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Abstract. Tall building structures are susceptible to large sway motions when subjected to
earthquake excitations. They are particularly affected by long period earthquake ground
motions. These low frequency seismic waves resonate with the fundamental mode of the
building structure which in turn causes resonance interactions with long slender continua
deployed in modular non-structural installations, such as lifts. Damage due to large resonance
motions of suspension/ compensating ropes and cables during earthquake are one of the most
common modes of failure in high-rise lift installations. In this paper an analytical model to
predict the dynamic responses of a suspension rope system installed in a tall host structure
under seismic conditions is presented. The model is then used to predict the dynamic
performance of the system under earthquake excitations. The predictions can then be used to
develop suitable mitigating strategies and protective measures to minimize the earthquake
damage.

1. Introduction

Long-period ground motion excitations induced by distant earthquakes can result in resonance and
large seismic responses of high-rise buildings in the modern mega cities located in the intra-plate
regions such as Hong Kong, Shanghai, New York, Singapore and Dubai [1]. In those conditions
severe damage is inflicted to the buildings’ structure and/or to their non-structural components such as
lifts and escalators [2,3]. In this paper an analytical model to predict the dynamic responses of a cable
- mass system which represents a lift suspension rope — car/ counterweight system under seismic
conditions is presented. The model is then used to predict the dynamic performance of the system
under long-period earthquake excitations.

2. Mathematical model
Figure 1 shows a cable - mass system mounted within a vertical cantilever host structure

subject to ground motion s, (7). The mass M is suspended on the cable of length Z and is

constrained horizontally within the host structure by a spring — viscous damping element of
effective coefficient of stiffness & the coefficient of damping c. The upper end of the cable is
passing through O and the height of the structure is AB = Zo. The structure undergoes bending
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elastic deformations #(z,7) where 0 <z < Z;, with the displacements at the top end defined

as w(Z,,1) =w,(r). The cable - mass - spring system moves vertically within the host

structure at transport speed 7 and acceleration a. The mean quasi-static tension, mass per unit
length, modulus of elasticity and cross-sectional area of the cable are denoted as

T’ = [M +m(L- r)]( g—a), m, E and 4, respectively. The spatial coordinate x is measured

from the upper end of the cable downwards as shown. The lateral dynamic displacements of
the cable, coupled with the longitudinal displacements u(x,z), are denoted as v(x,). The lateral
and longitudinal motions of mass M are shown as vas(7) and ua(t), respectively.

so(?)

Figure 1. Cable — mass system.

2.1 Model of the structure

The dynamic response of the structure is introduced as the base motion excitation acting upon the
cable - mass - spring system. The overall displacements w(z,7)of the structure are described by the
following equation

m (z)w,+Cw,+Lw=0 )]
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where m_(z) the linear mass density of the structure, £ is the spatial operator related to the elastic
potential energy of the structure, € is the damping operator, and ( )r denotes the partial derivative

with respect to time ¢. The overall displacements of the structure are expressed as
w(z,t)=w(z,1)+s0(2) 2
Equation (1) can then be expressed as
m(z)W, +Cw,+ L% =—m(z)5,(1) (3)

The solution of (3) can then be assumed in the form of modal expansion
W(z0)= 2, (=)p. (1) &
n=1

where 7, (z) are the eigenfunctions of the structure and p, () are the natural (modal) coordinates.
Using equation (4) in equation (3). multiplying the result by 7 integrating over the domain 0<z<Z,

and considering the eigenfunction orthogonality conditions the following modal equations are
obtained

b,(1)+ 24,05, (1) + @p, (1) = B (1) )

where @, are the natural frequencies, ¢, are the modal damping ratios and F,(¢) are the modal
excitation terms defined as

R(r):—glfr)fms(:)m(:)d: 6)

where m, = .[m‘ (z)W(z)d= represents the modal mass. The steady-state response of the structure
0

can then be determined from equation (5) as

t

p,(t)= LI P.(t—1)e " sinw, rdt (7
a)dr 0

where @, =@,\[1-¢” . If the eigenvalue problem associated with equation (3) does not admit a

closed-form solution a set of comparison functions can be used to seek an approximate solution of
equation (3) in the following form [4]

N

w(0)= D, (), (1) ®

n=1

where g, (¢) are generalised coordinates. Using equation (8) in equation (3) leads to the following
matrix equation of motion

Mj+Cq+Kq=F(t) 9)
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Z, Zy Z
where M =[m,], m, = [m#¥d-=. C=[c,] c,=[¥,C¥d K=[k,] k,=[¥,L?d:.
0 0 0

g
rm=1..N,and F(t)= [Fr (t)] F (t)==5(7) I m_ ¥ dz is a vector of generalized excitation forces.

