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Abstract Non-linear dynamic model of a cable–

mass system with a transverse tuned mass damper is

considered. The system is moving in a vertical host

structure therefore the cable length varies slowly over

time. Under the time-dependent external loads the

sway of host structure with low frequencies and high

amplitudes can be observed. That yields the base

excitation which in turn results in the excitation of a

cable system. The original model is governed by a

system of non-linear partial differential equations with

corresponding boundary conditions defined in a

slowly time-variant space domain. To discretise the

continuous model the Galerkin method is used. The

assumption of the analysis is that the lateral displace-

ments of the cable are coupled with its longitudinal

elastic stretching. This brings the quadratic couplings

between the longitudinal and transverse modes and

cubic nonlinear terms due to the couplings between the

transverse modes. To mitigate the dynamic response

of the cable in the resonance region the tuned mass

damper is applied. The stochastic base excitation,

assumed as a narrow-band process mean-square

equivalent to the harmonic process, is idealized with

the aid of two linear filters: one second-order and one

first-order. To determine the stochastic response the

equivalent linearization technique is used. Mean

values and variances of particular random state

variable have been calculated numerically under

various operational conditions. The stochastic results

have been compared with the deterministic response to

a harmonic process base excitation.

Keywords Cable–mass system � Tuned mass

damper � Stochastic dynamics � Equivalent

linearization technique

1 Introduction

Moving cable systems carrying inertia elements such

as rigid-body masses are applied in many engineering

systems. In some applications the length of ropes and

cables vary during the motion, which results in non-

stationary behaviour of the system. For example in

elevator and mine lifting installations, the length of the

cable varies during the moving with some speed. As a

result the variation of natural frequencies of the system
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can be observed [1]. The host structures are often

subjected to external dynamic loads such as wind or

earthquakes [2]. This causes the excitation of the

structural system and corresponding response of the

cable that can be described by using the deterministic

models. On the other hand, because of nondetermin-

istic nature of wind load or earthquakes, these systems

should be considered with stochastic methods [3–5].

The wind action can be assumed as a wide-band

random process, however, due to the damping effect

inside the system the response of the structure can be

regarded as narrow-band random process.

In this paper two models of a cable–mass system are

presented: the nonlinear deterministic model under

harmonic excitation and corresponding stochastic

model with the excitation represented as a narrow-

band process mean-square equivalent to the harmonic

process. The horizontal displacements of main mass

are constrained by applying an auxiliary spring-

damper-mass combination to act as a tuned mass

damper (TMD) [6]. TMD is used to reduce the

negative effects of the resonance phenomenon [7]. It

is very difficult to consider the behaviour of this type

of structure by applying the analytical methods due to

the non-stationarity and non-linearity of the pro-

cess [8]. Therefore the numerical techniques should

by used.

In paper [6] an approximated linear model was

expanded by neglecting the non-linear terms in

original set of equations of motion. This paper presents

different approach, where the equivalent linearization

technique is used to replace the nonlinear system by an

equivalent linear one, whose coefficients are obtained

from the conditions of mean-square minimization of

the error between both systems and are given by the

terms of expectations of nonlinear functions of the

response process.

The statistical linearization technique has been

applied to consideration of many various nonlinear

stochastic problems since using by Caughey [9]. Other

examples of this method can be found e.g. in [10–13].

This technique was also applied to problems of non-

Gaussian excitations such as non-linear system under a

Poisson impulse excitation e.g. [14–16] or in combi-

nation of various advanced method of stochastic

dynamics e.g. [17–21].

In this paper the mean values and variances are

calculated for different values of auxiliary damping

filter ratio. The expected values of particular random

state variables are compared with the deterministic

results obtained for original nonlinear system sub-

jected to harmonic excitation.

