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Abstract 

The quest for best practices may lead to an increased risk of poor decision-making, es- 

pecially when aiming to attain best practice levels reveals that efforts are beyond the 

organization’s present capabilities. This situation is commonly known as the “best prac-tice 

trap”. Motivated by such observation, the purpose of the present paper is to develop a 

practical methodology to support better practice benchmarking, with an application to the 

banking sector. In this sense, we develop a two-stage hybrid model that employs Artificial 

Neural Network (ANN) via integration with Data Envelopment Analysis (DEA), which is 

used as a preprocessor, to investigate the ability of the DEA-ANN approach to classify the 

sampled branches of a Greek bank into predefined efficiency classes. ANN is integrated with 

a family of radial and non-radial DEA models. This combined approach effectively captures 

the information contained in the characteristics of the sampled branches, and subsequently 

demonstrates a satisfactory classification ability especially for the efficient branches. Our 

prediction results are presented using four performance measures (hit rates): percent 

success rate of classifying a bank branch’s performance exactly or within one class of its 

actual performance, as well as just one class above the actual class and just one class below 

the actual class. The proposed modeling approach integrates the DEA context with ANN 

and advances benchmarking practices to enhance the decision-making process for efficiency 

improvement. 
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1. Introduction 
 
In commercial banking, the operation and performance of branch networks is bound to have a 

significant impact on a bank’s overall efficiency. In the banking industry, due to increased 

competition, banks monitor their branch networks in order to improve their performance. In the 

performance measurement literature, data envelopment analysis (DEA) has proven to be a 

viable technique in terms of efficiency measurement and target setting by identifying bench- 

marks (Charles et al., 2016; Charles et al., 2018). DEA computes the relative efficiency of an 

individual branch against best-performers, i.e., benchmarks, and moreover, it identifies under- 

performing branches so that managerial actions can be taken to improve their performance 

(Tsolas, 2011). DEA has been successfully used to identify bank branch benchmarks in line with 

three approaches (Giokas, 2008; Paradi et al., 2004), namely, production, intermediation, and 

profitability or profit-oriented approach (Gaganis et al., 2009). In this paper, we adopt a profit- 

oriented approach to model branch profitability in the DEA context. 

 
In DEA, the units being compared are called decision-making units (DMUs), since they enjoy a 

certain decisional autonomy. The purpose of DEA is to identify those DMUs that are deemed to 

be efficient by means of assigning them an efficiency score of one, then expressing several 

suggestions to improve the efficiency of the inefficient units. For each inefficient unit, DEA 

identifies a set of best-in-class units, called a peer group, which include units that are efficient 

(Vercellis, 2009). DEA treats a given DMU as an entity with observed inputs and outputs, 

without any regard to the process by which inputs are converted into outputs; thus, DEA treats 

this conversion process as a “black box” common to the homogenous set of DMUs. 

 
Neural Network (NN) modeling aims to also build a “black box” model (i.e., an Artificial Neural 

Network (ANN)) of the unknown relationships of the sampled data. It is a data mining method 

appropriate for situations in which the relationship between the input and output variables is 

unknown and when we are more interested in prediction rather than explanation. Although both 

DEA and NNs cannot provide insights regarding the mechanism of transformation of inputs into 

outputs, they can give information regarding the results of the transformation (Samoilenko & 

Osei-Bryson, 2010). 

 
The structure of the NNs has been inspired from the human brain functions. NNs as sys-tems 

consist of a number of interconnected neurons. Similar to human thinking, NNs learn by example 

and they are trained by adjusting the weights between interconnected neurons; i.e., an input 

leads to a target (i.e., desired) output. Different ANN models have been proposed in the 

literature, such as: Multilayer perceptron (MLP), Hopfield networks, and Kohonen’s self- 

organizing networks, among others. The MLP networks are used in most cases due to their 

capability to map arbitrary inputs and outputs. An MLP network includes the following 

components: the input (lower or information receiver) layer, the output (highest) layer, and one 

or more hidden (intermediate) layers. MLPs are usually trained using Back Propagation (BP) 

algorithms. BP networks are a class of feed-forward neural networks (i.e., the information flows 

from the input to the output layer) and the network’s forecasts are compared with the 
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known target or desired output and the weights are adjusted based on the forecasting error to 

minimize an error function (Shokrollahpour et al., 2016). For different algorithms, see Gallant & 

Stephen (1993) and Kheirkhah et al. (2013). 

 
In this paper, we focus on proposing a practical methodology to support benchmarking analysis 

in bank branch networks by employing DEA and ANN in tandem. Branches may be motivated 

to learn not only from best in-class performers, but also from other better performers that lie in 

lower classes of performance. We experiment with a data set of bank branches by using families 

of radial and non-radial DEA models to extend the best in-class performers in the DEA context. 

The case study concerns a sample of branches of a large commercial Greek bank (henceforth, 

simply “The Bank”). The “black box” approach on which both methods are based fits the 

purpose of our study well, since we are interested in the classification ability of NNs when we 

have already used DEA as a preprocessor for deriving the efficiency scores of sampled DMUs. 

The remainder of this paper unfolds as follows: in Section 2, we provide a snapshot of the 

literature on DEA and ANN. Subsequently, in Section 3, we propose the DEA-ANN hybrid 

methodology, which is then followed by a discussion of results in Section 4. Managerial 

implications are presented in Section 5. Finally, Section 6 concludes the paper with limitations of 

current research and avenues for future research on the topic. 

 

 
2. Literature review 

 
Both DEA and ANN methods have no strict assumptions, and as a result, their applications are 

wide. For recent reviews on DEA and ANN, the interested reader is referred to the studies by Liu 

et  al.  (2013)  and  Tkáč  &  Verner  (2016),  respectively.  Hybrid  models  that  use  both  DEA  and 

ANN can also be found in the literature. The possibility of using DEA and ANN in tandem was 

first proposed by Athanassopoulos & Curram (1996), who employed ANN as a tool for assessing 

the efficiency of DMUs and concluded that both DEA and ANN were comparable and 

complementary methods in performance evaluation. In that new strand of research, some studies 

considered the use of ANN as an alternative to DEA, providing varying results (Costa & 

Markellos, 1997; Santin et al., 2004; Wang, 2003; Azadeh et al., 2007). For a recent review, also 

see Samoilenko & Osei-Bryson (2010), who stated that NNs augment, rather than replace, DEA. 

