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Abstract Dynamic phenomena such as transient and steady-state resonant vibrations in 
vertical transportation systems deployed to move goods and passengers in the modern 
built environment affect the performance of the entire installation. In extreme high rise 
structures traction drive elevator systems comprise long slender continua such as ropes 
and cables with discrete mass elements that exhibit low-frequency modes and nonlinear 
modal interactions. This results in the need to predict and control their non-linear sta-
tionary and non-stationary dynamic responses. The underlying causes of these dynamic 
responses / vibrations are varied. They include low frequency sway motions of the host 
structure induced by high winds and seismic activities. Consequently, conditions for 
external, parametric and autoparametric resonances can readily arise during the opera-
tion of such installations. In this context, a general approach to model the dynamic 
behaviour of a typical vertical transportation system is demonstrated. Subsequently, a 
mathematical model is developed which is solved numerically to predict the non-sta-
tionary / nonlinear dynamic responses. An active control strategy is then proposed to 
minimize the effects of adverse dynamic responses of the system. 

1 Introduction 

The design and operation of high-performance systems for vertical transportation in the 
modern built environment present many technical challenges due to adverse dynamic 
responses that arise due to various sources of excitation present in these systems. In the 
modern high-rise built environment excitations induced by winds and earthquake/ 
ground motion can result in large responses of buildings and civil structures [1,2]. The 
dynamic responses at low frequencies and large amplitudes then arise that induce com-
plex resonance interactions affecting the performance of vertical transportation systems 
(VTS) deployed in tall structures [3,4,5]. Passive and active control strategies can then 
be applied to mitigate their effects [6,7]. 

In this work a mathematical model to predict and to analyse the resonance behaviour 
of the tall host structure – VTS is presented. The VTS is equipped with a nonlinear 
damper / actuator ‘tie-down’ device. The performance of the installation is studied by 
numerical simulation. It is shown that the characteristics of the tie-down device can be 
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adjusted to minimize the effects of adverse dynamic responses of the system. The active 
stiffness strategy is then proposed to minimize the effects of adverse dynamic responses 
of suspension and compensating ropes in VTS. 

2 Mathematical Model  

A VT system may be considered as an assemblage of axially moving elastic one-
dimensional long slender continua (LSC) divided into 1,2, ,p P   sections of slowly 

varying length [8,9], constrained by discrete elements such as rigid-body masses and 
rotating inertia elements. Its response can be described by a system of nonlinear partial 
differential equations of the following form 
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where the boundary conditions are given as 
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where xp denotes the spatial co-ordinate, 1 2 3( , ) ( , ), ( , ), ( , )p p p p
p p p px t U x t U x t U x t   U

is a local (component) dynamic displacement vector representing motion of the 
component p in the lateral and longitudinal directions, ( ),t designates partial derivatives 
with respect to time t, t   represents the slow time scale, where   is a small 

parameter [9], and pC  and pL are local linear operators. Furthermore, pN  is an 
operator acting upon the global displacement vector U , and representing non-linear 
couplings and inter-component constraints in the system. pF  is a forcing function with 

harmonic terms of frequency p p  , where the overdot indicates total differentiation 

with respect to time. The local (component) mass distribution function is defined as 
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In the model given by Eq. 1 the Lagrangian coordinates or Eulerian coordinates may 
be applied as the spatial coordinate xp. If the Lagrangian formulation is applied, then it 
is convenient to refer the dynamic elastic deformations of LSC to a moving frame 
associated with the overall axial transport motion of the system [9]. Otherwise, a fixed 
(inertial) frame is used to describe the deformations. In order to discretize the continous 
slowly varying nonlinear system Eq. 1 the following expansion can be used 
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where   ;k
n p pY x L   is the nth eigenfunction of the corresponding linear system and 

 p
nq t  represent the nth modal coordinate. This expansion leads to the following first-

order ordinary differential equation (ODE) system given as 

 ( ) ( , ) ( ) ( , ) ( , )t t t t    y A y N y F                                             (5) 

where y is the system state vector, A is a slowly varying linear coefficient matrix, N  

is a vector function which represents the non-linear coupling terms, and F  is the 
external excitation vector. This system cannot be solved exactly. An approximate 
solution can be sought using asymptotic (perturbation) methods and/or numerical 
techniques. Alternatively, in some cases, the system of partial differential equations Eq. 
1 with the boundary conditions given by Eq. 2 can be treated directly without 
discretization and perturbations methods (such as the method of multiple scales) can be 
applied to investigate the non-stationary behaviour of the system [10,11,12,13]. 