2 Non-linear model

In the model presented in Fig. 1 the main mass

M moves downwards at the transport speed denoted as

V, and is suspended by a metallic elastic cable of

length L ¼ LðtÞ which is varying over time. The total

height of the host structure is Z0. The characteristic

values of the cable such as cross-sectional area,

modulus of elasticity, mass per unit length and mean

quasi-static tension are denoted as A, E, m and Ti,

respectively. The tension magnitude can be obtained

by using the following expression

Ti ¼ ½M þ md þ mðL� xÞ�ðg� aÞ; ð1Þ

where md is a small auxiliary mass attached to the

main mass by a spring-dashpot system with the

coefficients of stiffness and viscous damping assumed

as kd and cd , respectively. The horizontal displacement

of auxiliary mass is denoted as zd. The main mass M is

constrained in the lateral direction by a spring of the

coefficient of stiffness k. The horizontal and vertical

displacements of main mass are assumed as uMðtÞ and

(a) (b)

Fig. 1 Schematic model of cable–mass system: a undeformed

setting, b deformed setting
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vMðtÞ. The lateral time-dependent displacements of

the cable v(x, t) are coupled with the longitudinal

vibrations u(x, t).

The Hamilton’s principle expressed in terms of the

kinetic energy and the potential energy of the system

and external work of nonconservative forces yields the

partial differential equations of motion in the follow-

ing form

m
D2u

Dt2
� EAex ¼ 0

m
D2v

Dt2
� Tvxx þ mðg� aÞðxvxx þ vxÞ � EAðevxÞx ¼ 0

M€vM þ TiðLÞvxjx¼L þ kM� kdðzd � vMÞ � cdð _zd � _vMÞ
þ EAejx¼Lvxjx¼L ¼ 0

md€zd þ kdðzd � vMÞ þ cdð _zd � _vMÞ ¼ 0

ðM þ mdÞ€uM þ EAejx¼L ¼ 0:

ð2Þ

where the cable axial strain is given by the expression

e ¼ ux þ v2
x=2 and its quasi-static tension is assumed

as T ¼ ðM þ md þ mLÞðg� aÞ. The symbol D
denotes the deformation of the spring with the stiffness

coefficient k. The partial derivatives with respect to

x and time t are denoted as ð�Þx and ð�Þt, respectively,

while the total derivatives are expressed by the

following equations

D2ð Þ
Dt2

¼ ð Þtt þ 2Vð Þxt þ V2ð Þxx þ að Þx;

Dð Þ
Dt

¼ ð Þt þ Vð Þx:
ð3Þ

For metallic cables the lateral frequencies are much

lower than the longitudinal frequencies and the

excitation frequencies are considered to be much

smaller of the fundamental longitudinal frequencies,

so that the longitudinal inertia of the cable in the first

equation in (2) can be neglected in further consider-

ations. Integrating this equation and using the bound-

ary conditions uð0; tÞ ¼ 0 and uðL; tÞ ¼ uMðtÞ leads to

the following expression

ux ¼ eðtÞ � 1

2
v2
x

ð4Þ

where e(t) is the quasi-static axial strain in the cable.

The external loads such as strong dynamic wind

actions can cause the structure to sway. This results in

cable vibration of high amplitudes and low frequen-

cies. The red dashed lines presented on Fig. 1 denotes

the bending deformations of the host structure caused

by the base excitation due to the sway, which are

approximated by the polynomial shape function

WðgÞ ¼ 3g2 � 2g3. The variable g ¼ z=Z0 denotes

the ratio of coordinate measured from the ground level

z and the total height of the entire system Z0. As a

consequence of the bending deformations harmonic

motion v0ðtÞ occurs at the top end of the cable with the

frequency X0 and amplitude A0. The overall time

dependent lateral displacements of the cable–mass

system can be expressed as

vðx; tÞ ¼ �vðx; tÞ þ
�

1 þWL � 1

L
x

�
v0ðtÞ ð5Þ

where the WL is given as

WL ¼ W
� Z0 � L

Z0

�
ð6Þ

Due to the fact that the variation of L(t) over a period

T0 corresponding to the fundamental frequency of the

system f0 is small in comparison to the total length of

the cable [3], the length of the cable can be considered

as a function of the slow time scale defined as s ¼ �t.

