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Abstract Non-linear dynamic model of a cable - mass 

system with a transverse tuned mass damper is con- 

sidered. The system is moving in a vertical host struc- 

ture therefore the cable length varies slowly over time. 

Under the time-dependent external loads the sway of 

host structure with low frequencies and high ampli- 

tudes can be observed. That yields the base excitation 

which in turn results in the excitation of a cable sys- 

tem. The original model is governed by a system of non- 

linear partial differential equations with corresponding 

boundary conditions defined in a slowly time-variant 

space domain. To discretise the continuous model the 

Galerkin method is used. The assumption of the anal- 

ysis is that the lateral displacements of the cable are 

coupled with its longitudinal elastic stretching. This 

brings the quadratic couplings between the longitudi- 

nal and transverse modes and cubic nonlinear terms 

due to the couplings between the transverse modes. To 

mitigate the dynamic response of the cable in the reso- 

nance region the tuned mass damper (TMD) is applied. 

The stochastic base excitation, assumed as a narrow- 

band process mean-square equivalent to the harmonic 

process, is idealized with the aid of two linear filters: 
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one second-order and one first-order. To determine the 

stochastic response the equivalent linearization tech- 

nique is used. Mean values and variances of particu- 

lar random state variable have been calculated numeri- 

cally under various operational conditions. The stochas- 

tic results have been compared with the deterministic 

response to a harmonic process base excitation. 
 

Keywords Cable-mass system · Tuned Mass Damper · 

Stochastic Dynamics · Equivalent  Linearization 
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1 Introduction 

 
Moving cable systems carrying inertia elements such 

as rigid-body masses are applied in many engineering 

systems. In some applications the length of ropes and 

cables vary during the motion, which results in non- 

stationary behaviour of the system. For example in el- 

evator and mine lifting installations, the length of the 

cable varies during the moving with some speed. As a 

result the variation of natural frequencies of the system 

can be observed [1]. The host structures are often sub- 

jected to external dynamic loads such as wind or earth- 

quakes [2]. This causes the excitation of the structural 

system and corresponding response of the cable that 

can be described by using the deterministic models. On 

the other hand, because of nondeterministic nature of 

wind load or earthquakes, these systems should be con- 

sidered with stochastic methods [3], [4] and [5]. The 

wind action can be assumed as a wide-band random 

process, however, due to the damping effect inside the 

system the response of the structure can be regarded 

as narrow-band random process. 

In this paper two models of a cable-mass system are 

Noname manuscript No. 
(will be inserted by the editor) 

mailto:Hanna.Weber@zut.edu.pl
mailto:er@zut.edu.pl
mailto:Stefan.Kaczmarczyk@northampton.ac.uk
mailto:Radoslaw.Iwankiewicz@zut.edu.pl
mailto:ankiewicz@zut.edu.pl


2 Hanna Weber et al. 
 

O O’ O O’ 

g 

x 

x 

v 

L v 

V 
u v 

T 
i Y (h) 0 v 

m 

EA 
vM 

k 
k

d 
md YL 

v0 

M 
c

d zd 

uM 

vM 

x 

− 

− x 

Dt2 

 

presented: the nonlinear deterministic model under har- 

monic excitation and corresponding stochastic model 

with the excitation represented as a narrow-band pro- 

cess mean-square equivalent to the harmonic process. 

The horizontal displacements of main mass are con- 

strained by applying an auxiliary spring-damper-mass 

combination to act as a tuned  mass  damper  (TMD) 

[6]. TMD is used to reduce the negative effects of the 

resonance phenomenon[7]. It is very difficult to con- 

sider the behaviour of this type of structure by applying 

where md is a small auxiliary mass attached to the main 
mass by a spring-dashpot system with the coefficients 
of stiffness and viscous damping assumed as kd and cd, 
respectively. The horizontal displacement of auxiliary 
mass is denoted as zd. The main mass M is constrained 
in the lateral direction by a spring of the coefficient of 
stiffness k. The horizontal and vertical displacements of 
main mass are assumed as uM (t) and vM (t). The lat- 
eral time-dependent displacements of the cable v(x, t) 
are coupled with the longitudinal vibrations u(x, t). 

the analytical methods due to the non-stationarity and (a) v (b) 

non-linearity of the process [8]. Therefore the numerical 

techniques should by used. 