 
In line with Athanassopoulos & Curram (1996), a few researchers employed DEA as a pre- 

processor to produce training sets and to contribute to the computational efficiency derived by 

subsequent NNs (Emrouznejad & Shale, 2009; Kheirkhah et al., 2013; Pendharkar, 2011; 

Pendharkar & Rodger, 2003). Relevant studies in this strand focused mainly on the prediction of 

DEA  efficiency  scores  ( Ç elebi  &  Bayraktar,  2008;  Hsiang-Hsi  et  al.,  2013;  Kuo  et  al.,  2010; 

Ozdemir & Temur, 2009; Sreekumar & Mahapatra, 2011; Wang, 2003; Wu, 2009). Wang (2003) 

produced more accurate predictions due to the preservation of monotonicity of the input obser- 

vations. To tackle this problem of monotonicity, Misiunas et al. (2016) used the stratification 

DEA model proposed by Seiford & Zhu (2003). 
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Regarding the use of both DEA and ANN in the banking industry, apart from the work of 

Athanassopoulos & Curram (1996), we have the study by Wu et al. (2006), who combined the 

two techniques to measure the performance of a large Canadian bank and concluded that the 

proposed DEA-ANN method produces a more robust frontier and assists in identifying more 

efficient DMUs. Further, Angelidis & Lyroudi (2006) used both DEA and ANN to assess the 

efficiency of the Italian banking industry. Mostafa (2009) employed a probabilistic NN approach 

for modeling and classifying the efficiency of the Gulf Cooperation Council (GCC) banks. Finally, 

Shokrollahpour et al. (2016) employed an integrated DEA-ANN to find possible future 

benchmarks of bank branches. 

 
The present study employs a DEA-ANN approach using a large size of branch data from a Greek 

commercial bank in an attempt to build a hybrid model using DEA as a preprocessor and to 

investigate whether benchmark analysis results can support the decision-making process to 

achieve efficiency improvement. In practice, branches may be motivated to learn not only from 

best performers (i.e., peers in the DEA context), but also from other better performers. The 

motivation behind the development of such a model lies in the need to avoid the so called “best 

practice trap”, which may happen when seeking the best performers may not always yield the 

best results (Agarwal et al., 2013; Francis & Holloway, 2007; Kwon et al., 2016). Caution must be 

exercised when using the word “best’”. According to the International Quality Study (1993), 

cited in Davies & Kochhar (2002), best practices are those practices that support lower 

performers to improve to medium performance, medium performers to achieve higher perfor- 

mance, and higher performers to stay on top and to continue to be successful. However, as Kwon 

et al. (2016) stated (citing Francis & Holloway, 2007), “in the midst of a benchmarking practice 

and literature dominated by “best practices,” the conceptual development of better practice is 

still shallow and the lack of a proper evaluation methodology was pointed out as both a cause of 

this as well as a future necessity” (p. 522). 

 
This paper thus focuses on developing a methodology to support benchmarking analyses in bank 

branch networks by employing DEA and ANN in tandem. DEA as a sole method has some 

shortcomings. Because of the DEA optimization principles, when a new data set is fed to a DEA 

model, it needs to find the results from the very beginning, and this creates a high computational 

burden especially in the case of big data. After the development of the proposed DEA-ANN 

algorithm and the production of satisfactory results for a selected DEA model, the corresponding 

ANN model can be employed solely with a new data set by just using the pre-found ANN 

weights. 

 
To the best of our knowledge, this paper is the first to adopt the profit-oriented approach to 

model branch profitability by employing families of radial and non-radial DEA models with 

ANN. Thus, the findings of our analysis may be useful for generalizing our DEA-ANN mod-eling 

initiative to other banks in the same or different countries. It is also expected that the addition of 

ANN to the performance measurement framework can enhance the decision-making process in 

efficiency improvement and add some value to existing literature. 
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We differentiate from previous studies that use DEA-ANN approaches for efficiency prediction, 

such as the works by Kwon et al. (2016), Shokrollahpour et al. (2016), and Wu et al. (2006), since 

we are only interested in the classification ability of our proposed DEA-ANN modeling. We do 

not only provide the steps for the employment of the DEA-ANN modeling as a classi-fication 

tool, but we also investigate a family of radial and non-radial DEA models within the ANN 

framework. By contrast, the studies by Kwon et al. (2016) and Wu et al. (2006) used only the 

radial CCR and BBC models, and the study by Shokrollahpour et al. (2016) used the slack-based 

model (SBM; Tone, 2001), which is an extension of the additive model Charnes et al. (1985), as 

the Russell measure (RM) that we use also is. The comparison between radial and non-radial 

DEA models that we perform in terms of their success as classification tools when combined with 

ANN is unique. 

 
Our research can guide managers and researchers, as we investigate for first time a family of 

DEA models within the ANN framework. It is worth pointing out that although in conventional 

DEA studies the model selection with respect to returns-to-scale is done before the assessment, in 

our research we use a possible spectrum of returns-to-scale of some selected DEA models be- 

cause we want to provide evidence of the behavior of our proposed DEA-ANN algorithm under 

the particular hypotheses of returns-to-scale. Moreover, in the same manner, we investigate 

other hypotheses such as the radial or non-radial DEA optimization principles using selected 

DEA models. 