The small parameter �\\1 is given by the equation

� ¼ _Lðt0Þ=f0L0 [22], where t0 denotes a given time

instant, f0 is the lowest natural frequency that corre-

sponds to L0 ¼ Lðt0Þ. The relative lateral displace-

ments related to L ¼ LðsÞ can be expressed by the

finite series in the following form

�vðx; t; sÞ ¼
XN
n¼1

Un½x; LðsÞ�qnðtÞ ð7Þ

with orthogonal trial functions assumed as

Un½x; LðsÞ� ¼ sin½knðLðsÞÞx�; n ¼ 1; 2; :::;N ð8Þ

where N is the number of considered modes. The

eigenvalues knðsÞ are slow varying and are determined

from the frequency equation given as

�
k �M

m
TMdk

2
n

�
sinðknLÞ þ TMdkncosðknLÞ ¼ 0

TMd � TiðLÞ ¼ ðM þ mdÞðg� aÞ
ð9Þ

By using Eqs. (5–8) in (2) a set of differential

equations of motion results as follows [6]
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mr €qr þ krqr þ
XN
i¼1

Krnqn � ½kdðzd � �vMÞ þ cdð _zd � _�vMÞ�

� UrðLÞ � EA�e

�XN
i¼1

Crnqn �
WL � 1

L
UrðLÞv0

�
¼ Qr

md€zd þ kdðzd � �vMÞ þ cdð _zd � _�vMÞ ¼ Zd

ðM þ mdÞ€uM þ EA�eðt; sÞ ¼ 0

ð10Þ

where

�vM ¼
XN
i¼1

Un½LðsÞ�qnðtÞ;

Qr ¼ bð0Þr ðsÞv0ðtÞ þ bð1Þr ðsÞ _v0ðtÞ þ bð2Þr ðsÞ€v0ðtÞ;

bð0Þr ¼ 2g

rp
WL � 1

LðsÞ
�
ð�1Þr � 1

	
;

bð1Þr ¼ 4V

rp
WL � 1

LðsÞ
�
ð�1Þr � 1

	
;

bð2Þr ¼ 2

rp
½ð�1ÞrWL � 1�;

Zd ¼ kdWLv0 þ cdWL _v0

Krn ¼ m½gWrn þ ðg� aÞðHrn � L� rnÞ�;

Hrn ¼
Z L

0

xU
00

nUrdx; Wrn ¼
Z L

0

U0
nUrdx;

� rn ¼
Z L

0

U
00

nUrdx; kr ¼ mrx
2
r ;

xr ¼ kr

ffiffiffiffiffiffiffiffi
TMd

m

r
; mr ¼ m

Z L

0

U2
rdxþMU2

r ðLÞ;

jij ¼
Z L

0

U0
iU

0
jdx; ai ¼ UiðLÞ;

Crn ¼ � rn � U0
nðLÞUrðLÞ:

Considering a single-mode approximation and taking

into account the rth mode the following equations of

motion are obtained [6]

mr €qr þ ~cr _qr þ ~krqr � fkd½zd � UrðLÞqr� þ cd½ _zd

� UrðLÞ _qr�gUrðLÞ � EA�er

�
Crnqr �

WL � 1

L
UrðLÞv0

�
¼ Qr

md€zd þ kd½zd � UrðLÞqr� þ cd½ _zd � UrðLÞ _qr� ¼ Zdðt; sÞ
ðM þ mdÞ€uM þ EA�er ¼ 0

ð11Þ

where ~kr ¼ kr þ Krr , ~cr ¼ 2mrfr ~xr and ~xr ¼
ffiffiffiffi
~kr
mr

q
.