In paper [6] an approximated linear model was expanded 

by neglecting the non-linear terms in original set of 

equations of motion. This paper presents different ap- 

proach, where the equivalent linearization technique is 

used to replace the nonlinear system by an equivalent 

linear one, whose coefficients are obtained from the con- 

ditions of mean-square minimization of the error be- 

tween both systems and are given by the terms of ex- 

pectations of nonlinear functions of the response pro- 

cess. 

The statistical linearization technique has been applied 

to consideration of many various nonlinear stochastic 

problems since using by Caughey [9]. Other examples  

of this method can be found e.g. in [10,11,12,13]. This 

technique was also applied to problems of non-Gaussian 

excitations such as non-linear system under a Poisson 

impulse excitation e.g. [14,15,16] or in combination of 
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various advanced method of stochastic dynamics e.g. 

[17,18,19,20,21]. 

In this paper the mean values and variances are cal- 

culated for different values of auxiliary damping filter 

ratio. The expected values of particular random state 

variables are compared with the deterministic results 

obtained for original nonlinear system subjected to har- 

monic excitation. 

 

 
2 Non-linear model 

 
In the model presented in Fig.1 the main mass M moves 

downwards at the transport speed denoted as V , and is 

suspended by a metallic elastic cable of length L = L(t) 

which is varying over time. The total height of the host 

structure is Z0. The characteristic values of the cable 

such as cross-sectional area, modulus of elasticity, mass 

per unit length and mean quasi-static tension are de- 

noted as A, E, m and T i, respectively. The tension 

magnitude can be obtained by using the following ex- 

pression 

T i = [M + md + m(L − x)](g − a), (1) 

Fig. 1 Schematic model of cable-mass system: (a) unde- 

formed setting, (b) deformed setting 
 

 
The Hamilton’s principle expressed in terms of the ki- 
netic energy and the potential energy  of  the  system 
and external work of nonconservative forces yields the 
partial differential equations of motion in the following 
form 

 
D2u 

m  EAε = 0 
Dt2 

D2v 
m − T vxx + m(g − a)(xvxx + vx) − EA(εvx)x = 0 (2) 

Mv̈M  + T i(L)vx|x=L + k6 − kd(zd − vM ) − cd(żd − v̇M ) 

+ EAε|x=Lvx|x=L = 0 

mdz̈d + kd(zd − vM ) + cd(żd − v̇M ) = 0 

(M  + md)üM + EAε|x=L = 0. 

 
where the cable axial strain is given by the expression 
ε = ux + v2/2 and its quasi-static tension is assumed as 
T = (M + md + mL)(g a). The symbol ∆ denotes the 
deformation of the spring with the stiffness coefficient 
k. The partial derivatives with respect to x and time t 

are denoted as (·)x and (·)t, respectively, while the total 
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derivatives are expressed by the following equations with orthogonal trial functions assumed as 

D2( ) 

Dt2 
= ( )tt + 2V ( )xt + V 

D( ) 
= ( )t + V ( )x. 