 

 
3. Methodology 

 
We position the problem in view of Design Science Research Methodology (DSRM) for which we 

develop a simple artefact (i.e., a hybrid DEA-ANN model) that better contributes to the 

achievement of a goal. By ‘artefact’, we refer to a human-made object, usually developed for 

practical purposes Geerts (2011). Furthermore, artefacts should possess two essential charac- 

teristics: relevance and novelty (Geerts; 2011; Hevner et al., 2004) and the artefact that we 

propose in this paper has both. On the one hand, it is relevant, as it addresses the ongoing 

practical problem of the “best practice trap” in DEA, which may happen as a result of the fact 

that seeking the best performers may not always yield the best results. On the other hand, it is 

novel in the sense that, unlike previous attempts, we are interested only in the classification 

ability of our proposed DEA-ANN modeling and to this end we investigate a family of radial and 

non-radial DEA models within the ANN framework, which makes our effort unique. 

 
In line with the above, the design problem (see, for example, Wieringa, 2014) can be formulated 

as follows: Address the so called “best practice trap” in DEA by designing an approach (i.e., a 

hybrid DEA-ANN model) that is able to classify the sampled bank branches into predefined effi- 

ciency classes in order to support the decision-making process to achieve efficiency improvement. 

 
Peffers et al. (2008) introduced the Design Science Research Methodology (DSRM), consisting of 

a nominal sequence of activities to be followed in the process of creating an artefact; in 
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Table 1, we discuss the activities that are relevant in the context of the present study. The first 

column lists the DSRM activities, the second column describes each of these activities, and the 

third column pinpoints the materials from and through which the activities are executed, such 

as models, methods, and foundational theories, instruments and frameworks, among others 

(Hevner et al., 2004). 

 

Table 1 

Design Science Research Methodology (DSRM) applied to the Current Study 

 

DSRM Activities Activity Description Knowledge 

Problem identifi- Need to address the so called “best practice trap” in Literature review. 

cation and moti- DEA, which may happen as a result of the fact that Understanding of weak- 

vation seeking the best performers may not always yield nesses of existing DEA 

 the best results. Bank branches, however, may be models and bench- 

 motivated to learn not only from best performers marking analysis. 

 (i.e., peers in the DEA context), but also from other Real-world problem. 

 better performers.  

Define the objec- Investigate whether benchmark analysis using DEA Literature review. 

tives of a solution in tandem with ANN can support the decision- Knowledge of existing 

 making process to achieve efficiency improvement. tools: DEA, ANN. 

Design and devel- Design of an approach (i.e., a hybrid DEA-ANN Radial and non-radial 

opment model, wherein DEA is used as a preprocessor) that DEA models. 

 is able to classify the sampled bank branches into Efficiency scores. ANN 

 predefined efficiency classes. model. 

Demonstration Case study demonstration. The proposed hybrid Applying the proposed 

 DEA-ANN model is used to classify the sampled approach to a real- 

 branches of a large Greek commercial bank into world case. 

 predefined efficiency classes.  

Evaluation Comparative analysis. Understanding of cur- 

  rent solution and its ad- 

  vantages. 

Note. The DSRM activities described here follow the arrangement proposed by Peffers et al. (2008) and 

Charles et al. (2019). 

 

 
This study follows the above DSRM activities to develop a hybrid DEA-ANN model to classify 

160 branches of a large Greek commercial bank into predefined efficiency classes. It should be 

noted that considering DEA in view of DSRM is a novel approach; to the best of our knowledge, 

only one other paper has done so Charles et al. (2019). 

 
The proposed DEA-ANN system is developed through the following main steps: variable se- 

lection, network design, and network application process, which we proceed to explain in the 

following sections. 



7  

3.1. Variable selection 

In this study, an ANN is employed to model the efficiencies of bank branches of The Bank. 

Data (for one year) that are likely to be considerably cleaner than standard banking data sets 

have been retrieved from the Management Information System (MIS) of The Bank and refer 

to a large sample of 160 branches which are operating all over Greece. 

 
DEA models that have been used in bank branch performance have approached efficiency from 

a production, intermediation, and profitability perspectives. In this study, the profitability 

efficiency of the bank branches is assessed in the light of contrasting their operating cost with 

the monetary outcomes (i.e., incomes) that are generated by the branches. In this approach, it 

is examined how well different branches combine their resources (i.e., expenses) to produce rev- 

enues. In other words, profitability efficiency evaluates the ability of branches to minimize the 

cost of resources for the level of revenue generated from different activities. In the profitability 

efficiency assessment, the objective function of DEA models is the ratio of the weighted sum 

of revenues to the weighted sum of expenses, which is an indicator of profitability Tsolas (2010). 

 
The input set for analysis consists of three inputs (xDEA): 

xDEA1 = personnel expenses, 

xDEA2 = rents and depreciation, and 

xDEA3= operational expenses. 

On the other hand, the output set is composed of two outputs (yDEA), namely: 

yDEA1 = net interest income, and 

yDEA2= non-interest income (fee and trading income). 

 
Personnel expenses, rents and depreciation, and operational expenses are cost-related items 

that are used as inputs. 

 
Net interest income (i.e., interest income from loans minus interest paid on customer’s deposits) 

and non-interest income (i.e., fees from non-lending activities of branches, such as fee income 

and trading income) are revenue-related items that are used as outputs. 

 
It should also be noted that the above inputs correspond to major cost items of bank branch 

operations. The output set of profitability assessment, on the other hand, includes only two 

items; nevertheless, these outputs account for a sufficiently large part of the total income of 

a bank branch, i.e., interests earned on loans (net interest income) and non-interest (gross) 

income (commissions and other non-interest income). 

 
A slight deviation from the profitability efficiency model in relation to the specification of the 

output set can be found in the work by Oral & Yolalan (1990). Instead of using gross interest 

income with gross non-interest income in the output side of DEA to assess the efficiency of 

resource use in delivering income, origination income (net interest income) and non-interest 

(gross) income (commissions and other non-interest income) are considered as outputs in our 

profitability efficiency model. 
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+ 

 

The assessment of the profitability efficiency of the bank branches is based on their ability to 

generate short- and long-term profits. By short-term profitability, we refer to the income from 

commissions that branches generate and by long-term profitability, we indicate the income from 

the lending activity of the branches (see also Giokas, 2008). 