0

2.2 Governing equations of the cable - mass system
Consider the motions of the cable - mass system. The equations governing the dynamic response of
the system are developed by the application of the Hamilton’s principle which requires that

f
[(6E-s1T-6m,,)dt =0, Sw(xt)=0att=1,1, (10)
P
where E, /7 and W, denote the kinetic energy, the potential energy and the work due to non-
conservative forces acting upon the system, respectively. The kinetic energy is given as

E=\E, (&,v)dx+E,, (it , v, ) (11)

= e

where
1 . 2 .
E :Em[(u+V) +y | (12)
is the kinetic energy density of the cable, and
1 . 2 .2
E, ZEM[(HM +7) +1’M] (13)
is the kinetic energy of the end mass. Here u,, =u(L,), v,, =v(L,z). overdots denote the total

o . : . Dn . Dv :
derivatives with respect to time expressed as u EFH: u,+Vu_ and vEF:a; +Pv_, with ( )x
t t

denoting partial derivatives with respect to x, respectively. The potential energy is given as
[ 1
ﬂ':I[ﬁg(ux,vx)—mgu]dr—MguM+EkA2 (14)
]

where it is & is assumed to be constant and represents the flexibility of the mass guiding system (in the
context of a lift system this would be the flexibility of the car roller guide system, the guide rail —
guide rail/ bracket system can be considered as rigid). Furthermore the elastic potential energy density

of the cable /7, is expressed in terms of the Green’s strain measure & as
- .1 '
17, :(T +EAE€]€ (15)
where the Green’s strain measure is defined as [5]
L
E=u_+—v 16
ok (16)

The last term in equation (14) represents the potential energy of the spring deformed by A=v,, —w,,

where w,, =w(Z,—L,t). The work done by the non-conservative damping force is expressed as
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W, =—cASv,, so that Hamilton’s principle yields the following partial differential equations of

motion
u
m——Ede =0,
Dt
szv—Tr +m(g—a)(xve+v,)-Ed(ev,), =0
sz ‘xx (g “xx x x)x T (1?)
My +T'(L)v,|_, +cA+kA+Ede|_ v,  =0;

Miiy, +EAe|_, =0

where T =(M +mL)(g—a). For tensioned members such as metallic cables the lateral frequencies

are much lower than the longitudinal frequencies. Thus, considering that in the case of long-period
ground motions the excitations frequencies are much lower than the fundamental longitudinal
frequencies the longitudinal inertia of the cable can be neglected in the first equation in (17) [5]. After
integrating this equation and using the boundary conditions u(0,z) = 0, u(L,t) = uy,y, the following
expression for the quasi-static axial strain in the cable results

1 , u 1

2 oMy g
LTV = +2L O\-xcl"x_e(t) (18)

In that way the dynamic model (17) of the system is reduced to three equations of motion.

2.3. Base excitation

In order to develop the model further the assumption is made that the influence of the cable system
dynamics on the structural response can be neglected. By considering the scenario in which the
structure is subject to fundamental resonance an approximate solution of equation (3) can be sought by
using a single-term expansion with the polynomial shape function ¥ () =3n" —2n’ where 7=z /Z, .
applied in equation (8). The base motion excitation is then introduced by expressing the overall lateral
displacements of the cable — mass as

v(x,1) =v(x,1)+s, (r)+(1+ Ll x]ﬁo (1) (19)

L(7)

Z,—L(r)

where ¥, =¥ ( ] and ¥, (¢) =(Z,.7) . In this formultion L is considered a slowly varying

0

function in time meaning that the change of lenght L over a period corresponding to the fundamental
frequency of the system is small compared to the instantaneous value of L [6]. In order to represent
this fact a slow time scale defined as 7 =¢t, where e < 1 is a small parameter, has been introduced.
The first term in equation (19) is then expressed

N
V()= @,[x:L(7)]q,() (20)
n=1
where @, are orthogonal trial functions given as

@,[x:L(r)]=sin| o, (L(7))x]. n=12....N (1)

The trial functions (21) are defined in terms of the slowly varying eigenvalues o, determined by the
frequency equation
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(}(—ETMO':}Shl(O'"L)+ T,0,co0s(0,L)=0, T,, =T" (L) (22)
m

By using equation (19) in the reduced system of three equations obtained from (17), and applying the
expansion (20) the following set of ordinary differential equations results

- N 3 N EA(‘F 1 )2(1 1 ] EA ¥, -1
G, +2¢,0,g,+» C q +@q +>» | K, +—|—L—i | | =A, —=T, =L W
Qr é’r rQr ; m(}‘r.r rQr g[ rn ?;fr . L 0 L14>'n 2 m. n ?’;IP_L L P T g

Ez{‘l N 19’/ _1 N N 1 N N N ~

== ZFan"iM +——& ‘FDZZ(ZO:’,.FU _ar"{i:f)QfQj +_ZZZF¢9}Q;Q:( +Qr (f;f) (23)
???rL n=1 2 L i=1 j=1 2 i=1 j=1 k=1

il +28,,0,0,, +©,u ST ia ——lﬁiix +0,(t:7)