Dt 

 
2( )xx + a( )x, (3) 

Φn[x, L(τ )] = sin[λn(L(τ ))x], n = 1, 2, ..., N (8) 

where N is the number of considered modes. The eigen- 

values λn(τ ) are slow varying and are determined from 

the frequency equation given as 

For metallic cables the lateral frequencies are much 

lower than the longitudinal frequencies and the excita- 

tion frequencies are considered to be much smaller of 

the fundamental longitudinal frequencies, so that the 

longitudinal inertia of the cable in the first equation in 

(2) can be neglected in further considerations. Integrat- 

ing this equation and using the boundary conditions 

u(0, t) = 0 and u(L, t) = uM (t) leads to the following 
expression 

(

k − 
M 

T λ2 

 

sin(λ  L) + T λ  cos(λ  L) = 0   (9) 

TMd ≡ T (L) = (M + md)(g − a) 

 
By using Eqs.(5-8) in (2) a set of differential equations 
of motion results as follows [6] 

N 

mr q̈r + krqr + Krnqn − [kd(zd − v̄M ) + cd(żd − v̇̄ M )] 

i=1 

1 
N 

 
ΨL − 1 

ux = e(t) − 
2 
vx ×Φr(L) − EAē  

 
i=1 

Γrnqn − Φr(L)v0 
l 

= Qr 

(4) 

where e(t) is the quasi-static axial strain in the cable. 

The external loads such as strong dynamic wind actions 

can cause the structure to sway. This results in cable 

vibration of high amplitudes and low frequencies. The 

red dashed lines presented on Fig.1 denotes the bending 

deformations of the host structure caused by the base 

excitation due to the sway, which are approximated by 

the polynomial shape function Ψ (η) = 3η2 − 2η3. The 
 

   

mdz̈d + kd(zd − v̄M ) + cd(żd − v̇̄ M ) = Zd (10) 

(M + md)üM + EAē(t; τ ) = 0 

 
where 

N 

v̄M  = Φn[L(τ )]qn(t), 

i=1 

Qr = β(0)(τ )v0(t) + β(1)(τ )v̇0(t) + β(2)(τ )v̈0(t), 

β(0) =  
2g ΨL  − 1  

(−1)r − 1
 
, 

sured from the ground level z and the total height of 
 

 

β(1) =  
4V  ΨL  − 1  

(−1)r − 1
 
, 

 
 deformations harmonic motion v0(t) occurs at the top β(2) =   

2  
[(−1)rΨ   − 1], r rπ 

L
 

end of the cable with the frequency Ω0 and amplitude 

A0. The overall time dependent  lateral  displacements 

of the cable-mass system can be expressed as 

Zd = kdΨLv0 + cdΨLv̇0 

Krn = m[gΨrn + (g − a)(Θrn − LΥrn)], 

 

v(x, t) = v̄(x, t) + 

 

 

   

1 + 
ΨL − 1 

x
 

L 

 

v0(t) (5) 

L 

Θrn = 

  L 
 

 
 

 

xΦ” Φrdx,  Ψrn = 

 
 

L 

ΦnΦrdx, 
0 

 

Ψ  = Ψ 
( Z0 − L ) 

(6)  
ωr = λr 

f 
TMd 

L 
, mr = m 
 

 

 
Φ2dx + MΦ2(L), 

Z0 
Due to the fact that the variation of L(t) over a period m r r 

  
L 

I I 

 
system f0 is small in comparison to the total length 
of the cable [3], the length of the cable can be con- 

sidered as a function of the slow time scale defined as 

τ = Et. The small parameter E << 1 is given by the 

equation E = L̇ (t0)/f0L0  [22], where t0  denotes a given 

time instant, f0 is the lowest natural frequency that 

Γrn = Υrn − Φn(L)Φr(L). 