 
For the purposes of ANN, a new variable, i.e., DEA efficiency, is obtained by means of input 

minimization using a family of models that includes radial models: CCR (Charnes et al., 1978), 

BCC (Banker et al., 1984), non-increasing returns-to-scale (NIRS) model (Byrnes et al., 1984), 

and non-decreasing returns-to-scale (NDRS) model (Byrnes et al., 1984); and non-radial mod- 

els:  free  disposal  hull  (FDH)  model  (Deprins  et  al.,  1984)  and  Russell  measure  (RM,  Färe  & 

Lovell, 1978) under constant, variable, non-increasing, and non-decreasing returns-to-scale. 

 
Since the branches typically have little or no direct control over the amount of services their 

customers require, input orientation was chosen. 

 
We use the inputs and outputs presented in Figure 1 to characterize the efficiency of the 

branches. 
 
 
 
 

 

Fig.  1.  DEA Model. 
 

Given a set of n bank branches utilizing quantities of inputs X ∈ Rmxn to produce quantities 

of outputs Y ∈ Rrxn, we use the radial and non-radial models presented in Table 2 to derive 

an efficiency score (≤ 1) based on a reference technology. 
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Table 2 

Selected radial and non-radial DEA models. 
 

EM Hypothesis Model Reference Technology and Objective Function 

Radial CRS CCR, Charnes et al. 

(1978) 

VRS BCC, Banker et al. 

(1984) 

NIRS NIRS, Byrnes et al. 

(1984) 

NDRS NDRS, Byrnes et al. 

S = {(x, y) : Y Λ ≥ y, XΛ ≤ x, Λ ∈ Rn } 

Min{θ|(y, θx) ∈ S} 

S = {(x, y) : Y Λ ≥ y, XΛ ≤ x, eI
nΛ = 1, Λ ∈ Rn } 

Min{θ|(y, θx) ∈ S} 

S = {(x, y) : Y Λ ≥ y, XΛ ≤ x, eI
nΛ ≤ 1, Λ ∈ Rn } 

Min{θ|(y, θx) ∈ S} 

S = {(x, y) : Y Λ ≥ y, XΛ ≤ x, eI
nΛ ≥ 1, Λ ∈ Rn } 

 

Non- 

radial 

(1984) 

FDH FDH, Deprins, Simar, 

and Tulkens (1984) 

CRS Russell measure, Färe 

and Lovell (1978) 

VRS Russell measure, Färe 

and Lovell (1978) 

NIRS Russell measure, Färe 

and Lovell (1978) 

NDRS Russell measure, Färe 

and Lovell (1978) 

Min{θ|(y, θx) ∈ S} 

S = {(x, y) : Y Λ ≥ y, XΛ ≤ x, Λ = (λi|∀i) = {0, 1}} 

Min{θ|(y, θx) ∈ S} 

S = {(x, y) : Y Λ ≥ y, XΛ ≤ x, Λ ∈ Rn } 

Min{eI
mΘ/m|(y, Θx) ∈ S} 

S = {(x, y) : Y Λ ≥ y, XΛ ≤ x, eI
nΛ = 1, Λ ∈ Rn } 

Min{eI
mΘ/m|(y, Θx) ∈ S} 

S = {(x, y) : Y Λ ≥ y, XΛ ≤ x, eI
nΛ ≤ 1, Λ ∈ Rn } 

Min{eI
mΘ/m|(y, Θx) ∈ S} 

S = {(x, y) : Y Λ ≥ y, XΛ ≤ x, eI
nΛ ≥ 1, Λ ∈ Rn } 

Min{eI
mΘ/m|(y, Θx) ∈ S} 

 
 

Note: EM - Efficiency Measure, CRS - constant returns-to-scale, VRS - variable returns-to-scale, NIRS - non- 

increasing returns-scale, NDRS - non-decreasing returns-to-scale, FDH - free disposal hull, θ - efficiency score, Θ 

= (θ1, θ2, ..., θm), where θi is the score associated with ith input,  Xmxn - a matrix of  m inputs,  Yrxn - a matrix 

of r outputs; x and y are vectors of inputs and outputs of the DMU of interest, respectively, el
p = (1, 1, . . . , 1) 

with p elements, Λ = (λ1, λ2,..., λn), where λ1, λ2, ..., λn are intensity factors. 
 

 

Bank branches are given an efficiency score (≤ 1) by the DEA model. They are classified into 

four classes, according to the efficiency score intervals in which their efficiency scores lie (Wu 
et al., 2006): 

- Class (1): Efficiency score interval of (0.98, 1); referred to as ‘strong relative efficient interval’. 

- Class (2): Efficiency score interval (0.80, 0.98); referred to as ‘relative efficient interval’. 

- Class (3): Efficiency score interval (0.50, 0.80); referred to as ‘relative inefficient interval’. 

- Class (4): Efficiency score interval of (0, 0.50); referred to as ‘very inefficient interval’. 

 
It is to be noted, however, that one does not need to take a rigid approach towards the given 

efficiency classes, which can and should be altered in view of application and the requirements 

of the management teams and their targets. These classes can change even when switching 

from one type of bank to another (e.g., from commercial to investment banks); for an example 

of another practical classification, see Norman & Stoker (1991). The efficiency value intervals 

classes we have selected for use in the present paper are for illustrative purposes only, as our 

main objective is not to derive such classes, but to develop a hybrid DEA-ANN model that is 

able to classify the sampled bank branches into predefined efficiency classes. 
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3.2 Network design 

 
The network design process deals with the determination of the network architecture, selection 

of the learning algorithm, and configuration of training and testing data sets. 