M T Eou Ot T Oty T o"=1 ndn = 2 ML &% 749, T\

where £ and ¢, reperesent the damping ratios and

r E

L
@ = o2 D a, =@, (L), m, :j@fdr+M0:f, A =aa,
m 5

m > m 1
K =—I|g¥ Vi-L(g—a)l|Y —a)o, C =2—V¥_ +—
w gt [P L)V (=08, | Cum20r ¥, 2,

L L L L
0, =[x dx. ¥, = [D@.dx. Y, =[OD,dx. x, = [ODdx. I, =Y, —a,®,(L)
0 0 0 0

Qr(f;f)=%[g(f;f)—%ar(Syflﬁo(t)] ] @

r

O,(t:7)=—(mX, +Ma,)s, - {»{X, + SULL_ 1 7, ] + M&ULa,]ﬁo -2mV SULL_ ! X, +

w1 _ L L

—— (mng+TMar)u-'o,Xr:j@rdx, Hr:jx@rdr
0 0

- EA(¥, -1_Y

Qu(f;f)Z—m[ LL “’oJ

3. Numerical example and results

A parametric study has been conducted for a model of the cable - mass system comprising the mass M
= 3600 kg suspended on 6 steel wire ropes. The ropes have mass per unit length 0.872 kg/m and
longitudinal stiffness E4 = 22.889 MN, each. Figure 2 shows the variation of the first four lateral
natural frequencies of the system when the length of the ropes changes from Ly = 58.66 m t0 Lyax =
258.66 m. The red solid lines represent the frequencies when the spring constant is k£ = 66.698 kN/m.
The black dashed lines represent the natural frequencies corresponding to the spring of coefficient of
elasticity of one order of magnitude higher (k = 666.98 kN/m). In the system with the softer spring the
curve veering phenomena can be observed when two eigenvalues approach each other closely and
suddenly veer away [7]. For example, the veering regions of the 2™ and the 3™ natural frequency loci
and the 3™ and the 4™ natural frequency loci correspond to the lengths L of about 125 m and about 193
m, respectively. It is also interesting to observe that the flat sections of the 2%, 3™ and 4% natural
frequency curves correspond to the modes of the mass M motion. The frequency value can be

estimated as @, =+/k/M =4.3043 rad/s (f,, =@, /27=0.6851 Hz, shown as the green horizontal
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dashed line in figure 2). The first/ fundamental longitudinal natural frequency, corresponding to the
frequency @,, = EA/ML is also shown in figure 1 (solid blue line).

35 T

25F \ 1t longitudinal -

f1,=0-685 Hz

L
o \

0 1 1 1 1 1 1 | 1 1 1

60 80 100 120 140 160 180 200 220 240 260
L m

i Figure 2. The natural lateral frequencies of the cable - mass system (red solid for £ = 66.698 KN/m: :
black dashed lines for k = 666.98 kN/m), the frequency of the mass M (@,, = /k/M green solid line)
: and the 1% longitudinal frequency (blue solid line). :

Figure 3 shows the lateral displacements v(x,7)of the cable — mass system when the mass is
ascending slowly from the lower level upwards at the reduced speed of 0.75 m/s and the length of the
ropes changes from about 140 m to 80 m, respectively. The dominant frequency of the ground motion
is assumed to be 0.68 Hz (and near f,, =0.6851 Hz). s,(#) is harmonic with the acceleration
magnitude of 0.1 m/s>. The response of the structure results then in the amplitude of 0.15 m at the top

level (corresponding to Zj). The equations of motion are solved by using six modes in the expansion
(20). The 4®-5% order Runge-Kutta algorithm numerical is used to solve the equations of motion

numerically assuming the damping ratios £, =0.003 for the cable lateral mode, and ¢, = 0.3 for the

mass lateral mode and £, = 0.3 longitudinal mode, respectively. The response plots in figure 4 and
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figure 5 show the lateral displacements v,, of the mass, and the longitudinal motions u,, (coupled

with the lateral motions) vs. time, respectively. The plots demonstrate resonance behavior of the
system. The frequency spectra of the lateral response and the longitudinal response of the mass are
shown in figure 6 and figure 7, respectively. The dominant frequency of the longitudinal response is
twice the frequency of the excitation (tuned to the lateral resonance frequency of the mass). Thus, the
adverse scenario could potentially arise when the longitudinal frequency of the mass near twice the
lateral natural frequency of the mass. The longitudinal motions of the mass could then execute the
lateral mode of the cable — mass system through the autoparametric coupling.

v{z,t) m

e
EE L s

140

150 240

Figure 3. The lateral response v(x,7) of the cable - mass system.

4. Conclusions

The dynamic behaviour of a vertical cable — mass system moving slowly within a tall host structure
subject to long period seismic excitation is considered in this paper. The proposed mathematical model
accommodates the nonlinear effects of cable stretching and is used to determine the response of the
system under the excitation caused by low frequency sway motions of the host structure. The case
study presented in the paper demonstrates the effectivness of the proposed modelling approach to
predict the dynamic behaviour of the system.
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Figure 6. The frequency spectrum of the lateral Figure 7. The frequency spectrum of the :
- response V,, = V(L,7) of the mass. . . longitudinal response #,,(7) of the mass. :
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