 
Considering a single-mode approximation and taking 

into account the rth mode the following equations of 
motion are obtained [6] 

mr q̈r + c̃r q̇r + k̃r qr − {kd[zd − Φr(L)qr ] + cd[żd 
corresponds to L0 = L(t0). The relative lateral dis- 

placements related to L = L(τ ) can be expressed by 

the finite series in the following form 

−Φr(L)q̇r ]}Φr(L) − EAēr Γrnqr − 
ΨL − 1 

L 

 
Φr(L)v0 

 
= Qr 

N 

v̄(x, t; τ ) = Φn[x; L(τ )]qn(t) (7) 

n=1 

mdz̈d + kd[zd − Φr(L)qr ] + cd[żd − Φr(L)q̇r ] = Zd(t, τ )(11) 

(M + md)üM + EAēr = 0 

0 

0 

Υrn = 
L where the Ψ 

the entire system Z0. As a consequence of the bending 

denotes the ratio of coordinate mea- 0 variable η = z/Z 

2 

rπ L(τ ) 

is given as 

T0 corresponding to the fundamental frequency of the 
κij = ΦiΦj dx,  αi = Φi(L), 
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where k̃   = k  + K   , c̃    = 2m ζ ω̃   and ω̃   = k
˜
r  . 

The quasi-static axial strain in the cable is given then 
by the equation 

 

The elements of drift vector are defined as 

c1(Y(t)) = q̇r(t), 

  1  c  (Y(t)) = − c̃   q̇  (t) − k  q  (t) + {k  [z  (t) − Φ  (L)q  (t)] 

 
ē   = uM (t) 

+
 1

 
1 

κ
  

(τ )q2(t) + 2v (t) 
 

ΨL − 1 
2 

α (τ )q (t) 

r r r r 

mr 
d  d r r 

r rr L(τ ) 2 L 0 r r L(τ ) +cd[żd(t) − Φr(L)q̇r(t)]}Φr(L) 
( 

Ψ − 1
 2

 
 
v2(t) 

 

. (12) 
 

+ EA 

  
uM (t) 

Γrn(τ )qr(t) − 
uM (t) ΨL − 1 

 
Φr(L)v0(t) 

L(τ ) 0 L(τ ) L(τ ) L 

 
Derivation of the above formulae originates from [6], 

 
+ EA 1

 
1 κrr(τ )Γrn(τ )q3(t) − 

( 
Ψ − 1

 3
 

 
Φr(L)v3(t) 

2  L r L(τ ) 0 

where the problem of stochastic analysis was also con- 

sidered. In that paper the linearized problem was solved 

by  neglecting  the  non-linear  terms.  In  the considera- 

 
+ EA 

ΨL − 1 

L(τ ) 

 
Φr(L) Γrn(τ ) − 

1 1 
κrr(τ ) 

2 L 

 
q2(t)v0(t) 

tions presented here the equivalent linearization tech- + EA ( 
Ψ − 1

 2 

1 
Γrn(τ ) − Φ2(L) v2(t)qr(t) 

nique is used to replace the original nonlinear system 
with an equivalent system given by the set of linear 

L(τ ) 2 r 0

 

+ β(0)(τ )v0(t) + β(1)(τ )v̇0(t) + β(2)(τ )(X(t) 

differential equations. 
r 

 

−2ζ 

 

Ω v̇ (t) − Ω2v (t))

1

, 

 

3 Stochastic approach c3(Y(t)) = z˙d(t), (17) 

c (Y(t)) =
 1

 

− k [z (t) − Φ (L)q (t)] − c [z˙ (t) − Φ (L)q˙ (t)] 
 

assumed to be in form of harmonic vibrations with the 
 

 
+k Ψ v (t) + c Ψ v˙ (t)

1

, 

nal excitation such as a wind load is of stochastic na- 

ture, and can be considered as a narrow-band random 
process mean-square equivalent to the mentioned har- 

c5(Y(t)) = u̇ M (t), 

c (Y(t)) =
 EA

 

− 

 
 
uM (t) 

− 1
 
1 

 

 
κrr(τ )q2(t) 

monic process. Therefore the motion v0 must satisfy M + md L(τ ) 2  L r 

two conditions: be continuous and twice differentiable. 
 