 

3.2.1 Network architecture 

 
An MLP network is preferred due to its simple architecture and the proven success of the model 

for solving approximation problems. An MLP network includes the following components: the 

input layer, one or more hidden layers, and an output layer which refers to the desired output 

of the system. It should be noted that the successful application of the MLP to any problem 

is related to the network architecture. The relevant theory states that networks with a single 

hidden layer only can provide more accurate results (Ç elebi & Bayraktar, 2008). 

 
Figure 2 shows a schematic representation of a back propagation of one input layer-one hidden 

layer-one output layer network with a 3-3-1 (3 input nodes - 3 hidden nodes - 1 output (with 

four classes) node structure. As shown in the figure, the whole iterative process includes real 

input presentation, feed (forward) information, error estimation, and back propagation of error 

for sequential weight adjustments (see also Kwon & Lee, 2015). 
 
 
 
 

 
 

Fig. 2. Schematic representation of a 3:3:1 network. 

 
In our case, as a base scenario, the MLP structure to construct the classification model and its 

input layer, hidden layer, and output layer are as follows: 
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- Input layer: it includes (a) six input values, which are the three inputs (xDEA1, xDEA2, 

xDEA3) and the two outputs (yDEA1, yDEA2) of the DEA model and (b) the DEA-derived 

efficiency score. 

- Hidden layer: one hidden layer. 

- Output layer: it includes one output value, which classifies the DEA scores according to the 

predefined efficiency intervals. 

 

3.2.2 Learning algorithm 

 
Having selected the architecture of the MLP, the connection weights of the network are es- 

timated by means of a training procedure based on the selected training data set. Leven- 

berg–Marquardt (LM), a well-known BP algorithm, has been selected as the learning algorithm 

for the training of the MLP due to its high level of accuracy and low level of complexity. 

 
The process of the BP algorithm is as follows (Ahmad et al., 2017): 

 
1. Present a training sample and propagate it through the neural network to derive the 

desired output. 

 
2. Use small random and threshold values to initialize all weights. 

 
3. Calculate the input to the jth node in the hidden layer in line with Eq.(1) 

 

 
N 

zNETj = wijzi − τj, (1) 
i=1 

where zNETj is the input to the jth node in the hidden layer, wij is the weight from the ith 

input node to the jth hidden layer node, τj is the threshold value between the input and hidden 

layers, and zi is the input, and N is the number of inputs. 

4. Calculate the output from the jth node in the hidden layer using Eqs. (2) and (3): 
 

N 

hj = fh( wijzi − τj), (2) 
i=1 

 

1 
fh(z) =  

1 + e−λhz 
, (3) 

where hj is the vector of hidden-layer neurons, fh(z) is the logistic sigmoid activation function, 

λh is the slope control variable of the sigmoid function and wij, zi, and τj as above. 

 
5. Calculate the input to the kth node in the hidden layer using Eq.(4): 

 

zNETk = wkjzj − τk, (4) 
j 
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k 

k 

k 

 
δ  = f  w  δ ,
 (8)j  kj k 

k 

h 

where zNETk is the input to the kth node in the hidden layer, wkj is the weight from the jth 

hidden layer node to the kth output layer node, τk is the threshold value between the hidden 

and output layers, and zj is the input from the jth hidden layer. 

 
6. Calculate the output of the kth node of the output layer using Eqs.(3) and (5): 

yk = fk( wkjzj − τk), (5) 
j 

 

where yk is the output of the kth node of the output layer, and fk(z), wkj, zj, and τk as above. 

 
7. Use Eqs. (6) and (7) to calculate the errors from the output layer: 

δk = −(dk − yk)f
 
, (6) 

f
  

= yk(1 − yk), (7) 

where δk is the errors vector for each output neuron, dk is the target activation of the output 

layer, f
 
is the local slope of the node activation function for the output nodes, and yk as above. 

 
8. Use Eqs.(8) and (9) to calculate the errors from the hidden layers: 

 

N 
  

k 

k=1 
 

   

= hj(1 − hj), (9) 

where δj is the errors vector for each hidden layer’s neuron, and f
 
, wkj and , δk as above. 

 
9. Adjust the weights and thresholds in the output layer. 

 
3.2.3 Configuration of the training and testing data set 

 
In the network design, the data of 160 bank branches are used. The complete data set is divided 

into two subsets: the training and the testing data set. Hundred twenty-eight branches (i.e., 

80% of all data) are randomly chosen for the training set and thirty two (i.e., 20% of all data) 

for the testing process. The DEA-ANN system design utilised in this study is shown in Figure 3. 

 

3.2.4 Bingo and 1-Away Metrics 

 
In this section, we define the percent hit rates, which we will use to measure the predictive 

performance of our neural network approach. The percent success rate is arguably the most 

intuitive measure of discrimination for predictive accuracy of classification problems (Sharda 

& Delen, 2006), with bigger values indicating better classification performance. 

 
Let C be the confusion matrix (also known as classification matrix) representing q classes, 

which has the form: 

f 
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Fig. 3.  The DEA-ANN system. 
 
 
 

 
 

C = Actual 

Predicted 

c11 c12 · · · c1q 

c21 c22 · · · c2q   
 

 

 
 

(10) 

. . . . 

 
 

where clk (wherein l is the row identifier and k is the column identifier) indicates the cases 

belonging to the lth actual class that have been classified as the kth predicted class. In this 

sense, the elements in the diagonal (cll) are the cases correctly classified, while the elements 

off the diagonal are the cases misclassified. In line with the above, we define four different 

hit rates: (a) two existent hit rates, which are the exact (dubbed ”Bingo”) hit rate and the 

“OneAway ” class hit rate (see, for example, Zhang et al., 2009; Sharda & Delen, 2006); and 

(b) two newly-derived hit rates, the “OneAway(above)” hit rate; and the “OneAway(below)” 

hit rate, which as we shall see, can provide a more granular view of the results. 