The quasi-static axial strain in the cable is given then

by the equation

�er ¼
uMðtÞ
LðsÞ þ 1

2

�
1

L
jrrðsÞq2

r ðtÞ þ 2v0ðtÞ
WL � 1

LðsÞ arðsÞqrðtÞ

þ
�
WL � 1

LðsÞ

�2

v2
0ðtÞ

�
:

ð12Þ

Derivation of the above formulae originates from [6],

where the problem of stochastic analysis was also

considered. In that paper the linearized problem was

solved by neglecting the non-linear terms. In the

considerations presented here the equivalent lineariza-

tion technique is used to replace the original nonlinear

system with an equivalent system given by the set of

linear differential equations.

3 Stochastic approach

In deterministic nonlinear solution the motion v0ðtÞ is

assumed to be in form of harmonic vibrations with the

amplitude A0 and frequency X0. However the external

excitation such as a wind load is of stochastic nature,

and can be considered as a narrow-band random

process mean-square equivalent to the mentioned

harmonic process. Therefore the motion v0 must

satisfy two conditions: be continuous and twice

differentiable. These can be fulfilled by assuming that

v0 is the response of the second-order auxiliary filter to

the process X(t) which is in turn the response of the

first-order filter to the Gaussian white noise excitation

nðtÞ [4]. The stochastic governing equations are given

in the following form

€v0ðtÞ þ 2ffX0 _v0ðtÞ þ X2
0v0ðtÞ ¼ XðtÞ

_XðtÞ þ aXðtÞ ¼ a
ffiffiffiffiffiffiffiffiffiffi
2pS0

p
nðtÞ

ð13Þ

where the filter variable a is expressed by

a ¼ X0

�
� ff þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2
f þ

ffX
3
0A

2
0

pS0 � ffX
3
0A

2
0

s �
; ð14Þ

while S0 and ff denote the constant level of the white

noise power spectrum and damping ratio, respectively.

To convert the second-order differential equations into

the first-order differential one, the presented formula is

used
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dYðtÞ ¼ cðYðtÞ; tÞdt þ bðtÞdWðtÞ ð15Þ

where the standard Wiener process, drift vector and

diffusion vector are denoted respectively as W(t),

cðYðtÞ; tÞ and bðtÞ. Equation (15) is expressed in terms

of the augmented state vector that is given in following

form

YðtÞ ¼ ½ qr _qr zd _zd uM _uM v0 _v0 X �T:
ð16Þ

The elements of drift vector are defined as

c1ðYðtÞÞ ¼ _qrðtÞ;

c2ðYðtÞÞ ¼ 1

mr

�
� ~cr _qrðtÞ � ~krqrðtÞ þ fkd½zdðtÞ � UrðLÞqrðtÞ�

þ cd½ _zdðtÞ � UrðLÞ _qrðtÞ�gUrðLÞ

þ EA

�
uMðtÞ
LðsÞ CrnðsÞqrðtÞ �

uMðtÞ
LðsÞ

WL � 1

L
UrðLÞv0ðtÞ

�

þ EA
1

2

�
1

L
jrrðsÞCrnðsÞq3

r ðtÞ �
�
WL � 1

LðsÞ

�3

UrðLÞv3
0ðtÞ

�

þ EA
WL � 1

LðsÞ UrðLÞ
�
CrnðsÞ �

1

2

1

L
jrrðsÞ

�
q2
r ðtÞv0ðtÞ

þ EA

�
WL � 1

LðsÞ

�2�
1

2
CrnðsÞ � U2

r ðLÞ
�
v2

0ðtÞqrðtÞ

þ bð0Þr ðsÞv0ðtÞ þ bð1Þr ðsÞ _v0ðtÞ þ bð2Þr ðsÞðXðtÞ

� 2ffX0 _v0ðtÞ � X2
0v0ðtÞÞ

�
;

c3ðYðtÞÞ ¼ _zdðtÞ;

c4ðYðtÞÞ ¼ 1

md

�
� kd½zdðtÞ � UrðLÞqrðtÞ� � cd½ _zdðtÞ � UrðLÞ _qrðtÞ�

þ kdWLv0ðtÞ þ cdWL _v0ðtÞ
�
;

c5ðYðtÞÞ ¼ _uMðtÞ;