+2v0(t) ΨL − 1 

 
Φr(L)qr(t) + 

( 
Ψ − 1

 2
 

 
v2(t) 

 1

,

 

These can be fulfilled by assuming that v0 is the re- L(τ ) L(τ ) 0 

sponse of the second-order auxiliary filter to the process 

X(t) which is in turn the response of the first-order fil- 

ter to the Gaussian white noise excitation ξ(t) [4]. The 

stochastic governing equations are given in the follow- 

ing form 

v̈0(t) + 2ζf Ω0v̇0(t) + Ω2v0(t) = X(t) (13) 

Ẋ (t) + αX(t) = α 2πS0ξ(t) 

where the filter variable α is expressed by 

( I 
ζf Ω3A2

 
 

 

 

  

c7(Y(t)) = v̇0(t), 

c8(Y(t)) = X(t) − 2ζf Ω0v̇0(t) − Ω2v0(t), 

c9(Y(t)) = −αX(t). 

 
 
 
4 Implementation of equivalent linearization 

technique 

To convert the original nonlinear set of differential equa- 
 

f πS0 − ζf Ω3A2
 

while S0 and ζf denote the constant level of the white 

noise power spectrum and damping ratio, respectively. 

To convert the second-order differential equations into 

the first-order differential one, the presented formula is 

used 

earization technique, the augmented state vector must 
be transformed to the centralized state vector 

 
Y0(t) = [ Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 ] (18) 

in accordance with the following  expressions 

Y 0(t) = qr(t) − µq  (t), Y 0(t) = q̇r(t) − µq̇  (t), 

Y 0(t) = zd(t) − µz (t), Y 0(t) = z˙d(t) − µż (t), 
dY(t) = c(Y(t), t)dt + b(t)dW (t) (15) Y 0(t) = uM (t) − µu   (t),   Y 0(t) = u̇ M (t) − µu̇    (t), (19) 

Y 0(t) = v0(t) − µv  (t), Y 0(t) = v̇0(t) − µv̇  (t), 
where the standard Wiener process, drift vector and  dif- 

fusion vector are denoted respectively as W (t), c(Y(t), t) 

and b(t). Equation (15) is expressed in terms of the 

augmented state vector that is given in following form 

Y(t) = [ qr q̇r zd żd uM u̇M v0 v̇0 X ]T. (16) 

Y 0(t) = X(t) − µX (t). 

The Equation (15) can be then rewritten in the follow- 

ing form 

dY0(t) = c0(Y0(t), t)dt + b(t)dW (t) (20) 

tion into the linear one by using the equivalent lin- 
0 0 

amplitude A0 and frequency Ω0. However the exter- 

r 

6 

f 

In deterministic nonlinear solution the motion v0(t) is 

α = Ω0 , (14) 

0 0 

+ 

r 



Title Suppressed Due to Excessive Length 5 
 

0   0 0 

2 

0 2 

 
−
+ EA Φ  (L)  Γ 

0 0 

0 2           

      ∂X 

0 0 0 0 

 

 

Y p 

1 7 7 r 1 0 

L ((Y 0)2 − E[(Y 0)2] + 2Y 0µv ) 

7 8 

c2(Y (t)) = 
m

 − c̃rY2   − krY1   + {kd[Y3   − Φr(L)Y1  ] 

0 2 0 2 
j i 

L 
0 0 

7 7 0 7 7 v0 

7 1 7 1 7 1 

( 2  

(Y7  )  Y1   + (Y7  )  µqr− E[(Y7  )  ]µqr   + 2Y7  Y1  µv0 

0 

1 

 

 

5 r 

0  

−E[Y Y ] + Y µ + Y µ ) 

7 q 1 0 1 r 0 

∇ 

Bκ(t) = E[c (Y (t))Y 0
T 

]. (27) 

T 

Using Eq.(30) and the elements of centralized drift vec- 

d d L 

r 

 

where the centralized drift vector is given by 

c0(Y0(t), t) = c(Y0(t), t) − E[c(Y0(t), t)]. (21) 