 
Bingo represents exact accuracy and only accounts for the correct classifications. It is defined 

as the ratio of sum of correct classifications to the total number of samples: 
 

q 
l=1 

cll 

Bingo = q 
l=1 

q 
k=1 

clk 
(11) 

 

 

OneAway represents near-exact accuracy and is the within one class hit rate; it accounts for 

the cases correctly classified and the cases predicted into the adjacent classes (one class away 

from the diagonal). It is calculated as the ratio of the sum of total correct classifications and 

classifications predicted within one class to the total number of samples: 

cq1 cq2 · · · cqq 

.   
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l=1   
  

l=1   
  

l=1 l=1 

 q−1(cl+1l + cll+1) +
 q

 

   

 

cll 

 

 

OneAway(above) accounts only for the cases that have been predicted one class above the actual 

class; it is calculated as the ratio of the sum of classifications predicted just one class above the 

actual class to the total number of samples predicted above the actual class: 
 q−1 cl+1l 

OneAway(above) = q 
l=1 

q 
k=1 clk 

(13) 

l>k 

 

 

OneAway(below) accounts only for the cases that have been predicted one class below the actual 

class; it is calculated as the ratio of the sum of classifications predicted just one class below the 

actual class to the total number of samples predicted below the actual class: 
 q−1 cll+1 

OneAway(below) = q 
l=1 

q 
k=1 clk 

(14) 

l<k 

 

4. Results 
 

4.1. Descriptive statistics 

In this section, we proceed to present and discuss the descriptive statistics. In this sense, Figure 

4 and Figure 5 visually show the efficiency distribution of radial and non-radial models and the 

details of quartiles for radial and non-radial models, respectively. 

 
Based on Figure 5, we can note that the mean efficiency of the models ranges from as low as 

0.56 (CRS) to as high as 0.88 (FDH). The medians of the models range from 0.40 (CRS) to 

0.82 (FDH). The standard deviation of models ranges from 0.13 (RM-VRS, RM-CRS) to 0.23 

(NIRS). The efficiency scores of the non-radial models are distributed around the 0.37 to 1.00 

(max) efficiency range; this is the case of the FDH model. Greater minimum values have been 

found: 0.43 for both the RM-CRS and RM-NIRS models, and 0.52 for both the RM-VRS and 

RM-NDRS models. 

 

With regard to the efficiency scores distributions, as they stem from the density plot histogram 

(see Figure 4), we can observe the following: The FDH efficiency scores take the highest peak 

at 1.00 and the rest of the DMUs are distributed around the 0.37 to 0.99 efficiency range, with 

most of them getting scores higher than 0.6; also, it is clear from the box plot of FDH that 

the average efficiency is 0.88 ± 0.17, as well as that 50% of the units are falling within the 

0.82 to 1.00 efficiency range. Regarding the peak of the distribution at 1.00, after FDH the 

RM-VRS follows and the rest of the DMUs are distributed around the 0.52 to 0.99 efficiency 

range. The average efficiency is 0.79 ± 0.13 and 50% of the units are falling within the 0.69 to 

lk c 
q 
k=1 

q 
l=1 

OneAway = (12) 
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Fig. 4. Efficiency distribution of radial and non-radial models. 
 

0.89 efficiency range. 

 
The next model with the highest peak at 1.00 is the RM-NDRS model and the rest of the 

DMUs are distributed around the 0.52 to 0.99 efficiency range. The average efficiency is 0.78 ± 

0.13 and 50% of the units are falling within the 0.68 to 0.88 efficiency range. The next model 

with the highest peak at 1.00 is the VRS conventional BCC model and the rest of the DMUs 

are distributed around the 0.25 to 0.99 efficiency range; this wider range (when compared to 

the previous models) may be due to the DMUs being of different sizes. The average efficiency 

is 0.72 ± 0.21 and 50% of the units are falling within the 0.56 to 0.91 efficiency range. Next in 

the rank with the highest peak at 1.00 is the RM-NIRS model and the rest of the DMUs are 

distributed around the 0.43 to 0.99 efficiency range. The average efficiency is 0.71 ± 0.14 and 

50% of the units are falling within the 0.61 to 0.79 efficiency range. 
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Fig. 5. Details of quartiles for radial and non-radial models. 
 

The next model with the highest peak at 1.00 is the NDRS conventional model and the rest 

of the DMUs are distributed around the full spectrum of the efficiency range; this wider range 

(when compared to the previous models) may be due once again to the DMUs being of different 

sizes. The average efficiency is 0.70 ± 0.22 and 50% of the units are falling within the 0.54 to 

0.88 efficiency range. Next in the rank with the highest peak at about 0.68 is the RM-CRS 

model and all the DMUs are distributed around the 0.43 to 1.00 efficiency range. The average 

efficiency is 0.70 ± 0.13 and 50% of the units are falling within the 0.61 to 0.78 efficiency range. 

Next in the rank with the highest peak at 1.00 is the NIRS conventional model and the rest 

of the DMUs are distributed almost entirely around the full spectrum of efficiency range; this 

wider range when compared to the previous models may be due, yet again, to the DMUs being 

of different sizes. The average efficiency is 0.58 ± 0.23 and 50% of the units are falling within 

the 0.41 to 0.75 efficiency range. Finally, the next model with the highest peaks at 0.46 and 0.55 

is the CRS conventional CCR model, with all DMUs being distributed almost entirely around 

the full spectrum of the efficiency range; same as before, this wider range when compared to 

the previous models may be due to the DMUs being of different sizes. The average efficiency 

is 0.56 ± 0.22 and 50% of the units are falling within the 0.40 to 0.72 efficiency range. 
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4.2. Classification Analysis 

The accuracy or diagnostic performance of the neural network systems is evaluated considering 

the following two situations: (1) without ’feeding’ the DEA efficiency scores into the ANN, in 

other words, by running the ANN only based on inputs and outputs; (2) by ’feeding’ the DEA 

efficiency scores into the ANN, along with the inputs and outputs. 

 
Classification accuracy (CA) is the most commonly used index when evaluating the classifica- 

tion performance; it shows the proportion of data that were correctly classified out of all data. 