c6ðYðtÞÞ ¼ EA

M þ md

�
� uMðtÞ

LðsÞ � 1

2

�
1

L
jrrðsÞq2

r ðtÞ

þ 2v0ðtÞ
WL � 1

LðsÞ UrðLÞqrðtÞ þ
�
WL � 1

LðsÞ

�2

v2
0ðtÞ

��
;

c7ðYðtÞÞ ¼ _v0ðtÞ;
c8ðYðtÞÞ ¼ XðtÞ � 2ffX0 _v0ðtÞ � X2

0v0ðtÞ;
c9ðYðtÞÞ ¼ �aXðtÞ:

ð17Þ

4 Implementation of equivalent linearization

technique

To convert the original nonlinear set of differential

equation into the linear one by using the equivalent

linearization technique, the augmented state vector

must be transformed to the centralized state vector

Y0ðtÞ ¼
�
Y0

1 Y0
2 Y0

3 Y0
4 Y0

5 Y0
6 Y0

7 Y0
8 Y0

9

	T

ð18Þ

in accordance with the following expressions

Y0
1 ðtÞ ¼ qrðtÞ � lqrðtÞ; Y0

2 ðtÞ ¼ _qrðtÞ � l _qr
ðtÞ;

Y0
3 ðtÞ ¼ zdðtÞ � lzdðtÞ; Y0

4 ðtÞ ¼ _zdðtÞ � l _zdðtÞ;
Y0

5 ðtÞ ¼ uMðtÞ � luM ðtÞ; Y0
6 ðtÞ ¼ _uMðtÞ � l _uM ðtÞ;

Y0
7 ðtÞ ¼ v0ðtÞ � lv0

ðtÞ; Y0
8 ðtÞ ¼ _v0ðtÞ � l _v0

ðtÞ;
Y0

9 ðtÞ ¼ XðtÞ � lXðtÞ:
ð19Þ

The Equation (15) can be then rewritten in the

following form

dY0ðtÞ ¼ c0
�
Y0ðtÞ; t

�
dt þ bðtÞdWðtÞ ð20Þ

where the centralized drift vector is given by

c0ðY0ðtÞ; tÞ ¼ c
�
Y0ðtÞ; t

�
� E

�
cðY0ðtÞ; tÞ

	
: ð21Þ

The diffusion vector is assumed to be independent of

the state vector and defined as

bðtÞ ¼
�

0 0 0 0 0 0 0 0 a
ffiffiffiffiffiffiffiffiffiffi
2pS0

p 	T

ð22Þ

The elements of vector c0ðY0ðtÞ; tÞ are obtained in

following form
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c0
1ðY0ðtÞÞ ¼ Y0

2 ;