0 
q v 

( 
Ψ   − 1 

  2 1 

The diffusion vector is assumed to be independent of 

the state vector and defined as 

 
c0(Y0(t)) = Y 0, 

L(τ ) 7 
7 7 0 

√   c0(Y0(t)) = Y 0 − 2ζf Ω0Y 0 − Ω2Y 0, 
b(t) = [ 0 0 0 0 0 0 α 2πS0 ] (22) 8 9 8 0 7 

c0(Y0(t)) = −αY 0. 
9 9 

The elements of vector c0(Y0(t), t) are obtained in fol- 
lowing form 

c0(Y0(t)) = = Y 0, 

0 0  1   
 

 
 

 

 

 
0 ˜ 0 0 

The original nonlinear system given by Eq.(20) is re- 

placed in further consideration by the linear system de- 
0 

+ c [Y 0 − Φ (L)Y 0]}Φ (L) + EA 
1 

Γ 
 

(Y 0Y 0 
 

dY0(t) = BY0(t)dt + b(t)dW (t), (24) 
d   4 r 2 r 

 
0   0 0 0 

rn 
L(τ ) 

− E[Y5  Y1  ] + Y1  µuM   + Y5  µqr ) 

− EA 
   1    ΨL  − 1 

Φ  (L)(Y 0Y 0 − E[Y 0Y 0] 
  

where the centralized drift terms are adopted as a linear 

form of the state variables 
r 

L(τ ) L 
0 0 c0 (Y0(t)) = BimY 0 (25) 

+ Y7  µuM   + Y5  µv0 ) i,eq m 

  1  
 
 + EA κ  Γ (Y 0)3 + 3(Y 0)2µ 

 

 
and components Bim are obtained as 

rr rn 
2L 

1 qr 

Bimκmj = E[Y 0c0(Y0)], (26) 
− 3E[(Y1  )  ]µqr   + 3Y1  µqr

 

1 
( 

Ψ − 1
 3

 
 

  

 

which in the matrix form is as follows 
 

×

 

(Y 0)3 + 3(Y 0)2µv − 3E[(Y ) ]µv + 3Y 0µ2  

 

 Due to the assumption about the jointly Gaussian dis- 
 

 

ΨL     1 
r 

L(τ ) 

1 1 

rn − 
2 L

κrr 

lationship for zero-mean Gaussian random vector X [23] 

is taken into account 

×

 

Y 0(Y 0)2 + 2Y 0Y 0µq − 2E[Y Y ]µq E[Xf (X)] = E[XXT]E[∇f (X)], (28) 

 
+ Y 0µ2 

r 

 
+ (Y 0)2µv 

 
− E[(Y1  )  ]µv0 

 
 

 
+ 2Y 0µq µv 

where f (X) denotes the non-linear function and is 
   T 

 

      
+ EA ΨL − 1 

L(τ ) 
1 Γrn 
2 

− Φr (L) sides of Eq.(27) and using Eq.(28) yields 

 

0 2   0 0 2 

 

0 2 0 0 κ(t)BT = κ(t)E[∇c0T
(Y0(t))]. (29) 

0 0 0 0 2   

 
 

 

 
(0) 0 

That defines the components of matrix B as 
 

− 2E[Y7  (t)Y1  ]µv0+ 2Y7  µv0 µqr+ Y1  µv0     
+ βr    Y7 

1 
 

       

BT = E[∇c0 (Y0(t))]. (30) 
 

+ β(1)Y 0 + β(2)
 
Y 0 − 2ζf Ω0Y 0 − Ω2Y 0

   
, c0(Y0(t))  = Y 0, (23) tor given by Eqs.(23) the unknown matrix is obtained 

3 

 
c0(Y0(t)) = 

 

  1   
 

 
 

 

 
− kd[Y    − Φr(L)Y   ] − cd[Y    − Φr(L)Y   ], 

 

 

in  the form           
  

 

4 md 
3 1 4 

1 

2 0 1 0 0 0   0 0 0 0 
β(2) 