We furthermore report the following quantitative indicators: precision and recall (Fawcett, 

2006). Precision can be thought of as a measure of a classifier’s exactness, with a low pre- 

cision indicating a large number of False Positives. On the other hand, Recall (also called 

Sensitivity) can be thought of as a measure of a classifier’s completeness, with a low recall 

indicating many False Negatives. As sometimes precision and recall may be contradictory, we 

also employ the F1 Score (van Rijsbergen, 1979), calculated as the harmonic mean between 

precision and recall, for comprehensive consideration. Furthermore, we use the area under the 

receiver ROC curve (AUC) to evaluate the diagnostic performance. To assess the robustness 

of our approach, we will look at all these performance measures. The testing results of the 

ANN system based on inputs and outputs only are given in Table 3; and the testing results 

of the ANN system based on inputs, outputs, and DEA efficiency scores are reported in Table 4. 

 

Table 3 

Testing results (%) of the ANN system without DEA Scores. 
 

EM Technology AUC CA F1 Precision Recall 
 

Radial CRS 96.1 78.1 80.3 82.9 78.1 

 VRS 92.3 78.1 77.8 81.4 78.1 

 NIRS 98.4 90.6 89.8 93.3 90.6 

 NDRS 95.9 78.1 78.3 80.7 78.1 

Non-Radial FDH 82.9 62.5 60.5 59.8 62.5 

 RMCRS 94.9 93.8 94.7 97.0 93.8 

 RMVRS 93.3 81.2 80.4 80.0 81.2 

 RMNIRS 87.4 84.4 83.8 83.3 84.4 

 RMNDRS 95.6 81.2 80.9 83.3 81.2 

Note: EM - Efficiency Measure. 
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Table 4 

Testing results (%) of the ANN system with DEA Scores. 
 

EM Technology AUC CA F1 Precision Recall 
 

Radial CRS 93.3 84.4 84.5 88.7 84.4 

 VRS 96.1 90.6 89.8 91.4 90.6 

 NIRS 94.8 81.2 83.7 86.5 81.2 

 NDRS 99.3 90.6 90.9 93.2 90.6 

Non-Radial FDH 99.7 93.8 93.6 94.5 93.8 

 RMCRS 100 93.8 94.3 97.9 93.8 

 RMVRS 100 93.8 93.8 94.8 93.8 

 RMNIRS 99.6 96.9 97.0 97.9 96.9 

 RMNDRS 98.5 90.6 90.7 91.0 90.6 

Note: EM - Efficiency Measure. 
 

 
Overall, we can conclude that the proposed DEA-ANN approach is much better concerning 

the AUC, accuracy, F1-scores, precision, and recall, when compared to the ANN without DEA 

scores approach. As it can be observed from the performance measure values in Tables 3 and 

4, values are generally higher when DEA scores are fed into the ANN system. There are two 

additional observations to make at this point. First, the performance measure values when 

using non-radial DEA models are generally higher than the performance measure values when 

using radial DEA models, independent of whether DEA efficiency scores are used as an input 

for the ANN system or not. Noteworthy, nonetheless, is that when DEA scores are used as an 

input, these measures when using non-radial DEA are higher in all the cases. 

 
A second observation to be made is that when we ’feed’ the DEA scores into the ANN system, 

the accuracy level improves significantly for all DEA technologies, with two exceptions: CRS 

and NIRS technologies. For CRS, the change is minimal, with only the AUC value decreasing 

from 96.1% to 93.3%. But in the case of NIRS, the values of all performance metrics decrease 

after inputting the DEA scores into the ANN. This points to the fact that in the context of 

our application, NIRS is the only DEA technology that when integrated with ANN, it does not 

improve the system’s ability to classify the sampled branches into predefined efficiency classes. 

 
This can further be appreciated from Figure 6, which depicts the type II errors for ANN with 

and without DEA scores. Lower type II errors ensures a higher level of correct classifications. 

Here, it can be noticed that ’feeding’ the DEA scores to the ANN system results in lower type 

II errors; the only exception being posed by the NIRS technology. 

 
We further use the percent hit rates defined in Section 3.2.4 to measure the predictive per- 

formance of our neural network approach. The classification (available and defined) results 

are presented in Table 5. In summary, the results show that 81.25% to 90.63% of the test 

sample for radial models and 90.63% to 96.88% of the test sample for non-radial models can 

be successfully classified according to their success performance; furthermore, most values are 
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Fig. 6. Type II Errors for ANN with/without DEA Scores. 

 

above 90%, which indicates a good classification performance. Overall, the best performers are: 

VRS and NDRS followed by the CCR model and the NIRS model for the radial models; and 

RMNIRS, followed by FDH, RMCRS, RMVRS and RMNDRS, respectively, for the non-radial 

models. 

 
A well-designed ANN system can provide information about the efficiency category to which 

branches most probably belong if their success criterion is known. If a decision-maker has the 

data about a new candidate branch, it should be evaluated by using this structure and then the 

system results can be used for strategic decisions on bank branches. However, it is expected 

that by using this chosen network structure, ‘efficient’ branches of class (1) will be classified 

and predicted more successfully than ‘inefficient’ branches, as it can be observed from Table 5. 

This is also the case for branches of class (4) by employing non-radial models; this is because 

of their better discriminating power. In general, it can be noticed that ANN performs better 

when non-radial efficiency scores are ’fed’ into the model, as opposed to radial efficiency scores. 
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Table 5 

Classification results (%) of Bingo and OneAway. 

 

 Classes    OneAway  

EM Technology (1) (2) (3) (4) Bingo (below) (above) OneAway 

Radial CRS * 75.00 73.33 100.00 84.38 80 – 96.88  

 VRS 100 100 93.33 50.00 90.63 – 100 100  

 NIRS * 33.33 87.50 91.67 81.25 100 100 100  

 NDRS 100 77.78 92.86 100 90.63 100 100 100  

Non-Radial FDH 100 77.78 100 100 93.75 – 100 100  

 RMCRS 100 50.00 100 100 93.75 – 100 100  

 RMVRS 100 100 88.24 * 93.75 – 100 100  

 RMNIRS 100 75.00 100 100 96.88 – 100 100  

 RMNDRS 100 90.00 88.89 * 90.63 100 100 100  

Note: EM - Efficiency Measure. The * indicates that there is no bank (in the 20% test data) falling under 

the particular class, for the given technology. The - indicates that there is no misclassification. 