c0
2ðY0ðtÞÞ ¼ 1

mr

�
� ~crY

0
2 � ~krY

0
1 þ fkd½Y0

3 � UrðLÞY0
1 �

þ cd½Y0
4 � UrðLÞY0

2 �gUrðLÞ þ EA
1

LðsÞCrnðY0
5Y

0
1

� E½Y0
5Y

0
1 � þ Y0

1luM þ Y0
5lqr Þ

� EA
1

LðsÞ
WL � 1

L
UrðLÞðY0

5Y
0
7 � E½Y0

5Y
0
7 �

þ Y0
7luM þ Y0

5lv0
Þ

þ EA
1

2L
jrrCrn

�
ðY0

1 Þ
3 þ 3ðY0

1 Þ
2lqr

� 3E½ðY0
1 Þ

2�lqr þ 3Y0
1l

2
qr

�

� EA
1

2

�
WL � 1

LðsÞ

�3

UrðLÞ

�
�
ðY0

7 Þ
3 þ 3ðY0

7 Þ
2lv0

� 3E½ðY0
7 Þ

2�lv0
þ 3Y0

7l
2
v0

�

þ EA
WL � 1

LðsÞ UrðLÞ
�
Crn �

1

2

1

L
jrr

�

�
�
Y0

7 ðY0
1 Þ

2 þ 2Y0
7Y

0
1lqr � 2E½Y0

7Y
0
1 �lqr

þ Y0
7l

2
qr
þ ðY0

1 Þ
2lv0

� E½ðY0
1 Þ

2�lv0
þ 2Y0

1lqrlv0

�

þ EA

�
WL � 1

LðsÞ

�2�
1

2
Crn � U2

r ðLÞ
�

�
�
ðY0

7 Þ
2
Y0

1 þ ðY0
7 Þ

2lqr� E½ðY0
7 Þ

2�lqr þ 2Y0
7Y

0
1lv0

� 2E½Y0
7 ðtÞY0

1 �lv0
þ 2Y0

7lv0
lqrþ Y0

1l
2
v0

�
þ bð0Þr Y0

7

þ bð1Þr Y0
8 þ bð2Þr

�
Y0

9 � 2ffX0Y
0
8 � X2

0Y
0
7

	�
;

c0
3ðY0ðtÞÞ ¼ Y0

4 ;

c0
4ðY0ðtÞÞ ¼ 1

md

�
� kd½Y0

3 � UrðLÞY0
1 � � cd½Y0

4 � UrðLÞY0
2 �;

þ kdWLðY0
7 Þ þ cdWLðY0

8 Þ
�
;

c0
5ðY0ðtÞÞ ¼ Y0

6 ;

c0
6ðY0ðtÞÞ ¼ EA

M þ md

�
� Y0

5

LðsÞ �
1

2

�
1

L
jrrððY0

1 Þ
2

� E½ðY0
1 Þ

2� þ 2Y0
1lqrÞ þ 2

WL � 1

LðsÞ UrðLÞðY0
1Y

0
7

� E½Y0
1Y

0
7 � þ Y0

7lqr þ Y0
1lv0

Þ

þ
�
WL � 1

LðsÞ

�2

ððY0
7 Þ

2 � E½ðY0
7 Þ

2� þ 2Y0
7lv0

Þ
��

;

c0
7ðY0ðtÞÞ ¼ Y0

8 ;

c0
8ðY0ðtÞÞ ¼ Y0

9 � 2ffX0Y
0
8 � X2

0Y
0
7 ;

c0
9ðY0ðtÞÞ ¼ �aY0

9 :