3 Vertical Transportation System – Traction Drive Elevator 

In the modern high-rise built environment high-speed high-capacity traction drive 
elevator (lift) systems are used. A diagram which illustrates the dynamic model of a 
high-rise lift system is shown in Fig. 1. The modulus of elasticity, cross-sectional 
effective area and mass per unit length of the ropes are denoted as E1, A1, m1 and E2, 
A2, m2 for the compensating cables and the suspension ropes, respectively. The 
compensating cables are of length L1 at the car side and the suspension ropes are of 
length L2 at the counterweight side, respectively. The length of the suspension rope at 
the car side and the compensating rope at the counterweight side are denoted as L3 and 
L4, respectively. The lengths of suspension ropes and compensating cables are varying 
with the position of the car in the shaft (denoted by lcar). The masses and dynamic 
displacements of the car, counterweight and the compensating sheave assembly are 
represented by Mcar, Mcwt and Mcomp, q1, q2 and q3, respectively. The compensating 
sheave rotational motion is represented by the angular coordinate   and the second 
moment of inertia is Icomp. The compensating sheave assembly (CSA) is equipped with 
a damper/ tie-down device. The building structure sway deformations due to ground 
motions    ,  v ws t s t  are represented by the shape function   2 33 2     , 

0z Z  . Consider that the ground motions are harmonic of frequency 1 2,     in the 

in-plane direction and out-of-plane direction, respectively. The deformations then result 
in harmonic motions v0(t) and w0(t) at the top of the building structure, in the in-plane 
direction and out-of-plane direction, respectively. 
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Fig. 1. Model of a high-rise VTS 

The natural frequencies of the system change with the position of the car. An adverse 
situation arises when the building sways at its fundamental natural frequency which in 
turn is tuned to the natural frequency of the VTS, thus leading to resonance conditions. 
The resonance phenomena can be captured by the development of a suitable dynamic 
model. The model based on the formulation given in Eq. 1 is represented by Eq. 6, 
where V, a represent the speed and acceleration/deceleration of the car, 
   i i i iv x ,t ,w x ,t , i = 1,2,…, 4, represent the dynamic displacements of the ropes, Ti, 

denote the rope quasi-static tension terms.  

M

L1

1x

2x

2u

1u1u

v2

ww1
lcar

E1A1
m

E2 A2

m

L3

w  (t)w0

2

1

q  
1

q3
comp

L4

Z0

M

q
2

cwt

L2

  

v  (t)v 0

3x

x4

v
1

ww2 z

, I comp


ground level

building deformation 
shape

c
comp

s  (t)w
s  (t)v

Mcar



5 

 

    

    

2 v
i itt i i i i i i i ixx i ix i ixt i i

2 w
i itt i i i i i i i ixx i ix i ixt i i

car 1 1 1 1 2 2 3

cwt 2 1 1 4 2 2 2

comp 3 1 1 1

m v T m V g a x E Ae v m gv 2mVv F t,L t , 

m w T m V g a x E Ae w m gw 2mVw F t,L t ,

M q E A e E A e 0,

M q E A e E A e 0,

M q E A e

             

             
  

  
 





1 1 4 d

comp 1 1 1 1 1 4

E A e F 0, 

I RE A e RE A e 0,

 

  

          (6) 

where 3 2 4 1m m , m m  , 1 2 1a a, a a   , 3 1 4 2a a , a a  , 3 3 2 2E A E A ,  

4 4 1 1E A E A  and ei denote the quasi-static axial strains in the ropes and are given as 
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where the constraint 3 1 42q u u 0    needs to be applied and the force Fd  given as 

 
1

d comp 3 3F c q q , 0 1
 

                                                    (8) 

is the damping force provided by the hydraulic tie-down of the damping coefficient 
ccomp. 

4 The Dynamic Behaviour and Numerical Results 

The dynamic responses of the system can be determined by solving the nonlinear set of 
partial differential equations (PDE) given by Eq. 6. In this study the dynamic interac-
tions when the frequency of the building is tuned to the natural frequencies of the VT 
system are investigated. 
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Fig. 2 The natural frequencies – compensating cable lateral modes 

 

Fig. 3 The natural frequencies – suspension rope lateral modes 

Figs 2-4 show the variation of the natural frequencies of a VTS comprising a car of 
mass 5500 kg which carries rated load of 3000 kg. The travel height is 300 m and the 
installation is equipped with compensating ropes with a synthetic fiber core (SFC) of 
diameter 36 mm and mass per unit length mcr = 4.76 kg/m each. The CSA mass is 4500 
kg. The car and counterweight (balanced at 50%) are suspended on 9-stranded steel 
core ropes of diameter 19 mm and mass per unit length msr = 1.54 kg/m each. The 
horizontal (bending mode) natural frequencies of the building structure are given as 

0.1 Hz1   in the in-plane direction and 0.15 Hz2   in the out-of-plane direction, 

respectively. The frequency curves are plotted against the position of the car in the shaft 
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(measured from the bottom landing level), with the in-plane and out-of-plane excitation 
frequencies represented by red solid/ dashed horizontal lines, respectively. It is evident 
that in this arrangement primary resonance interactions within the suspension/ compen-
sating system involve the lateral modes of the ropes. On the other hand the frequencies 
of vertical mode are much higher than the frequencies of the building. 