+k Ψ (Y 0) + c Ψ (Y 0) , 
d   r  p 0 r 

mr 
  

   kdΦr 

cdΦr − kd − cd 0 0 kdΨL cdΨL 0 

4 

7 0 8 9 r 8 r 

. Transposing both , ..., ∂ 
n 

∂ 
∂X2 

, 
∂ 

∂X1 defined as ∇ = 
2 

tribution of the state variables Y0(t), the presented re- 

L(τ ) 2 

1 

5 7 5 7 

5 1 

r 

   

+ , 

fined as 

− EA Φr(L) 

0 

r r 

× 

L 7 8 

0 0 

 

p(1) 
r p(2) kdΦr 

r 
c Φ (3) p(4) 

r p(5) 
r 

0 
mr 

   
mr 

1 0 0 0 0 

 

md md md md md  

0 0 0 0 1 0 0 0 

0 0 0 p(7) 
0

 p(8) 
0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 −Ω2 −2ζf Ω 0 1 

0 0 0 0 0 0 0 −α 
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− 

0 2 

0 

L 0 0 0 E[(Y1  )  ] + 2Y1  µqr ) + 2 
L(τ )   

Φr(L)(Y1  Y7 

c0(Y0(t)) = Y 0, 

B =  md  

5 6 

c0(Y0(t)) = 
EA

 

0 1 1 − − 
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5 Numerical results 
 

In the numerical analysis the main mass M = 6768 kg 
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+ EA κ Γ 
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m/s. The total height of the entire system and initial 

 

 

ΨL − 1 1 1 0 0 L(0) = 58.66 m, respectively. The main mass is at- 
+ 2EA 
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2 L
κrr E[Y7  Y1  ] + µqr µv0 tached at the lower end of a cable made by nr = 6 

steel wire ropes. The parameters of every rope are: 
 

+ EA 
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 2 
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E[(Y 0)2] + µ2 
 1

,

 
mass per unit length m = 2.18 kg/m and longitudi- 

 
p(2) = 

L 2 
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mr 

r 7 v0 

nal stiffness EA = 22.889 MN. The horizontal dis- 

placement of main mass is constrained by the spring 

with the stiffness k = 2.8 kN/m and auxiliary small 

p(3) = 
EA (
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ΨL − 1 

Φ  µ   
)
, mass md. The frequency of the sway and the ampli- 
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the effects of transition through the fundamental lat- 

eral resonance of the system which is observed for the 

length of suspension rope L = 161 m. Using the mass 
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1 
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ing  ratio ζd = 3µ/(8(1 + µ) ) = 0.13, the partic- 

+ β(0) − β(2)Ω2

1

, 
2mdζdωd = 61.04 Ns/m. 
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ear deterministic analysis with the structural damping 

ratio ζr = ζ1 = 0.01, and then by using the equivalent 
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ΨL − 1 linearization technique for different values of damping 
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sults obtained from the two methods (see. Fig.2) shows 

that the smaller the value of ζf is taken into the analy- 

sis the smaller differences between the deterministic and 

expected values for particular random state variables is 
r M + md L r L 

0 

0 0T 

obtained. As we can see, the best match between the 

response curves can be observed at the early stage of 
To  obtain the covariance matrix RY0 Y0  = E[Y Y ] 

and the differential equations governing the second-order 

statistical moments of the state vector Y0(t), the fol- 

motion. After the system enters into the resonance area 

the differences become more significant, especially for 

the vertical displacement of main mass uM , as can bee 
lowing differential equation 

d T 

dt 
RY0 Y0 = BRY0 Y0 + RY0 Y0 B 

 

+ ddT 

 

 

(32) 

seen on Fig.2(c). However for very small values ζf the 

lines of generalized coordinates and horizontal displace- 

ments of auxiliary mass are almost identical (Fig.2(a)- 

(b)). 
should be solved together with the differential equations 

for mean values defined as 

d 
µ(t) = E[c(Y0(t))], (33) 

dt 

where 
 

µ(t) = E[Y(t)]. (34) 
 

The higher-order joint statistical moments of the state 

vector Y0(t) can be then easily obtained. 