ð23Þ

The original nonlinear system given by Eq. (20) is

replaced in further consideration by the linear system

defined as

dY0ðtÞ ¼ BY0ðtÞdt þ bðtÞdWðtÞ; ð24Þ

where the centralized drift terms are adopted as a

linear form of the state variables

c0
i;eq

�
Y0ðtÞ

�
¼ BimY

0
m ð25Þ

and components Bim are obtained as

Bimjmj ¼ E
�
Y0
j c

0
i ðY0Þ

	
; ð26Þ

which in the matrix form is as follows

BjðtÞ ¼ E
�
c0
�
Y0ðtÞ

�
Y0T	

: ð27Þ

Due to the assumption about the jointly Gaussian

distribution of the state variables Y0ðtÞ, the presented

relationship for zero-mean Gaussian random vector X

[23] is taken into account

E
�
Xf ðXÞ

	
¼ E

�
XXT

	
E
�
rf ðXÞ

	
; ð28Þ

where f ðXÞ denotes the non-linear function and r is

defined as r ¼
�

o
oX1

; o
oX2

; . . .; o
oXn

�T

. Transposing both

sides of Eq. (27) and using Eq. (28) yields

jðtÞBT ¼ jðtÞE
�
rc0TðY0ðtÞÞ

	
: ð29Þ

That defines the components of matrix B as

BT ¼ E
�
rc0TðY0ðtÞÞ

	
: ð30Þ

Using Eq. (30) and the elements of centralized drift

vector given by Eqs. (23) the unknown matrix is

obtained in the form

B ¼

0 1 0 0 0 0 0 0 0

p
ð1Þ
r p

ð2Þ
r

kdUr

mr

cdUr

mr

p
ð3Þ
r 0 p

ð4Þ
r p

ð5Þ
r

bð2Þr

mr

0 0 0 1 0 0 0 0 0
kdUr

md

cdUr

md

� kd

md

� cd

md

0 0
kdWL

md

cdWL

md

0

0 0 0 0 0 1 0 0 0

p
ð6Þ
r 0 0 0 p

ð7Þ
r 0 p

ð8Þ
r 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 �X2
0 �2ffX0 1

0 0 0 0 0 0 0 0 �a

2
6666666666666666664

3
7777777777777777775

where
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pð1Þr ¼ 1

mr

�
� ~kr � kdU

2
r þ EA

1

L
CrnluM

þ EA
3

2L
jrrCrn

�
E½ðY0

1 Þ
2� þ l2

qr

�

þ 2EA
WL � 1

L
Ur

�
Crn �

1

2

1

L
jrr

��
E½Y0

7Y
0
1 � þ lqrlv0

�

þ EA

�
WL � 1

L

�2�
1

2
Crn � U2

r

��
E½ðY0

7 Þ
2� þ l2

v0

��
;

pð2Þr ¼ �~cr � cdU2
r

mr

;

pð3Þr ¼ EA

mrL

�
Crnlqr �

WL � 1

L
Urlv0

�
;

pð4Þr ¼ 1

mr

�
EA

WL � 1

L

�
� 1

LðsÞUrluM

� 3

2

�
WL � 1

LðsÞ

�2

UrðLÞ
�

E½ðY0
7 Þ

2� þ l2
v0

�

þ UrðLÞ
�
Crn �

1

2

1

L
jrr

��
E½ðY0

1 Þ
2� þ l2

qr

�

þ 2

�
WL � 1

L

��
1

2
Crn � U2

r ðLÞ
��

E½Y0
7Y

0
1 � þ lv0

lqr

��

þ bð0Þr � bð2Þr X2
0

�
;

pð5Þr ¼
bð1Þr � 2bð2Þr ffX0

mr

;

pð6Þr ¼ � EA

M þ md

�
1

L
jrrlqr þ

WL � 1

L
Urlv0

Þ
�
;

pð7Þr ¼ � EA

LðM þ mdÞ
;

pð8Þr ¼ � EA

M þ md

�
WL � 1

L
Urlqr þ

�
WL � 1

L

�2

lv0

�
:

ð31Þ

To obtain the covariance matrix RY0Y0 ¼ E½Y0Y0T�
and the differential equations governing the second-

order statistical moments of the state vector Y0ðtÞ, the

following differential equation

d

dt
RY0Y0 ¼ BRY0Y0 þ RY0Y0 BT þ ddT ð32Þ

should be solved together with the differential equa-

tions for mean values defined as

d

dt
lðtÞ ¼ E

�
cðY0ðtÞÞ

	
; ð33Þ

where

lðtÞ ¼ E½YðtÞ�: ð34Þ

The higher-order joint statistical moments of the state

vector Y0ðtÞ can be then easily obtained.

5 Numerical results

In the numerical analysis the main mass M ¼ 6768 kg

is moving downwards with the transport speed V ¼
2:5 m/s. The total height of the entire system and initial

length of the cable are assumed as Z0 ¼ 261:86 m and

Lð0Þ ¼ 58:66 m, respectively. The main mass is

attached at the lower end of a cable made by nr ¼ 6

steel wire ropes. The parameters of every rope are:

mass per unit length m ¼ 2:18 kg/m and longitudinal

stiffness EA ¼ 22:889 MN. The horizontal displace-

ment of main mass is constrained by the spring with

the stiffness k ¼ 2:8 kN/m and auxiliary small mass

md. The frequency of the sway and the amplitude at the

top point of the host structure are assumed as X0 ¼
0:105 Hz and A0 ¼ 0:1 m, respectively. The param-

eters of TMD system were selected to mitigate the

effects of transition through the fundamental lateral

resonance of the system which is observed for the

length of suspension rope L ¼ 161 m. Using the mass

ratio l ¼ mdU2
r ðLÞ=mr ¼ 0:05 and the optimal damp-

ing ratio fd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l=ð8ð1 þ lÞ3Þ

q
¼ 0:13, the particu-

lar TMD parameters are obtained as md ¼ 382:85 kg,

kd ¼ mdð ~xr=ð1 þ lÞÞ2 ¼ 150:20 N/m and cd ¼
2mdfdxd ¼ 61:04 Ns/m.