 

 
Fig. 4 The natural frequencies – vertical modes 
 
 

 

Fig. 5 The response of compensating cables at the counterweight side 
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Fig. 6 The maximum lateral displacements of compensating cables with the hydraulic tie-down 
(solid lines) and with no tie-down applied (dashed lines) 

Following the methodology outlined above the PDE system Eq. 6 is discretized by us-
ing the Galerkin method so that the resulting set of nonlinear ordinary differential equa-
tions (ODE) can be simulated numerically. The simulated dynamic responses of the 
system for the scenario when the car is stationary at the level corresponding to the res-
onance length of L4 = 257 m of the compensating cables at the counterweight side (lcar 
= 45 m, see Fig. 2) are presented in Figs 5 – 7, where the damping force given by Eq. 
8 is determined for 0.34.0 10  N( m s)5

compc    ( 0.3  ). Fig. 5 shows the in-plane 

and out-of plane dynamic displacements of the compensating cables at the counter-
weight side. The time records of the maximum lateral displacements of the cables (with 
the hydraulic tie-down and with no tie-down applied) and the vertical displacements 
are presented in Fig. 6 and Fig. 7, respectively. It is evident that the application of the 
hydraulic damper (tie-down) at the CSA results in the reduction of motions of the ca-
bles. The vertical response of the CSA is almost completely damped out whilst the 
vertical motions of the car are amplified. 
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Fig. 7 Vertical displacements of the car, counterweight and CSA, with the hydraulic tie-down 
(solid lines) and with no tie-down applied (dashed lines) 

5 Active Control Strategy 

The application of a passive hydraulic tie-down can be effective in reducing the reso-
nance motions of the cables and vertical motions of the CSA. However, in practice this 
does not fully mitigate the effects of the resonance conditions. The resonance frequen-
cies of the ropes can be shifted / changed using different masses of the CSA. The mass 
of the CSA can be increased or decreased in order to shift the resonance conditions. 
However, the dynamic conditions present in the building structure are such that even 
small changes in the natural frequencies of the structure might result in large changes 
of the resonance conditions. Thus, the potential effects of the application of passive 
control techniques and the resonance shifting strategy to achieve enough reduction the 
dynamic responses are limited. 
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Fig. 8 The response of compensating cables at the counterweight side with active control strat-
egy applied 

The active stiffness strategy can be sought to minimize the effects of adverse dynamic 
responses of suspension and compensating ropes in VTS [7]. To implement this strat-
egy a servo-actuator is installed within the CSA tie-down system to control its vertical 
motion (q3). The motion of the CSA is then dictated by a suitable feedback control law. 
The following multimode feedback control law can be applied 
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where au is the control factor qn represent the modes of the rope/ cable system and n  
are the mode weighting coefficients. This law is implemented in the numerical simula-
tion to demonstrate its effectiveness in reducing the resonance responses of the com-
pensating ropes when the car position corresponds to the distance lcar = 45 m. The active 
control is more effective than the passive damper / tie-down and results in a substantial 
reduction of the rope displacements, as demonstrated by the plots shown in figure 9. 
The control motion of the CSA (shown in black line) is generated by using the control 
factor au = 0.5. The FFT (Fast Fourier Transform) spectrum of the control signal is 
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shown in Fig. 10. The control law accommodates the in-plane as well as the out-plane 
modes to avoid the modal spill-over. The dominant frequency of the signal is 0.2 Hz 
which is twice the frequency of the fundamental resonance frequency of the cables. 

 

Fig. 9 The maximum lateral displacements of compensating ropes with active stiffness and pas-
sive hydraulic damper / tie-down with the control motion shown 

 

Fig. 10 FFT spectrum of the control motion 
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6 Conclusion 

Dynamic interactions that take place in VTS operating in high-rise structures result in 
adverse behaviour of their components compromising the structural integrity and safety 
of the installation. The application of passive hydraulic tie-down system at the CSA can 
mitigate the effects of fundamental resonances that occur in the compensating/ suspen-
sion cable systems. The study presented in this paper demonstrates that the active stiff-
ness control is more effective. The case study demonstrates that when the proposed 
active control algorithm is used the response can be reduced by about 50% (in compar-
ison with the response levels when the passive tie-down is applied). 
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