 
 

Without a doubt, the correct classification of samples is an essential element of any study. Mis- 

classification occurs when units of analysis are assigned to a different class than the one they 

should be in. This can lead to incorrect associations being observed between the assigned classes 

and the outcomes of interest. There are fields (such as healthcare) where misclassification poses 

a significant problem, as it can cause one to under- or over-estimate health risks, which can 

make a difference between life and death. But in the banking field, stakeholders might be glad 

to predict within one (or maybe even two classes) on either side. This observation is impor- 

tant as we can notice that our prediction results in view of OneAway indicate perfect (100%) 

classification accuracy hit rate, except for the case of CRS, which achieves only 96.88% correct 

classifications. Nevertheless, if we consider the accuracy within two classes, then even CRS 

achieves 100% hit rate. A further look at the OneAway(below) and OneAway(above) metrics 

highlights the fact that in the case of CRS, 80% of all the misclassified cases are misclassified 

in one class below the actual class. 

 

 
5. Discussion and managerial implications 

 
The managerial implications are quite straightforward. DEA determines the current profitabil- 

ity efficiency level of each bank branch of the sample and moreover, the best-in-class branches 

that attain the maximum performance. Nevertheless, the quest for best practices may lead to 

an increased risk of poor decision-making, since seeking the best performers may not always 

yield the best results, a situation that is commonly known as the “best practice trap”. As such, 

in practice, branches may be motivated to learn not only from the best-in-class performers, but 

also from other better branch performers that lie in lower classes of performance. 

 
Since the DEA as a sole method has some shortcomings, a hybrid DEA-ANN algorithm was 

suggested. After the development of this algorithm and the derivation of results for a selected 
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DEA model, the corresponding ANN model can be employed solely with a new data set by just 

using the pre-found ANN weights. The new data set will contain the initial data on branch 

inputs and outputs in the DEA context as well as the DEA-produced (ex post) efficiency scores 

and the new branch data on inputs and outputs and the predefined (ex ante) efficiency scores, 

e.g., equal to unity if we want the new banks to be ex ante fully efficient. The employment  

of the ANN model using a new data set provides consistent results. This is due to the fact 

that the ANN model will use the pre-found ANN weights to classify the new data. In contrast, 

the results produced by a DEA model are sample specific and thus, if new data are added to 

previous data to form an extended data set, this action is expected to cause inconsistencies 

with the previous results. These inconsistencies may occur when a new DEA assessment with 

an extended data set is performed, as DMUs previously found as efficient can be found as 

non-efficient and vice versa. 

 
Managers can immediately benefit from the proposed approach. In practice, they should usu- 

ally set achievable small targets and implement initiatives for performance improvement rather 

than look for big goals that may be impractical. The synthesized baseline establishment of 

branch classification through the combined use of DEA and ANN can aid managers find a 

better practice benchmarking configuration in the branch banking and beyond. 

 
It is worth pointing out that although in conventional DEA studies the model selection with 

respect to returns-to-scale is done before the assessment, in our research we used a possible 

spectrum of returns-to-scale of some selected DEA models because we want to provide evi- 

dence on the behavior of our proposed DEA-ANN algorithm under the particular hypotheses 

of returns-to-scale. Moreover, in the same manner, we investigated other hypotheses such as 

the radial or non-radial DEA optimisation principles using selected DEA models. 

 
Our rationale behind showing the base models with different technologies was to demonstrate 

the applicability of obtaining the knowledge (efficiency scores) from various DEA models, which 

could be fed into the ANN. Of course, when it comes to consulting projects, it is the duty of 

the consultant to select a model in conjunction with the decision-makers. As the technology 

is changing fast (i.e., computing technology is available and has become cost-effective, as well 

as computational power is not a problem anymore), one does not need to choose a model from 

the start, but rather one can use many models at the same time and afterwards compromise 

on a specific one in concern with the users of the results. 

 

 
6. Conclusions 

 
The primary purpose of this study was to investigate the potential capabilities of ANN in bank 

branch benchmarking, and for this task, a hybrid DEA-ANN model was presented with encour- 

aging results. Taking advantage of the nature of these two methods, this paper presented an 

approach wherein DEA and ANN methods are used in tandem. In light of the results of this 

study, it can be concluded that overall the non-radial models seem to perform more successfully 
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than the radial ones, although both radial and non-radial models classify more successfully the 

’efficient’ branches of class (1) (i.e., the best performers). 

 
To the best of the authors’ knowledge, this study is the first to adopt the profit-oriented ap- 

proach to model branch profitability by incorporating families of radial and non-radial DEA 

models into the ANN framework and, moreover, to analyse the behavior of MLP with more 

than one hidden layer. This research explores the best practice benchmarking paradigm in the 

DEA context through the integration of DEA bank branch profit-efficiency measurement with 

ANN prediction models. 

 
Moreover, this study may steer the theoretical development of DEA-ANN models by both aca- 

demicians and practitioners towards new possibilities. Although there are a myriad of studies 

in the DEA literature, few researchers have examined this area by means of combining DEA 

with ANN, especially in the banking industry. The findings of our analysis are based on real 

data gathered by the MIS of a Greek bank, and as such may be useful for generalizing the 

DEA-ANN modeling to other banks in the same or different countries. As previously men- 

tioned, the addition of ANN to the performance measurement framework may enhance the 

decision-making process for bank branch efficiency improvement. Avenues for future research 

include the deployment of the proposed model into the cloud-based service, in an attempt to 

assist the decision-makers in making informed or guided decisions. 
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