The model was treated twice, first by using the

nonlinear deterministic analysis with the structural

damping ratio fr ¼ f1 ¼ 0:01, and then by using the

equivalent linearization technique for different values

of damping ratio of the auxiliary filter ff . The

comparison of the results obtained from the two

methods (see. Fig. 2) shows that the smaller the value

of ff is taken into the analysis the smaller differences

between the deterministic and expected values for

particular random state variables is obtained. As we

can see, the best match between the response curves

can be observed at the early stage of motion. After the

system enters into the resonance area the differences

become more significant, especially for the vertical

displacement of main mass uM , as can bee seen on

Fig. 2c. However for very small values ff the lines of

generalized coordinates and horizontal displacements

of auxiliary mass are almost identical (Fig. 2a–b).
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Figure 3 presents the percentage differences

between the expected values obtained for various ff
and deterministic solution of nonlinear system under

harmonic excitation. As it can be seen for small value

of ff the observed result is under 5%. The largest

deviation of the expected values from the non-linear

solution can be observed for the case of vertical

displacement of the main mass (Fig. 3c), but it may be

caused by very low values of these displacements in

comparison with generalized coordinates or horizontal

displacements of an auxiliary mass.

The application of the equivalent linearization

technique leads to obtaining not only the expected

values of every random state variable but also their

variances and the mutual covariances. Figure 4 shows

the relationship between the value of coefficient ff that

was included into the analysis and the variance of

selected variables of the system (qr, zd and v0). As it

can be seen for the lowest values of ff , for which the
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obtained by the equivalent linearization technique: a qr , b zd ,

c uM

Fig. 3 Percentage difference between the deterministic results

and expected values obtained by the equivalent linearization

technique: a qr , b zd , c uM
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best comparison between the stochastic and determin-

istic results were obtained (see Figs. 2 and 3), the

values of variances received by equivalent lineariza-

tion technique are comparable. On the other hand for

the higher value of ff the differences between the

graphs are significant. This confirms that for this

cable–mass system the ratio of damping auxiliary filter

should be selected between 0.001 and 0.005.

6 Concluding remarks

The equations of motion of a vertical mass-cable

moving at speed within a tall host structure should

include the nonlinear effects due to the rope stretching.

Because of their slenderness high-rise buildings and

civil structures are subjected to vibrations caused by

external dynamic loads. The excitation due to these

loads result in bending deformation of the host

structure which in turn leads to the excitation of

structural part of internal equipment such as elastic

cables and ropes. To reduce their dynamic response

the properly designed TMD can be applied. To select

the parameters and implement the tuned mass damper

action the mode corresponding to the main mass

motion should be considered. Because of its nonde-

terministic nature, the problem should be examined by

using stochastic methods. The results presented in this

paper bring a conclusion that the random excitation

model can be represented as a narrow-band process

mean-square equivalent to the harmonic process and

can be implemented by using approximation.

The equivalent linearization technique results in

replacing the original system governed by non-linear

differential equations by an equivalent system gov-

erned by linear differential equations, that are

expressed in terms of the moments and of the

expectations of the non-linear functions of the

response process. As a result the covariance matrix

of the state variables is obtained. That gives relevant

and necessary information that should be taken into

account when designing the system.

The nonlinearity and non-stationarity of the process

require the application of numerical techniques. The

presented procedure shows that the equivalent lin-

earization technique can be effectively used in the

analysis. An undoubtful advantage of this approach is

shorter time of calculation in comparison to other

statistical methods.
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