ascertained using different 
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beam theories. In the current investigation, one of the higher order deformation 
beam theories, the parabolic shear deformation beam theory [9, 10] is used which 
assumes:   

 )1()
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where 23
4
h

a  . The transverse shear strain )(z  at any point on the neutral axis can 

be expressed as 
 
 ),(),( tywty    (5) 
 
where a prime represents differentiation with respect to space y.   is the total 
bending rotation of the cross-sections at any point on the neutral axis which is taken 
to be an unknown function.  
 
Thus displacement 1v  in Equation (2) can be rewritten as: 
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The normal and shear strains in the usual notation are: 
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Assuming that the material of FGB obeys Hooke’s law, the stresses in the beam 

can be expressed as: 
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The potential energy of the FGB is given in the usual notation as:  
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The kinetic energy of the FGB is: 
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where an over dot represents differentiation with respect to time t. Parameters iA and 

iI  are defined as: 
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Hamilton’s principle states  
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where t1 and t2 are the time intervals in the dynamic trajectory, and   is the usual 
variational operator.  
 

Substituting potential (U) and kinetic (T) energies from Equations (10) and (11) 
into Hamilton’s principle in Equation (13), using the  operator, integrating each 
term by parts, and then collecting terms yield the governing differential equations 
and natural boundary conditions in free vibration of the FGB. The entire procedure 
has been executed using the application of symbolic computation [11]. The 
governing differential equations are obtained as, 
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As a by-product of the Hamiltonian formulation, the natural boundary conditions 

are also obtained analytically for axial force, shear force, bending moment and 
higher order moment as, 
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Assuming harmonic oscillation so that 
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where )( yV , )( yW and )(y  are amplitudes of v , w  and  , and   is angular or 
circular frequency. Introducing the differential operator ddD /  and the non-
dimensional length   as: 
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The three equations in Equation (23) can be combined into one 8th order ordinary 

differential equation, which satisfies each of )(V , )(W and )(  as follows, 
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The characteristic or auxiliary equation of the differential equation (25) can be 
reduced to a quartic equation which can be solved using standard procedure [13]. 
Then by taking the square root of the four roots (which could be real or complex) of 
the quartic, the eight roots jr )8,,2,1( j  of the characteristic equation can be 
computed. Thus the solutions for )(V , )(W  and )(  are given by 
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where jP , jQ  and jR  )8,,2,1( j  are three different sets of eight constants.  

The derivative of the transverse displacement, which is considered to be one of 
the degrees of freedom resulting from the higher order shear deformation, can be 
obtained as: 
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Three sets of eight constants in Equation (27) can be defined as vectors P, Q and 

R as follows:  
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The three sets of constants are not all independent and can be related to each 

other using Equation (23). The choice of relating two sets of the constants in terms 
of the third one is arbitrary. In the current investigation, jP  is chosen to be the base 
set of constants to relate to jR  and jQ  as follows: 
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     Similarly the amplitudes of the axial, shear forces, bending moment and higher 
order bending moment are obtained in terms of jP  with the help of Equation (23) in 
non-dimensional form as 
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2.2 Dynamic stiffness formulation 
 
The dynamic stiffness matrix of the FGB can be formulated by applying boundary 
conditions for displacements and forces at the ends of the beam. Figure 2 shows the 
sign convention for axial force, shear force and bending moment used in this paper 
when applying for the boundary conditions.  
 

           
Figure 2: Sign convention for positive axial force, shear force and bending moment. 
 

 
The boundary conditions for the displacements at the ends of the FGB are,  
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The boundary conditions for the forces at the both ends of the FGB are,  

 

  








2222

1111

 , , ,  :)1(
 , , ,  :)0(0

hh

hh

MMMMSSFFLy
MMMMSSFFy




 (37) 

 
Therefore, the vectors of the displacement and force are defined as:  

  

  

+   

M 
 

M   

+   F F   +   
S   

S   



10 
 

 

 
 

  









T
hh

T

MMSFMMSF

WWVWWV
 

22221111

 
22221111

F

δ
 (38) 

 
with superscript T denoting a transpose. 
 

Substituting the boundary conditions for displacement of Equations (36) into 
Equations (27-28), the relationship between the displacement vector δ and the 
constant vector P is obtained as 
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Similarly, by substituting the boundary conditions for forces given in Equations 

(37) into Equations (32 - 35), the relationship between the force vector F  and the 
constant vector P is obtained as 
 
 PAF   (41) 
 

By eliminating the constant vector P from Equations (39) and (41), the force 
vector F and the displacement vector δ can be related to give the dynamic stiffness 
matrix relationship of the beam as 
 
 δKF   (42) 
 
where  
 1 BAK  (43) 
 
is the required frequency dependent 88 dynamic stiffness matrix of the beam.  
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The above dynamic stiffness matrix K can be used to compute the natural 
frequencies and mode shapes of either an individual FGB or an assembly of FGBs 
for different boundary conditions. A reliable and accurate method of computing the 
natural frequencies using the dynamic stiffness method is to apply the well-
established Wittrick-Williams algorithm [12] which is ideally suited to solve 
transcendental eigenvalue problems such as the one in this paper. 
 

The Wittrick and Williams algorithm uses the Sturm sequence property of the 
dynamic stiffness matrix and has featured in literally hundreds of papers. It ensures 
that no natural frequencies of the structure being analysed are missed. Clearly, this is 
not possible in the conventional finite element or other approximate methods. For a 
detailed insight of the algorithm, interested readers are referred to the original work 
of Wittrick and Williams [12].  
 
3 Conclusions 
 
A systematic procedure to derive the dynamic stiffness properties of a functionally 
graded beam using a higher order shear deformation theory is presented in this 
paper. The governing differential equations of motions have been derived through 
the application of Hamiltonian mechanics and by appropriate utilisation of symbolic 
computation. The frequency dependent dynamic stiffness matrix has been developed 
for further applications in free vibration and response analyses. Further investigation 
is underway and the validation of the proposed theory and illustration of the method 
with detailed numerical results will be reported at a later stage. 
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