Figure 3 presents the percentage differences between 

the expected values obtained for various ζf and deter- 

ministic solution of nonlinear system under harmonic 

excitation. As it can be seen for small value of ζf the 

observed result is under 5%. The largest deviation of  

the expected values from the  non-linear  solution  can 

be observed for the case of vertical displacement of the 

main mass (Fig.3(c)), but it may be caused by very low 

values of these displacements in comparison with gen- 

eralized coordinates or horizontal displacements of an 

ratio of the auxiliary filter ζf . The comparison of the re- 
d 

The model was treated twice, first by using the nonlin- 

1 7 r 
2 L 

+ 2 

3 

ratio µ = mdΦ2(L)/mr = 0.05 and the optimal damp- (31) Γrn − + Φr(L) 

parameters of TMD system were selected to mitigate 

tude at the top point of the host structure are assumed 

length of the cable are assumed as Z0 = 261.86 m and 

is moving downwards with the transport speed V = 2.5 mr L 
uM 

2L 
rn 

mrL 
rn L 

mr L 
uM 

L ular TMD parameters are obtained as md = 382.85 
0 r 

kg,  kd  =  md(ω̃r/(1 + µ)) 2 = 150.20 N/m and cd = 

, 

+ . 
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Fig. 2 Comparison of deterministic results and expected val- 

ues obtained by the equivalent linearization technique: (a) qr, 

(b) zd, (c) uM . 

 

 

 

auxiliary mass. 

 
The application of the equivalent linearization tech- 

nique leads to obtaining not only the expected values of 

every random state variable but also their variances and 

the mutual covariances. Fig.4 shows the relationship be- 

tween the value of coefficient ζf that was included into 

the analysis and the variance of selected variables of the 

Fig. 3 Percentage difference between the deterministic re- 

sults and expected values obtained by the equivalent lin- 

earization technique: (a) qr, (b) zd, (c) uM . 

 

 

 
system (qr, zd and v0). As it can be seen for the low- 

est values of ζf , for which the best comparison between 

the stochastic and deterministic results were obtained 

(see Fig. 2 and 3), the values of variances received by 

equivalent linearization technique are comparable. On 

the other hand for the higher value of ζf the differences 

between the graphs are significant. This confirms that 

for this cable-mass system the ratio of damping auxil- 
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tures are subjected to vibrations caused by external dy- 

namic loads. The excitation due to these loads result 

in bending deformation of the host structure which in 

turn leads to the excitation of structural part of internal 

equipment such as elastic cables and ropes. To reduce 

their dynamic response the properly designed TMD can 

be applied. To select the parameters and implement the 

tuned mass damper action the mode corresponding to 

the main mass motion should be considered. Because 

of its nondeterministic nature the problem should be 

examined by using stochastic methods. The results pre- 

sented in this paper bring a conclusion that the random 

excitation model can be represented as a narrow-band 

process mean-square equivalent to the harmonic process 

and can be implemented by using approximation. 

The equivalent linearization technique results in re- 

placing the original system governed by non-linear dif- 

ferential equations by  an equivalent system governed  

by linear differential equations, that are expressed in 

terms of the moments and of the expectations of the 

non-linear functions of the response process. As a re- 

sult the covariance matrix of the state variables is ob- 

tained. That gives relevant and necessary information 

that should be taken into account when designing the 

system. 

The nonlinearity and non-stationarity of the pro- 

cess require the application of numerical techniques. 

The presented procedure shows that the equivalent lin- 

earization technique can be effectively used in the anal- 

ysis. An undoubtful advantage of this approach is shorter 

time of calculation in comparison to other statistical 

methods. 
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